| /* | 
 |  * drivers/mtd/nand/fsmc_nand.c | 
 |  * | 
 |  * ST Microelectronics | 
 |  * Flexible Static Memory Controller (FSMC) | 
 |  * Driver for NAND portions | 
 |  * | 
 |  * Copyright © 2010 ST Microelectronics | 
 |  * Vipin Kumar <vipin.kumar@st.com> | 
 |  * Ashish Priyadarshi | 
 |  * | 
 |  * Based on drivers/mtd/nand/nomadik_nand.c | 
 |  * | 
 |  * This file is licensed under the terms of the GNU General Public | 
 |  * License version 2. This program is licensed "as is" without any | 
 |  * warranty of any kind, whether express or implied. | 
 |  */ | 
 |  | 
 | #include <linux/clk.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/dmaengine.h> | 
 | #include <linux/dma-direction.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/err.h> | 
 | #include <linux/init.h> | 
 | #include <linux/module.h> | 
 | #include <linux/resource.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/types.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/mtd/nand_ecc.h> | 
 | #include <linux/platform_device.h> | 
 | #include <linux/of.h> | 
 | #include <linux/mtd/partitions.h> | 
 | #include <linux/io.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/mtd/fsmc.h> | 
 | #include <linux/amba/bus.h> | 
 | #include <mtd/mtd-abi.h> | 
 |  | 
 | static struct nand_ecclayout fsmc_ecc1_128_layout = { | 
 | 	.eccbytes = 24, | 
 | 	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52, | 
 | 		66, 67, 68, 82, 83, 84, 98, 99, 100, 114, 115, 116}, | 
 | 	.oobfree = { | 
 | 		{.offset = 8, .length = 8}, | 
 | 		{.offset = 24, .length = 8}, | 
 | 		{.offset = 40, .length = 8}, | 
 | 		{.offset = 56, .length = 8}, | 
 | 		{.offset = 72, .length = 8}, | 
 | 		{.offset = 88, .length = 8}, | 
 | 		{.offset = 104, .length = 8}, | 
 | 		{.offset = 120, .length = 8} | 
 | 	} | 
 | }; | 
 |  | 
 | static struct nand_ecclayout fsmc_ecc1_64_layout = { | 
 | 	.eccbytes = 12, | 
 | 	.eccpos = {2, 3, 4, 18, 19, 20, 34, 35, 36, 50, 51, 52}, | 
 | 	.oobfree = { | 
 | 		{.offset = 8, .length = 8}, | 
 | 		{.offset = 24, .length = 8}, | 
 | 		{.offset = 40, .length = 8}, | 
 | 		{.offset = 56, .length = 8}, | 
 | 	} | 
 | }; | 
 |  | 
 | static struct nand_ecclayout fsmc_ecc1_16_layout = { | 
 | 	.eccbytes = 3, | 
 | 	.eccpos = {2, 3, 4}, | 
 | 	.oobfree = { | 
 | 		{.offset = 8, .length = 8}, | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * ECC4 layout for NAND of pagesize 8192 bytes & OOBsize 256 bytes. 13*16 bytes | 
 |  * of OB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 46 | 
 |  * bytes are free for use. | 
 |  */ | 
 | static struct nand_ecclayout fsmc_ecc4_256_layout = { | 
 | 	.eccbytes = 208, | 
 | 	.eccpos = {  2,   3,   4,   5,   6,   7,   8, | 
 | 		9,  10,  11,  12,  13,  14, | 
 | 		18,  19,  20,  21,  22,  23,  24, | 
 | 		25,  26,  27,  28,  29,  30, | 
 | 		34,  35,  36,  37,  38,  39,  40, | 
 | 		41,  42,  43,  44,  45,  46, | 
 | 		50,  51,  52,  53,  54,  55,  56, | 
 | 		57,  58,  59,  60,  61,  62, | 
 | 		66,  67,  68,  69,  70,  71,  72, | 
 | 		73,  74,  75,  76,  77,  78, | 
 | 		82,  83,  84,  85,  86,  87,  88, | 
 | 		89,  90,  91,  92,  93,  94, | 
 | 		98,  99, 100, 101, 102, 103, 104, | 
 | 		105, 106, 107, 108, 109, 110, | 
 | 		114, 115, 116, 117, 118, 119, 120, | 
 | 		121, 122, 123, 124, 125, 126, | 
 | 		130, 131, 132, 133, 134, 135, 136, | 
 | 		137, 138, 139, 140, 141, 142, | 
 | 		146, 147, 148, 149, 150, 151, 152, | 
 | 		153, 154, 155, 156, 157, 158, | 
 | 		162, 163, 164, 165, 166, 167, 168, | 
 | 		169, 170, 171, 172, 173, 174, | 
 | 		178, 179, 180, 181, 182, 183, 184, | 
 | 		185, 186, 187, 188, 189, 190, | 
 | 		194, 195, 196, 197, 198, 199, 200, | 
 | 		201, 202, 203, 204, 205, 206, | 
 | 		210, 211, 212, 213, 214, 215, 216, | 
 | 		217, 218, 219, 220, 221, 222, | 
 | 		226, 227, 228, 229, 230, 231, 232, | 
 | 		233, 234, 235, 236, 237, 238, | 
 | 		242, 243, 244, 245, 246, 247, 248, | 
 | 		249, 250, 251, 252, 253, 254 | 
 | 	}, | 
 | 	.oobfree = { | 
 | 		{.offset = 15, .length = 3}, | 
 | 		{.offset = 31, .length = 3}, | 
 | 		{.offset = 47, .length = 3}, | 
 | 		{.offset = 63, .length = 3}, | 
 | 		{.offset = 79, .length = 3}, | 
 | 		{.offset = 95, .length = 3}, | 
 | 		{.offset = 111, .length = 3}, | 
 | 		{.offset = 127, .length = 3}, | 
 | 		{.offset = 143, .length = 3}, | 
 | 		{.offset = 159, .length = 3}, | 
 | 		{.offset = 175, .length = 3}, | 
 | 		{.offset = 191, .length = 3}, | 
 | 		{.offset = 207, .length = 3}, | 
 | 		{.offset = 223, .length = 3}, | 
 | 		{.offset = 239, .length = 3}, | 
 | 		{.offset = 255, .length = 1} | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 224 bytes. 13*8 bytes | 
 |  * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 118 | 
 |  * bytes are free for use. | 
 |  */ | 
 | static struct nand_ecclayout fsmc_ecc4_224_layout = { | 
 | 	.eccbytes = 104, | 
 | 	.eccpos = {  2,   3,   4,   5,   6,   7,   8, | 
 | 		9,  10,  11,  12,  13,  14, | 
 | 		18,  19,  20,  21,  22,  23,  24, | 
 | 		25,  26,  27,  28,  29,  30, | 
 | 		34,  35,  36,  37,  38,  39,  40, | 
 | 		41,  42,  43,  44,  45,  46, | 
 | 		50,  51,  52,  53,  54,  55,  56, | 
 | 		57,  58,  59,  60,  61,  62, | 
 | 		66,  67,  68,  69,  70,  71,  72, | 
 | 		73,  74,  75,  76,  77,  78, | 
 | 		82,  83,  84,  85,  86,  87,  88, | 
 | 		89,  90,  91,  92,  93,  94, | 
 | 		98,  99, 100, 101, 102, 103, 104, | 
 | 		105, 106, 107, 108, 109, 110, | 
 | 		114, 115, 116, 117, 118, 119, 120, | 
 | 		121, 122, 123, 124, 125, 126 | 
 | 	}, | 
 | 	.oobfree = { | 
 | 		{.offset = 15, .length = 3}, | 
 | 		{.offset = 31, .length = 3}, | 
 | 		{.offset = 47, .length = 3}, | 
 | 		{.offset = 63, .length = 3}, | 
 | 		{.offset = 79, .length = 3}, | 
 | 		{.offset = 95, .length = 3}, | 
 | 		{.offset = 111, .length = 3}, | 
 | 		{.offset = 127, .length = 97} | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * ECC4 layout for NAND of pagesize 4096 bytes & OOBsize 128 bytes. 13*8 bytes | 
 |  * of OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block & 22 | 
 |  * bytes are free for use. | 
 |  */ | 
 | static struct nand_ecclayout fsmc_ecc4_128_layout = { | 
 | 	.eccbytes = 104, | 
 | 	.eccpos = {  2,   3,   4,   5,   6,   7,   8, | 
 | 		9,  10,  11,  12,  13,  14, | 
 | 		18,  19,  20,  21,  22,  23,  24, | 
 | 		25,  26,  27,  28,  29,  30, | 
 | 		34,  35,  36,  37,  38,  39,  40, | 
 | 		41,  42,  43,  44,  45,  46, | 
 | 		50,  51,  52,  53,  54,  55,  56, | 
 | 		57,  58,  59,  60,  61,  62, | 
 | 		66,  67,  68,  69,  70,  71,  72, | 
 | 		73,  74,  75,  76,  77,  78, | 
 | 		82,  83,  84,  85,  86,  87,  88, | 
 | 		89,  90,  91,  92,  93,  94, | 
 | 		98,  99, 100, 101, 102, 103, 104, | 
 | 		105, 106, 107, 108, 109, 110, | 
 | 		114, 115, 116, 117, 118, 119, 120, | 
 | 		121, 122, 123, 124, 125, 126 | 
 | 	}, | 
 | 	.oobfree = { | 
 | 		{.offset = 15, .length = 3}, | 
 | 		{.offset = 31, .length = 3}, | 
 | 		{.offset = 47, .length = 3}, | 
 | 		{.offset = 63, .length = 3}, | 
 | 		{.offset = 79, .length = 3}, | 
 | 		{.offset = 95, .length = 3}, | 
 | 		{.offset = 111, .length = 3}, | 
 | 		{.offset = 127, .length = 1} | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * ECC4 layout for NAND of pagesize 2048 bytes & OOBsize 64 bytes. 13*4 bytes of | 
 |  * OOB size is reserved for ECC, Byte no. 0 & 1 reserved for bad block and 10 | 
 |  * bytes are free for use. | 
 |  */ | 
 | static struct nand_ecclayout fsmc_ecc4_64_layout = { | 
 | 	.eccbytes = 52, | 
 | 	.eccpos = {  2,   3,   4,   5,   6,   7,   8, | 
 | 		9,  10,  11,  12,  13,  14, | 
 | 		18,  19,  20,  21,  22,  23,  24, | 
 | 		25,  26,  27,  28,  29,  30, | 
 | 		34,  35,  36,  37,  38,  39,  40, | 
 | 		41,  42,  43,  44,  45,  46, | 
 | 		50,  51,  52,  53,  54,  55,  56, | 
 | 		57,  58,  59,  60,  61,  62, | 
 | 	}, | 
 | 	.oobfree = { | 
 | 		{.offset = 15, .length = 3}, | 
 | 		{.offset = 31, .length = 3}, | 
 | 		{.offset = 47, .length = 3}, | 
 | 		{.offset = 63, .length = 1}, | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * ECC4 layout for NAND of pagesize 512 bytes & OOBsize 16 bytes. 13 bytes of | 
 |  * OOB size is reserved for ECC, Byte no. 4 & 5 reserved for bad block and One | 
 |  * byte is free for use. | 
 |  */ | 
 | static struct nand_ecclayout fsmc_ecc4_16_layout = { | 
 | 	.eccbytes = 13, | 
 | 	.eccpos = { 0,  1,  2,  3,  6,  7, 8, | 
 | 		9, 10, 11, 12, 13, 14 | 
 | 	}, | 
 | 	.oobfree = { | 
 | 		{.offset = 15, .length = 1}, | 
 | 	} | 
 | }; | 
 |  | 
 | /* | 
 |  * ECC placement definitions in oobfree type format. | 
 |  * There are 13 bytes of ecc for every 512 byte block and it has to be read | 
 |  * consecutively and immediately after the 512 byte data block for hardware to | 
 |  * generate the error bit offsets in 512 byte data. | 
 |  * Managing the ecc bytes in the following way makes it easier for software to | 
 |  * read ecc bytes consecutive to data bytes. This way is similar to | 
 |  * oobfree structure maintained already in generic nand driver | 
 |  */ | 
 | static struct fsmc_eccplace fsmc_ecc4_lp_place = { | 
 | 	.eccplace = { | 
 | 		{.offset = 2, .length = 13}, | 
 | 		{.offset = 18, .length = 13}, | 
 | 		{.offset = 34, .length = 13}, | 
 | 		{.offset = 50, .length = 13}, | 
 | 		{.offset = 66, .length = 13}, | 
 | 		{.offset = 82, .length = 13}, | 
 | 		{.offset = 98, .length = 13}, | 
 | 		{.offset = 114, .length = 13} | 
 | 	} | 
 | }; | 
 |  | 
 | static struct fsmc_eccplace fsmc_ecc4_sp_place = { | 
 | 	.eccplace = { | 
 | 		{.offset = 0, .length = 4}, | 
 | 		{.offset = 6, .length = 9} | 
 | 	} | 
 | }; | 
 |  | 
 | /** | 
 |  * struct fsmc_nand_data - structure for FSMC NAND device state | 
 |  * | 
 |  * @pid:		Part ID on the AMBA PrimeCell format | 
 |  * @mtd:		MTD info for a NAND flash. | 
 |  * @nand:		Chip related info for a NAND flash. | 
 |  * @partitions:		Partition info for a NAND Flash. | 
 |  * @nr_partitions:	Total number of partition of a NAND flash. | 
 |  * | 
 |  * @ecc_place:		ECC placing locations in oobfree type format. | 
 |  * @bank:		Bank number for probed device. | 
 |  * @clk:		Clock structure for FSMC. | 
 |  * | 
 |  * @read_dma_chan:	DMA channel for read access | 
 |  * @write_dma_chan:	DMA channel for write access to NAND | 
 |  * @dma_access_complete: Completion structure | 
 |  * | 
 |  * @data_pa:		NAND Physical port for Data. | 
 |  * @data_va:		NAND port for Data. | 
 |  * @cmd_va:		NAND port for Command. | 
 |  * @addr_va:		NAND port for Address. | 
 |  * @regs_va:		FSMC regs base address. | 
 |  */ | 
 | struct fsmc_nand_data { | 
 | 	u32			pid; | 
 | 	struct mtd_info		mtd; | 
 | 	struct nand_chip	nand; | 
 | 	struct mtd_partition	*partitions; | 
 | 	unsigned int		nr_partitions; | 
 |  | 
 | 	struct fsmc_eccplace	*ecc_place; | 
 | 	unsigned int		bank; | 
 | 	struct device		*dev; | 
 | 	enum access_mode	mode; | 
 | 	struct clk		*clk; | 
 |  | 
 | 	/* DMA related objects */ | 
 | 	struct dma_chan		*read_dma_chan; | 
 | 	struct dma_chan		*write_dma_chan; | 
 | 	struct completion	dma_access_complete; | 
 |  | 
 | 	struct fsmc_nand_timings *dev_timings; | 
 |  | 
 | 	dma_addr_t		data_pa; | 
 | 	void __iomem		*data_va; | 
 | 	void __iomem		*cmd_va; | 
 | 	void __iomem		*addr_va; | 
 | 	void __iomem		*regs_va; | 
 |  | 
 | 	void			(*select_chip)(uint32_t bank, uint32_t busw); | 
 | }; | 
 |  | 
 | /* Assert CS signal based on chipnr */ | 
 | static void fsmc_select_chip(struct mtd_info *mtd, int chipnr) | 
 | { | 
 | 	struct nand_chip *chip = mtd->priv; | 
 | 	struct fsmc_nand_data *host; | 
 |  | 
 | 	host = container_of(mtd, struct fsmc_nand_data, mtd); | 
 |  | 
 | 	switch (chipnr) { | 
 | 	case -1: | 
 | 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE); | 
 | 		break; | 
 | 	case 0: | 
 | 	case 1: | 
 | 	case 2: | 
 | 	case 3: | 
 | 		if (host->select_chip) | 
 | 			host->select_chip(chipnr, | 
 | 					chip->options & NAND_BUSWIDTH_16); | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_cmd_ctrl - For facilitaing Hardware access | 
 |  * This routine allows hardware specific access to control-lines(ALE,CLE) | 
 |  */ | 
 | static void fsmc_cmd_ctrl(struct mtd_info *mtd, int cmd, unsigned int ctrl) | 
 | { | 
 | 	struct nand_chip *this = mtd->priv; | 
 | 	struct fsmc_nand_data *host = container_of(mtd, | 
 | 					struct fsmc_nand_data, mtd); | 
 | 	void __iomem *regs = host->regs_va; | 
 | 	unsigned int bank = host->bank; | 
 |  | 
 | 	if (ctrl & NAND_CTRL_CHANGE) { | 
 | 		u32 pc; | 
 |  | 
 | 		if (ctrl & NAND_CLE) { | 
 | 			this->IO_ADDR_R = host->cmd_va; | 
 | 			this->IO_ADDR_W = host->cmd_va; | 
 | 		} else if (ctrl & NAND_ALE) { | 
 | 			this->IO_ADDR_R = host->addr_va; | 
 | 			this->IO_ADDR_W = host->addr_va; | 
 | 		} else { | 
 | 			this->IO_ADDR_R = host->data_va; | 
 | 			this->IO_ADDR_W = host->data_va; | 
 | 		} | 
 |  | 
 | 		pc = readl(FSMC_NAND_REG(regs, bank, PC)); | 
 | 		if (ctrl & NAND_NCE) | 
 | 			pc |= FSMC_ENABLE; | 
 | 		else | 
 | 			pc &= ~FSMC_ENABLE; | 
 | 		writel_relaxed(pc, FSMC_NAND_REG(regs, bank, PC)); | 
 | 	} | 
 |  | 
 | 	mb(); | 
 |  | 
 | 	if (cmd != NAND_CMD_NONE) | 
 | 		writeb_relaxed(cmd, this->IO_ADDR_W); | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_nand_setup - FSMC (Flexible Static Memory Controller) init routine | 
 |  * | 
 |  * This routine initializes timing parameters related to NAND memory access in | 
 |  * FSMC registers | 
 |  */ | 
 | static void fsmc_nand_setup(void __iomem *regs, uint32_t bank, | 
 | 			   uint32_t busw, struct fsmc_nand_timings *timings) | 
 | { | 
 | 	uint32_t value = FSMC_DEVTYPE_NAND | FSMC_ENABLE | FSMC_WAITON; | 
 | 	uint32_t tclr, tar, thiz, thold, twait, tset; | 
 | 	struct fsmc_nand_timings *tims; | 
 | 	struct fsmc_nand_timings default_timings = { | 
 | 		.tclr	= FSMC_TCLR_1, | 
 | 		.tar	= FSMC_TAR_1, | 
 | 		.thiz	= FSMC_THIZ_1, | 
 | 		.thold	= FSMC_THOLD_4, | 
 | 		.twait	= FSMC_TWAIT_6, | 
 | 		.tset	= FSMC_TSET_0, | 
 | 	}; | 
 |  | 
 | 	if (timings) | 
 | 		tims = timings; | 
 | 	else | 
 | 		tims = &default_timings; | 
 |  | 
 | 	tclr = (tims->tclr & FSMC_TCLR_MASK) << FSMC_TCLR_SHIFT; | 
 | 	tar = (tims->tar & FSMC_TAR_MASK) << FSMC_TAR_SHIFT; | 
 | 	thiz = (tims->thiz & FSMC_THIZ_MASK) << FSMC_THIZ_SHIFT; | 
 | 	thold = (tims->thold & FSMC_THOLD_MASK) << FSMC_THOLD_SHIFT; | 
 | 	twait = (tims->twait & FSMC_TWAIT_MASK) << FSMC_TWAIT_SHIFT; | 
 | 	tset = (tims->tset & FSMC_TSET_MASK) << FSMC_TSET_SHIFT; | 
 |  | 
 | 	if (busw) | 
 | 		writel_relaxed(value | FSMC_DEVWID_16, | 
 | 				FSMC_NAND_REG(regs, bank, PC)); | 
 | 	else | 
 | 		writel_relaxed(value | FSMC_DEVWID_8, | 
 | 				FSMC_NAND_REG(regs, bank, PC)); | 
 |  | 
 | 	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | tclr | tar, | 
 | 			FSMC_NAND_REG(regs, bank, PC)); | 
 | 	writel_relaxed(thiz | thold | twait | tset, | 
 | 			FSMC_NAND_REG(regs, bank, COMM)); | 
 | 	writel_relaxed(thiz | thold | twait | tset, | 
 | 			FSMC_NAND_REG(regs, bank, ATTRIB)); | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_enable_hwecc - Enables Hardware ECC through FSMC registers | 
 |  */ | 
 | static void fsmc_enable_hwecc(struct mtd_info *mtd, int mode) | 
 | { | 
 | 	struct fsmc_nand_data *host = container_of(mtd, | 
 | 					struct fsmc_nand_data, mtd); | 
 | 	void __iomem *regs = host->regs_va; | 
 | 	uint32_t bank = host->bank; | 
 |  | 
 | 	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCPLEN_256, | 
 | 			FSMC_NAND_REG(regs, bank, PC)); | 
 | 	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) & ~FSMC_ECCEN, | 
 | 			FSMC_NAND_REG(regs, bank, PC)); | 
 | 	writel_relaxed(readl(FSMC_NAND_REG(regs, bank, PC)) | FSMC_ECCEN, | 
 | 			FSMC_NAND_REG(regs, bank, PC)); | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_read_hwecc_ecc4 - Hardware ECC calculator for ecc4 option supported by | 
 |  * FSMC. ECC is 13 bytes for 512 bytes of data (supports error correction up to | 
 |  * max of 8-bits) | 
 |  */ | 
 | static int fsmc_read_hwecc_ecc4(struct mtd_info *mtd, const uint8_t *data, | 
 | 				uint8_t *ecc) | 
 | { | 
 | 	struct fsmc_nand_data *host = container_of(mtd, | 
 | 					struct fsmc_nand_data, mtd); | 
 | 	void __iomem *regs = host->regs_va; | 
 | 	uint32_t bank = host->bank; | 
 | 	uint32_t ecc_tmp; | 
 | 	unsigned long deadline = jiffies + FSMC_BUSY_WAIT_TIMEOUT; | 
 |  | 
 | 	do { | 
 | 		if (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) & FSMC_CODE_RDY) | 
 | 			break; | 
 | 		else | 
 | 			cond_resched(); | 
 | 	} while (!time_after_eq(jiffies, deadline)); | 
 |  | 
 | 	if (time_after_eq(jiffies, deadline)) { | 
 | 		dev_err(host->dev, "calculate ecc timed out\n"); | 
 | 		return -ETIMEDOUT; | 
 | 	} | 
 |  | 
 | 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); | 
 | 	ecc[0] = (uint8_t) (ecc_tmp >> 0); | 
 | 	ecc[1] = (uint8_t) (ecc_tmp >> 8); | 
 | 	ecc[2] = (uint8_t) (ecc_tmp >> 16); | 
 | 	ecc[3] = (uint8_t) (ecc_tmp >> 24); | 
 |  | 
 | 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); | 
 | 	ecc[4] = (uint8_t) (ecc_tmp >> 0); | 
 | 	ecc[5] = (uint8_t) (ecc_tmp >> 8); | 
 | 	ecc[6] = (uint8_t) (ecc_tmp >> 16); | 
 | 	ecc[7] = (uint8_t) (ecc_tmp >> 24); | 
 |  | 
 | 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); | 
 | 	ecc[8] = (uint8_t) (ecc_tmp >> 0); | 
 | 	ecc[9] = (uint8_t) (ecc_tmp >> 8); | 
 | 	ecc[10] = (uint8_t) (ecc_tmp >> 16); | 
 | 	ecc[11] = (uint8_t) (ecc_tmp >> 24); | 
 |  | 
 | 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); | 
 | 	ecc[12] = (uint8_t) (ecc_tmp >> 16); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_read_hwecc_ecc1 - Hardware ECC calculator for ecc1 option supported by | 
 |  * FSMC. ECC is 3 bytes for 512 bytes of data (supports error correction up to | 
 |  * max of 1-bit) | 
 |  */ | 
 | static int fsmc_read_hwecc_ecc1(struct mtd_info *mtd, const uint8_t *data, | 
 | 				uint8_t *ecc) | 
 | { | 
 | 	struct fsmc_nand_data *host = container_of(mtd, | 
 | 					struct fsmc_nand_data, mtd); | 
 | 	void __iomem *regs = host->regs_va; | 
 | 	uint32_t bank = host->bank; | 
 | 	uint32_t ecc_tmp; | 
 |  | 
 | 	ecc_tmp = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); | 
 | 	ecc[0] = (uint8_t) (ecc_tmp >> 0); | 
 | 	ecc[1] = (uint8_t) (ecc_tmp >> 8); | 
 | 	ecc[2] = (uint8_t) (ecc_tmp >> 16); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Count the number of 0's in buff upto a max of max_bits */ | 
 | static int count_written_bits(uint8_t *buff, int size, int max_bits) | 
 | { | 
 | 	int k, written_bits = 0; | 
 |  | 
 | 	for (k = 0; k < size; k++) { | 
 | 		written_bits += hweight8(~buff[k]); | 
 | 		if (written_bits > max_bits) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return written_bits; | 
 | } | 
 |  | 
 | static void dma_complete(void *param) | 
 | { | 
 | 	struct fsmc_nand_data *host = param; | 
 |  | 
 | 	complete(&host->dma_access_complete); | 
 | } | 
 |  | 
 | static int dma_xfer(struct fsmc_nand_data *host, void *buffer, int len, | 
 | 		enum dma_data_direction direction) | 
 | { | 
 | 	struct dma_chan *chan; | 
 | 	struct dma_device *dma_dev; | 
 | 	struct dma_async_tx_descriptor *tx; | 
 | 	dma_addr_t dma_dst, dma_src, dma_addr; | 
 | 	dma_cookie_t cookie; | 
 | 	unsigned long flags = DMA_CTRL_ACK | DMA_PREP_INTERRUPT; | 
 | 	int ret; | 
 |  | 
 | 	if (direction == DMA_TO_DEVICE) | 
 | 		chan = host->write_dma_chan; | 
 | 	else if (direction == DMA_FROM_DEVICE) | 
 | 		chan = host->read_dma_chan; | 
 | 	else | 
 | 		return -EINVAL; | 
 |  | 
 | 	dma_dev = chan->device; | 
 | 	dma_addr = dma_map_single(dma_dev->dev, buffer, len, direction); | 
 |  | 
 | 	flags |= DMA_COMPL_SKIP_SRC_UNMAP | DMA_COMPL_SKIP_DEST_UNMAP; | 
 |  | 
 | 	if (direction == DMA_TO_DEVICE) { | 
 | 		dma_src = dma_addr; | 
 | 		dma_dst = host->data_pa; | 
 | 	} else { | 
 | 		dma_src = host->data_pa; | 
 | 		dma_dst = dma_addr; | 
 | 	} | 
 |  | 
 | 	tx = dma_dev->device_prep_dma_memcpy(chan, dma_dst, dma_src, | 
 | 			len, flags); | 
 | 	if (!tx) { | 
 | 		dev_err(host->dev, "device_prep_dma_memcpy error\n"); | 
 | 		ret = -EIO; | 
 | 		goto unmap_dma; | 
 | 	} | 
 |  | 
 | 	tx->callback = dma_complete; | 
 | 	tx->callback_param = host; | 
 | 	cookie = tx->tx_submit(tx); | 
 |  | 
 | 	ret = dma_submit_error(cookie); | 
 | 	if (ret) { | 
 | 		dev_err(host->dev, "dma_submit_error %d\n", cookie); | 
 | 		goto unmap_dma; | 
 | 	} | 
 |  | 
 | 	dma_async_issue_pending(chan); | 
 |  | 
 | 	ret = | 
 | 	wait_for_completion_timeout(&host->dma_access_complete, | 
 | 				msecs_to_jiffies(3000)); | 
 | 	if (ret <= 0) { | 
 | 		chan->device->device_control(chan, DMA_TERMINATE_ALL, 0); | 
 | 		dev_err(host->dev, "wait_for_completion_timeout\n"); | 
 | 		if (!ret) | 
 | 			ret = -ETIMEDOUT; | 
 | 		goto unmap_dma; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | unmap_dma: | 
 | 	dma_unmap_single(dma_dev->dev, dma_addr, len, direction); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_write_buf - write buffer to chip | 
 |  * @mtd:	MTD device structure | 
 |  * @buf:	data buffer | 
 |  * @len:	number of bytes to write | 
 |  */ | 
 | static void fsmc_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len) | 
 | { | 
 | 	int i; | 
 | 	struct nand_chip *chip = mtd->priv; | 
 |  | 
 | 	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && | 
 | 			IS_ALIGNED(len, sizeof(uint32_t))) { | 
 | 		uint32_t *p = (uint32_t *)buf; | 
 | 		len = len >> 2; | 
 | 		for (i = 0; i < len; i++) | 
 | 			writel_relaxed(p[i], chip->IO_ADDR_W); | 
 | 	} else { | 
 | 		for (i = 0; i < len; i++) | 
 | 			writeb_relaxed(buf[i], chip->IO_ADDR_W); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_read_buf - read chip data into buffer | 
 |  * @mtd:	MTD device structure | 
 |  * @buf:	buffer to store date | 
 |  * @len:	number of bytes to read | 
 |  */ | 
 | static void fsmc_read_buf(struct mtd_info *mtd, uint8_t *buf, int len) | 
 | { | 
 | 	int i; | 
 | 	struct nand_chip *chip = mtd->priv; | 
 |  | 
 | 	if (IS_ALIGNED((uint32_t)buf, sizeof(uint32_t)) && | 
 | 			IS_ALIGNED(len, sizeof(uint32_t))) { | 
 | 		uint32_t *p = (uint32_t *)buf; | 
 | 		len = len >> 2; | 
 | 		for (i = 0; i < len; i++) | 
 | 			p[i] = readl_relaxed(chip->IO_ADDR_R); | 
 | 	} else { | 
 | 		for (i = 0; i < len; i++) | 
 | 			buf[i] = readb_relaxed(chip->IO_ADDR_R); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_read_buf_dma - read chip data into buffer | 
 |  * @mtd:	MTD device structure | 
 |  * @buf:	buffer to store date | 
 |  * @len:	number of bytes to read | 
 |  */ | 
 | static void fsmc_read_buf_dma(struct mtd_info *mtd, uint8_t *buf, int len) | 
 | { | 
 | 	struct fsmc_nand_data *host; | 
 |  | 
 | 	host = container_of(mtd, struct fsmc_nand_data, mtd); | 
 | 	dma_xfer(host, buf, len, DMA_FROM_DEVICE); | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_write_buf_dma - write buffer to chip | 
 |  * @mtd:	MTD device structure | 
 |  * @buf:	data buffer | 
 |  * @len:	number of bytes to write | 
 |  */ | 
 | static void fsmc_write_buf_dma(struct mtd_info *mtd, const uint8_t *buf, | 
 | 		int len) | 
 | { | 
 | 	struct fsmc_nand_data *host; | 
 |  | 
 | 	host = container_of(mtd, struct fsmc_nand_data, mtd); | 
 | 	dma_xfer(host, (void *)buf, len, DMA_TO_DEVICE); | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_read_page_hwecc | 
 |  * @mtd:	mtd info structure | 
 |  * @chip:	nand chip info structure | 
 |  * @buf:	buffer to store read data | 
 |  * @oob_required:	caller expects OOB data read to chip->oob_poi | 
 |  * @page:	page number to read | 
 |  * | 
 |  * This routine is needed for fsmc version 8 as reading from NAND chip has to be | 
 |  * performed in a strict sequence as follows: | 
 |  * data(512 byte) -> ecc(13 byte) | 
 |  * After this read, fsmc hardware generates and reports error data bits(up to a | 
 |  * max of 8 bits) | 
 |  */ | 
 | static int fsmc_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip, | 
 | 				 uint8_t *buf, int oob_required, int page) | 
 | { | 
 | 	struct fsmc_nand_data *host = container_of(mtd, | 
 | 					struct fsmc_nand_data, mtd); | 
 | 	struct fsmc_eccplace *ecc_place = host->ecc_place; | 
 | 	int i, j, s, stat, eccsize = chip->ecc.size; | 
 | 	int eccbytes = chip->ecc.bytes; | 
 | 	int eccsteps = chip->ecc.steps; | 
 | 	uint8_t *p = buf; | 
 | 	uint8_t *ecc_calc = chip->buffers->ecccalc; | 
 | 	uint8_t *ecc_code = chip->buffers->ecccode; | 
 | 	int off, len, group = 0; | 
 | 	/* | 
 | 	 * ecc_oob is intentionally taken as uint16_t. In 16bit devices, we | 
 | 	 * end up reading 14 bytes (7 words) from oob. The local array is | 
 | 	 * to maintain word alignment | 
 | 	 */ | 
 | 	uint16_t ecc_oob[7]; | 
 | 	uint8_t *oob = (uint8_t *)&ecc_oob[0]; | 
 | 	unsigned int max_bitflips = 0; | 
 |  | 
 | 	for (i = 0, s = 0; s < eccsteps; s++, i += eccbytes, p += eccsize) { | 
 | 		chip->cmdfunc(mtd, NAND_CMD_READ0, s * eccsize, page); | 
 | 		chip->ecc.hwctl(mtd, NAND_ECC_READ); | 
 | 		chip->read_buf(mtd, p, eccsize); | 
 |  | 
 | 		for (j = 0; j < eccbytes;) { | 
 | 			off = ecc_place->eccplace[group].offset; | 
 | 			len = ecc_place->eccplace[group].length; | 
 | 			group++; | 
 |  | 
 | 			/* | 
 | 			 * length is intentionally kept a higher multiple of 2 | 
 | 			 * to read at least 13 bytes even in case of 16 bit NAND | 
 | 			 * devices | 
 | 			 */ | 
 | 			if (chip->options & NAND_BUSWIDTH_16) | 
 | 				len = roundup(len, 2); | 
 |  | 
 | 			chip->cmdfunc(mtd, NAND_CMD_READOOB, off, page); | 
 | 			chip->read_buf(mtd, oob + j, len); | 
 | 			j += len; | 
 | 		} | 
 |  | 
 | 		memcpy(&ecc_code[i], oob, chip->ecc.bytes); | 
 | 		chip->ecc.calculate(mtd, p, &ecc_calc[i]); | 
 |  | 
 | 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]); | 
 | 		if (stat < 0) { | 
 | 			mtd->ecc_stats.failed++; | 
 | 		} else { | 
 | 			mtd->ecc_stats.corrected += stat; | 
 | 			max_bitflips = max_t(unsigned int, max_bitflips, stat); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return max_bitflips; | 
 | } | 
 |  | 
 | /* | 
 |  * fsmc_bch8_correct_data | 
 |  * @mtd:	mtd info structure | 
 |  * @dat:	buffer of read data | 
 |  * @read_ecc:	ecc read from device spare area | 
 |  * @calc_ecc:	ecc calculated from read data | 
 |  * | 
 |  * calc_ecc is a 104 bit information containing maximum of 8 error | 
 |  * offset informations of 13 bits each in 512 bytes of read data. | 
 |  */ | 
 | static int fsmc_bch8_correct_data(struct mtd_info *mtd, uint8_t *dat, | 
 | 			     uint8_t *read_ecc, uint8_t *calc_ecc) | 
 | { | 
 | 	struct fsmc_nand_data *host = container_of(mtd, | 
 | 					struct fsmc_nand_data, mtd); | 
 | 	struct nand_chip *chip = mtd->priv; | 
 | 	void __iomem *regs = host->regs_va; | 
 | 	unsigned int bank = host->bank; | 
 | 	uint32_t err_idx[8]; | 
 | 	uint32_t num_err, i; | 
 | 	uint32_t ecc1, ecc2, ecc3, ecc4; | 
 |  | 
 | 	num_err = (readl_relaxed(FSMC_NAND_REG(regs, bank, STS)) >> 10) & 0xF; | 
 |  | 
 | 	/* no bit flipping */ | 
 | 	if (likely(num_err == 0)) | 
 | 		return 0; | 
 |  | 
 | 	/* too many errors */ | 
 | 	if (unlikely(num_err > 8)) { | 
 | 		/* | 
 | 		 * This is a temporary erase check. A newly erased page read | 
 | 		 * would result in an ecc error because the oob data is also | 
 | 		 * erased to FF and the calculated ecc for an FF data is not | 
 | 		 * FF..FF. | 
 | 		 * This is a workaround to skip performing correction in case | 
 | 		 * data is FF..FF | 
 | 		 * | 
 | 		 * Logic: | 
 | 		 * For every page, each bit written as 0 is counted until these | 
 | 		 * number of bits are greater than 8 (the maximum correction | 
 | 		 * capability of FSMC for each 512 + 13 bytes) | 
 | 		 */ | 
 |  | 
 | 		int bits_ecc = count_written_bits(read_ecc, chip->ecc.bytes, 8); | 
 | 		int bits_data = count_written_bits(dat, chip->ecc.size, 8); | 
 |  | 
 | 		if ((bits_ecc + bits_data) <= 8) { | 
 | 			if (bits_data) | 
 | 				memset(dat, 0xff, chip->ecc.size); | 
 | 			return bits_data; | 
 | 		} | 
 |  | 
 | 		return -EBADMSG; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * ------------------- calc_ecc[] bit wise -----------|--13 bits--| | 
 | 	 * |---idx[7]--|--.....-----|---idx[2]--||---idx[1]--||---idx[0]--| | 
 | 	 * | 
 | 	 * calc_ecc is a 104 bit information containing maximum of 8 error | 
 | 	 * offset informations of 13 bits each. calc_ecc is copied into a | 
 | 	 * uint64_t array and error offset indexes are populated in err_idx | 
 | 	 * array | 
 | 	 */ | 
 | 	ecc1 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC1)); | 
 | 	ecc2 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC2)); | 
 | 	ecc3 = readl_relaxed(FSMC_NAND_REG(regs, bank, ECC3)); | 
 | 	ecc4 = readl_relaxed(FSMC_NAND_REG(regs, bank, STS)); | 
 |  | 
 | 	err_idx[0] = (ecc1 >> 0) & 0x1FFF; | 
 | 	err_idx[1] = (ecc1 >> 13) & 0x1FFF; | 
 | 	err_idx[2] = (((ecc2 >> 0) & 0x7F) << 6) | ((ecc1 >> 26) & 0x3F); | 
 | 	err_idx[3] = (ecc2 >> 7) & 0x1FFF; | 
 | 	err_idx[4] = (((ecc3 >> 0) & 0x1) << 12) | ((ecc2 >> 20) & 0xFFF); | 
 | 	err_idx[5] = (ecc3 >> 1) & 0x1FFF; | 
 | 	err_idx[6] = (ecc3 >> 14) & 0x1FFF; | 
 | 	err_idx[7] = (((ecc4 >> 16) & 0xFF) << 5) | ((ecc3 >> 27) & 0x1F); | 
 |  | 
 | 	i = 0; | 
 | 	while (num_err--) { | 
 | 		change_bit(0, (unsigned long *)&err_idx[i]); | 
 | 		change_bit(1, (unsigned long *)&err_idx[i]); | 
 |  | 
 | 		if (err_idx[i] < chip->ecc.size * 8) { | 
 | 			change_bit(err_idx[i], (unsigned long *)dat); | 
 | 			i++; | 
 | 		} | 
 | 	} | 
 | 	return i; | 
 | } | 
 |  | 
 | static bool filter(struct dma_chan *chan, void *slave) | 
 | { | 
 | 	chan->private = slave; | 
 | 	return true; | 
 | } | 
 |  | 
 | #ifdef CONFIG_OF | 
 | static int fsmc_nand_probe_config_dt(struct platform_device *pdev, | 
 | 				     struct device_node *np) | 
 | { | 
 | 	struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); | 
 | 	u32 val; | 
 |  | 
 | 	/* Set default NAND width to 8 bits */ | 
 | 	pdata->width = 8; | 
 | 	if (!of_property_read_u32(np, "bank-width", &val)) { | 
 | 		if (val == 2) { | 
 | 			pdata->width = 16; | 
 | 		} else if (val != 1) { | 
 | 			dev_err(&pdev->dev, "invalid bank-width %u\n", val); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 | 	if (of_get_property(np, "nand-skip-bbtscan", NULL)) | 
 | 		pdata->options = NAND_SKIP_BBTSCAN; | 
 |  | 
 | 	return 0; | 
 | } | 
 | #else | 
 | static int fsmc_nand_probe_config_dt(struct platform_device *pdev, | 
 | 				     struct device_node *np) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * fsmc_nand_probe - Probe function | 
 |  * @pdev:       platform device structure | 
 |  */ | 
 | static int __init fsmc_nand_probe(struct platform_device *pdev) | 
 | { | 
 | 	struct fsmc_nand_platform_data *pdata = dev_get_platdata(&pdev->dev); | 
 | 	struct device_node __maybe_unused *np = pdev->dev.of_node; | 
 | 	struct mtd_part_parser_data ppdata = {}; | 
 | 	struct fsmc_nand_data *host; | 
 | 	struct mtd_info *mtd; | 
 | 	struct nand_chip *nand; | 
 | 	struct resource *res; | 
 | 	dma_cap_mask_t mask; | 
 | 	int ret = 0; | 
 | 	u32 pid; | 
 | 	int i; | 
 |  | 
 | 	if (np) { | 
 | 		pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); | 
 | 		pdev->dev.platform_data = pdata; | 
 | 		ret = fsmc_nand_probe_config_dt(pdev, np); | 
 | 		if (ret) { | 
 | 			dev_err(&pdev->dev, "no platform data\n"); | 
 | 			return -ENODEV; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!pdata) { | 
 | 		dev_err(&pdev->dev, "platform data is NULL\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	/* Allocate memory for the device structure (and zero it) */ | 
 | 	host = devm_kzalloc(&pdev->dev, sizeof(*host), GFP_KERNEL); | 
 | 	if (!host) { | 
 | 		dev_err(&pdev->dev, "failed to allocate device structure\n"); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_data"); | 
 | 	if (!res) | 
 | 		return -EINVAL; | 
 |  | 
 | 	host->data_va = devm_ioremap_resource(&pdev->dev, res); | 
 | 	if (IS_ERR(host->data_va)) | 
 | 		return PTR_ERR(host->data_va); | 
 | 	 | 
 | 	host->data_pa = (dma_addr_t)res->start; | 
 |  | 
 | 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_addr"); | 
 | 	if (!res) | 
 | 		return -EINVAL; | 
 |  | 
 | 	host->addr_va = devm_ioremap_resource(&pdev->dev, res); | 
 | 	if (IS_ERR(host->addr_va)) | 
 | 		return PTR_ERR(host->addr_va); | 
 |  | 
 | 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand_cmd"); | 
 | 	if (!res) | 
 | 		return -EINVAL; | 
 |  | 
 | 	host->cmd_va = devm_ioremap_resource(&pdev->dev, res); | 
 | 	if (IS_ERR(host->cmd_va)) | 
 | 		return PTR_ERR(host->cmd_va); | 
 |  | 
 | 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "fsmc_regs"); | 
 | 	if (!res) | 
 | 		return -EINVAL; | 
 |  | 
 | 	host->regs_va = devm_ioremap_resource(&pdev->dev, res); | 
 | 	if (IS_ERR(host->regs_va)) | 
 | 		return PTR_ERR(host->regs_va); | 
 |  | 
 | 	host->clk = clk_get(&pdev->dev, NULL); | 
 | 	if (IS_ERR(host->clk)) { | 
 | 		dev_err(&pdev->dev, "failed to fetch block clock\n"); | 
 | 		return PTR_ERR(host->clk); | 
 | 	} | 
 |  | 
 | 	ret = clk_prepare_enable(host->clk); | 
 | 	if (ret) | 
 | 		goto err_clk_prepare_enable; | 
 |  | 
 | 	/* | 
 | 	 * This device ID is actually a common AMBA ID as used on the | 
 | 	 * AMBA PrimeCell bus. However it is not a PrimeCell. | 
 | 	 */ | 
 | 	for (pid = 0, i = 0; i < 4; i++) | 
 | 		pid |= (readl(host->regs_va + resource_size(res) - 0x20 + 4 * i) & 255) << (i * 8); | 
 | 	host->pid = pid; | 
 | 	dev_info(&pdev->dev, "FSMC device partno %03x, manufacturer %02x, " | 
 | 		 "revision %02x, config %02x\n", | 
 | 		 AMBA_PART_BITS(pid), AMBA_MANF_BITS(pid), | 
 | 		 AMBA_REV_BITS(pid), AMBA_CONFIG_BITS(pid)); | 
 |  | 
 | 	host->bank = pdata->bank; | 
 | 	host->select_chip = pdata->select_bank; | 
 | 	host->partitions = pdata->partitions; | 
 | 	host->nr_partitions = pdata->nr_partitions; | 
 | 	host->dev = &pdev->dev; | 
 | 	host->dev_timings = pdata->nand_timings; | 
 | 	host->mode = pdata->mode; | 
 |  | 
 | 	if (host->mode == USE_DMA_ACCESS) | 
 | 		init_completion(&host->dma_access_complete); | 
 |  | 
 | 	/* Link all private pointers */ | 
 | 	mtd = &host->mtd; | 
 | 	nand = &host->nand; | 
 | 	mtd->priv = nand; | 
 | 	nand->priv = host; | 
 |  | 
 | 	host->mtd.owner = THIS_MODULE; | 
 | 	nand->IO_ADDR_R = host->data_va; | 
 | 	nand->IO_ADDR_W = host->data_va; | 
 | 	nand->cmd_ctrl = fsmc_cmd_ctrl; | 
 | 	nand->chip_delay = 30; | 
 |  | 
 | 	nand->ecc.mode = NAND_ECC_HW; | 
 | 	nand->ecc.hwctl = fsmc_enable_hwecc; | 
 | 	nand->ecc.size = 512; | 
 | 	nand->options = pdata->options; | 
 | 	nand->select_chip = fsmc_select_chip; | 
 | 	nand->badblockbits = 7; | 
 |  | 
 | 	if (pdata->width == FSMC_NAND_BW16) | 
 | 		nand->options |= NAND_BUSWIDTH_16; | 
 |  | 
 | 	switch (host->mode) { | 
 | 	case USE_DMA_ACCESS: | 
 | 		dma_cap_zero(mask); | 
 | 		dma_cap_set(DMA_MEMCPY, mask); | 
 | 		host->read_dma_chan = dma_request_channel(mask, filter, | 
 | 				pdata->read_dma_priv); | 
 | 		if (!host->read_dma_chan) { | 
 | 			dev_err(&pdev->dev, "Unable to get read dma channel\n"); | 
 | 			goto err_req_read_chnl; | 
 | 		} | 
 | 		host->write_dma_chan = dma_request_channel(mask, filter, | 
 | 				pdata->write_dma_priv); | 
 | 		if (!host->write_dma_chan) { | 
 | 			dev_err(&pdev->dev, "Unable to get write dma channel\n"); | 
 | 			goto err_req_write_chnl; | 
 | 		} | 
 | 		nand->read_buf = fsmc_read_buf_dma; | 
 | 		nand->write_buf = fsmc_write_buf_dma; | 
 | 		break; | 
 |  | 
 | 	default: | 
 | 	case USE_WORD_ACCESS: | 
 | 		nand->read_buf = fsmc_read_buf; | 
 | 		nand->write_buf = fsmc_write_buf; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	fsmc_nand_setup(host->regs_va, host->bank, | 
 | 			nand->options & NAND_BUSWIDTH_16, | 
 | 			host->dev_timings); | 
 |  | 
 | 	if (AMBA_REV_BITS(host->pid) >= 8) { | 
 | 		nand->ecc.read_page = fsmc_read_page_hwecc; | 
 | 		nand->ecc.calculate = fsmc_read_hwecc_ecc4; | 
 | 		nand->ecc.correct = fsmc_bch8_correct_data; | 
 | 		nand->ecc.bytes = 13; | 
 | 		nand->ecc.strength = 8; | 
 | 	} else { | 
 | 		nand->ecc.calculate = fsmc_read_hwecc_ecc1; | 
 | 		nand->ecc.correct = nand_correct_data; | 
 | 		nand->ecc.bytes = 3; | 
 | 		nand->ecc.strength = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Scan to find existence of the device | 
 | 	 */ | 
 | 	if (nand_scan_ident(&host->mtd, 1, NULL)) { | 
 | 		ret = -ENXIO; | 
 | 		dev_err(&pdev->dev, "No NAND Device found!\n"); | 
 | 		goto err_scan_ident; | 
 | 	} | 
 |  | 
 | 	if (AMBA_REV_BITS(host->pid) >= 8) { | 
 | 		switch (host->mtd.oobsize) { | 
 | 		case 16: | 
 | 			nand->ecc.layout = &fsmc_ecc4_16_layout; | 
 | 			host->ecc_place = &fsmc_ecc4_sp_place; | 
 | 			break; | 
 | 		case 64: | 
 | 			nand->ecc.layout = &fsmc_ecc4_64_layout; | 
 | 			host->ecc_place = &fsmc_ecc4_lp_place; | 
 | 			break; | 
 | 		case 128: | 
 | 			nand->ecc.layout = &fsmc_ecc4_128_layout; | 
 | 			host->ecc_place = &fsmc_ecc4_lp_place; | 
 | 			break; | 
 | 		case 224: | 
 | 			nand->ecc.layout = &fsmc_ecc4_224_layout; | 
 | 			host->ecc_place = &fsmc_ecc4_lp_place; | 
 | 			break; | 
 | 		case 256: | 
 | 			nand->ecc.layout = &fsmc_ecc4_256_layout; | 
 | 			host->ecc_place = &fsmc_ecc4_lp_place; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_WARNING "No oob scheme defined for " | 
 | 			       "oobsize %d\n", mtd->oobsize); | 
 | 			BUG(); | 
 | 		} | 
 | 	} else { | 
 | 		switch (host->mtd.oobsize) { | 
 | 		case 16: | 
 | 			nand->ecc.layout = &fsmc_ecc1_16_layout; | 
 | 			break; | 
 | 		case 64: | 
 | 			nand->ecc.layout = &fsmc_ecc1_64_layout; | 
 | 			break; | 
 | 		case 128: | 
 | 			nand->ecc.layout = &fsmc_ecc1_128_layout; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_WARNING "No oob scheme defined for " | 
 | 			       "oobsize %d\n", mtd->oobsize); | 
 | 			BUG(); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Second stage of scan to fill MTD data-structures */ | 
 | 	if (nand_scan_tail(&host->mtd)) { | 
 | 		ret = -ENXIO; | 
 | 		goto err_probe; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The partition information can is accessed by (in the same precedence) | 
 | 	 * | 
 | 	 * command line through Bootloader, | 
 | 	 * platform data, | 
 | 	 * default partition information present in driver. | 
 | 	 */ | 
 | 	/* | 
 | 	 * Check for partition info passed | 
 | 	 */ | 
 | 	host->mtd.name = "nand"; | 
 | 	ppdata.of_node = np; | 
 | 	ret = mtd_device_parse_register(&host->mtd, NULL, &ppdata, | 
 | 					host->partitions, host->nr_partitions); | 
 | 	if (ret) | 
 | 		goto err_probe; | 
 |  | 
 | 	platform_set_drvdata(pdev, host); | 
 | 	dev_info(&pdev->dev, "FSMC NAND driver registration successful\n"); | 
 | 	return 0; | 
 |  | 
 | err_probe: | 
 | err_scan_ident: | 
 | 	if (host->mode == USE_DMA_ACCESS) | 
 | 		dma_release_channel(host->write_dma_chan); | 
 | err_req_write_chnl: | 
 | 	if (host->mode == USE_DMA_ACCESS) | 
 | 		dma_release_channel(host->read_dma_chan); | 
 | err_req_read_chnl: | 
 | 	clk_disable_unprepare(host->clk); | 
 | err_clk_prepare_enable: | 
 | 	clk_put(host->clk); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Clean up routine | 
 |  */ | 
 | static int fsmc_nand_remove(struct platform_device *pdev) | 
 | { | 
 | 	struct fsmc_nand_data *host = platform_get_drvdata(pdev); | 
 |  | 
 | 	platform_set_drvdata(pdev, NULL); | 
 |  | 
 | 	if (host) { | 
 | 		nand_release(&host->mtd); | 
 |  | 
 | 		if (host->mode == USE_DMA_ACCESS) { | 
 | 			dma_release_channel(host->write_dma_chan); | 
 | 			dma_release_channel(host->read_dma_chan); | 
 | 		} | 
 | 		clk_disable_unprepare(host->clk); | 
 | 		clk_put(host->clk); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | #ifdef CONFIG_PM | 
 | static int fsmc_nand_suspend(struct device *dev) | 
 | { | 
 | 	struct fsmc_nand_data *host = dev_get_drvdata(dev); | 
 | 	if (host) | 
 | 		clk_disable_unprepare(host->clk); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int fsmc_nand_resume(struct device *dev) | 
 | { | 
 | 	struct fsmc_nand_data *host = dev_get_drvdata(dev); | 
 | 	if (host) { | 
 | 		clk_prepare_enable(host->clk); | 
 | 		fsmc_nand_setup(host->regs_va, host->bank, | 
 | 				host->nand.options & NAND_BUSWIDTH_16, | 
 | 				host->dev_timings); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static SIMPLE_DEV_PM_OPS(fsmc_nand_pm_ops, fsmc_nand_suspend, fsmc_nand_resume); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_OF | 
 | static const struct of_device_id fsmc_nand_id_table[] = { | 
 | 	{ .compatible = "st,spear600-fsmc-nand" }, | 
 | 	{ .compatible = "stericsson,fsmc-nand" }, | 
 | 	{} | 
 | }; | 
 | MODULE_DEVICE_TABLE(of, fsmc_nand_id_table); | 
 | #endif | 
 |  | 
 | static struct platform_driver fsmc_nand_driver = { | 
 | 	.remove = fsmc_nand_remove, | 
 | 	.driver = { | 
 | 		.owner = THIS_MODULE, | 
 | 		.name = "fsmc-nand", | 
 | 		.of_match_table = of_match_ptr(fsmc_nand_id_table), | 
 | #ifdef CONFIG_PM | 
 | 		.pm = &fsmc_nand_pm_ops, | 
 | #endif | 
 | 	}, | 
 | }; | 
 |  | 
 | static int __init fsmc_nand_init(void) | 
 | { | 
 | 	return platform_driver_probe(&fsmc_nand_driver, | 
 | 				     fsmc_nand_probe); | 
 | } | 
 | module_init(fsmc_nand_init); | 
 |  | 
 | static void __exit fsmc_nand_exit(void) | 
 | { | 
 | 	platform_driver_unregister(&fsmc_nand_driver); | 
 | } | 
 | module_exit(fsmc_nand_exit); | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 | MODULE_AUTHOR("Vipin Kumar <vipin.kumar@st.com>, Ashish Priyadarshi"); | 
 | MODULE_DESCRIPTION("NAND driver for SPEAr Platforms"); |