| /* | 
 |  * balloc.c | 
 |  * | 
 |  * PURPOSE | 
 |  *	Block allocation handling routines for the OSTA-UDF(tm) filesystem. | 
 |  * | 
 |  * CONTACTS | 
 |  *	E-mail regarding any portion of the Linux UDF file system should be | 
 |  *	directed to the development team mailing list (run by majordomo): | 
 |  *		linux_udf@hpesjro.fc.hp.com | 
 |  * | 
 |  * COPYRIGHT | 
 |  *	This file is distributed under the terms of the GNU General Public | 
 |  *	License (GPL). Copies of the GPL can be obtained from: | 
 |  *		ftp://prep.ai.mit.edu/pub/gnu/GPL | 
 |  *	Each contributing author retains all rights to their own work. | 
 |  * | 
 |  *  (C) 1999-2001 Ben Fennema | 
 |  *  (C) 1999 Stelias Computing Inc | 
 |  * | 
 |  * HISTORY | 
 |  * | 
 |  *  02/24/99 blf  Created. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "udfdecl.h" | 
 |  | 
 | #include <linux/quotaops.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/bitops.h> | 
 |  | 
 | #include "udf_i.h" | 
 | #include "udf_sb.h" | 
 |  | 
 | #define udf_clear_bit(nr,addr) ext2_clear_bit(nr,addr) | 
 | #define udf_set_bit(nr,addr) ext2_set_bit(nr,addr) | 
 | #define udf_test_bit(nr, addr) ext2_test_bit(nr, addr) | 
 | #define udf_find_first_one_bit(addr, size) find_first_one_bit(addr, size) | 
 | #define udf_find_next_one_bit(addr, size, offset) find_next_one_bit(addr, size, offset) | 
 |  | 
 | #define leBPL_to_cpup(x) leNUM_to_cpup(BITS_PER_LONG, x) | 
 | #define leNUM_to_cpup(x,y) xleNUM_to_cpup(x,y) | 
 | #define xleNUM_to_cpup(x,y) (le ## x ## _to_cpup(y)) | 
 | #define uintBPL_t uint(BITS_PER_LONG) | 
 | #define uint(x) xuint(x) | 
 | #define xuint(x) __le ## x | 
 |  | 
 | extern inline int find_next_one_bit (void * addr, int size, int offset) | 
 | { | 
 | 	uintBPL_t * p = ((uintBPL_t *) addr) + (offset / BITS_PER_LONG); | 
 | 	int result = offset & ~(BITS_PER_LONG-1); | 
 | 	unsigned long tmp; | 
 |  | 
 | 	if (offset >= size) | 
 | 		return size; | 
 | 	size -= result; | 
 | 	offset &= (BITS_PER_LONG-1); | 
 | 	if (offset) | 
 | 	{ | 
 | 		tmp = leBPL_to_cpup(p++); | 
 | 		tmp &= ~0UL << offset; | 
 | 		if (size < BITS_PER_LONG) | 
 | 			goto found_first; | 
 | 		if (tmp) | 
 | 			goto found_middle; | 
 | 		size -= BITS_PER_LONG; | 
 | 		result += BITS_PER_LONG; | 
 | 	} | 
 | 	while (size & ~(BITS_PER_LONG-1)) | 
 | 	{ | 
 | 		if ((tmp = leBPL_to_cpup(p++))) | 
 | 			goto found_middle; | 
 | 		result += BITS_PER_LONG; | 
 | 		size -= BITS_PER_LONG; | 
 | 	} | 
 | 	if (!size) | 
 | 		return result; | 
 | 	tmp = leBPL_to_cpup(p); | 
 | found_first: | 
 | 	tmp &= ~0UL >> (BITS_PER_LONG-size); | 
 | found_middle: | 
 | 	return result + ffz(~tmp); | 
 | } | 
 |  | 
 | #define find_first_one_bit(addr, size)\ | 
 | 	find_next_one_bit((addr), (size), 0) | 
 |  | 
 | static int read_block_bitmap(struct super_block * sb, | 
 | 	struct udf_bitmap *bitmap, unsigned int block, unsigned long bitmap_nr) | 
 | { | 
 | 	struct buffer_head *bh = NULL; | 
 | 	int retval = 0; | 
 | 	kernel_lb_addr loc; | 
 |  | 
 | 	loc.logicalBlockNum = bitmap->s_extPosition; | 
 | 	loc.partitionReferenceNum = UDF_SB_PARTITION(sb); | 
 |  | 
 | 	bh = udf_tread(sb, udf_get_lb_pblock(sb, loc, block)); | 
 | 	if (!bh) | 
 | 	{ | 
 | 		retval = -EIO; | 
 | 	} | 
 | 	bitmap->s_block_bitmap[bitmap_nr] = bh; | 
 | 	return retval; | 
 | } | 
 |  | 
 | static int __load_block_bitmap(struct super_block * sb, | 
 | 	struct udf_bitmap *bitmap, unsigned int block_group) | 
 | { | 
 | 	int retval = 0; | 
 | 	int nr_groups = bitmap->s_nr_groups; | 
 |  | 
 | 	if (block_group >= nr_groups) | 
 | 	{ | 
 | 		udf_debug("block_group (%d) > nr_groups (%d)\n", block_group, nr_groups); | 
 | 	} | 
 |  | 
 | 	if (bitmap->s_block_bitmap[block_group]) | 
 | 		return block_group; | 
 | 	else | 
 | 	{ | 
 | 		retval = read_block_bitmap(sb, bitmap, block_group, block_group); | 
 | 		if (retval < 0) | 
 | 			return retval; | 
 | 		return block_group; | 
 | 	} | 
 | } | 
 |  | 
 | static inline int load_block_bitmap(struct super_block * sb, | 
 | 	struct udf_bitmap *bitmap, unsigned int block_group) | 
 | { | 
 | 	int slot; | 
 |  | 
 | 	slot = __load_block_bitmap(sb, bitmap, block_group); | 
 |  | 
 | 	if (slot < 0) | 
 | 		return slot; | 
 |  | 
 | 	if (!bitmap->s_block_bitmap[slot]) | 
 | 		return -EIO; | 
 |  | 
 | 	return slot; | 
 | } | 
 |  | 
 | static void udf_bitmap_free_blocks(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	struct udf_bitmap *bitmap, | 
 | 	kernel_lb_addr bloc, uint32_t offset, uint32_t count) | 
 | { | 
 | 	struct udf_sb_info *sbi = UDF_SB(sb); | 
 | 	struct buffer_head * bh = NULL; | 
 | 	unsigned long block; | 
 | 	unsigned long block_group; | 
 | 	unsigned long bit; | 
 | 	unsigned long i; | 
 | 	int bitmap_nr; | 
 | 	unsigned long overflow; | 
 |  | 
 | 	down(&sbi->s_alloc_sem); | 
 | 	if (bloc.logicalBlockNum < 0 || | 
 | 		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) | 
 | 	{ | 
 | 		udf_debug("%d < %d || %d + %d > %d\n", | 
 | 			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, | 
 | 			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); | 
 | 		goto error_return; | 
 | 	} | 
 |  | 
 | 	block = bloc.logicalBlockNum + offset + (sizeof(struct spaceBitmapDesc) << 3); | 
 |  | 
 | do_more: | 
 | 	overflow = 0; | 
 | 	block_group = block >> (sb->s_blocksize_bits + 3); | 
 | 	bit = block % (sb->s_blocksize << 3); | 
 |  | 
 | 	/* | 
 | 	 * Check to see if we are freeing blocks across a group boundary. | 
 | 	 */ | 
 | 	if (bit + count > (sb->s_blocksize << 3)) | 
 | 	{ | 
 | 		overflow = bit + count - (sb->s_blocksize << 3); | 
 | 		count -= overflow; | 
 | 	} | 
 | 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | 
 | 	if (bitmap_nr < 0) | 
 | 		goto error_return; | 
 |  | 
 | 	bh = bitmap->s_block_bitmap[bitmap_nr]; | 
 | 	for (i=0; i < count; i++) | 
 | 	{ | 
 | 		if (udf_set_bit(bit + i, bh->b_data)) | 
 | 		{ | 
 | 			udf_debug("bit %ld already set\n", bit + i); | 
 | 			udf_debug("byte=%2x\n", ((char *)bh->b_data)[(bit + i) >> 3]); | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			if (inode) | 
 | 				DQUOT_FREE_BLOCK(inode, 1); | 
 | 			if (UDF_SB_LVIDBH(sb)) | 
 | 			{ | 
 | 				UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = | 
 | 					cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+1); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	mark_buffer_dirty(bh); | 
 | 	if (overflow) | 
 | 	{ | 
 | 		block += count; | 
 | 		count = overflow; | 
 | 		goto do_more; | 
 | 	} | 
 | error_return: | 
 | 	sb->s_dirt = 1; | 
 | 	if (UDF_SB_LVIDBH(sb)) | 
 | 		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
 | 	up(&sbi->s_alloc_sem); | 
 | 	return; | 
 | } | 
 |  | 
 | static int udf_bitmap_prealloc_blocks(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	struct udf_bitmap *bitmap, uint16_t partition, uint32_t first_block, | 
 | 	uint32_t block_count) | 
 | { | 
 | 	struct udf_sb_info *sbi = UDF_SB(sb); | 
 | 	int alloc_count = 0; | 
 | 	int bit, block, block_group, group_start; | 
 | 	int nr_groups, bitmap_nr; | 
 | 	struct buffer_head *bh; | 
 |  | 
 | 	down(&sbi->s_alloc_sem); | 
 | 	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) | 
 | 		goto out; | 
 |  | 
 | 	if (first_block + block_count > UDF_SB_PARTLEN(sb, partition)) | 
 | 		block_count = UDF_SB_PARTLEN(sb, partition) - first_block; | 
 |  | 
 | repeat: | 
 | 	nr_groups = (UDF_SB_PARTLEN(sb, partition) + | 
 | 		(sizeof(struct spaceBitmapDesc) << 3) + (sb->s_blocksize * 8) - 1) / (sb->s_blocksize * 8); | 
 | 	block = first_block + (sizeof(struct spaceBitmapDesc) << 3); | 
 | 	block_group = block >> (sb->s_blocksize_bits + 3); | 
 | 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | 
 |  | 
 | 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | 
 | 	if (bitmap_nr < 0) | 
 | 		goto out; | 
 | 	bh = bitmap->s_block_bitmap[bitmap_nr]; | 
 |  | 
 | 	bit = block % (sb->s_blocksize << 3); | 
 |  | 
 | 	while (bit < (sb->s_blocksize << 3) && block_count > 0) | 
 | 	{ | 
 | 		if (!udf_test_bit(bit, bh->b_data)) | 
 | 			goto out; | 
 | 		else if (DQUOT_PREALLOC_BLOCK(inode, 1)) | 
 | 			goto out; | 
 | 		else if (!udf_clear_bit(bit, bh->b_data)) | 
 | 		{ | 
 | 			udf_debug("bit already cleared for block %d\n", bit); | 
 | 			DQUOT_FREE_BLOCK(inode, 1); | 
 | 			goto out; | 
 | 		} | 
 | 		block_count --; | 
 | 		alloc_count ++; | 
 | 		bit ++; | 
 | 		block ++; | 
 | 	} | 
 | 	mark_buffer_dirty(bh); | 
 | 	if (block_count > 0) | 
 | 		goto repeat; | 
 | out: | 
 | 	if (UDF_SB_LVIDBH(sb)) | 
 | 	{ | 
 | 		UDF_SB_LVID(sb)->freeSpaceTable[partition] = | 
 | 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); | 
 | 		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
 | 	} | 
 | 	sb->s_dirt = 1; | 
 | 	up(&sbi->s_alloc_sem); | 
 | 	return alloc_count; | 
 | } | 
 |  | 
 | static int udf_bitmap_new_block(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	struct udf_bitmap *bitmap, uint16_t partition, uint32_t goal, int *err) | 
 | { | 
 | 	struct udf_sb_info *sbi = UDF_SB(sb); | 
 | 	int newbit, bit=0, block, block_group, group_start; | 
 | 	int end_goal, nr_groups, bitmap_nr, i; | 
 | 	struct buffer_head *bh = NULL; | 
 | 	char *ptr; | 
 | 	int newblock = 0; | 
 |  | 
 | 	*err = -ENOSPC; | 
 | 	down(&sbi->s_alloc_sem); | 
 |  | 
 | repeat: | 
 | 	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) | 
 | 		goal = 0; | 
 |  | 
 | 	nr_groups = bitmap->s_nr_groups; | 
 | 	block = goal + (sizeof(struct spaceBitmapDesc) << 3); | 
 | 	block_group = block >> (sb->s_blocksize_bits + 3); | 
 | 	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | 
 |  | 
 | 	bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | 
 | 	if (bitmap_nr < 0) | 
 | 		goto error_return; | 
 | 	bh = bitmap->s_block_bitmap[bitmap_nr]; | 
 | 	ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); | 
 |  | 
 | 	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) | 
 | 	{ | 
 | 		bit = block % (sb->s_blocksize << 3); | 
 |  | 
 | 		if (udf_test_bit(bit, bh->b_data)) | 
 | 		{ | 
 | 			goto got_block; | 
 | 		} | 
 | 		end_goal = (bit + 63) & ~63; | 
 | 		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit); | 
 | 		if (bit < end_goal) | 
 | 			goto got_block; | 
 | 		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF, sb->s_blocksize - ((bit + 7) >> 3)); | 
 | 		newbit = (ptr - ((char *)bh->b_data)) << 3; | 
 | 		if (newbit < sb->s_blocksize << 3) | 
 | 		{ | 
 | 			bit = newbit; | 
 | 			goto search_back; | 
 | 		} | 
 | 		newbit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, bit); | 
 | 		if (newbit < sb->s_blocksize << 3) | 
 | 		{ | 
 | 			bit = newbit; | 
 | 			goto got_block; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i=0; i<(nr_groups*2); i++) | 
 | 	{ | 
 | 		block_group ++; | 
 | 		if (block_group >= nr_groups) | 
 | 			block_group = 0; | 
 | 		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc); | 
 |  | 
 | 		bitmap_nr = load_block_bitmap(sb, bitmap, block_group); | 
 | 		if (bitmap_nr < 0) | 
 | 			goto error_return; | 
 | 		bh = bitmap->s_block_bitmap[bitmap_nr]; | 
 | 		if (i < nr_groups) | 
 | 		{ | 
 | 			ptr = memscan((char *)bh->b_data + group_start, 0xFF, sb->s_blocksize - group_start); | 
 | 			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) | 
 | 			{ | 
 | 				bit = (ptr - ((char *)bh->b_data)) << 3; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 		else | 
 | 		{ | 
 | 			bit = udf_find_next_one_bit((char *)bh->b_data, sb->s_blocksize << 3, group_start << 3); | 
 | 			if (bit < sb->s_blocksize << 3) | 
 | 				break; | 
 | 		} | 
 | 	} | 
 | 	if (i >= (nr_groups*2)) | 
 | 	{ | 
 | 		up(&sbi->s_alloc_sem); | 
 | 		return newblock; | 
 | 	} | 
 | 	if (bit < sb->s_blocksize << 3) | 
 | 		goto search_back; | 
 | 	else | 
 | 		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3, group_start << 3); | 
 | 	if (bit >= sb->s_blocksize << 3) | 
 | 	{ | 
 | 		up(&sbi->s_alloc_sem); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | search_back: | 
 | 	for (i=0; i<7 && bit > (group_start << 3) && udf_test_bit(bit - 1, bh->b_data); i++, bit--); | 
 |  | 
 | got_block: | 
 |  | 
 | 	/* | 
 | 	 * Check quota for allocation of this block. | 
 | 	 */ | 
 | 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) | 
 | 	{ | 
 | 		up(&sbi->s_alloc_sem); | 
 | 		*err = -EDQUOT; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) - | 
 | 		(sizeof(struct spaceBitmapDesc) << 3); | 
 |  | 
 | 	if (!udf_clear_bit(bit, bh->b_data)) | 
 | 	{ | 
 | 		udf_debug("bit already cleared for block %d\n", bit); | 
 | 		goto repeat; | 
 | 	} | 
 |  | 
 | 	mark_buffer_dirty(bh); | 
 |  | 
 | 	if (UDF_SB_LVIDBH(sb)) | 
 | 	{ | 
 | 		UDF_SB_LVID(sb)->freeSpaceTable[partition] = | 
 | 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); | 
 | 		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
 | 	} | 
 | 	sb->s_dirt = 1; | 
 | 	up(&sbi->s_alloc_sem); | 
 | 	*err = 0; | 
 | 	return newblock; | 
 |  | 
 | error_return: | 
 | 	*err = -EIO; | 
 | 	up(&sbi->s_alloc_sem); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void udf_table_free_blocks(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	struct inode * table, | 
 | 	kernel_lb_addr bloc, uint32_t offset, uint32_t count) | 
 | { | 
 | 	struct udf_sb_info *sbi = UDF_SB(sb); | 
 | 	uint32_t start, end; | 
 | 	uint32_t nextoffset, oextoffset, elen; | 
 | 	kernel_lb_addr nbloc, obloc, eloc; | 
 | 	struct buffer_head *obh, *nbh; | 
 | 	int8_t etype; | 
 | 	int i; | 
 |  | 
 | 	down(&sbi->s_alloc_sem); | 
 | 	if (bloc.logicalBlockNum < 0 || | 
 | 		(bloc.logicalBlockNum + count) > UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)) | 
 | 	{ | 
 | 		udf_debug("%d < %d || %d + %d > %d\n", | 
 | 			bloc.logicalBlockNum, 0, bloc.logicalBlockNum, count, | 
 | 			UDF_SB_PARTLEN(sb, bloc.partitionReferenceNum)); | 
 | 		goto error_return; | 
 | 	} | 
 |  | 
 | 	/* We do this up front - There are some error conditions that could occure, | 
 | 	   but.. oh well */ | 
 | 	if (inode) | 
 | 		DQUOT_FREE_BLOCK(inode, count); | 
 | 	if (UDF_SB_LVIDBH(sb)) | 
 | 	{ | 
 | 		UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)] = | 
 | 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[UDF_SB_PARTITION(sb)])+count); | 
 | 		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
 | 	} | 
 |  | 
 | 	start = bloc.logicalBlockNum + offset; | 
 | 	end = bloc.logicalBlockNum + offset + count - 1; | 
 |  | 
 | 	oextoffset = nextoffset = sizeof(struct unallocSpaceEntry); | 
 | 	elen = 0; | 
 | 	obloc = nbloc = UDF_I_LOCATION(table); | 
 |  | 
 | 	obh = nbh = NULL; | 
 |  | 
 | 	while (count && (etype = | 
 | 		udf_next_aext(table, &nbloc, &nextoffset, &eloc, &elen, &nbh, 1)) != -1) | 
 | 	{ | 
 | 		if (((eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) == | 
 | 			start)) | 
 | 		{ | 
 | 			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) | 
 | 			{ | 
 | 				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
 | 				start += ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
 | 				elen = (etype << 30) | (0x40000000 - sb->s_blocksize); | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				elen = (etype << 30) | | 
 | 					(elen + (count << sb->s_blocksize_bits)); | 
 | 				start += count; | 
 | 				count = 0; | 
 | 			} | 
 | 			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); | 
 | 		} | 
 | 		else if (eloc.logicalBlockNum == (end + 1)) | 
 | 		{ | 
 | 			if ((0x3FFFFFFF - elen) < (count << sb->s_blocksize_bits)) | 
 | 			{ | 
 | 				count -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
 | 				end -= ((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
 | 				eloc.logicalBlockNum -= | 
 | 					((0x3FFFFFFF - elen) >> sb->s_blocksize_bits); | 
 | 				elen = (etype << 30) | (0x40000000 - sb->s_blocksize); | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				eloc.logicalBlockNum = start; | 
 | 				elen = (etype << 30) | | 
 | 					(elen + (count << sb->s_blocksize_bits)); | 
 | 				end -= count; | 
 | 				count = 0; | 
 | 			} | 
 | 			udf_write_aext(table, obloc, &oextoffset, eloc, elen, obh, 1); | 
 | 		} | 
 |  | 
 | 		if (nbh != obh) | 
 | 		{ | 
 | 			i = -1; | 
 | 			obloc = nbloc; | 
 | 			udf_release_data(obh); | 
 | 			atomic_inc(&nbh->b_count); | 
 | 			obh = nbh; | 
 | 			oextoffset = 0; | 
 | 		} | 
 | 		else | 
 | 			oextoffset = nextoffset; | 
 | 	} | 
 |  | 
 | 	if (count) | 
 | 	{ | 
 | 		/* NOTE: we CANNOT use udf_add_aext here, as it can try to allocate | 
 | 				 a new block, and since we hold the super block lock already | 
 | 				 very bad things would happen :) | 
 |  | 
 | 				 We copy the behavior of udf_add_aext, but instead of | 
 | 				 trying to allocate a new block close to the existing one, | 
 | 				 we just steal a block from the extent we are trying to add. | 
 |  | 
 | 				 It would be nice if the blocks were close together, but it | 
 | 				 isn't required. | 
 | 		*/ | 
 |  | 
 | 		int adsize; | 
 | 		short_ad *sad = NULL; | 
 | 		long_ad *lad = NULL; | 
 | 		struct allocExtDesc *aed; | 
 |  | 
 | 		eloc.logicalBlockNum = start; | 
 | 		elen = EXT_RECORDED_ALLOCATED | | 
 | 			(count << sb->s_blocksize_bits); | 
 |  | 
 | 		if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | 
 | 			adsize = sizeof(short_ad); | 
 | 		else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | 
 | 			adsize = sizeof(long_ad); | 
 | 		else | 
 | 		{ | 
 | 			udf_release_data(obh); | 
 | 			udf_release_data(nbh); | 
 | 			goto error_return; | 
 | 		} | 
 |  | 
 | 		if (nextoffset + (2 * adsize) > sb->s_blocksize) | 
 | 		{ | 
 | 			char *sptr, *dptr; | 
 | 			int loffset; | 
 | 	 | 
 | 			udf_release_data(obh); | 
 | 			obh = nbh; | 
 | 			obloc = nbloc; | 
 | 			oextoffset = nextoffset; | 
 |  | 
 | 			/* Steal a block from the extent being free'd */ | 
 | 			nbloc.logicalBlockNum = eloc.logicalBlockNum; | 
 | 			eloc.logicalBlockNum ++; | 
 | 			elen -= sb->s_blocksize; | 
 |  | 
 | 			if (!(nbh = udf_tread(sb, | 
 | 				udf_get_lb_pblock(sb, nbloc, 0)))) | 
 | 			{ | 
 | 				udf_release_data(obh); | 
 | 				goto error_return; | 
 | 			} | 
 | 			aed = (struct allocExtDesc *)(nbh->b_data); | 
 | 			aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum); | 
 | 			if (nextoffset + adsize > sb->s_blocksize) | 
 | 			{ | 
 | 				loffset = nextoffset; | 
 | 				aed->lengthAllocDescs = cpu_to_le32(adsize); | 
 | 				if (obh) | 
 | 					sptr = UDF_I_DATA(inode) + nextoffset -  udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode) - adsize; | 
 | 				else | 
 | 					sptr = obh->b_data + nextoffset - adsize; | 
 | 				dptr = nbh->b_data + sizeof(struct allocExtDesc); | 
 | 				memcpy(dptr, sptr, adsize); | 
 | 				nextoffset = sizeof(struct allocExtDesc) + adsize; | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				loffset = nextoffset + adsize; | 
 | 				aed->lengthAllocDescs = cpu_to_le32(0); | 
 | 				sptr = (obh)->b_data + nextoffset; | 
 | 				nextoffset = sizeof(struct allocExtDesc); | 
 |  | 
 | 				if (obh) | 
 | 				{ | 
 | 					aed = (struct allocExtDesc *)(obh)->b_data; | 
 | 					aed->lengthAllocDescs = | 
 | 						cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); | 
 | 				} | 
 | 				else | 
 | 				{ | 
 | 					UDF_I_LENALLOC(table) += adsize; | 
 | 					mark_inode_dirty(table); | 
 | 				} | 
 | 			} | 
 | 			if (UDF_SB_UDFREV(sb) >= 0x0200) | 
 | 				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1, | 
 | 					nbloc.logicalBlockNum, sizeof(tag)); | 
 | 			else | 
 | 				udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1, | 
 | 					nbloc.logicalBlockNum, sizeof(tag)); | 
 | 			switch (UDF_I_ALLOCTYPE(table)) | 
 | 			{ | 
 | 				case ICBTAG_FLAG_AD_SHORT: | 
 | 				{ | 
 | 					sad = (short_ad *)sptr; | 
 | 					sad->extLength = cpu_to_le32( | 
 | 						EXT_NEXT_EXTENT_ALLOCDECS | | 
 | 						sb->s_blocksize); | 
 | 					sad->extPosition = cpu_to_le32(nbloc.logicalBlockNum); | 
 | 					break; | 
 | 				} | 
 | 				case ICBTAG_FLAG_AD_LONG: | 
 | 				{ | 
 | 					lad = (long_ad *)sptr; | 
 | 					lad->extLength = cpu_to_le32( | 
 | 						EXT_NEXT_EXTENT_ALLOCDECS | | 
 | 						sb->s_blocksize); | 
 | 					lad->extLocation = cpu_to_lelb(nbloc); | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 			if (obh) | 
 | 			{ | 
 | 				udf_update_tag(obh->b_data, loffset); | 
 | 				mark_buffer_dirty(obh); | 
 | 			} | 
 | 			else | 
 | 				mark_inode_dirty(table); | 
 | 		} | 
 |  | 
 | 		if (elen) /* It's possible that stealing the block emptied the extent */ | 
 | 		{ | 
 | 			udf_write_aext(table, nbloc, &nextoffset, eloc, elen, nbh, 1); | 
 |  | 
 | 			if (!nbh) | 
 | 			{ | 
 | 				UDF_I_LENALLOC(table) += adsize; | 
 | 				mark_inode_dirty(table); | 
 | 			} | 
 | 			else | 
 | 			{ | 
 | 				aed = (struct allocExtDesc *)nbh->b_data; | 
 | 				aed->lengthAllocDescs = | 
 | 					cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize); | 
 | 				udf_update_tag(nbh->b_data, nextoffset); | 
 | 				mark_buffer_dirty(nbh); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	udf_release_data(nbh); | 
 | 	udf_release_data(obh); | 
 |  | 
 | error_return: | 
 | 	sb->s_dirt = 1; | 
 | 	up(&sbi->s_alloc_sem); | 
 | 	return; | 
 | } | 
 |  | 
 | static int udf_table_prealloc_blocks(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	struct inode *table, uint16_t partition, uint32_t first_block, | 
 | 	uint32_t block_count) | 
 | { | 
 | 	struct udf_sb_info *sbi = UDF_SB(sb); | 
 | 	int alloc_count = 0; | 
 | 	uint32_t extoffset, elen, adsize; | 
 | 	kernel_lb_addr bloc, eloc; | 
 | 	struct buffer_head *bh; | 
 | 	int8_t etype = -1; | 
 |  | 
 | 	if (first_block < 0 || first_block >= UDF_SB_PARTLEN(sb, partition)) | 
 | 		return 0; | 
 |  | 
 | 	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | 
 | 		adsize = sizeof(short_ad); | 
 | 	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | 
 | 		adsize = sizeof(long_ad); | 
 | 	else | 
 | 		return 0; | 
 |  | 
 | 	down(&sbi->s_alloc_sem); | 
 | 	extoffset = sizeof(struct unallocSpaceEntry); | 
 | 	bloc = UDF_I_LOCATION(table); | 
 |  | 
 | 	bh = NULL; | 
 | 	eloc.logicalBlockNum = 0xFFFFFFFF; | 
 |  | 
 | 	while (first_block != eloc.logicalBlockNum && (etype = | 
 | 		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) | 
 | 	{ | 
 | 		udf_debug("eloc=%d, elen=%d, first_block=%d\n", | 
 | 			eloc.logicalBlockNum, elen, first_block); | 
 | 		; /* empty loop body */ | 
 | 	} | 
 |  | 
 | 	if (first_block == eloc.logicalBlockNum) | 
 | 	{ | 
 | 		extoffset -= adsize; | 
 |  | 
 | 		alloc_count = (elen >> sb->s_blocksize_bits); | 
 | 		if (inode && DQUOT_PREALLOC_BLOCK(inode, alloc_count > block_count ? block_count : alloc_count)) | 
 | 			alloc_count = 0; | 
 | 		else if (alloc_count > block_count) | 
 | 		{ | 
 | 			alloc_count = block_count; | 
 | 			eloc.logicalBlockNum += alloc_count; | 
 | 			elen -= (alloc_count << sb->s_blocksize_bits); | 
 | 			udf_write_aext(table, bloc, &extoffset, eloc, (etype << 30) | elen, bh, 1); | 
 | 		} | 
 | 		else | 
 | 			udf_delete_aext(table, bloc, extoffset, eloc, (etype << 30) | elen, bh); | 
 | 	} | 
 | 	else | 
 | 		alloc_count = 0; | 
 |  | 
 | 	udf_release_data(bh); | 
 |  | 
 | 	if (alloc_count && UDF_SB_LVIDBH(sb)) | 
 | 	{ | 
 | 		UDF_SB_LVID(sb)->freeSpaceTable[partition] = | 
 | 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-alloc_count); | 
 | 		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
 | 		sb->s_dirt = 1; | 
 | 	} | 
 | 	up(&sbi->s_alloc_sem); | 
 | 	return alloc_count; | 
 | } | 
 |  | 
 | static int udf_table_new_block(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	struct inode *table, uint16_t partition, uint32_t goal, int *err) | 
 | { | 
 | 	struct udf_sb_info *sbi = UDF_SB(sb); | 
 | 	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF; | 
 | 	uint32_t newblock = 0, adsize; | 
 | 	uint32_t extoffset, goal_extoffset, elen, goal_elen = 0; | 
 | 	kernel_lb_addr bloc, goal_bloc, eloc, goal_eloc; | 
 | 	struct buffer_head *bh, *goal_bh; | 
 | 	int8_t etype; | 
 |  | 
 | 	*err = -ENOSPC; | 
 |  | 
 | 	if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_SHORT) | 
 | 		adsize = sizeof(short_ad); | 
 | 	else if (UDF_I_ALLOCTYPE(table) == ICBTAG_FLAG_AD_LONG) | 
 | 		adsize = sizeof(long_ad); | 
 | 	else | 
 | 		return newblock; | 
 |  | 
 | 	down(&sbi->s_alloc_sem); | 
 | 	if (goal < 0 || goal >= UDF_SB_PARTLEN(sb, partition)) | 
 | 		goal = 0; | 
 |  | 
 | 	/* We search for the closest matching block to goal. If we find a exact hit, | 
 | 	   we stop. Otherwise we keep going till we run out of extents. | 
 | 	   We store the buffer_head, bloc, and extoffset of the current closest | 
 | 	   match and use that when we are done. | 
 | 	*/ | 
 |  | 
 | 	extoffset = sizeof(struct unallocSpaceEntry); | 
 | 	bloc = UDF_I_LOCATION(table); | 
 |  | 
 | 	goal_bh = bh = NULL; | 
 |  | 
 | 	while (spread && (etype = | 
 | 		udf_next_aext(table, &bloc, &extoffset, &eloc, &elen, &bh, 1)) != -1) | 
 | 	{ | 
 | 		if (goal >= eloc.logicalBlockNum) | 
 | 		{ | 
 | 			if (goal < eloc.logicalBlockNum + (elen >> sb->s_blocksize_bits)) | 
 | 				nspread = 0; | 
 | 			else | 
 | 				nspread = goal - eloc.logicalBlockNum - | 
 | 					(elen >> sb->s_blocksize_bits); | 
 | 		} | 
 | 		else | 
 | 			nspread = eloc.logicalBlockNum - goal; | 
 |  | 
 | 		if (nspread < spread) | 
 | 		{ | 
 | 			spread = nspread; | 
 | 			if (goal_bh != bh) | 
 | 			{ | 
 | 				udf_release_data(goal_bh); | 
 | 				goal_bh = bh; | 
 | 				atomic_inc(&goal_bh->b_count); | 
 | 			} | 
 | 			goal_bloc = bloc; | 
 | 			goal_extoffset = extoffset - adsize; | 
 | 			goal_eloc = eloc; | 
 | 			goal_elen = (etype << 30) | elen; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	udf_release_data(bh); | 
 |  | 
 | 	if (spread == 0xFFFFFFFF) | 
 | 	{ | 
 | 		udf_release_data(goal_bh); | 
 | 		up(&sbi->s_alloc_sem); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Only allocate blocks from the beginning of the extent. | 
 | 	   That way, we only delete (empty) extents, never have to insert an | 
 | 	   extent because of splitting */ | 
 | 	/* This works, but very poorly.... */ | 
 |  | 
 | 	newblock = goal_eloc.logicalBlockNum; | 
 | 	goal_eloc.logicalBlockNum ++; | 
 | 	goal_elen -= sb->s_blocksize; | 
 |  | 
 | 	if (inode && DQUOT_ALLOC_BLOCK(inode, 1)) | 
 | 	{ | 
 | 		udf_release_data(goal_bh); | 
 | 		up(&sbi->s_alloc_sem); | 
 | 		*err = -EDQUOT; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (goal_elen) | 
 | 		udf_write_aext(table, goal_bloc, &goal_extoffset, goal_eloc, goal_elen, goal_bh, 1); | 
 | 	else | 
 | 		udf_delete_aext(table, goal_bloc, goal_extoffset, goal_eloc, goal_elen, goal_bh); | 
 | 	udf_release_data(goal_bh); | 
 |  | 
 | 	if (UDF_SB_LVIDBH(sb)) | 
 | 	{ | 
 | 		UDF_SB_LVID(sb)->freeSpaceTable[partition] = | 
 | 			cpu_to_le32(le32_to_cpu(UDF_SB_LVID(sb)->freeSpaceTable[partition])-1); | 
 | 		mark_buffer_dirty(UDF_SB_LVIDBH(sb)); | 
 | 	} | 
 |  | 
 | 	sb->s_dirt = 1; | 
 | 	up(&sbi->s_alloc_sem); | 
 | 	*err = 0; | 
 | 	return newblock; | 
 | } | 
 |  | 
 | inline void udf_free_blocks(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	kernel_lb_addr bloc, uint32_t offset, uint32_t count) | 
 | { | 
 | 	uint16_t partition = bloc.partitionReferenceNum; | 
 |  | 
 | 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | 
 | 	{ | 
 | 		return udf_bitmap_free_blocks(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | 
 | 			bloc, offset, count); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | 
 | 	{ | 
 | 		return udf_table_free_blocks(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | 
 | 			bloc, offset, count); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | 
 | 	{ | 
 | 		return udf_bitmap_free_blocks(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | 
 | 			bloc, offset, count); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | 
 | 	{ | 
 | 		return udf_table_free_blocks(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | 
 | 			bloc, offset, count); | 
 | 	} | 
 | 	else | 
 | 		return; | 
 | } | 
 |  | 
 | inline int udf_prealloc_blocks(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	uint16_t partition, uint32_t first_block, uint32_t block_count) | 
 | { | 
 | 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | 
 | 	{ | 
 | 		return udf_bitmap_prealloc_blocks(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | 
 | 			partition, first_block, block_count); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | 
 | 	{ | 
 | 		return udf_table_prealloc_blocks(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | 
 | 			partition, first_block, block_count); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | 
 | 	{ | 
 | 		return udf_bitmap_prealloc_blocks(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | 
 | 			partition, first_block, block_count); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | 
 | 	{ | 
 | 		return udf_table_prealloc_blocks(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | 
 | 			partition, first_block, block_count); | 
 | 	} | 
 | 	else | 
 | 		return 0; | 
 | } | 
 |  | 
 | inline int udf_new_block(struct super_block * sb, | 
 | 	struct inode * inode, | 
 | 	uint16_t partition, uint32_t goal, int *err) | 
 | { | 
 | 	if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_BITMAP) | 
 | 	{ | 
 | 		return udf_bitmap_new_block(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_bitmap, | 
 | 			partition, goal, err); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_UNALLOC_TABLE) | 
 | 	{ | 
 | 		return udf_table_new_block(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_uspace.s_table, | 
 | 			partition, goal, err); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_BITMAP) | 
 | 	{ | 
 | 		return udf_bitmap_new_block(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_bitmap, | 
 | 			partition, goal, err); | 
 | 	} | 
 | 	else if (UDF_SB_PARTFLAGS(sb, partition) & UDF_PART_FLAG_FREED_TABLE) | 
 | 	{ | 
 | 		return udf_table_new_block(sb, inode, | 
 | 			UDF_SB_PARTMAPS(sb)[partition].s_fspace.s_table, | 
 | 			partition, goal, err); | 
 | 	} | 
 | 	else | 
 | 	{ | 
 | 		*err = -EIO; | 
 | 		return 0; | 
 | 	} | 
 | } |