| /* | 
 |  * SLOB Allocator: Simple List Of Blocks | 
 |  * | 
 |  * Matt Mackall <mpm@selenic.com> 12/30/03 | 
 |  * | 
 |  * NUMA support by Paul Mundt, 2007. | 
 |  * | 
 |  * How SLOB works: | 
 |  * | 
 |  * The core of SLOB is a traditional K&R style heap allocator, with | 
 |  * support for returning aligned objects. The granularity of this | 
 |  * allocator is as little as 2 bytes, however typically most architectures | 
 |  * will require 4 bytes on 32-bit and 8 bytes on 64-bit. | 
 |  * | 
 |  * The slob heap is a set of linked list of pages from alloc_pages(), | 
 |  * and within each page, there is a singly-linked list of free blocks | 
 |  * (slob_t). The heap is grown on demand. To reduce fragmentation, | 
 |  * heap pages are segregated into three lists, with objects less than | 
 |  * 256 bytes, objects less than 1024 bytes, and all other objects. | 
 |  * | 
 |  * Allocation from heap involves first searching for a page with | 
 |  * sufficient free blocks (using a next-fit-like approach) followed by | 
 |  * a first-fit scan of the page. Deallocation inserts objects back | 
 |  * into the free list in address order, so this is effectively an | 
 |  * address-ordered first fit. | 
 |  * | 
 |  * Above this is an implementation of kmalloc/kfree. Blocks returned | 
 |  * from kmalloc are prepended with a 4-byte header with the kmalloc size. | 
 |  * If kmalloc is asked for objects of PAGE_SIZE or larger, it calls | 
 |  * alloc_pages() directly, allocating compound pages so the page order | 
 |  * does not have to be separately tracked, and also stores the exact | 
 |  * allocation size in page->private so that it can be used to accurately | 
 |  * provide ksize(). These objects are detected in kfree() because slob_page() | 
 |  * is false for them. | 
 |  * | 
 |  * SLAB is emulated on top of SLOB by simply calling constructors and | 
 |  * destructors for every SLAB allocation. Objects are returned with the | 
 |  * 4-byte alignment unless the SLAB_HWCACHE_ALIGN flag is set, in which | 
 |  * case the low-level allocator will fragment blocks to create the proper | 
 |  * alignment. Again, objects of page-size or greater are allocated by | 
 |  * calling alloc_pages(). As SLAB objects know their size, no separate | 
 |  * size bookkeeping is necessary and there is essentially no allocation | 
 |  * space overhead, and compound pages aren't needed for multi-page | 
 |  * allocations. | 
 |  * | 
 |  * NUMA support in SLOB is fairly simplistic, pushing most of the real | 
 |  * logic down to the page allocator, and simply doing the node accounting | 
 |  * on the upper levels. In the event that a node id is explicitly | 
 |  * provided, alloc_pages_exact_node() with the specified node id is used | 
 |  * instead. The common case (or when the node id isn't explicitly provided) | 
 |  * will default to the current node, as per numa_node_id(). | 
 |  * | 
 |  * Node aware pages are still inserted in to the global freelist, and | 
 |  * these are scanned for by matching against the node id encoded in the | 
 |  * page flags. As a result, block allocations that can be satisfied from | 
 |  * the freelist will only be done so on pages residing on the same node, | 
 |  * in order to prevent random node placement. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/swap.h> /* struct reclaim_state */ | 
 | #include <linux/cache.h> | 
 | #include <linux/init.h> | 
 | #include <linux/export.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/list.h> | 
 | #include <linux/kmemleak.h> | 
 |  | 
 | #include <trace/events/kmem.h> | 
 |  | 
 | #include <linux/atomic.h> | 
 |  | 
 | /* | 
 |  * slob_block has a field 'units', which indicates size of block if +ve, | 
 |  * or offset of next block if -ve (in SLOB_UNITs). | 
 |  * | 
 |  * Free blocks of size 1 unit simply contain the offset of the next block. | 
 |  * Those with larger size contain their size in the first SLOB_UNIT of | 
 |  * memory, and the offset of the next free block in the second SLOB_UNIT. | 
 |  */ | 
 | #if PAGE_SIZE <= (32767 * 2) | 
 | typedef s16 slobidx_t; | 
 | #else | 
 | typedef s32 slobidx_t; | 
 | #endif | 
 |  | 
 | struct slob_block { | 
 | 	slobidx_t units; | 
 | }; | 
 | typedef struct slob_block slob_t; | 
 |  | 
 | /* | 
 |  * We use struct page fields to manage some slob allocation aspects, | 
 |  * however to avoid the horrible mess in include/linux/mm_types.h, we'll | 
 |  * just define our own struct page type variant here. | 
 |  */ | 
 | struct slob_page { | 
 | 	union { | 
 | 		struct { | 
 | 			unsigned long flags;	/* mandatory */ | 
 | 			atomic_t _count;	/* mandatory */ | 
 | 			slobidx_t units;	/* free units left in page */ | 
 | 			unsigned long pad[2]; | 
 | 			slob_t *free;		/* first free slob_t in page */ | 
 | 			struct list_head list;	/* linked list of free pages */ | 
 | 		}; | 
 | 		struct page page; | 
 | 	}; | 
 | }; | 
 | static inline void struct_slob_page_wrong_size(void) | 
 | { BUILD_BUG_ON(sizeof(struct slob_page) != sizeof(struct page)); } | 
 |  | 
 | /* | 
 |  * free_slob_page: call before a slob_page is returned to the page allocator. | 
 |  */ | 
 | static inline void free_slob_page(struct slob_page *sp) | 
 | { | 
 | 	reset_page_mapcount(&sp->page); | 
 | 	sp->page.mapping = NULL; | 
 | } | 
 |  | 
 | /* | 
 |  * All partially free slob pages go on these lists. | 
 |  */ | 
 | #define SLOB_BREAK1 256 | 
 | #define SLOB_BREAK2 1024 | 
 | static LIST_HEAD(free_slob_small); | 
 | static LIST_HEAD(free_slob_medium); | 
 | static LIST_HEAD(free_slob_large); | 
 |  | 
 | /* | 
 |  * is_slob_page: True for all slob pages (false for bigblock pages) | 
 |  */ | 
 | static inline int is_slob_page(struct slob_page *sp) | 
 | { | 
 | 	return PageSlab((struct page *)sp); | 
 | } | 
 |  | 
 | static inline void set_slob_page(struct slob_page *sp) | 
 | { | 
 | 	__SetPageSlab((struct page *)sp); | 
 | } | 
 |  | 
 | static inline void clear_slob_page(struct slob_page *sp) | 
 | { | 
 | 	__ClearPageSlab((struct page *)sp); | 
 | } | 
 |  | 
 | static inline struct slob_page *slob_page(const void *addr) | 
 | { | 
 | 	return (struct slob_page *)virt_to_page(addr); | 
 | } | 
 |  | 
 | /* | 
 |  * slob_page_free: true for pages on free_slob_pages list. | 
 |  */ | 
 | static inline int slob_page_free(struct slob_page *sp) | 
 | { | 
 | 	return PageSlobFree((struct page *)sp); | 
 | } | 
 |  | 
 | static void set_slob_page_free(struct slob_page *sp, struct list_head *list) | 
 | { | 
 | 	list_add(&sp->list, list); | 
 | 	__SetPageSlobFree((struct page *)sp); | 
 | } | 
 |  | 
 | static inline void clear_slob_page_free(struct slob_page *sp) | 
 | { | 
 | 	list_del(&sp->list); | 
 | 	__ClearPageSlobFree((struct page *)sp); | 
 | } | 
 |  | 
 | #define SLOB_UNIT sizeof(slob_t) | 
 | #define SLOB_UNITS(size) (((size) + SLOB_UNIT - 1)/SLOB_UNIT) | 
 | #define SLOB_ALIGN L1_CACHE_BYTES | 
 |  | 
 | /* | 
 |  * struct slob_rcu is inserted at the tail of allocated slob blocks, which | 
 |  * were created with a SLAB_DESTROY_BY_RCU slab. slob_rcu is used to free | 
 |  * the block using call_rcu. | 
 |  */ | 
 | struct slob_rcu { | 
 | 	struct rcu_head head; | 
 | 	int size; | 
 | }; | 
 |  | 
 | /* | 
 |  * slob_lock protects all slob allocator structures. | 
 |  */ | 
 | static DEFINE_SPINLOCK(slob_lock); | 
 |  | 
 | /* | 
 |  * Encode the given size and next info into a free slob block s. | 
 |  */ | 
 | static void set_slob(slob_t *s, slobidx_t size, slob_t *next) | 
 | { | 
 | 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | 
 | 	slobidx_t offset = next - base; | 
 |  | 
 | 	if (size > 1) { | 
 | 		s[0].units = size; | 
 | 		s[1].units = offset; | 
 | 	} else | 
 | 		s[0].units = -offset; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the size of a slob block. | 
 |  */ | 
 | static slobidx_t slob_units(slob_t *s) | 
 | { | 
 | 	if (s->units > 0) | 
 | 		return s->units; | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the next free slob block pointer after this one. | 
 |  */ | 
 | static slob_t *slob_next(slob_t *s) | 
 | { | 
 | 	slob_t *base = (slob_t *)((unsigned long)s & PAGE_MASK); | 
 | 	slobidx_t next; | 
 |  | 
 | 	if (s[0].units < 0) | 
 | 		next = -s[0].units; | 
 | 	else | 
 | 		next = s[1].units; | 
 | 	return base+next; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if s is the last free block in its page. | 
 |  */ | 
 | static int slob_last(slob_t *s) | 
 | { | 
 | 	return !((unsigned long)slob_next(s) & ~PAGE_MASK); | 
 | } | 
 |  | 
 | static void *slob_new_pages(gfp_t gfp, int order, int node) | 
 | { | 
 | 	void *page; | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	if (node != -1) | 
 | 		page = alloc_pages_exact_node(node, gfp, order); | 
 | 	else | 
 | #endif | 
 | 		page = alloc_pages(gfp, order); | 
 |  | 
 | 	if (!page) | 
 | 		return NULL; | 
 |  | 
 | 	return page_address(page); | 
 | } | 
 |  | 
 | static void slob_free_pages(void *b, int order) | 
 | { | 
 | 	if (current->reclaim_state) | 
 | 		current->reclaim_state->reclaimed_slab += 1 << order; | 
 | 	free_pages((unsigned long)b, order); | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate a slob block within a given slob_page sp. | 
 |  */ | 
 | static void *slob_page_alloc(struct slob_page *sp, size_t size, int align) | 
 | { | 
 | 	slob_t *prev, *cur, *aligned = NULL; | 
 | 	int delta = 0, units = SLOB_UNITS(size); | 
 |  | 
 | 	for (prev = NULL, cur = sp->free; ; prev = cur, cur = slob_next(cur)) { | 
 | 		slobidx_t avail = slob_units(cur); | 
 |  | 
 | 		if (align) { | 
 | 			aligned = (slob_t *)ALIGN((unsigned long)cur, align); | 
 | 			delta = aligned - cur; | 
 | 		} | 
 | 		if (avail >= units + delta) { /* room enough? */ | 
 | 			slob_t *next; | 
 |  | 
 | 			if (delta) { /* need to fragment head to align? */ | 
 | 				next = slob_next(cur); | 
 | 				set_slob(aligned, avail - delta, next); | 
 | 				set_slob(cur, delta, aligned); | 
 | 				prev = cur; | 
 | 				cur = aligned; | 
 | 				avail = slob_units(cur); | 
 | 			} | 
 |  | 
 | 			next = slob_next(cur); | 
 | 			if (avail == units) { /* exact fit? unlink. */ | 
 | 				if (prev) | 
 | 					set_slob(prev, slob_units(prev), next); | 
 | 				else | 
 | 					sp->free = next; | 
 | 			} else { /* fragment */ | 
 | 				if (prev) | 
 | 					set_slob(prev, slob_units(prev), cur + units); | 
 | 				else | 
 | 					sp->free = cur + units; | 
 | 				set_slob(cur + units, avail - units, next); | 
 | 			} | 
 |  | 
 | 			sp->units -= units; | 
 | 			if (!sp->units) | 
 | 				clear_slob_page_free(sp); | 
 | 			return cur; | 
 | 		} | 
 | 		if (slob_last(cur)) | 
 | 			return NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * slob_alloc: entry point into the slob allocator. | 
 |  */ | 
 | static void *slob_alloc(size_t size, gfp_t gfp, int align, int node) | 
 | { | 
 | 	struct slob_page *sp; | 
 | 	struct list_head *prev; | 
 | 	struct list_head *slob_list; | 
 | 	slob_t *b = NULL; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (size < SLOB_BREAK1) | 
 | 		slob_list = &free_slob_small; | 
 | 	else if (size < SLOB_BREAK2) | 
 | 		slob_list = &free_slob_medium; | 
 | 	else | 
 | 		slob_list = &free_slob_large; | 
 |  | 
 | 	spin_lock_irqsave(&slob_lock, flags); | 
 | 	/* Iterate through each partially free page, try to find room */ | 
 | 	list_for_each_entry(sp, slob_list, list) { | 
 | #ifdef CONFIG_NUMA | 
 | 		/* | 
 | 		 * If there's a node specification, search for a partial | 
 | 		 * page with a matching node id in the freelist. | 
 | 		 */ | 
 | 		if (node != -1 && page_to_nid(&sp->page) != node) | 
 | 			continue; | 
 | #endif | 
 | 		/* Enough room on this page? */ | 
 | 		if (sp->units < SLOB_UNITS(size)) | 
 | 			continue; | 
 |  | 
 | 		/* Attempt to alloc */ | 
 | 		prev = sp->list.prev; | 
 | 		b = slob_page_alloc(sp, size, align); | 
 | 		if (!b) | 
 | 			continue; | 
 |  | 
 | 		/* Improve fragment distribution and reduce our average | 
 | 		 * search time by starting our next search here. (see | 
 | 		 * Knuth vol 1, sec 2.5, pg 449) */ | 
 | 		if (prev != slob_list->prev && | 
 | 				slob_list->next != prev->next) | 
 | 			list_move_tail(slob_list, prev->next); | 
 | 		break; | 
 | 	} | 
 | 	spin_unlock_irqrestore(&slob_lock, flags); | 
 |  | 
 | 	/* Not enough space: must allocate a new page */ | 
 | 	if (!b) { | 
 | 		b = slob_new_pages(gfp & ~__GFP_ZERO, 0, node); | 
 | 		if (!b) | 
 | 			return NULL; | 
 | 		sp = slob_page(b); | 
 | 		set_slob_page(sp); | 
 |  | 
 | 		spin_lock_irqsave(&slob_lock, flags); | 
 | 		sp->units = SLOB_UNITS(PAGE_SIZE); | 
 | 		sp->free = b; | 
 | 		INIT_LIST_HEAD(&sp->list); | 
 | 		set_slob(b, SLOB_UNITS(PAGE_SIZE), b + SLOB_UNITS(PAGE_SIZE)); | 
 | 		set_slob_page_free(sp, slob_list); | 
 | 		b = slob_page_alloc(sp, size, align); | 
 | 		BUG_ON(!b); | 
 | 		spin_unlock_irqrestore(&slob_lock, flags); | 
 | 	} | 
 | 	if (unlikely((gfp & __GFP_ZERO) && b)) | 
 | 		memset(b, 0, size); | 
 | 	return b; | 
 | } | 
 |  | 
 | /* | 
 |  * slob_free: entry point into the slob allocator. | 
 |  */ | 
 | static void slob_free(void *block, int size) | 
 | { | 
 | 	struct slob_page *sp; | 
 | 	slob_t *prev, *next, *b = (slob_t *)block; | 
 | 	slobidx_t units; | 
 | 	unsigned long flags; | 
 | 	struct list_head *slob_list; | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(block))) | 
 | 		return; | 
 | 	BUG_ON(!size); | 
 |  | 
 | 	sp = slob_page(block); | 
 | 	units = SLOB_UNITS(size); | 
 |  | 
 | 	spin_lock_irqsave(&slob_lock, flags); | 
 |  | 
 | 	if (sp->units + units == SLOB_UNITS(PAGE_SIZE)) { | 
 | 		/* Go directly to page allocator. Do not pass slob allocator */ | 
 | 		if (slob_page_free(sp)) | 
 | 			clear_slob_page_free(sp); | 
 | 		spin_unlock_irqrestore(&slob_lock, flags); | 
 | 		clear_slob_page(sp); | 
 | 		free_slob_page(sp); | 
 | 		slob_free_pages(b, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (!slob_page_free(sp)) { | 
 | 		/* This slob page is about to become partially free. Easy! */ | 
 | 		sp->units = units; | 
 | 		sp->free = b; | 
 | 		set_slob(b, units, | 
 | 			(void *)((unsigned long)(b + | 
 | 					SLOB_UNITS(PAGE_SIZE)) & PAGE_MASK)); | 
 | 		if (size < SLOB_BREAK1) | 
 | 			slob_list = &free_slob_small; | 
 | 		else if (size < SLOB_BREAK2) | 
 | 			slob_list = &free_slob_medium; | 
 | 		else | 
 | 			slob_list = &free_slob_large; | 
 | 		set_slob_page_free(sp, slob_list); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Otherwise the page is already partially free, so find reinsertion | 
 | 	 * point. | 
 | 	 */ | 
 | 	sp->units += units; | 
 |  | 
 | 	if (b < sp->free) { | 
 | 		if (b + units == sp->free) { | 
 | 			units += slob_units(sp->free); | 
 | 			sp->free = slob_next(sp->free); | 
 | 		} | 
 | 		set_slob(b, units, sp->free); | 
 | 		sp->free = b; | 
 | 	} else { | 
 | 		prev = sp->free; | 
 | 		next = slob_next(prev); | 
 | 		while (b > next) { | 
 | 			prev = next; | 
 | 			next = slob_next(prev); | 
 | 		} | 
 |  | 
 | 		if (!slob_last(prev) && b + units == next) { | 
 | 			units += slob_units(next); | 
 | 			set_slob(b, units, slob_next(next)); | 
 | 		} else | 
 | 			set_slob(b, units, next); | 
 |  | 
 | 		if (prev + slob_units(prev) == b) { | 
 | 			units = slob_units(b) + slob_units(prev); | 
 | 			set_slob(prev, units, slob_next(b)); | 
 | 		} else | 
 | 			set_slob(prev, slob_units(prev), b); | 
 | 	} | 
 | out: | 
 | 	spin_unlock_irqrestore(&slob_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * End of slob allocator proper. Begin kmem_cache_alloc and kmalloc frontend. | 
 |  */ | 
 |  | 
 | void *__kmalloc_node(size_t size, gfp_t gfp, int node) | 
 | { | 
 | 	unsigned int *m; | 
 | 	int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 
 | 	void *ret; | 
 |  | 
 | 	gfp &= gfp_allowed_mask; | 
 |  | 
 | 	lockdep_trace_alloc(gfp); | 
 |  | 
 | 	if (size < PAGE_SIZE - align) { | 
 | 		if (!size) | 
 | 			return ZERO_SIZE_PTR; | 
 |  | 
 | 		m = slob_alloc(size + align, gfp, align, node); | 
 |  | 
 | 		if (!m) | 
 | 			return NULL; | 
 | 		*m = size; | 
 | 		ret = (void *)m + align; | 
 |  | 
 | 		trace_kmalloc_node(_RET_IP_, ret, | 
 | 				   size, size + align, gfp, node); | 
 | 	} else { | 
 | 		unsigned int order = get_order(size); | 
 |  | 
 | 		if (likely(order)) | 
 | 			gfp |= __GFP_COMP; | 
 | 		ret = slob_new_pages(gfp, order, node); | 
 | 		if (ret) { | 
 | 			struct page *page; | 
 | 			page = virt_to_page(ret); | 
 | 			page->private = size; | 
 | 		} | 
 |  | 
 | 		trace_kmalloc_node(_RET_IP_, ret, | 
 | 				   size, PAGE_SIZE << order, gfp, node); | 
 | 	} | 
 |  | 
 | 	kmemleak_alloc(ret, size, 1, gfp); | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(__kmalloc_node); | 
 |  | 
 | void kfree(const void *block) | 
 | { | 
 | 	struct slob_page *sp; | 
 |  | 
 | 	trace_kfree(_RET_IP_, block); | 
 |  | 
 | 	if (unlikely(ZERO_OR_NULL_PTR(block))) | 
 | 		return; | 
 | 	kmemleak_free(block); | 
 |  | 
 | 	sp = slob_page(block); | 
 | 	if (is_slob_page(sp)) { | 
 | 		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 
 | 		unsigned int *m = (unsigned int *)(block - align); | 
 | 		slob_free(m, *m + align); | 
 | 	} else | 
 | 		put_page(&sp->page); | 
 | } | 
 | EXPORT_SYMBOL(kfree); | 
 |  | 
 | /* can't use ksize for kmem_cache_alloc memory, only kmalloc */ | 
 | size_t ksize(const void *block) | 
 | { | 
 | 	struct slob_page *sp; | 
 |  | 
 | 	BUG_ON(!block); | 
 | 	if (unlikely(block == ZERO_SIZE_PTR)) | 
 | 		return 0; | 
 |  | 
 | 	sp = slob_page(block); | 
 | 	if (is_slob_page(sp)) { | 
 | 		int align = max(ARCH_KMALLOC_MINALIGN, ARCH_SLAB_MINALIGN); | 
 | 		unsigned int *m = (unsigned int *)(block - align); | 
 | 		return SLOB_UNITS(*m) * SLOB_UNIT; | 
 | 	} else | 
 | 		return sp->page.private; | 
 | } | 
 | EXPORT_SYMBOL(ksize); | 
 |  | 
 | struct kmem_cache { | 
 | 	unsigned int size, align; | 
 | 	unsigned long flags; | 
 | 	const char *name; | 
 | 	void (*ctor)(void *); | 
 | }; | 
 |  | 
 | struct kmem_cache *kmem_cache_create(const char *name, size_t size, | 
 | 	size_t align, unsigned long flags, void (*ctor)(void *)) | 
 | { | 
 | 	struct kmem_cache *c; | 
 |  | 
 | 	c = slob_alloc(sizeof(struct kmem_cache), | 
 | 		GFP_KERNEL, ARCH_KMALLOC_MINALIGN, -1); | 
 |  | 
 | 	if (c) { | 
 | 		c->name = name; | 
 | 		c->size = size; | 
 | 		if (flags & SLAB_DESTROY_BY_RCU) { | 
 | 			/* leave room for rcu footer at the end of object */ | 
 | 			c->size += sizeof(struct slob_rcu); | 
 | 		} | 
 | 		c->flags = flags; | 
 | 		c->ctor = ctor; | 
 | 		/* ignore alignment unless it's forced */ | 
 | 		c->align = (flags & SLAB_HWCACHE_ALIGN) ? SLOB_ALIGN : 0; | 
 | 		if (c->align < ARCH_SLAB_MINALIGN) | 
 | 			c->align = ARCH_SLAB_MINALIGN; | 
 | 		if (c->align < align) | 
 | 			c->align = align; | 
 | 	} else if (flags & SLAB_PANIC) | 
 | 		panic("Cannot create slab cache %s\n", name); | 
 |  | 
 | 	kmemleak_alloc(c, sizeof(struct kmem_cache), 1, GFP_KERNEL); | 
 | 	return c; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_create); | 
 |  | 
 | void kmem_cache_destroy(struct kmem_cache *c) | 
 | { | 
 | 	kmemleak_free(c); | 
 | 	if (c->flags & SLAB_DESTROY_BY_RCU) | 
 | 		rcu_barrier(); | 
 | 	slob_free(c, sizeof(struct kmem_cache)); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_destroy); | 
 |  | 
 | void *kmem_cache_alloc_node(struct kmem_cache *c, gfp_t flags, int node) | 
 | { | 
 | 	void *b; | 
 |  | 
 | 	flags &= gfp_allowed_mask; | 
 |  | 
 | 	lockdep_trace_alloc(flags); | 
 |  | 
 | 	if (c->size < PAGE_SIZE) { | 
 | 		b = slob_alloc(c->size, flags, c->align, node); | 
 | 		trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, | 
 | 					    SLOB_UNITS(c->size) * SLOB_UNIT, | 
 | 					    flags, node); | 
 | 	} else { | 
 | 		b = slob_new_pages(flags, get_order(c->size), node); | 
 | 		trace_kmem_cache_alloc_node(_RET_IP_, b, c->size, | 
 | 					    PAGE_SIZE << get_order(c->size), | 
 | 					    flags, node); | 
 | 	} | 
 |  | 
 | 	if (c->ctor) | 
 | 		c->ctor(b); | 
 |  | 
 | 	kmemleak_alloc_recursive(b, c->size, 1, c->flags, flags); | 
 | 	return b; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_alloc_node); | 
 |  | 
 | static void __kmem_cache_free(void *b, int size) | 
 | { | 
 | 	if (size < PAGE_SIZE) | 
 | 		slob_free(b, size); | 
 | 	else | 
 | 		slob_free_pages(b, get_order(size)); | 
 | } | 
 |  | 
 | static void kmem_rcu_free(struct rcu_head *head) | 
 | { | 
 | 	struct slob_rcu *slob_rcu = (struct slob_rcu *)head; | 
 | 	void *b = (void *)slob_rcu - (slob_rcu->size - sizeof(struct slob_rcu)); | 
 |  | 
 | 	__kmem_cache_free(b, slob_rcu->size); | 
 | } | 
 |  | 
 | void kmem_cache_free(struct kmem_cache *c, void *b) | 
 | { | 
 | 	kmemleak_free_recursive(b, c->flags); | 
 | 	if (unlikely(c->flags & SLAB_DESTROY_BY_RCU)) { | 
 | 		struct slob_rcu *slob_rcu; | 
 | 		slob_rcu = b + (c->size - sizeof(struct slob_rcu)); | 
 | 		slob_rcu->size = c->size; | 
 | 		call_rcu(&slob_rcu->head, kmem_rcu_free); | 
 | 	} else { | 
 | 		__kmem_cache_free(b, c->size); | 
 | 	} | 
 |  | 
 | 	trace_kmem_cache_free(_RET_IP_, b); | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_free); | 
 |  | 
 | unsigned int kmem_cache_size(struct kmem_cache *c) | 
 | { | 
 | 	return c->size; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_size); | 
 |  | 
 | int kmem_cache_shrink(struct kmem_cache *d) | 
 | { | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL(kmem_cache_shrink); | 
 |  | 
 | static unsigned int slob_ready __read_mostly; | 
 |  | 
 | int slab_is_available(void) | 
 | { | 
 | 	return slob_ready; | 
 | } | 
 |  | 
 | void __init kmem_cache_init(void) | 
 | { | 
 | 	slob_ready = 1; | 
 | } | 
 |  | 
 | void __init kmem_cache_init_late(void) | 
 | { | 
 | 	/* Nothing to do */ | 
 | } |