|  | /* bnx2x_init.h: Broadcom Everest network driver. | 
|  | * | 
|  | * Copyright (c) 2007-2008 Broadcom Corporation | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation. | 
|  | * | 
|  | * Maintained by: Eilon Greenstein <eilong@broadcom.com> | 
|  | * Written by: Eliezer Tamir | 
|  | */ | 
|  |  | 
|  | #ifndef BNX2X_INIT_H | 
|  | #define BNX2X_INIT_H | 
|  |  | 
|  | #define COMMON				0x1 | 
|  | #define PORT0				0x2 | 
|  | #define PORT1				0x4 | 
|  |  | 
|  | #define INIT_EMULATION			0x1 | 
|  | #define INIT_FPGA			0x2 | 
|  | #define INIT_ASIC			0x4 | 
|  | #define INIT_HARDWARE			0x7 | 
|  |  | 
|  | #define STORM_INTMEM_SIZE_E1		(0x5800 / 4) | 
|  | #define STORM_INTMEM_SIZE_E1H		(0x10000 / 4) | 
|  | #define TSTORM_INTMEM_ADDR		0x1a0000 | 
|  | #define CSTORM_INTMEM_ADDR		0x220000 | 
|  | #define XSTORM_INTMEM_ADDR		0x2a0000 | 
|  | #define USTORM_INTMEM_ADDR		0x320000 | 
|  |  | 
|  |  | 
|  | /* Init operation types and structures */ | 
|  | /* Common for both E1 and E1H */ | 
|  | #define OP_RD			0x1 /* read single register */ | 
|  | #define OP_WR			0x2 /* write single register */ | 
|  | #define OP_IW			0x3 /* write single register using mailbox */ | 
|  | #define OP_SW			0x4 /* copy a string to the device */ | 
|  | #define OP_SI			0x5 /* copy a string using mailbox */ | 
|  | #define OP_ZR			0x6 /* clear memory */ | 
|  | #define OP_ZP			0x7 /* unzip then copy with DMAE */ | 
|  | #define OP_WR_64		0x8 /* write 64 bit pattern */ | 
|  | #define OP_WB			0x9 /* copy a string using DMAE */ | 
|  |  | 
|  | /* Operation specific for E1 */ | 
|  | #define OP_RD_E1		0xa /* read single register */ | 
|  | #define OP_WR_E1		0xb /* write single register */ | 
|  | #define OP_IW_E1		0xc /* write single register using mailbox */ | 
|  | #define OP_SW_E1		0xd /* copy a string to the device */ | 
|  | #define OP_SI_E1		0xe /* copy a string using mailbox */ | 
|  | #define OP_ZR_E1		0xf /* clear memory */ | 
|  | #define OP_ZP_E1		0x10 /* unzip then copy with DMAE */ | 
|  | #define OP_WR_64_E1		0x11 /* write 64 bit pattern on E1 */ | 
|  | #define OP_WB_E1		0x12 /* copy a string using DMAE */ | 
|  |  | 
|  | /* Operation specific for E1H */ | 
|  | #define OP_RD_E1H		0x13 /* read single register */ | 
|  | #define OP_WR_E1H		0x14 /* write single register */ | 
|  | #define OP_IW_E1H		0x15 /* write single register using mailbox */ | 
|  | #define OP_SW_E1H		0x16 /* copy a string to the device */ | 
|  | #define OP_SI_E1H		0x17 /* copy a string using mailbox */ | 
|  | #define OP_ZR_E1H		0x18 /* clear memory */ | 
|  | #define OP_ZP_E1H		0x19 /* unzip then copy with DMAE */ | 
|  | #define OP_WR_64_E1H		0x1a /* write 64 bit pattern on E1H */ | 
|  | #define OP_WB_E1H		0x1b /* copy a string using DMAE */ | 
|  |  | 
|  | /* FPGA and EMUL specific operations */ | 
|  | #define OP_WR_EMUL_E1H		0x1c /* write single register on E1H Emul */ | 
|  | #define OP_WR_EMUL		0x1d /* write single register on Emulation */ | 
|  | #define OP_WR_FPGA		0x1e /* write single register on FPGA */ | 
|  | #define OP_WR_ASIC		0x1f /* write single register on ASIC */ | 
|  |  | 
|  |  | 
|  | struct raw_op { | 
|  | u32 op:8; | 
|  | u32 offset:24; | 
|  | u32 raw_data; | 
|  | }; | 
|  |  | 
|  | struct op_read { | 
|  | u32 op:8; | 
|  | u32 offset:24; | 
|  | u32 pad; | 
|  | }; | 
|  |  | 
|  | struct op_write { | 
|  | u32 op:8; | 
|  | u32 offset:24; | 
|  | u32 val; | 
|  | }; | 
|  |  | 
|  | struct op_string_write { | 
|  | u32 op:8; | 
|  | u32 offset:24; | 
|  | #ifdef __LITTLE_ENDIAN | 
|  | u16 data_off; | 
|  | u16 data_len; | 
|  | #else /* __BIG_ENDIAN */ | 
|  | u16 data_len; | 
|  | u16 data_off; | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct op_zero { | 
|  | u32 op:8; | 
|  | u32 offset:24; | 
|  | u32 len; | 
|  | }; | 
|  |  | 
|  | union init_op { | 
|  | struct op_read		read; | 
|  | struct op_write		write; | 
|  | struct op_string_write	str_wr; | 
|  | struct op_zero		zero; | 
|  | struct raw_op		raw; | 
|  | }; | 
|  |  | 
|  | #include "bnx2x_init_values.h" | 
|  |  | 
|  | static void bnx2x_reg_wr_ind(struct bnx2x *bp, u32 addr, u32 val); | 
|  | static int bnx2x_gunzip(struct bnx2x *bp, u8 *zbuf, int len); | 
|  |  | 
|  | static void bnx2x_init_str_wr(struct bnx2x *bp, u32 addr, const u32 *data, | 
|  | u32 len) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < len; i++) { | 
|  | REG_WR(bp, addr + i*4, data[i]); | 
|  | if (!(i % 10000)) { | 
|  | touch_softlockup_watchdog(); | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_ind_wr(struct bnx2x *bp, u32 addr, const u32 *data, | 
|  | u16 len) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < len; i++) { | 
|  | REG_WR_IND(bp, addr + i*4, data[i]); | 
|  | if (!(i % 10000)) { | 
|  | touch_softlockup_watchdog(); | 
|  | cpu_relax(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void bnx2x_write_big_buf(struct bnx2x *bp, u32 addr, u32 len) | 
|  | { | 
|  | #ifdef USE_DMAE | 
|  | int offset = 0; | 
|  |  | 
|  | if (bp->dmae_ready) { | 
|  | while (len > DMAE_LEN32_WR_MAX) { | 
|  | bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, | 
|  | addr + offset, DMAE_LEN32_WR_MAX); | 
|  | offset += DMAE_LEN32_WR_MAX * 4; | 
|  | len -= DMAE_LEN32_WR_MAX; | 
|  | } | 
|  | bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, | 
|  | addr + offset, len); | 
|  | } else | 
|  | bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len); | 
|  | #else | 
|  | bnx2x_init_str_wr(bp, addr, bp->gunzip_buf, len); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_fill(struct bnx2x *bp, u32 addr, int fill, u32 len) | 
|  | { | 
|  | if ((len * 4) > FW_BUF_SIZE) { | 
|  | BNX2X_ERR("LARGE DMAE OPERATION ! addr 0x%x  len 0x%x\n", | 
|  | addr, len*4); | 
|  | return; | 
|  | } | 
|  | memset(bp->gunzip_buf, fill, len * 4); | 
|  |  | 
|  | bnx2x_write_big_buf(bp, addr, len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_wr_64(struct bnx2x *bp, u32 addr, const u32 *data, | 
|  | u32 len64) | 
|  | { | 
|  | u32 buf_len32 = FW_BUF_SIZE/4; | 
|  | u32 len = len64*2; | 
|  | u64 data64 = 0; | 
|  | int i; | 
|  |  | 
|  | /* 64 bit value is in a blob: first low DWORD, then high DWORD */ | 
|  | data64 = HILO_U64((*(data + 1)), (*data)); | 
|  | len64 = min((u32)(FW_BUF_SIZE/8), len64); | 
|  | for (i = 0; i < len64; i++) { | 
|  | u64 *pdata = ((u64 *)(bp->gunzip_buf)) + i; | 
|  |  | 
|  | *pdata = data64; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < len; i += buf_len32) { | 
|  | u32 cur_len = min(buf_len32, len - i); | 
|  |  | 
|  | bnx2x_write_big_buf(bp, addr + i * 4, cur_len); | 
|  | } | 
|  | } | 
|  |  | 
|  | /********************************************************* | 
|  | There are different blobs for each PRAM section. | 
|  | In addition, each blob write operation is divided into a few operations | 
|  | in order to decrease the amount of phys. contiguous buffer needed. | 
|  | Thus, when we select a blob the address may be with some offset | 
|  | from the beginning of PRAM section. | 
|  | The same holds for the INT_TABLE sections. | 
|  | **********************************************************/ | 
|  | #define IF_IS_INT_TABLE_ADDR(base, addr) \ | 
|  | if (((base) <= (addr)) && ((base) + 0x400 >= (addr))) | 
|  |  | 
|  | #define IF_IS_PRAM_ADDR(base, addr) \ | 
|  | if (((base) <= (addr)) && ((base) + 0x40000 >= (addr))) | 
|  |  | 
|  | static const u32 *bnx2x_sel_blob(u32 addr, const u32 *data, int is_e1) | 
|  | { | 
|  | IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE, addr) | 
|  | data = is_e1 ? tsem_int_table_data_e1 : | 
|  | tsem_int_table_data_e1h; | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE, addr) | 
|  | data = is_e1 ? csem_int_table_data_e1 : | 
|  | csem_int_table_data_e1h; | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE, addr) | 
|  | data = is_e1 ? usem_int_table_data_e1 : | 
|  | usem_int_table_data_e1h; | 
|  | else | 
|  | IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE, addr) | 
|  | data = is_e1 ? xsem_int_table_data_e1 : | 
|  | xsem_int_table_data_e1h; | 
|  | else | 
|  | IF_IS_PRAM_ADDR(TSEM_REG_PRAM, addr) | 
|  | data = is_e1 ? tsem_pram_data_e1 : tsem_pram_data_e1h; | 
|  | else | 
|  | IF_IS_PRAM_ADDR(CSEM_REG_PRAM, addr) | 
|  | data = is_e1 ? csem_pram_data_e1 : csem_pram_data_e1h; | 
|  | else | 
|  | IF_IS_PRAM_ADDR(USEM_REG_PRAM, addr) | 
|  | data = is_e1 ? usem_pram_data_e1 : usem_pram_data_e1h; | 
|  | else | 
|  | IF_IS_PRAM_ADDR(XSEM_REG_PRAM, addr) | 
|  | data = is_e1 ? xsem_pram_data_e1 : xsem_pram_data_e1h; | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_wr_wb(struct bnx2x *bp, u32 addr, const u32 *data, | 
|  | u32 len, int gunzip, int is_e1, u32 blob_off) | 
|  | { | 
|  | int offset = 0; | 
|  |  | 
|  | data = bnx2x_sel_blob(addr, data, is_e1) + blob_off; | 
|  |  | 
|  | if (gunzip) { | 
|  | int rc; | 
|  | #ifdef __BIG_ENDIAN | 
|  | int i, size; | 
|  | u32 *temp; | 
|  |  | 
|  | temp = kmalloc(len, GFP_KERNEL); | 
|  | size = (len / 4) + ((len % 4) ? 1 : 0); | 
|  | for (i = 0; i < size; i++) | 
|  | temp[i] = swab32(data[i]); | 
|  | data = temp; | 
|  | #endif | 
|  | rc = bnx2x_gunzip(bp, (u8 *)data, len); | 
|  | if (rc) { | 
|  | BNX2X_ERR("gunzip failed ! rc %d\n", rc); | 
|  | return; | 
|  | } | 
|  | len = bp->gunzip_outlen; | 
|  | #ifdef __BIG_ENDIAN | 
|  | kfree(temp); | 
|  | for (i = 0; i < len; i++) | 
|  | ((u32 *)bp->gunzip_buf)[i] = | 
|  | swab32(((u32 *)bp->gunzip_buf)[i]); | 
|  | #endif | 
|  | } else { | 
|  | if ((len * 4) > FW_BUF_SIZE) { | 
|  | BNX2X_ERR("LARGE DMAE OPERATION ! " | 
|  | "addr 0x%x  len 0x%x\n", addr, len*4); | 
|  | return; | 
|  | } | 
|  | memcpy(bp->gunzip_buf, data, len * 4); | 
|  | } | 
|  |  | 
|  | if (bp->dmae_ready) { | 
|  | while (len > DMAE_LEN32_WR_MAX) { | 
|  | bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, | 
|  | addr + offset, DMAE_LEN32_WR_MAX); | 
|  | offset += DMAE_LEN32_WR_MAX * 4; | 
|  | len -= DMAE_LEN32_WR_MAX; | 
|  | } | 
|  | bnx2x_write_dmae(bp, bp->gunzip_mapping + offset, | 
|  | addr + offset, len); | 
|  | } else | 
|  | bnx2x_init_ind_wr(bp, addr, bp->gunzip_buf, len); | 
|  | } | 
|  |  | 
|  | static void bnx2x_init_block(struct bnx2x *bp, u32 op_start, u32 op_end) | 
|  | { | 
|  | int is_e1       = CHIP_IS_E1(bp); | 
|  | int is_e1h      = CHIP_IS_E1H(bp); | 
|  | int is_emul_e1h = (CHIP_REV_IS_EMUL(bp) && is_e1h); | 
|  | int hw_wr, i; | 
|  | union init_op *op; | 
|  | u32 op_type, addr, len; | 
|  | const u32 *data, *data_base; | 
|  |  | 
|  | if (CHIP_REV_IS_FPGA(bp)) | 
|  | hw_wr = OP_WR_FPGA; | 
|  | else if (CHIP_REV_IS_EMUL(bp)) | 
|  | hw_wr = OP_WR_EMUL; | 
|  | else | 
|  | hw_wr = OP_WR_ASIC; | 
|  |  | 
|  | if (is_e1) | 
|  | data_base = init_data_e1; | 
|  | else /* CHIP_IS_E1H(bp) */ | 
|  | data_base = init_data_e1h; | 
|  |  | 
|  | for (i = op_start; i < op_end; i++) { | 
|  |  | 
|  | op = (union init_op *)&(init_ops[i]); | 
|  |  | 
|  | op_type = op->str_wr.op; | 
|  | addr = op->str_wr.offset; | 
|  | len = op->str_wr.data_len; | 
|  | data = data_base + op->str_wr.data_off; | 
|  |  | 
|  | /* careful! it must be in order */ | 
|  | if (unlikely(op_type > OP_WB)) { | 
|  |  | 
|  | /* If E1 only */ | 
|  | if (op_type <= OP_WB_E1) { | 
|  | if (is_e1) | 
|  | op_type -= (OP_RD_E1 - OP_RD); | 
|  |  | 
|  | /* If E1H only */ | 
|  | } else if (op_type <= OP_WB_E1H) { | 
|  | if (is_e1h) | 
|  | op_type -= (OP_RD_E1H - OP_RD); | 
|  | } | 
|  |  | 
|  | /* HW/EMUL specific */ | 
|  | if (op_type == hw_wr) | 
|  | op_type = OP_WR; | 
|  |  | 
|  | /* EMUL on E1H is special */ | 
|  | if ((op_type == OP_WR_EMUL_E1H) && is_emul_e1h) | 
|  | op_type = OP_WR; | 
|  | } | 
|  |  | 
|  | switch (op_type) { | 
|  | case OP_RD: | 
|  | REG_RD(bp, addr); | 
|  | break; | 
|  | case OP_WR: | 
|  | REG_WR(bp, addr, op->write.val); | 
|  | break; | 
|  | case OP_SW: | 
|  | bnx2x_init_str_wr(bp, addr, data, len); | 
|  | break; | 
|  | case OP_WB: | 
|  | bnx2x_init_wr_wb(bp, addr, data, len, 0, is_e1, 0); | 
|  | break; | 
|  | case OP_SI: | 
|  | bnx2x_init_ind_wr(bp, addr, data, len); | 
|  | break; | 
|  | case OP_ZR: | 
|  | bnx2x_init_fill(bp, addr, 0, op->zero.len); | 
|  | break; | 
|  | case OP_ZP: | 
|  | bnx2x_init_wr_wb(bp, addr, data, len, 1, is_e1, | 
|  | op->str_wr.data_off); | 
|  | break; | 
|  | case OP_WR_64: | 
|  | bnx2x_init_wr_64(bp, addr, data, len); | 
|  | break; | 
|  | default: | 
|  | /* happens whenever an op is of a diff HW */ | 
|  | #if 0 | 
|  | DP(NETIF_MSG_HW, "skipping init operation  " | 
|  | "index %d[%d:%d]: type %d  addr 0x%x  " | 
|  | "len %d(0x%x)\n", | 
|  | i, op_start, op_end, op_type, addr, len, len); | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /**************************************************************************** | 
|  | * PXP | 
|  | ****************************************************************************/ | 
|  | /* | 
|  | * This code configures the PCI read/write arbiter | 
|  | * which implements a weighted round robin | 
|  | * between the virtual queues in the chip. | 
|  | * | 
|  | * The values were derived for each PCI max payload and max request size. | 
|  | * since max payload and max request size are only known at run time, | 
|  | * this is done as a separate init stage. | 
|  | */ | 
|  |  | 
|  | #define NUM_WR_Q			13 | 
|  | #define NUM_RD_Q			29 | 
|  | #define MAX_RD_ORD			3 | 
|  | #define MAX_WR_ORD			2 | 
|  |  | 
|  | /* configuration for one arbiter queue */ | 
|  | struct arb_line { | 
|  | int l; | 
|  | int add; | 
|  | int ubound; | 
|  | }; | 
|  |  | 
|  | /* derived configuration for each read queue for each max request size */ | 
|  | static const struct arb_line read_arb_data[NUM_RD_Q][MAX_RD_ORD + 1] = { | 
|  | {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} }, | 
|  | {{4 , 8 , 4},   {4 , 8 , 4},    {4 , 8 , 4},    {4 , 8 , 4} }, | 
|  | {{4 , 3 , 3},   {4 , 3 , 3},    {4 , 3 , 3},    {4 , 3 , 3} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {16 , 3 , 11},  {16 , 3 , 11} }, | 
|  | {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25}, {64 , 64 , 41} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {64 , 3 , 41} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 3 , 6},   {16 , 3 , 11},  {32 , 3 , 21},  {32 , 3 , 21} }, | 
|  | {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81}, {64 , 64 , 120} } | 
|  | }; | 
|  |  | 
|  | /* derived configuration for each write queue for each max request size */ | 
|  | static const struct arb_line write_arb_data[NUM_WR_Q][MAX_WR_ORD + 1] = { | 
|  | {{4 , 6 , 3},   {4 , 6 , 3},    {4 , 6 , 3} }, | 
|  | {{4 , 2 , 3},   {4 , 2 , 3},    {4 , 2 , 3} }, | 
|  | {{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} }, | 
|  | {{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} }, | 
|  | {{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} }, | 
|  | {{8 , 2 , 6},   {16 , 2 , 11},  {32 , 2 , 21} }, | 
|  | {{8 , 64 , 25}, {16 , 64 , 25}, {32 , 64 , 25} }, | 
|  | {{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} }, | 
|  | {{8 , 2 , 6},   {16 , 2 , 11},  {16 , 2 , 11} }, | 
|  | {{8 , 9 , 6},   {16 , 9 , 11},  {32 , 9 , 21} }, | 
|  | {{8 , 47 , 19}, {16 , 47 , 19}, {32 , 47 , 21} }, | 
|  | {{8 , 9 , 6},   {16 , 9 , 11},  {16 , 9 , 11} }, | 
|  | {{8 , 64 , 25}, {16 , 64 , 41}, {32 , 64 , 81} } | 
|  | }; | 
|  |  | 
|  | /* register addresses for read queues */ | 
|  | static const struct arb_line read_arb_addr[NUM_RD_Q-1] = { | 
|  | {PXP2_REG_RQ_BW_RD_L0, PXP2_REG_RQ_BW_RD_ADD0, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND0}, | 
|  | {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, | 
|  | PXP2_REG_PSWRQ_BW_UB1}, | 
|  | {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, | 
|  | PXP2_REG_PSWRQ_BW_UB2}, | 
|  | {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, | 
|  | PXP2_REG_PSWRQ_BW_UB3}, | 
|  | {PXP2_REG_RQ_BW_RD_L4, PXP2_REG_RQ_BW_RD_ADD4, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND4}, | 
|  | {PXP2_REG_RQ_BW_RD_L5, PXP2_REG_RQ_BW_RD_ADD5, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND5}, | 
|  | {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, | 
|  | PXP2_REG_PSWRQ_BW_UB6}, | 
|  | {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, | 
|  | PXP2_REG_PSWRQ_BW_UB7}, | 
|  | {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, | 
|  | PXP2_REG_PSWRQ_BW_UB8}, | 
|  | {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, | 
|  | PXP2_REG_PSWRQ_BW_UB9}, | 
|  | {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, | 
|  | PXP2_REG_PSWRQ_BW_UB10}, | 
|  | {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, | 
|  | PXP2_REG_PSWRQ_BW_UB11}, | 
|  | {PXP2_REG_RQ_BW_RD_L12, PXP2_REG_RQ_BW_RD_ADD12, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND12}, | 
|  | {PXP2_REG_RQ_BW_RD_L13, PXP2_REG_RQ_BW_RD_ADD13, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND13}, | 
|  | {PXP2_REG_RQ_BW_RD_L14, PXP2_REG_RQ_BW_RD_ADD14, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND14}, | 
|  | {PXP2_REG_RQ_BW_RD_L15, PXP2_REG_RQ_BW_RD_ADD15, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND15}, | 
|  | {PXP2_REG_RQ_BW_RD_L16, PXP2_REG_RQ_BW_RD_ADD16, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND16}, | 
|  | {PXP2_REG_RQ_BW_RD_L17, PXP2_REG_RQ_BW_RD_ADD17, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND17}, | 
|  | {PXP2_REG_RQ_BW_RD_L18, PXP2_REG_RQ_BW_RD_ADD18, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND18}, | 
|  | {PXP2_REG_RQ_BW_RD_L19, PXP2_REG_RQ_BW_RD_ADD19, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND19}, | 
|  | {PXP2_REG_RQ_BW_RD_L20, PXP2_REG_RQ_BW_RD_ADD20, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND20}, | 
|  | {PXP2_REG_RQ_BW_RD_L22, PXP2_REG_RQ_BW_RD_ADD22, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND22}, | 
|  | {PXP2_REG_RQ_BW_RD_L23, PXP2_REG_RQ_BW_RD_ADD23, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND23}, | 
|  | {PXP2_REG_RQ_BW_RD_L24, PXP2_REG_RQ_BW_RD_ADD24, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND24}, | 
|  | {PXP2_REG_RQ_BW_RD_L25, PXP2_REG_RQ_BW_RD_ADD25, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND25}, | 
|  | {PXP2_REG_RQ_BW_RD_L26, PXP2_REG_RQ_BW_RD_ADD26, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND26}, | 
|  | {PXP2_REG_RQ_BW_RD_L27, PXP2_REG_RQ_BW_RD_ADD27, | 
|  | PXP2_REG_RQ_BW_RD_UBOUND27}, | 
|  | {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, | 
|  | PXP2_REG_PSWRQ_BW_UB28} | 
|  | }; | 
|  |  | 
|  | /* register addresses for write queues */ | 
|  | static const struct arb_line write_arb_addr[NUM_WR_Q-1] = { | 
|  | {PXP2_REG_PSWRQ_BW_L1, PXP2_REG_PSWRQ_BW_ADD1, | 
|  | PXP2_REG_PSWRQ_BW_UB1}, | 
|  | {PXP2_REG_PSWRQ_BW_L2, PXP2_REG_PSWRQ_BW_ADD2, | 
|  | PXP2_REG_PSWRQ_BW_UB2}, | 
|  | {PXP2_REG_PSWRQ_BW_L3, PXP2_REG_PSWRQ_BW_ADD3, | 
|  | PXP2_REG_PSWRQ_BW_UB3}, | 
|  | {PXP2_REG_PSWRQ_BW_L6, PXP2_REG_PSWRQ_BW_ADD6, | 
|  | PXP2_REG_PSWRQ_BW_UB6}, | 
|  | {PXP2_REG_PSWRQ_BW_L7, PXP2_REG_PSWRQ_BW_ADD7, | 
|  | PXP2_REG_PSWRQ_BW_UB7}, | 
|  | {PXP2_REG_PSWRQ_BW_L8, PXP2_REG_PSWRQ_BW_ADD8, | 
|  | PXP2_REG_PSWRQ_BW_UB8}, | 
|  | {PXP2_REG_PSWRQ_BW_L9, PXP2_REG_PSWRQ_BW_ADD9, | 
|  | PXP2_REG_PSWRQ_BW_UB9}, | 
|  | {PXP2_REG_PSWRQ_BW_L10, PXP2_REG_PSWRQ_BW_ADD10, | 
|  | PXP2_REG_PSWRQ_BW_UB10}, | 
|  | {PXP2_REG_PSWRQ_BW_L11, PXP2_REG_PSWRQ_BW_ADD11, | 
|  | PXP2_REG_PSWRQ_BW_UB11}, | 
|  | {PXP2_REG_PSWRQ_BW_L28, PXP2_REG_PSWRQ_BW_ADD28, | 
|  | PXP2_REG_PSWRQ_BW_UB28}, | 
|  | {PXP2_REG_RQ_BW_WR_L29, PXP2_REG_RQ_BW_WR_ADD29, | 
|  | PXP2_REG_RQ_BW_WR_UBOUND29}, | 
|  | {PXP2_REG_RQ_BW_WR_L30, PXP2_REG_RQ_BW_WR_ADD30, | 
|  | PXP2_REG_RQ_BW_WR_UBOUND30} | 
|  | }; | 
|  |  | 
|  | static void bnx2x_init_pxp(struct bnx2x *bp) | 
|  | { | 
|  | int r_order, w_order; | 
|  | u32 val, i; | 
|  |  | 
|  | pci_read_config_word(bp->pdev, | 
|  | bp->pcie_cap + PCI_EXP_DEVCTL, (u16 *)&val); | 
|  | DP(NETIF_MSG_HW, "read 0x%x from devctl\n", (u16)val); | 
|  | w_order = ((val & PCI_EXP_DEVCTL_PAYLOAD) >> 5); | 
|  | r_order = ((val & PCI_EXP_DEVCTL_READRQ) >> 12); | 
|  |  | 
|  | if (r_order > MAX_RD_ORD) { | 
|  | DP(NETIF_MSG_HW, "read order of %d  order adjusted to %d\n", | 
|  | r_order, MAX_RD_ORD); | 
|  | r_order = MAX_RD_ORD; | 
|  | } | 
|  | if (w_order > MAX_WR_ORD) { | 
|  | DP(NETIF_MSG_HW, "write order of %d  order adjusted to %d\n", | 
|  | w_order, MAX_WR_ORD); | 
|  | w_order = MAX_WR_ORD; | 
|  | } | 
|  | if (CHIP_REV_IS_FPGA(bp)) { | 
|  | DP(NETIF_MSG_HW, "write order adjusted to 1 for FPGA\n"); | 
|  | w_order = 0; | 
|  | } | 
|  | DP(NETIF_MSG_HW, "read order %d  write order %d\n", r_order, w_order); | 
|  |  | 
|  | for (i = 0; i < NUM_RD_Q-1; i++) { | 
|  | REG_WR(bp, read_arb_addr[i].l, read_arb_data[i][r_order].l); | 
|  | REG_WR(bp, read_arb_addr[i].add, | 
|  | read_arb_data[i][r_order].add); | 
|  | REG_WR(bp, read_arb_addr[i].ubound, | 
|  | read_arb_data[i][r_order].ubound); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NUM_WR_Q-1; i++) { | 
|  | if ((write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L29) || | 
|  | (write_arb_addr[i].l == PXP2_REG_RQ_BW_WR_L30)) { | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].l, | 
|  | write_arb_data[i][w_order].l); | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].add, | 
|  | write_arb_data[i][w_order].add); | 
|  |  | 
|  | REG_WR(bp, write_arb_addr[i].ubound, | 
|  | write_arb_data[i][w_order].ubound); | 
|  | } else { | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].l); | 
|  | REG_WR(bp, write_arb_addr[i].l, | 
|  | val | (write_arb_data[i][w_order].l << 10)); | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].add); | 
|  | REG_WR(bp, write_arb_addr[i].add, | 
|  | val | (write_arb_data[i][w_order].add << 10)); | 
|  |  | 
|  | val = REG_RD(bp, write_arb_addr[i].ubound); | 
|  | REG_WR(bp, write_arb_addr[i].ubound, | 
|  | val | (write_arb_data[i][w_order].ubound << 7)); | 
|  | } | 
|  | } | 
|  |  | 
|  | val =  write_arb_data[NUM_WR_Q-1][w_order].add; | 
|  | val += write_arb_data[NUM_WR_Q-1][w_order].ubound << 10; | 
|  | val += write_arb_data[NUM_WR_Q-1][w_order].l << 17; | 
|  | REG_WR(bp, PXP2_REG_PSWRQ_BW_RD, val); | 
|  |  | 
|  | val =  read_arb_data[NUM_RD_Q-1][r_order].add; | 
|  | val += read_arb_data[NUM_RD_Q-1][r_order].ubound << 10; | 
|  | val += read_arb_data[NUM_RD_Q-1][r_order].l << 17; | 
|  | REG_WR(bp, PXP2_REG_PSWRQ_BW_WR, val); | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_RQ_WR_MBS0, w_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_WR_MBS1, w_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_RD_MBS0, r_order); | 
|  | REG_WR(bp, PXP2_REG_RQ_RD_MBS1, r_order); | 
|  |  | 
|  | if (r_order == MAX_RD_ORD) | 
|  | REG_WR(bp, PXP2_REG_RQ_PDR_LIMIT, 0xe00); | 
|  |  | 
|  | REG_WR(bp, PXP2_REG_WR_USDMDP_TH, (0x18 << w_order)); | 
|  |  | 
|  | if (CHIP_IS_E1H(bp)) { | 
|  | REG_WR(bp, PXP2_REG_WR_HC_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_USDM_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_CSDM_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_TSDM_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_XSDM_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_QM_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_TM_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_SRC_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_DBG_MPS, w_order+1); | 
|  | REG_WR(bp, PXP2_REG_WR_DMAE_MPS, 2); /* DMAE is special */ | 
|  | REG_WR(bp, PXP2_REG_WR_CDU_MPS, w_order+1); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /**************************************************************************** | 
|  | * CDU | 
|  | ****************************************************************************/ | 
|  |  | 
|  | #define CDU_REGION_NUMBER_XCM_AG	2 | 
|  | #define CDU_REGION_NUMBER_UCM_AG	4 | 
|  |  | 
|  | /** | 
|  | * String-to-compress [31:8] = CID (all 24 bits) | 
|  | * String-to-compress [7:4] = Region | 
|  | * String-to-compress [3:0] = Type | 
|  | */ | 
|  | #define CDU_VALID_DATA(_cid, _region, _type) \ | 
|  | (((_cid) << 8) | (((_region) & 0xf) << 4) | (((_type) & 0xf))) | 
|  | #define CDU_CRC8(_cid, _region, _type) \ | 
|  | calc_crc8(CDU_VALID_DATA(_cid, _region, _type), 0xff) | 
|  | #define CDU_RSRVD_VALUE_TYPE_A(_cid, _region, _type) \ | 
|  | (0x80 | (CDU_CRC8(_cid, _region, _type) & 0x7f)) | 
|  | #define CDU_RSRVD_VALUE_TYPE_B(_crc, _type) \ | 
|  | (0x80 | ((_type) & 0xf << 3) | (CDU_CRC8(_cid, _region, _type) & 0x7)) | 
|  | #define CDU_RSRVD_INVALIDATE_CONTEXT_VALUE(_val)	((_val) & ~0x80) | 
|  |  | 
|  | /***************************************************************************** | 
|  | * Description: | 
|  | *         Calculates crc 8 on a word value: polynomial 0-1-2-8 | 
|  | *         Code was translated from Verilog. | 
|  | ****************************************************************************/ | 
|  | static u8 calc_crc8(u32 data, u8 crc) | 
|  | { | 
|  | u8 D[32]; | 
|  | u8 NewCRC[8]; | 
|  | u8 C[8]; | 
|  | u8 crc_res; | 
|  | u8 i; | 
|  |  | 
|  | /* split the data into 31 bits */ | 
|  | for (i = 0; i < 32; i++) { | 
|  | D[i] = data & 1; | 
|  | data = data >> 1; | 
|  | } | 
|  |  | 
|  | /* split the crc into 8 bits */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | C[i] = crc & 1; | 
|  | crc = crc >> 1; | 
|  | } | 
|  |  | 
|  | NewCRC[0] = D[31] ^ D[30] ^ D[28] ^ D[23] ^ D[21] ^ D[19] ^ D[18] ^ | 
|  | D[16] ^ D[14] ^ D[12] ^ D[8] ^ D[7] ^ D[6] ^ D[0] ^ C[4] ^ | 
|  | C[6] ^ C[7]; | 
|  | NewCRC[1] = D[30] ^ D[29] ^ D[28] ^ D[24] ^ D[23] ^ D[22] ^ D[21] ^ | 
|  | D[20] ^ D[18] ^ D[17] ^ D[16] ^ D[15] ^ D[14] ^ D[13] ^ | 
|  | D[12] ^ D[9] ^ D[6] ^ D[1] ^ D[0] ^ C[0] ^ C[4] ^ C[5] ^ C[6]; | 
|  | NewCRC[2] = D[29] ^ D[28] ^ D[25] ^ D[24] ^ D[22] ^ D[17] ^ D[15] ^ | 
|  | D[13] ^ D[12] ^ D[10] ^ D[8] ^ D[6] ^ D[2] ^ D[1] ^ D[0] ^ | 
|  | C[0] ^ C[1] ^ C[4] ^ C[5]; | 
|  | NewCRC[3] = D[30] ^ D[29] ^ D[26] ^ D[25] ^ D[23] ^ D[18] ^ D[16] ^ | 
|  | D[14] ^ D[13] ^ D[11] ^ D[9] ^ D[7] ^ D[3] ^ D[2] ^ D[1] ^ | 
|  | C[1] ^ C[2] ^ C[5] ^ C[6]; | 
|  | NewCRC[4] = D[31] ^ D[30] ^ D[27] ^ D[26] ^ D[24] ^ D[19] ^ D[17] ^ | 
|  | D[15] ^ D[14] ^ D[12] ^ D[10] ^ D[8] ^ D[4] ^ D[3] ^ D[2] ^ | 
|  | C[0] ^ C[2] ^ C[3] ^ C[6] ^ C[7]; | 
|  | NewCRC[5] = D[31] ^ D[28] ^ D[27] ^ D[25] ^ D[20] ^ D[18] ^ D[16] ^ | 
|  | D[15] ^ D[13] ^ D[11] ^ D[9] ^ D[5] ^ D[4] ^ D[3] ^ C[1] ^ | 
|  | C[3] ^ C[4] ^ C[7]; | 
|  | NewCRC[6] = D[29] ^ D[28] ^ D[26] ^ D[21] ^ D[19] ^ D[17] ^ D[16] ^ | 
|  | D[14] ^ D[12] ^ D[10] ^ D[6] ^ D[5] ^ D[4] ^ C[2] ^ C[4] ^ | 
|  | C[5]; | 
|  | NewCRC[7] = D[30] ^ D[29] ^ D[27] ^ D[22] ^ D[20] ^ D[18] ^ D[17] ^ | 
|  | D[15] ^ D[13] ^ D[11] ^ D[7] ^ D[6] ^ D[5] ^ C[3] ^ C[5] ^ | 
|  | C[6]; | 
|  |  | 
|  | crc_res = 0; | 
|  | for (i = 0; i < 8; i++) | 
|  | crc_res |= (NewCRC[i] << i); | 
|  |  | 
|  | return crc_res; | 
|  | } | 
|  |  | 
|  | /* registers addresses are not in order | 
|  | so these arrays help simplify the code */ | 
|  | static const int cm_start[E1H_FUNC_MAX][9] = { | 
|  | {MISC_FUNC0_START, TCM_FUNC0_START, UCM_FUNC0_START, CCM_FUNC0_START, | 
|  | XCM_FUNC0_START, TSEM_FUNC0_START, USEM_FUNC0_START, CSEM_FUNC0_START, | 
|  | XSEM_FUNC0_START}, | 
|  | {MISC_FUNC1_START, TCM_FUNC1_START, UCM_FUNC1_START, CCM_FUNC1_START, | 
|  | XCM_FUNC1_START, TSEM_FUNC1_START, USEM_FUNC1_START, CSEM_FUNC1_START, | 
|  | XSEM_FUNC1_START}, | 
|  | {MISC_FUNC2_START, TCM_FUNC2_START, UCM_FUNC2_START, CCM_FUNC2_START, | 
|  | XCM_FUNC2_START, TSEM_FUNC2_START, USEM_FUNC2_START, CSEM_FUNC2_START, | 
|  | XSEM_FUNC2_START}, | 
|  | {MISC_FUNC3_START, TCM_FUNC3_START, UCM_FUNC3_START, CCM_FUNC3_START, | 
|  | XCM_FUNC3_START, TSEM_FUNC3_START, USEM_FUNC3_START, CSEM_FUNC3_START, | 
|  | XSEM_FUNC3_START}, | 
|  | {MISC_FUNC4_START, TCM_FUNC4_START, UCM_FUNC4_START, CCM_FUNC4_START, | 
|  | XCM_FUNC4_START, TSEM_FUNC4_START, USEM_FUNC4_START, CSEM_FUNC4_START, | 
|  | XSEM_FUNC4_START}, | 
|  | {MISC_FUNC5_START, TCM_FUNC5_START, UCM_FUNC5_START, CCM_FUNC5_START, | 
|  | XCM_FUNC5_START, TSEM_FUNC5_START, USEM_FUNC5_START, CSEM_FUNC5_START, | 
|  | XSEM_FUNC5_START}, | 
|  | {MISC_FUNC6_START, TCM_FUNC6_START, UCM_FUNC6_START, CCM_FUNC6_START, | 
|  | XCM_FUNC6_START, TSEM_FUNC6_START, USEM_FUNC6_START, CSEM_FUNC6_START, | 
|  | XSEM_FUNC6_START}, | 
|  | {MISC_FUNC7_START, TCM_FUNC7_START, UCM_FUNC7_START, CCM_FUNC7_START, | 
|  | XCM_FUNC7_START, TSEM_FUNC7_START, USEM_FUNC7_START, CSEM_FUNC7_START, | 
|  | XSEM_FUNC7_START} | 
|  | }; | 
|  |  | 
|  | static const int cm_end[E1H_FUNC_MAX][9] = { | 
|  | {MISC_FUNC0_END, TCM_FUNC0_END, UCM_FUNC0_END, CCM_FUNC0_END, | 
|  | XCM_FUNC0_END, TSEM_FUNC0_END, USEM_FUNC0_END, CSEM_FUNC0_END, | 
|  | XSEM_FUNC0_END}, | 
|  | {MISC_FUNC1_END, TCM_FUNC1_END, UCM_FUNC1_END, CCM_FUNC1_END, | 
|  | XCM_FUNC1_END, TSEM_FUNC1_END, USEM_FUNC1_END, CSEM_FUNC1_END, | 
|  | XSEM_FUNC1_END}, | 
|  | {MISC_FUNC2_END, TCM_FUNC2_END, UCM_FUNC2_END, CCM_FUNC2_END, | 
|  | XCM_FUNC2_END, TSEM_FUNC2_END, USEM_FUNC2_END, CSEM_FUNC2_END, | 
|  | XSEM_FUNC2_END}, | 
|  | {MISC_FUNC3_END, TCM_FUNC3_END, UCM_FUNC3_END, CCM_FUNC3_END, | 
|  | XCM_FUNC3_END, TSEM_FUNC3_END, USEM_FUNC3_END, CSEM_FUNC3_END, | 
|  | XSEM_FUNC3_END}, | 
|  | {MISC_FUNC4_END, TCM_FUNC4_END, UCM_FUNC4_END, CCM_FUNC4_END, | 
|  | XCM_FUNC4_END, TSEM_FUNC4_END, USEM_FUNC4_END, CSEM_FUNC4_END, | 
|  | XSEM_FUNC4_END}, | 
|  | {MISC_FUNC5_END, TCM_FUNC5_END, UCM_FUNC5_END, CCM_FUNC5_END, | 
|  | XCM_FUNC5_END, TSEM_FUNC5_END, USEM_FUNC5_END, CSEM_FUNC5_END, | 
|  | XSEM_FUNC5_END}, | 
|  | {MISC_FUNC6_END, TCM_FUNC6_END, UCM_FUNC6_END, CCM_FUNC6_END, | 
|  | XCM_FUNC6_END, TSEM_FUNC6_END, USEM_FUNC6_END, CSEM_FUNC6_END, | 
|  | XSEM_FUNC6_END}, | 
|  | {MISC_FUNC7_END, TCM_FUNC7_END, UCM_FUNC7_END, CCM_FUNC7_END, | 
|  | XCM_FUNC7_END, TSEM_FUNC7_END, USEM_FUNC7_END, CSEM_FUNC7_END, | 
|  | XSEM_FUNC7_END}, | 
|  | }; | 
|  |  | 
|  | static const int hc_limits[E1H_FUNC_MAX][2] = { | 
|  | {HC_FUNC0_START, HC_FUNC0_END}, | 
|  | {HC_FUNC1_START, HC_FUNC1_END}, | 
|  | {HC_FUNC2_START, HC_FUNC2_END}, | 
|  | {HC_FUNC3_START, HC_FUNC3_END}, | 
|  | {HC_FUNC4_START, HC_FUNC4_END}, | 
|  | {HC_FUNC5_START, HC_FUNC5_END}, | 
|  | {HC_FUNC6_START, HC_FUNC6_END}, | 
|  | {HC_FUNC7_START, HC_FUNC7_END} | 
|  | }; | 
|  |  | 
|  | #endif /* BNX2X_INIT_H */ | 
|  |  |