dm: add persistent data library

The persistent-data library offers a re-usable framework for the storage
and management of on-disk metadata in device-mapper targets.

It's used by the thin-provisioning target in the next patch and in an
upcoming hierarchical storage target.

For further information, please read
Documentation/device-mapper/persistent-data.txt

Signed-off-by: Joe Thornber <thornber@redhat.com>
Signed-off-by: Mike Snitzer <snitzer@redhat.com>
Signed-off-by: Alasdair G Kergon <agk@redhat.com>
diff --git a/drivers/md/persistent-data/dm-btree-remove.c b/drivers/md/persistent-data/dm-btree-remove.c
new file mode 100644
index 0000000..65fd85e
--- /dev/null
+++ b/drivers/md/persistent-data/dm-btree-remove.c
@@ -0,0 +1,566 @@
+/*
+ * Copyright (C) 2011 Red Hat, Inc.
+ *
+ * This file is released under the GPL.
+ */
+
+#include "dm-btree.h"
+#include "dm-btree-internal.h"
+#include "dm-transaction-manager.h"
+
+#include <linux/module.h>
+
+/*
+ * Removing an entry from a btree
+ * ==============================
+ *
+ * A very important constraint for our btree is that no node, except the
+ * root, may have fewer than a certain number of entries.
+ * (MIN_ENTRIES <= nr_entries <= MAX_ENTRIES).
+ *
+ * Ensuring this is complicated by the way we want to only ever hold the
+ * locks on 2 nodes concurrently, and only change nodes in a top to bottom
+ * fashion.
+ *
+ * Each node may have a left or right sibling.  When decending the spine,
+ * if a node contains only MIN_ENTRIES then we try and increase this to at
+ * least MIN_ENTRIES + 1.  We do this in the following ways:
+ *
+ * [A] No siblings => this can only happen if the node is the root, in which
+ *     case we copy the childs contents over the root.
+ *
+ * [B] No left sibling
+ *     ==> rebalance(node, right sibling)
+ *
+ * [C] No right sibling
+ *     ==> rebalance(left sibling, node)
+ *
+ * [D] Both siblings, total_entries(left, node, right) <= DEL_THRESHOLD
+ *     ==> delete node adding it's contents to left and right
+ *
+ * [E] Both siblings, total_entries(left, node, right) > DEL_THRESHOLD
+ *     ==> rebalance(left, node, right)
+ *
+ * After these operations it's possible that the our original node no
+ * longer contains the desired sub tree.  For this reason this rebalancing
+ * is performed on the children of the current node.  This also avoids
+ * having a special case for the root.
+ *
+ * Once this rebalancing has occurred we can then step into the child node
+ * for internal nodes.  Or delete the entry for leaf nodes.
+ */
+
+/*
+ * Some little utilities for moving node data around.
+ */
+static void node_shift(struct node *n, int shift)
+{
+	uint32_t nr_entries = le32_to_cpu(n->header.nr_entries);
+	uint32_t value_size = le32_to_cpu(n->header.value_size);
+
+	if (shift < 0) {
+		shift = -shift;
+		BUG_ON(shift > nr_entries);
+		BUG_ON((void *) key_ptr(n, shift) >= value_ptr(n, shift, value_size));
+		memmove(key_ptr(n, 0),
+			key_ptr(n, shift),
+			(nr_entries - shift) * sizeof(__le64));
+		memmove(value_ptr(n, 0, value_size),
+			value_ptr(n, shift, value_size),
+			(nr_entries - shift) * value_size);
+	} else {
+		BUG_ON(nr_entries + shift > le32_to_cpu(n->header.max_entries));
+		memmove(key_ptr(n, shift),
+			key_ptr(n, 0),
+			nr_entries * sizeof(__le64));
+		memmove(value_ptr(n, shift, value_size),
+			value_ptr(n, 0, value_size),
+			nr_entries * value_size);
+	}
+}
+
+static void node_copy(struct node *left, struct node *right, int shift)
+{
+	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+	uint32_t value_size = le32_to_cpu(left->header.value_size);
+	BUG_ON(value_size != le32_to_cpu(right->header.value_size));
+
+	if (shift < 0) {
+		shift = -shift;
+		BUG_ON(nr_left + shift > le32_to_cpu(left->header.max_entries));
+		memcpy(key_ptr(left, nr_left),
+		       key_ptr(right, 0),
+		       shift * sizeof(__le64));
+		memcpy(value_ptr(left, nr_left, value_size),
+		       value_ptr(right, 0, value_size),
+		       shift * value_size);
+	} else {
+		BUG_ON(shift > le32_to_cpu(right->header.max_entries));
+		memcpy(key_ptr(right, 0),
+		       key_ptr(left, nr_left - shift),
+		       shift * sizeof(__le64));
+		memcpy(value_ptr(right, 0, value_size),
+		       value_ptr(left, nr_left - shift, value_size),
+		       shift * value_size);
+	}
+}
+
+/*
+ * Delete a specific entry from a leaf node.
+ */
+static void delete_at(struct node *n, unsigned index)
+{
+	unsigned nr_entries = le32_to_cpu(n->header.nr_entries);
+	unsigned nr_to_copy = nr_entries - (index + 1);
+	uint32_t value_size = le32_to_cpu(n->header.value_size);
+	BUG_ON(index >= nr_entries);
+
+	if (nr_to_copy) {
+		memmove(key_ptr(n, index),
+			key_ptr(n, index + 1),
+			nr_to_copy * sizeof(__le64));
+
+		memmove(value_ptr(n, index, value_size),
+			value_ptr(n, index + 1, value_size),
+			nr_to_copy * value_size);
+	}
+
+	n->header.nr_entries = cpu_to_le32(nr_entries - 1);
+}
+
+static unsigned del_threshold(struct node *n)
+{
+	return le32_to_cpu(n->header.max_entries) / 3;
+}
+
+static unsigned merge_threshold(struct node *n)
+{
+	/*
+	 * The extra one is because we know we're potentially going to
+	 * delete an entry.
+	 */
+	return 2 * (le32_to_cpu(n->header.max_entries) / 3) + 1;
+}
+
+struct child {
+	unsigned index;
+	struct dm_block *block;
+	struct node *n;
+};
+
+static struct dm_btree_value_type le64_type = {
+	.context = NULL,
+	.size = sizeof(__le64),
+	.inc = NULL,
+	.dec = NULL,
+	.equal = NULL
+};
+
+static int init_child(struct dm_btree_info *info, struct node *parent,
+		      unsigned index, struct child *result)
+{
+	int r, inc;
+	dm_block_t root;
+
+	result->index = index;
+	root = value64(parent, index);
+
+	r = dm_tm_shadow_block(info->tm, root, &btree_node_validator,
+			       &result->block, &inc);
+	if (r)
+		return r;
+
+	result->n = dm_block_data(result->block);
+
+	if (inc)
+		inc_children(info->tm, result->n, &le64_type);
+
+	*((__le64 *) value_ptr(parent, index, sizeof(__le64))) =
+		cpu_to_le64(dm_block_location(result->block));
+
+	return 0;
+}
+
+static int exit_child(struct dm_btree_info *info, struct child *c)
+{
+	return dm_tm_unlock(info->tm, c->block);
+}
+
+static void shift(struct node *left, struct node *right, int count)
+{
+	if (!count)
+		return;
+
+	if (count > 0) {
+		node_shift(right, count);
+		node_copy(left, right, count);
+	} else {
+		node_copy(left, right, count);
+		node_shift(right, count);
+	}
+
+	left->header.nr_entries =
+		cpu_to_le32(le32_to_cpu(left->header.nr_entries) - count);
+	BUG_ON(le32_to_cpu(left->header.nr_entries) > le32_to_cpu(left->header.max_entries));
+
+	right->header.nr_entries =
+		cpu_to_le32(le32_to_cpu(right->header.nr_entries) + count);
+	BUG_ON(le32_to_cpu(right->header.nr_entries) > le32_to_cpu(right->header.max_entries));
+}
+
+static void __rebalance2(struct dm_btree_info *info, struct node *parent,
+			 struct child *l, struct child *r)
+{
+	struct node *left = l->n;
+	struct node *right = r->n;
+	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
+
+	if (nr_left + nr_right <= merge_threshold(left)) {
+		/*
+		 * Merge
+		 */
+		node_copy(left, right, -nr_right);
+		left->header.nr_entries = cpu_to_le32(nr_left + nr_right);
+		delete_at(parent, r->index);
+
+		/*
+		 * We need to decrement the right block, but not it's
+		 * children, since they're still referenced by left.
+		 */
+		dm_tm_dec(info->tm, dm_block_location(r->block));
+	} else {
+		/*
+		 * Rebalance.
+		 */
+		unsigned target_left = (nr_left + nr_right) / 2;
+		unsigned shift_ = nr_left - target_left;
+		BUG_ON(le32_to_cpu(left->header.max_entries) <= nr_left - shift_);
+		BUG_ON(le32_to_cpu(right->header.max_entries) <= nr_right + shift_);
+		shift(left, right, nr_left - target_left);
+		*key_ptr(parent, r->index) = right->keys[0];
+	}
+}
+
+static int rebalance2(struct shadow_spine *s, struct dm_btree_info *info,
+		      unsigned left_index)
+{
+	int r;
+	struct node *parent;
+	struct child left, right;
+
+	parent = dm_block_data(shadow_current(s));
+
+	r = init_child(info, parent, left_index, &left);
+	if (r)
+		return r;
+
+	r = init_child(info, parent, left_index + 1, &right);
+	if (r) {
+		exit_child(info, &left);
+		return r;
+	}
+
+	__rebalance2(info, parent, &left, &right);
+
+	r = exit_child(info, &left);
+	if (r) {
+		exit_child(info, &right);
+		return r;
+	}
+
+	return exit_child(info, &right);
+}
+
+static void __rebalance3(struct dm_btree_info *info, struct node *parent,
+			 struct child *l, struct child *c, struct child *r)
+{
+	struct node *left = l->n;
+	struct node *center = c->n;
+	struct node *right = r->n;
+
+	uint32_t nr_left = le32_to_cpu(left->header.nr_entries);
+	uint32_t nr_center = le32_to_cpu(center->header.nr_entries);
+	uint32_t nr_right = le32_to_cpu(right->header.nr_entries);
+	uint32_t max_entries = le32_to_cpu(left->header.max_entries);
+
+	unsigned target;
+
+	BUG_ON(left->header.max_entries != center->header.max_entries);
+	BUG_ON(center->header.max_entries != right->header.max_entries);
+
+	if (((nr_left + nr_center + nr_right) / 2) < merge_threshold(center)) {
+		/*
+		 * Delete center node:
+		 *
+		 * We dump as many entries from center as possible into
+		 * left, then the rest in right, then rebalance2.  This
+		 * wastes some cpu, but I want something simple atm.
+		 */
+		unsigned shift = min(max_entries - nr_left, nr_center);
+
+		BUG_ON(nr_left + shift > max_entries);
+		node_copy(left, center, -shift);
+		left->header.nr_entries = cpu_to_le32(nr_left + shift);
+
+		if (shift != nr_center) {
+			shift = nr_center - shift;
+			BUG_ON((nr_right + shift) >= max_entries);
+			node_shift(right, shift);
+			node_copy(center, right, shift);
+			right->header.nr_entries = cpu_to_le32(nr_right + shift);
+		}
+		*key_ptr(parent, r->index) = right->keys[0];
+
+		delete_at(parent, c->index);
+		r->index--;
+
+		dm_tm_dec(info->tm, dm_block_location(c->block));
+		__rebalance2(info, parent, l, r);
+
+		return;
+	}
+
+	/*
+	 * Rebalance
+	 */
+	target = (nr_left + nr_center + nr_right) / 3;
+	BUG_ON(target > max_entries);
+
+	/*
+	 * Adjust the left node
+	 */
+	shift(left, center, nr_left - target);
+
+	/*
+	 * Adjust the right node
+	 */
+	shift(center, right, target - nr_right);
+	*key_ptr(parent, c->index) = center->keys[0];
+	*key_ptr(parent, r->index) = right->keys[0];
+}
+
+static int rebalance3(struct shadow_spine *s, struct dm_btree_info *info,
+		      unsigned left_index)
+{
+	int r;
+	struct node *parent = dm_block_data(shadow_current(s));
+	struct child left, center, right;
+
+	/*
+	 * FIXME: fill out an array?
+	 */
+	r = init_child(info, parent, left_index, &left);
+	if (r)
+		return r;
+
+	r = init_child(info, parent, left_index + 1, &center);
+	if (r) {
+		exit_child(info, &left);
+		return r;
+	}
+
+	r = init_child(info, parent, left_index + 2, &right);
+	if (r) {
+		exit_child(info, &left);
+		exit_child(info, &center);
+		return r;
+	}
+
+	__rebalance3(info, parent, &left, &center, &right);
+
+	r = exit_child(info, &left);
+	if (r) {
+		exit_child(info, &center);
+		exit_child(info, &right);
+		return r;
+	}
+
+	r = exit_child(info, &center);
+	if (r) {
+		exit_child(info, &right);
+		return r;
+	}
+
+	r = exit_child(info, &right);
+	if (r)
+		return r;
+
+	return 0;
+}
+
+static int get_nr_entries(struct dm_transaction_manager *tm,
+			  dm_block_t b, uint32_t *result)
+{
+	int r;
+	struct dm_block *block;
+	struct node *n;
+
+	r = dm_tm_read_lock(tm, b, &btree_node_validator, &block);
+	if (r)
+		return r;
+
+	n = dm_block_data(block);
+	*result = le32_to_cpu(n->header.nr_entries);
+
+	return dm_tm_unlock(tm, block);
+}
+
+static int rebalance_children(struct shadow_spine *s,
+			      struct dm_btree_info *info, uint64_t key)
+{
+	int i, r, has_left_sibling, has_right_sibling;
+	uint32_t child_entries;
+	struct node *n;
+
+	n = dm_block_data(shadow_current(s));
+
+	if (le32_to_cpu(n->header.nr_entries) == 1) {
+		struct dm_block *child;
+		dm_block_t b = value64(n, 0);
+
+		r = dm_tm_read_lock(info->tm, b, &btree_node_validator, &child);
+		if (r)
+			return r;
+
+		memcpy(n, dm_block_data(child),
+		       dm_bm_block_size(dm_tm_get_bm(info->tm)));
+		r = dm_tm_unlock(info->tm, child);
+		if (r)
+			return r;
+
+		dm_tm_dec(info->tm, dm_block_location(child));
+		return 0;
+	}
+
+	i = lower_bound(n, key);
+	if (i < 0)
+		return -ENODATA;
+
+	r = get_nr_entries(info->tm, value64(n, i), &child_entries);
+	if (r)
+		return r;
+
+	if (child_entries > del_threshold(n))
+		return 0;
+
+	has_left_sibling = i > 0;
+	has_right_sibling = i < (le32_to_cpu(n->header.nr_entries) - 1);
+
+	if (!has_left_sibling)
+		r = rebalance2(s, info, i);
+
+	else if (!has_right_sibling)
+		r = rebalance2(s, info, i - 1);
+
+	else
+		r = rebalance3(s, info, i - 1);
+
+	return r;
+}
+
+static int do_leaf(struct node *n, uint64_t key, unsigned *index)
+{
+	int i = lower_bound(n, key);
+
+	if ((i < 0) ||
+	    (i >= le32_to_cpu(n->header.nr_entries)) ||
+	    (le64_to_cpu(n->keys[i]) != key))
+		return -ENODATA;
+
+	*index = i;
+
+	return 0;
+}
+
+/*
+ * Prepares for removal from one level of the hierarchy.  The caller must
+ * call delete_at() to remove the entry at index.
+ */
+static int remove_raw(struct shadow_spine *s, struct dm_btree_info *info,
+		      struct dm_btree_value_type *vt, dm_block_t root,
+		      uint64_t key, unsigned *index)
+{
+	int i = *index, r;
+	struct node *n;
+
+	for (;;) {
+		r = shadow_step(s, root, vt);
+		if (r < 0)
+			break;
+
+		/*
+		 * We have to patch up the parent node, ugly, but I don't
+		 * see a way to do this automatically as part of the spine
+		 * op.
+		 */
+		if (shadow_has_parent(s)) {
+			__le64 location = cpu_to_le64(dm_block_location(shadow_current(s)));
+			memcpy(value_ptr(dm_block_data(shadow_parent(s)), i, sizeof(__le64)),
+			       &location, sizeof(__le64));
+		}
+
+		n = dm_block_data(shadow_current(s));
+
+		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
+			return do_leaf(n, key, index);
+
+		r = rebalance_children(s, info, key);
+		if (r)
+			break;
+
+		n = dm_block_data(shadow_current(s));
+		if (le32_to_cpu(n->header.flags) & LEAF_NODE)
+			return do_leaf(n, key, index);
+
+		i = lower_bound(n, key);
+
+		/*
+		 * We know the key is present, or else
+		 * rebalance_children would have returned
+		 * -ENODATA
+		 */
+		root = value64(n, i);
+	}
+
+	return r;
+}
+
+int dm_btree_remove(struct dm_btree_info *info, dm_block_t root,
+		    uint64_t *keys, dm_block_t *new_root)
+{
+	unsigned level, last_level = info->levels - 1;
+	int index = 0, r = 0;
+	struct shadow_spine spine;
+	struct node *n;
+
+	init_shadow_spine(&spine, info);
+	for (level = 0; level < info->levels; level++) {
+		r = remove_raw(&spine, info,
+			       (level == last_level ?
+				&info->value_type : &le64_type),
+			       root, keys[level], (unsigned *)&index);
+		if (r < 0)
+			break;
+
+		n = dm_block_data(shadow_current(&spine));
+		if (level != last_level) {
+			root = value64(n, index);
+			continue;
+		}
+
+		BUG_ON(index < 0 || index >= le32_to_cpu(n->header.nr_entries));
+
+		if (info->value_type.dec)
+			info->value_type.dec(info->value_type.context,
+					     value_ptr(n, index, info->value_type.size));
+
+		delete_at(n, index);
+	}
+
+	*new_root = shadow_root(&spine);
+	exit_shadow_spine(&spine);
+
+	return r;
+}
+EXPORT_SYMBOL_GPL(dm_btree_remove);