| /* | 
 |  *  linux/fs/ext4/ialloc.c | 
 |  * | 
 |  * Copyright (C) 1992, 1993, 1994, 1995 | 
 |  * Remy Card (card@masi.ibp.fr) | 
 |  * Laboratoire MASI - Institut Blaise Pascal | 
 |  * Universite Pierre et Marie Curie (Paris VI) | 
 |  * | 
 |  *  BSD ufs-inspired inode and directory allocation by | 
 |  *  Stephen Tweedie (sct@redhat.com), 1993 | 
 |  *  Big-endian to little-endian byte-swapping/bitmaps by | 
 |  *        David S. Miller (davem@caip.rutgers.edu), 1995 | 
 |  */ | 
 |  | 
 | #include <linux/time.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/jbd2.h> | 
 | #include <linux/ext4_fs.h> | 
 | #include <linux/ext4_jbd2.h> | 
 | #include <linux/stat.h> | 
 | #include <linux/string.h> | 
 | #include <linux/quotaops.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/random.h> | 
 | #include <linux/bitops.h> | 
 | #include <linux/blkdev.h> | 
 | #include <asm/byteorder.h> | 
 |  | 
 | #include "xattr.h" | 
 | #include "acl.h" | 
 | #include "group.h" | 
 |  | 
 | /* | 
 |  * ialloc.c contains the inodes allocation and deallocation routines | 
 |  */ | 
 |  | 
 | /* | 
 |  * The free inodes are managed by bitmaps.  A file system contains several | 
 |  * blocks groups.  Each group contains 1 bitmap block for blocks, 1 bitmap | 
 |  * block for inodes, N blocks for the inode table and data blocks. | 
 |  * | 
 |  * The file system contains group descriptors which are located after the | 
 |  * super block.  Each descriptor contains the number of the bitmap block and | 
 |  * the free blocks count in the block. | 
 |  */ | 
 |  | 
 | /* | 
 |  * To avoid calling the atomic setbit hundreds or thousands of times, we only | 
 |  * need to use it within a single byte (to ensure we get endianness right). | 
 |  * We can use memset for the rest of the bitmap as there are no other users. | 
 |  */ | 
 | void mark_bitmap_end(int start_bit, int end_bit, char *bitmap) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (start_bit >= end_bit) | 
 | 		return; | 
 |  | 
 | 	ext4_debug("mark end bits +%d through +%d used\n", start_bit, end_bit); | 
 | 	for (i = start_bit; i < ((start_bit + 7) & ~7UL); i++) | 
 | 		ext4_set_bit(i, bitmap); | 
 | 	if (i < end_bit) | 
 | 		memset(bitmap + (i >> 3), 0xff, (end_bit - i) >> 3); | 
 | } | 
 |  | 
 | /* Initializes an uninitialized inode bitmap */ | 
 | unsigned ext4_init_inode_bitmap(struct super_block *sb, struct buffer_head *bh, | 
 | 				ext4_group_t block_group, | 
 | 				struct ext4_group_desc *gdp) | 
 | { | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 |  | 
 | 	J_ASSERT_BH(bh, buffer_locked(bh)); | 
 |  | 
 | 	/* If checksum is bad mark all blocks and inodes use to prevent | 
 | 	 * allocation, essentially implementing a per-group read-only flag. */ | 
 | 	if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) { | 
 | 		ext4_error(sb, __FUNCTION__, "Checksum bad for group %lu\n", | 
 | 			   block_group); | 
 | 		gdp->bg_free_blocks_count = 0; | 
 | 		gdp->bg_free_inodes_count = 0; | 
 | 		gdp->bg_itable_unused = 0; | 
 | 		memset(bh->b_data, 0xff, sb->s_blocksize); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	memset(bh->b_data, 0, (EXT4_INODES_PER_GROUP(sb) + 7) / 8); | 
 | 	mark_bitmap_end(EXT4_INODES_PER_GROUP(sb), EXT4_BLOCKS_PER_GROUP(sb), | 
 | 			bh->b_data); | 
 |  | 
 | 	return EXT4_INODES_PER_GROUP(sb); | 
 | } | 
 |  | 
 | /* | 
 |  * Read the inode allocation bitmap for a given block_group, reading | 
 |  * into the specified slot in the superblock's bitmap cache. | 
 |  * | 
 |  * Return buffer_head of bitmap on success or NULL. | 
 |  */ | 
 | static struct buffer_head * | 
 | read_inode_bitmap(struct super_block *sb, ext4_group_t block_group) | 
 | { | 
 | 	struct ext4_group_desc *desc; | 
 | 	struct buffer_head *bh = NULL; | 
 |  | 
 | 	desc = ext4_get_group_desc(sb, block_group, NULL); | 
 | 	if (!desc) | 
 | 		goto error_out; | 
 | 	if (desc->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { | 
 | 		bh = sb_getblk(sb, ext4_inode_bitmap(sb, desc)); | 
 | 		if (!buffer_uptodate(bh)) { | 
 | 			lock_buffer(bh); | 
 | 			if (!buffer_uptodate(bh)) { | 
 | 				ext4_init_inode_bitmap(sb, bh, block_group, | 
 | 						       desc); | 
 | 				set_buffer_uptodate(bh); | 
 | 			} | 
 | 			unlock_buffer(bh); | 
 | 		} | 
 | 	} else { | 
 | 		bh = sb_bread(sb, ext4_inode_bitmap(sb, desc)); | 
 | 	} | 
 | 	if (!bh) | 
 | 		ext4_error(sb, "read_inode_bitmap", | 
 | 			    "Cannot read inode bitmap - " | 
 | 			    "block_group = %lu, inode_bitmap = %llu", | 
 | 			    block_group, ext4_inode_bitmap(sb, desc)); | 
 | error_out: | 
 | 	return bh; | 
 | } | 
 |  | 
 | /* | 
 |  * NOTE! When we get the inode, we're the only people | 
 |  * that have access to it, and as such there are no | 
 |  * race conditions we have to worry about. The inode | 
 |  * is not on the hash-lists, and it cannot be reached | 
 |  * through the filesystem because the directory entry | 
 |  * has been deleted earlier. | 
 |  * | 
 |  * HOWEVER: we must make sure that we get no aliases, | 
 |  * which means that we have to call "clear_inode()" | 
 |  * _before_ we mark the inode not in use in the inode | 
 |  * bitmaps. Otherwise a newly created file might use | 
 |  * the same inode number (not actually the same pointer | 
 |  * though), and then we'd have two inodes sharing the | 
 |  * same inode number and space on the harddisk. | 
 |  */ | 
 | void ext4_free_inode (handle_t *handle, struct inode * inode) | 
 | { | 
 | 	struct super_block * sb = inode->i_sb; | 
 | 	int is_directory; | 
 | 	unsigned long ino; | 
 | 	struct buffer_head *bitmap_bh = NULL; | 
 | 	struct buffer_head *bh2; | 
 | 	ext4_group_t block_group; | 
 | 	unsigned long bit; | 
 | 	struct ext4_group_desc * gdp; | 
 | 	struct ext4_super_block * es; | 
 | 	struct ext4_sb_info *sbi; | 
 | 	int fatal = 0, err; | 
 |  | 
 | 	if (atomic_read(&inode->i_count) > 1) { | 
 | 		printk ("ext4_free_inode: inode has count=%d\n", | 
 | 					atomic_read(&inode->i_count)); | 
 | 		return; | 
 | 	} | 
 | 	if (inode->i_nlink) { | 
 | 		printk ("ext4_free_inode: inode has nlink=%d\n", | 
 | 			inode->i_nlink); | 
 | 		return; | 
 | 	} | 
 | 	if (!sb) { | 
 | 		printk("ext4_free_inode: inode on nonexistent device\n"); | 
 | 		return; | 
 | 	} | 
 | 	sbi = EXT4_SB(sb); | 
 |  | 
 | 	ino = inode->i_ino; | 
 | 	ext4_debug ("freeing inode %lu\n", ino); | 
 |  | 
 | 	/* | 
 | 	 * Note: we must free any quota before locking the superblock, | 
 | 	 * as writing the quota to disk may need the lock as well. | 
 | 	 */ | 
 | 	DQUOT_INIT(inode); | 
 | 	ext4_xattr_delete_inode(handle, inode); | 
 | 	DQUOT_FREE_INODE(inode); | 
 | 	DQUOT_DROP(inode); | 
 |  | 
 | 	is_directory = S_ISDIR(inode->i_mode); | 
 |  | 
 | 	/* Do this BEFORE marking the inode not in use or returning an error */ | 
 | 	clear_inode (inode); | 
 |  | 
 | 	es = EXT4_SB(sb)->s_es; | 
 | 	if (ino < EXT4_FIRST_INO(sb) || ino > le32_to_cpu(es->s_inodes_count)) { | 
 | 		ext4_error (sb, "ext4_free_inode", | 
 | 			    "reserved or nonexistent inode %lu", ino); | 
 | 		goto error_return; | 
 | 	} | 
 | 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); | 
 | 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); | 
 | 	bitmap_bh = read_inode_bitmap(sb, block_group); | 
 | 	if (!bitmap_bh) | 
 | 		goto error_return; | 
 |  | 
 | 	BUFFER_TRACE(bitmap_bh, "get_write_access"); | 
 | 	fatal = ext4_journal_get_write_access(handle, bitmap_bh); | 
 | 	if (fatal) | 
 | 		goto error_return; | 
 |  | 
 | 	/* Ok, now we can actually update the inode bitmaps.. */ | 
 | 	if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group), | 
 | 					bit, bitmap_bh->b_data)) | 
 | 		ext4_error (sb, "ext4_free_inode", | 
 | 			      "bit already cleared for inode %lu", ino); | 
 | 	else { | 
 | 		gdp = ext4_get_group_desc (sb, block_group, &bh2); | 
 |  | 
 | 		BUFFER_TRACE(bh2, "get_write_access"); | 
 | 		fatal = ext4_journal_get_write_access(handle, bh2); | 
 | 		if (fatal) goto error_return; | 
 |  | 
 | 		if (gdp) { | 
 | 			spin_lock(sb_bgl_lock(sbi, block_group)); | 
 | 			gdp->bg_free_inodes_count = cpu_to_le16( | 
 | 				le16_to_cpu(gdp->bg_free_inodes_count) + 1); | 
 | 			if (is_directory) | 
 | 				gdp->bg_used_dirs_count = cpu_to_le16( | 
 | 				  le16_to_cpu(gdp->bg_used_dirs_count) - 1); | 
 | 			gdp->bg_checksum = ext4_group_desc_csum(sbi, | 
 | 							block_group, gdp); | 
 | 			spin_unlock(sb_bgl_lock(sbi, block_group)); | 
 | 			percpu_counter_inc(&sbi->s_freeinodes_counter); | 
 | 			if (is_directory) | 
 | 				percpu_counter_dec(&sbi->s_dirs_counter); | 
 |  | 
 | 		} | 
 | 		BUFFER_TRACE(bh2, "call ext4_journal_dirty_metadata"); | 
 | 		err = ext4_journal_dirty_metadata(handle, bh2); | 
 | 		if (!fatal) fatal = err; | 
 | 	} | 
 | 	BUFFER_TRACE(bitmap_bh, "call ext4_journal_dirty_metadata"); | 
 | 	err = ext4_journal_dirty_metadata(handle, bitmap_bh); | 
 | 	if (!fatal) | 
 | 		fatal = err; | 
 | 	sb->s_dirt = 1; | 
 | error_return: | 
 | 	brelse(bitmap_bh); | 
 | 	ext4_std_error(sb, fatal); | 
 | } | 
 |  | 
 | /* | 
 |  * There are two policies for allocating an inode.  If the new inode is | 
 |  * a directory, then a forward search is made for a block group with both | 
 |  * free space and a low directory-to-inode ratio; if that fails, then of | 
 |  * the groups with above-average free space, that group with the fewest | 
 |  * directories already is chosen. | 
 |  * | 
 |  * For other inodes, search forward from the parent directory\'s block | 
 |  * group to find a free inode. | 
 |  */ | 
 | static int find_group_dir(struct super_block *sb, struct inode *parent, | 
 | 				ext4_group_t *best_group) | 
 | { | 
 | 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; | 
 | 	unsigned int freei, avefreei; | 
 | 	struct ext4_group_desc *desc, *best_desc = NULL; | 
 | 	ext4_group_t group; | 
 | 	int ret = -1; | 
 |  | 
 | 	freei = percpu_counter_read_positive(&EXT4_SB(sb)->s_freeinodes_counter); | 
 | 	avefreei = freei / ngroups; | 
 |  | 
 | 	for (group = 0; group < ngroups; group++) { | 
 | 		desc = ext4_get_group_desc (sb, group, NULL); | 
 | 		if (!desc || !desc->bg_free_inodes_count) | 
 | 			continue; | 
 | 		if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei) | 
 | 			continue; | 
 | 		if (!best_desc || | 
 | 		    (le16_to_cpu(desc->bg_free_blocks_count) > | 
 | 		     le16_to_cpu(best_desc->bg_free_blocks_count))) { | 
 | 			*best_group = group; | 
 | 			best_desc = desc; | 
 | 			ret = 0; | 
 | 		} | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Orlov's allocator for directories. | 
 |  * | 
 |  * We always try to spread first-level directories. | 
 |  * | 
 |  * If there are blockgroups with both free inodes and free blocks counts | 
 |  * not worse than average we return one with smallest directory count. | 
 |  * Otherwise we simply return a random group. | 
 |  * | 
 |  * For the rest rules look so: | 
 |  * | 
 |  * It's OK to put directory into a group unless | 
 |  * it has too many directories already (max_dirs) or | 
 |  * it has too few free inodes left (min_inodes) or | 
 |  * it has too few free blocks left (min_blocks) or | 
 |  * it's already running too large debt (max_debt). | 
 |  * Parent's group is prefered, if it doesn't satisfy these | 
 |  * conditions we search cyclically through the rest. If none | 
 |  * of the groups look good we just look for a group with more | 
 |  * free inodes than average (starting at parent's group). | 
 |  * | 
 |  * Debt is incremented each time we allocate a directory and decremented | 
 |  * when we allocate an inode, within 0--255. | 
 |  */ | 
 |  | 
 | #define INODE_COST 64 | 
 | #define BLOCK_COST 256 | 
 |  | 
 | static int find_group_orlov(struct super_block *sb, struct inode *parent, | 
 | 				ext4_group_t *group) | 
 | { | 
 | 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group; | 
 | 	struct ext4_sb_info *sbi = EXT4_SB(sb); | 
 | 	struct ext4_super_block *es = sbi->s_es; | 
 | 	ext4_group_t ngroups = sbi->s_groups_count; | 
 | 	int inodes_per_group = EXT4_INODES_PER_GROUP(sb); | 
 | 	unsigned int freei, avefreei; | 
 | 	ext4_fsblk_t freeb, avefreeb; | 
 | 	ext4_fsblk_t blocks_per_dir; | 
 | 	unsigned int ndirs; | 
 | 	int max_debt, max_dirs, min_inodes; | 
 | 	ext4_grpblk_t min_blocks; | 
 | 	ext4_group_t i; | 
 | 	struct ext4_group_desc *desc; | 
 |  | 
 | 	freei = percpu_counter_read_positive(&sbi->s_freeinodes_counter); | 
 | 	avefreei = freei / ngroups; | 
 | 	freeb = percpu_counter_read_positive(&sbi->s_freeblocks_counter); | 
 | 	avefreeb = freeb; | 
 | 	do_div(avefreeb, ngroups); | 
 | 	ndirs = percpu_counter_read_positive(&sbi->s_dirs_counter); | 
 |  | 
 | 	if ((parent == sb->s_root->d_inode) || | 
 | 	    (EXT4_I(parent)->i_flags & EXT4_TOPDIR_FL)) { | 
 | 		int best_ndir = inodes_per_group; | 
 | 		ext4_group_t grp; | 
 | 		int ret = -1; | 
 |  | 
 | 		get_random_bytes(&grp, sizeof(grp)); | 
 | 		parent_group = (unsigned)grp % ngroups; | 
 | 		for (i = 0; i < ngroups; i++) { | 
 | 			grp = (parent_group + i) % ngroups; | 
 | 			desc = ext4_get_group_desc(sb, grp, NULL); | 
 | 			if (!desc || !desc->bg_free_inodes_count) | 
 | 				continue; | 
 | 			if (le16_to_cpu(desc->bg_used_dirs_count) >= best_ndir) | 
 | 				continue; | 
 | 			if (le16_to_cpu(desc->bg_free_inodes_count) < avefreei) | 
 | 				continue; | 
 | 			if (le16_to_cpu(desc->bg_free_blocks_count) < avefreeb) | 
 | 				continue; | 
 | 			*group = grp; | 
 | 			ret = 0; | 
 | 			best_ndir = le16_to_cpu(desc->bg_used_dirs_count); | 
 | 		} | 
 | 		if (ret == 0) | 
 | 			return ret; | 
 | 		goto fallback; | 
 | 	} | 
 |  | 
 | 	blocks_per_dir = ext4_blocks_count(es) - freeb; | 
 | 	do_div(blocks_per_dir, ndirs); | 
 |  | 
 | 	max_dirs = ndirs / ngroups + inodes_per_group / 16; | 
 | 	min_inodes = avefreei - inodes_per_group / 4; | 
 | 	min_blocks = avefreeb - EXT4_BLOCKS_PER_GROUP(sb) / 4; | 
 |  | 
 | 	max_debt = EXT4_BLOCKS_PER_GROUP(sb); | 
 | 	max_debt /= max_t(int, blocks_per_dir, BLOCK_COST); | 
 | 	if (max_debt * INODE_COST > inodes_per_group) | 
 | 		max_debt = inodes_per_group / INODE_COST; | 
 | 	if (max_debt > 255) | 
 | 		max_debt = 255; | 
 | 	if (max_debt == 0) | 
 | 		max_debt = 1; | 
 |  | 
 | 	for (i = 0; i < ngroups; i++) { | 
 | 		*group = (parent_group + i) % ngroups; | 
 | 		desc = ext4_get_group_desc(sb, *group, NULL); | 
 | 		if (!desc || !desc->bg_free_inodes_count) | 
 | 			continue; | 
 | 		if (le16_to_cpu(desc->bg_used_dirs_count) >= max_dirs) | 
 | 			continue; | 
 | 		if (le16_to_cpu(desc->bg_free_inodes_count) < min_inodes) | 
 | 			continue; | 
 | 		if (le16_to_cpu(desc->bg_free_blocks_count) < min_blocks) | 
 | 			continue; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | fallback: | 
 | 	for (i = 0; i < ngroups; i++) { | 
 | 		*group = (parent_group + i) % ngroups; | 
 | 		desc = ext4_get_group_desc(sb, *group, NULL); | 
 | 		if (desc && desc->bg_free_inodes_count && | 
 | 			le16_to_cpu(desc->bg_free_inodes_count) >= avefreei) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	if (avefreei) { | 
 | 		/* | 
 | 		 * The free-inodes counter is approximate, and for really small | 
 | 		 * filesystems the above test can fail to find any blockgroups | 
 | 		 */ | 
 | 		avefreei = 0; | 
 | 		goto fallback; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | static int find_group_other(struct super_block *sb, struct inode *parent, | 
 | 				ext4_group_t *group) | 
 | { | 
 | 	ext4_group_t parent_group = EXT4_I(parent)->i_block_group; | 
 | 	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count; | 
 | 	struct ext4_group_desc *desc; | 
 | 	ext4_group_t i; | 
 |  | 
 | 	/* | 
 | 	 * Try to place the inode in its parent directory | 
 | 	 */ | 
 | 	*group = parent_group; | 
 | 	desc = ext4_get_group_desc(sb, *group, NULL); | 
 | 	if (desc && le16_to_cpu(desc->bg_free_inodes_count) && | 
 | 			le16_to_cpu(desc->bg_free_blocks_count)) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * We're going to place this inode in a different blockgroup from its | 
 | 	 * parent.  We want to cause files in a common directory to all land in | 
 | 	 * the same blockgroup.  But we want files which are in a different | 
 | 	 * directory which shares a blockgroup with our parent to land in a | 
 | 	 * different blockgroup. | 
 | 	 * | 
 | 	 * So add our directory's i_ino into the starting point for the hash. | 
 | 	 */ | 
 | 	*group = (*group + parent->i_ino) % ngroups; | 
 |  | 
 | 	/* | 
 | 	 * Use a quadratic hash to find a group with a free inode and some free | 
 | 	 * blocks. | 
 | 	 */ | 
 | 	for (i = 1; i < ngroups; i <<= 1) { | 
 | 		*group += i; | 
 | 		if (*group >= ngroups) | 
 | 			*group -= ngroups; | 
 | 		desc = ext4_get_group_desc(sb, *group, NULL); | 
 | 		if (desc && le16_to_cpu(desc->bg_free_inodes_count) && | 
 | 				le16_to_cpu(desc->bg_free_blocks_count)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * That failed: try linear search for a free inode, even if that group | 
 | 	 * has no free blocks. | 
 | 	 */ | 
 | 	*group = parent_group; | 
 | 	for (i = 0; i < ngroups; i++) { | 
 | 		if (++*group >= ngroups) | 
 | 			*group = 0; | 
 | 		desc = ext4_get_group_desc(sb, *group, NULL); | 
 | 		if (desc && le16_to_cpu(desc->bg_free_inodes_count)) | 
 | 			return 0; | 
 | 	} | 
 |  | 
 | 	return -1; | 
 | } | 
 |  | 
 | /* | 
 |  * There are two policies for allocating an inode.  If the new inode is | 
 |  * a directory, then a forward search is made for a block group with both | 
 |  * free space and a low directory-to-inode ratio; if that fails, then of | 
 |  * the groups with above-average free space, that group with the fewest | 
 |  * directories already is chosen. | 
 |  * | 
 |  * For other inodes, search forward from the parent directory's block | 
 |  * group to find a free inode. | 
 |  */ | 
 | struct inode *ext4_new_inode(handle_t *handle, struct inode * dir, int mode) | 
 | { | 
 | 	struct super_block *sb; | 
 | 	struct buffer_head *bitmap_bh = NULL; | 
 | 	struct buffer_head *bh2; | 
 | 	ext4_group_t group = 0; | 
 | 	unsigned long ino = 0; | 
 | 	struct inode * inode; | 
 | 	struct ext4_group_desc * gdp = NULL; | 
 | 	struct ext4_super_block * es; | 
 | 	struct ext4_inode_info *ei; | 
 | 	struct ext4_sb_info *sbi; | 
 | 	int ret2, err = 0; | 
 | 	struct inode *ret; | 
 | 	ext4_group_t i; | 
 | 	int free = 0; | 
 |  | 
 | 	/* Cannot create files in a deleted directory */ | 
 | 	if (!dir || !dir->i_nlink) | 
 | 		return ERR_PTR(-EPERM); | 
 |  | 
 | 	sb = dir->i_sb; | 
 | 	inode = new_inode(sb); | 
 | 	if (!inode) | 
 | 		return ERR_PTR(-ENOMEM); | 
 | 	ei = EXT4_I(inode); | 
 |  | 
 | 	sbi = EXT4_SB(sb); | 
 | 	es = sbi->s_es; | 
 | 	if (S_ISDIR(mode)) { | 
 | 		if (test_opt (sb, OLDALLOC)) | 
 | 			ret2 = find_group_dir(sb, dir, &group); | 
 | 		else | 
 | 			ret2 = find_group_orlov(sb, dir, &group); | 
 | 	} else | 
 | 		ret2 = find_group_other(sb, dir, &group); | 
 |  | 
 | 	err = -ENOSPC; | 
 | 	if (ret2 == -1) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < sbi->s_groups_count; i++) { | 
 | 		err = -EIO; | 
 |  | 
 | 		gdp = ext4_get_group_desc(sb, group, &bh2); | 
 | 		if (!gdp) | 
 | 			goto fail; | 
 |  | 
 | 		brelse(bitmap_bh); | 
 | 		bitmap_bh = read_inode_bitmap(sb, group); | 
 | 		if (!bitmap_bh) | 
 | 			goto fail; | 
 |  | 
 | 		ino = 0; | 
 |  | 
 | repeat_in_this_group: | 
 | 		ino = ext4_find_next_zero_bit((unsigned long *) | 
 | 				bitmap_bh->b_data, EXT4_INODES_PER_GROUP(sb), ino); | 
 | 		if (ino < EXT4_INODES_PER_GROUP(sb)) { | 
 |  | 
 | 			BUFFER_TRACE(bitmap_bh, "get_write_access"); | 
 | 			err = ext4_journal_get_write_access(handle, bitmap_bh); | 
 | 			if (err) | 
 | 				goto fail; | 
 |  | 
 | 			if (!ext4_set_bit_atomic(sb_bgl_lock(sbi, group), | 
 | 						ino, bitmap_bh->b_data)) { | 
 | 				/* we won it */ | 
 | 				BUFFER_TRACE(bitmap_bh, | 
 | 					"call ext4_journal_dirty_metadata"); | 
 | 				err = ext4_journal_dirty_metadata(handle, | 
 | 								bitmap_bh); | 
 | 				if (err) | 
 | 					goto fail; | 
 | 				goto got; | 
 | 			} | 
 | 			/* we lost it */ | 
 | 			jbd2_journal_release_buffer(handle, bitmap_bh); | 
 |  | 
 | 			if (++ino < EXT4_INODES_PER_GROUP(sb)) | 
 | 				goto repeat_in_this_group; | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * This case is possible in concurrent environment.  It is very | 
 | 		 * rare.  We cannot repeat the find_group_xxx() call because | 
 | 		 * that will simply return the same blockgroup, because the | 
 | 		 * group descriptor metadata has not yet been updated. | 
 | 		 * So we just go onto the next blockgroup. | 
 | 		 */ | 
 | 		if (++group == sbi->s_groups_count) | 
 | 			group = 0; | 
 | 	} | 
 | 	err = -ENOSPC; | 
 | 	goto out; | 
 |  | 
 | got: | 
 | 	ino++; | 
 | 	if ((group == 0 && ino < EXT4_FIRST_INO(sb)) || | 
 | 	    ino > EXT4_INODES_PER_GROUP(sb)) { | 
 | 		ext4_error(sb, __FUNCTION__, | 
 | 			   "reserved inode or inode > inodes count - " | 
 | 			   "block_group = %lu, inode=%lu", group, | 
 | 			   ino + group * EXT4_INODES_PER_GROUP(sb)); | 
 | 		err = -EIO; | 
 | 		goto fail; | 
 | 	} | 
 |  | 
 | 	BUFFER_TRACE(bh2, "get_write_access"); | 
 | 	err = ext4_journal_get_write_access(handle, bh2); | 
 | 	if (err) goto fail; | 
 |  | 
 | 	/* We may have to initialize the block bitmap if it isn't already */ | 
 | 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM) && | 
 | 	    gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { | 
 | 		struct buffer_head *block_bh = read_block_bitmap(sb, group); | 
 |  | 
 | 		BUFFER_TRACE(block_bh, "get block bitmap access"); | 
 | 		err = ext4_journal_get_write_access(handle, block_bh); | 
 | 		if (err) { | 
 | 			brelse(block_bh); | 
 | 			goto fail; | 
 | 		} | 
 |  | 
 | 		free = 0; | 
 | 		spin_lock(sb_bgl_lock(sbi, group)); | 
 | 		/* recheck and clear flag under lock if we still need to */ | 
 | 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) { | 
 | 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT); | 
 | 			free = ext4_free_blocks_after_init(sb, group, gdp); | 
 | 			gdp->bg_free_blocks_count = cpu_to_le16(free); | 
 | 		} | 
 | 		spin_unlock(sb_bgl_lock(sbi, group)); | 
 |  | 
 | 		/* Don't need to dirty bitmap block if we didn't change it */ | 
 | 		if (free) { | 
 | 			BUFFER_TRACE(block_bh, "dirty block bitmap"); | 
 | 			err = ext4_journal_dirty_metadata(handle, block_bh); | 
 | 		} | 
 |  | 
 | 		brelse(block_bh); | 
 | 		if (err) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	spin_lock(sb_bgl_lock(sbi, group)); | 
 | 	/* If we didn't allocate from within the initialized part of the inode | 
 | 	 * table then we need to initialize up to this inode. */ | 
 | 	if (EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_GDT_CSUM)) { | 
 | 		if (gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_UNINIT)) { | 
 | 			gdp->bg_flags &= cpu_to_le16(~EXT4_BG_INODE_UNINIT); | 
 |  | 
 | 			/* When marking the block group with | 
 | 			 * ~EXT4_BG_INODE_UNINIT we don't want to depend | 
 | 			 * on the value of bg_itable_unsed even though | 
 | 			 * mke2fs could have initialized the same for us. | 
 | 			 * Instead we calculated the value below | 
 | 			 */ | 
 |  | 
 | 			free = 0; | 
 | 		} else { | 
 | 			free = EXT4_INODES_PER_GROUP(sb) - | 
 | 				le16_to_cpu(gdp->bg_itable_unused); | 
 | 		} | 
 |  | 
 | 		/* | 
 | 		 * Check the relative inode number against the last used | 
 | 		 * relative inode number in this group. if it is greater | 
 | 		 * we need to  update the bg_itable_unused count | 
 | 		 * | 
 | 		 */ | 
 | 		if (ino > free) | 
 | 			gdp->bg_itable_unused = | 
 | 				cpu_to_le16(EXT4_INODES_PER_GROUP(sb) - ino); | 
 | 	} | 
 |  | 
 | 	gdp->bg_free_inodes_count = | 
 | 		cpu_to_le16(le16_to_cpu(gdp->bg_free_inodes_count) - 1); | 
 | 	if (S_ISDIR(mode)) { | 
 | 		gdp->bg_used_dirs_count = | 
 | 			cpu_to_le16(le16_to_cpu(gdp->bg_used_dirs_count) + 1); | 
 | 	} | 
 | 	gdp->bg_checksum = ext4_group_desc_csum(sbi, group, gdp); | 
 | 	spin_unlock(sb_bgl_lock(sbi, group)); | 
 | 	BUFFER_TRACE(bh2, "call ext4_journal_dirty_metadata"); | 
 | 	err = ext4_journal_dirty_metadata(handle, bh2); | 
 | 	if (err) goto fail; | 
 |  | 
 | 	percpu_counter_dec(&sbi->s_freeinodes_counter); | 
 | 	if (S_ISDIR(mode)) | 
 | 		percpu_counter_inc(&sbi->s_dirs_counter); | 
 | 	sb->s_dirt = 1; | 
 |  | 
 | 	inode->i_uid = current->fsuid; | 
 | 	if (test_opt (sb, GRPID)) | 
 | 		inode->i_gid = dir->i_gid; | 
 | 	else if (dir->i_mode & S_ISGID) { | 
 | 		inode->i_gid = dir->i_gid; | 
 | 		if (S_ISDIR(mode)) | 
 | 			mode |= S_ISGID; | 
 | 	} else | 
 | 		inode->i_gid = current->fsgid; | 
 | 	inode->i_mode = mode; | 
 |  | 
 | 	inode->i_ino = ino + group * EXT4_INODES_PER_GROUP(sb); | 
 | 	/* This is the optimal IO size (for stat), not the fs block size */ | 
 | 	inode->i_blocks = 0; | 
 | 	inode->i_mtime = inode->i_atime = inode->i_ctime = ei->i_crtime = | 
 | 						       ext4_current_time(inode); | 
 |  | 
 | 	memset(ei->i_data, 0, sizeof(ei->i_data)); | 
 | 	ei->i_dir_start_lookup = 0; | 
 | 	ei->i_disksize = 0; | 
 |  | 
 | 	ei->i_flags = EXT4_I(dir)->i_flags & ~EXT4_INDEX_FL; | 
 | 	if (S_ISLNK(mode)) | 
 | 		ei->i_flags &= ~(EXT4_IMMUTABLE_FL|EXT4_APPEND_FL); | 
 | 	/* dirsync only applies to directories */ | 
 | 	if (!S_ISDIR(mode)) | 
 | 		ei->i_flags &= ~EXT4_DIRSYNC_FL; | 
 | 	ei->i_file_acl = 0; | 
 | 	ei->i_dtime = 0; | 
 | 	ei->i_block_alloc_info = NULL; | 
 | 	ei->i_block_group = group; | 
 |  | 
 | 	ext4_set_inode_flags(inode); | 
 | 	if (IS_DIRSYNC(inode)) | 
 | 		handle->h_sync = 1; | 
 | 	insert_inode_hash(inode); | 
 | 	spin_lock(&sbi->s_next_gen_lock); | 
 | 	inode->i_generation = sbi->s_next_generation++; | 
 | 	spin_unlock(&sbi->s_next_gen_lock); | 
 |  | 
 | 	ei->i_state = EXT4_STATE_NEW; | 
 |  | 
 | 	ei->i_extra_isize = EXT4_SB(sb)->s_want_extra_isize; | 
 |  | 
 | 	ret = inode; | 
 | 	if(DQUOT_ALLOC_INODE(inode)) { | 
 | 		err = -EDQUOT; | 
 | 		goto fail_drop; | 
 | 	} | 
 |  | 
 | 	err = ext4_init_acl(handle, inode, dir); | 
 | 	if (err) | 
 | 		goto fail_free_drop; | 
 |  | 
 | 	err = ext4_init_security(handle,inode, dir); | 
 | 	if (err) | 
 | 		goto fail_free_drop; | 
 |  | 
 | 	err = ext4_mark_inode_dirty(handle, inode); | 
 | 	if (err) { | 
 | 		ext4_std_error(sb, err); | 
 | 		goto fail_free_drop; | 
 | 	} | 
 | 	if (test_opt(sb, EXTENTS)) { | 
 | 		EXT4_I(inode)->i_flags |= EXT4_EXTENTS_FL; | 
 | 		ext4_ext_tree_init(handle, inode); | 
 | 		err = ext4_update_incompat_feature(handle, sb, | 
 | 						EXT4_FEATURE_INCOMPAT_EXTENTS); | 
 | 		if (err) | 
 | 			goto fail; | 
 | 	} | 
 |  | 
 | 	ext4_debug("allocating inode %lu\n", inode->i_ino); | 
 | 	goto really_out; | 
 | fail: | 
 | 	ext4_std_error(sb, err); | 
 | out: | 
 | 	iput(inode); | 
 | 	ret = ERR_PTR(err); | 
 | really_out: | 
 | 	brelse(bitmap_bh); | 
 | 	return ret; | 
 |  | 
 | fail_free_drop: | 
 | 	DQUOT_FREE_INODE(inode); | 
 |  | 
 | fail_drop: | 
 | 	DQUOT_DROP(inode); | 
 | 	inode->i_flags |= S_NOQUOTA; | 
 | 	inode->i_nlink = 0; | 
 | 	iput(inode); | 
 | 	brelse(bitmap_bh); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | /* Verify that we are loading a valid orphan from disk */ | 
 | struct inode *ext4_orphan_get(struct super_block *sb, unsigned long ino) | 
 | { | 
 | 	unsigned long max_ino = le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count); | 
 | 	ext4_group_t block_group; | 
 | 	int bit; | 
 | 	struct buffer_head *bitmap_bh = NULL; | 
 | 	struct inode *inode = NULL; | 
 |  | 
 | 	/* Error cases - e2fsck has already cleaned up for us */ | 
 | 	if (ino > max_ino) { | 
 | 		ext4_warning(sb, __FUNCTION__, | 
 | 			     "bad orphan ino %lu!  e2fsck was run?", ino); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	block_group = (ino - 1) / EXT4_INODES_PER_GROUP(sb); | 
 | 	bit = (ino - 1) % EXT4_INODES_PER_GROUP(sb); | 
 | 	bitmap_bh = read_inode_bitmap(sb, block_group); | 
 | 	if (!bitmap_bh) { | 
 | 		ext4_warning(sb, __FUNCTION__, | 
 | 			     "inode bitmap error for orphan %lu", ino); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Having the inode bit set should be a 100% indicator that this | 
 | 	 * is a valid orphan (no e2fsck run on fs).  Orphans also include | 
 | 	 * inodes that were being truncated, so we can't check i_nlink==0. | 
 | 	 */ | 
 | 	if (!ext4_test_bit(bit, bitmap_bh->b_data) || | 
 | 			!(inode = iget(sb, ino)) || is_bad_inode(inode) || | 
 | 			NEXT_ORPHAN(inode) > max_ino) { | 
 | 		ext4_warning(sb, __FUNCTION__, | 
 | 			     "bad orphan inode %lu!  e2fsck was run?", ino); | 
 | 		printk(KERN_NOTICE "ext4_test_bit(bit=%d, block=%llu) = %d\n", | 
 | 		       bit, (unsigned long long)bitmap_bh->b_blocknr, | 
 | 		       ext4_test_bit(bit, bitmap_bh->b_data)); | 
 | 		printk(KERN_NOTICE "inode=%p\n", inode); | 
 | 		if (inode) { | 
 | 			printk(KERN_NOTICE "is_bad_inode(inode)=%d\n", | 
 | 			       is_bad_inode(inode)); | 
 | 			printk(KERN_NOTICE "NEXT_ORPHAN(inode)=%u\n", | 
 | 			       NEXT_ORPHAN(inode)); | 
 | 			printk(KERN_NOTICE "max_ino=%lu\n", max_ino); | 
 | 		} | 
 | 		/* Avoid freeing blocks if we got a bad deleted inode */ | 
 | 		if (inode && inode->i_nlink == 0) | 
 | 			inode->i_blocks = 0; | 
 | 		iput(inode); | 
 | 		inode = NULL; | 
 | 	} | 
 | out: | 
 | 	brelse(bitmap_bh); | 
 | 	return inode; | 
 | } | 
 |  | 
 | unsigned long ext4_count_free_inodes (struct super_block * sb) | 
 | { | 
 | 	unsigned long desc_count; | 
 | 	struct ext4_group_desc *gdp; | 
 | 	ext4_group_t i; | 
 | #ifdef EXT4FS_DEBUG | 
 | 	struct ext4_super_block *es; | 
 | 	unsigned long bitmap_count, x; | 
 | 	struct buffer_head *bitmap_bh = NULL; | 
 |  | 
 | 	es = EXT4_SB(sb)->s_es; | 
 | 	desc_count = 0; | 
 | 	bitmap_count = 0; | 
 | 	gdp = NULL; | 
 | 	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { | 
 | 		gdp = ext4_get_group_desc (sb, i, NULL); | 
 | 		if (!gdp) | 
 | 			continue; | 
 | 		desc_count += le16_to_cpu(gdp->bg_free_inodes_count); | 
 | 		brelse(bitmap_bh); | 
 | 		bitmap_bh = read_inode_bitmap(sb, i); | 
 | 		if (!bitmap_bh) | 
 | 			continue; | 
 |  | 
 | 		x = ext4_count_free(bitmap_bh, EXT4_INODES_PER_GROUP(sb) / 8); | 
 | 		printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n", | 
 | 			i, le16_to_cpu(gdp->bg_free_inodes_count), x); | 
 | 		bitmap_count += x; | 
 | 	} | 
 | 	brelse(bitmap_bh); | 
 | 	printk("ext4_count_free_inodes: stored = %u, computed = %lu, %lu\n", | 
 | 		le32_to_cpu(es->s_free_inodes_count), desc_count, bitmap_count); | 
 | 	return desc_count; | 
 | #else | 
 | 	desc_count = 0; | 
 | 	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { | 
 | 		gdp = ext4_get_group_desc (sb, i, NULL); | 
 | 		if (!gdp) | 
 | 			continue; | 
 | 		desc_count += le16_to_cpu(gdp->bg_free_inodes_count); | 
 | 		cond_resched(); | 
 | 	} | 
 | 	return desc_count; | 
 | #endif | 
 | } | 
 |  | 
 | /* Called at mount-time, super-block is locked */ | 
 | unsigned long ext4_count_dirs (struct super_block * sb) | 
 | { | 
 | 	unsigned long count = 0; | 
 | 	ext4_group_t i; | 
 |  | 
 | 	for (i = 0; i < EXT4_SB(sb)->s_groups_count; i++) { | 
 | 		struct ext4_group_desc *gdp = ext4_get_group_desc (sb, i, NULL); | 
 | 		if (!gdp) | 
 | 			continue; | 
 | 		count += le16_to_cpu(gdp->bg_used_dirs_count); | 
 | 	} | 
 | 	return count; | 
 | } | 
 |  |