| /* | 
 |  * | 
 |  * Procedures for interfacing to the RTAS on CHRP machines. | 
 |  * | 
 |  * Peter Bergner, IBM	March 2001. | 
 |  * Copyright (C) 2001 IBM. | 
 |  * | 
 |  *      This program is free software; you can redistribute it and/or | 
 |  *      modify it under the terms of the GNU General Public License | 
 |  *      as published by the Free Software Foundation; either version | 
 |  *      2 of the License, or (at your option) any later version. | 
 |  */ | 
 |  | 
 | #include <stdarg.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/types.h> | 
 | #include <linux/spinlock.h> | 
 | #include <linux/export.h> | 
 | #include <linux/init.h> | 
 | #include <linux/capability.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/completion.h> | 
 | #include <linux/cpumask.h> | 
 | #include <linux/memblock.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/reboot.h> | 
 |  | 
 | #include <asm/prom.h> | 
 | #include <asm/rtas.h> | 
 | #include <asm/hvcall.h> | 
 | #include <asm/machdep.h> | 
 | #include <asm/firmware.h> | 
 | #include <asm/page.h> | 
 | #include <asm/param.h> | 
 | #include <asm/delay.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/udbg.h> | 
 | #include <asm/syscalls.h> | 
 | #include <asm/smp.h> | 
 | #include <linux/atomic.h> | 
 | #include <asm/time.h> | 
 | #include <asm/mmu.h> | 
 | #include <asm/topology.h> | 
 |  | 
 | struct rtas_t rtas = { | 
 | 	.lock = __ARCH_SPIN_LOCK_UNLOCKED | 
 | }; | 
 | EXPORT_SYMBOL(rtas); | 
 |  | 
 | DEFINE_SPINLOCK(rtas_data_buf_lock); | 
 | EXPORT_SYMBOL(rtas_data_buf_lock); | 
 |  | 
 | char rtas_data_buf[RTAS_DATA_BUF_SIZE] __cacheline_aligned; | 
 | EXPORT_SYMBOL(rtas_data_buf); | 
 |  | 
 | unsigned long rtas_rmo_buf; | 
 |  | 
 | /* | 
 |  * If non-NULL, this gets called when the kernel terminates. | 
 |  * This is done like this so rtas_flash can be a module. | 
 |  */ | 
 | void (*rtas_flash_term_hook)(int); | 
 | EXPORT_SYMBOL(rtas_flash_term_hook); | 
 |  | 
 | /* RTAS use home made raw locking instead of spin_lock_irqsave | 
 |  * because those can be called from within really nasty contexts | 
 |  * such as having the timebase stopped which would lockup with | 
 |  * normal locks and spinlock debugging enabled | 
 |  */ | 
 | static unsigned long lock_rtas(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	preempt_disable(); | 
 | 	arch_spin_lock_flags(&rtas.lock, flags); | 
 | 	return flags; | 
 | } | 
 |  | 
 | static void unlock_rtas(unsigned long flags) | 
 | { | 
 | 	arch_spin_unlock(&rtas.lock); | 
 | 	local_irq_restore(flags); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * call_rtas_display_status and call_rtas_display_status_delay | 
 |  * are designed only for very early low-level debugging, which | 
 |  * is why the token is hard-coded to 10. | 
 |  */ | 
 | static void call_rtas_display_status(char c) | 
 | { | 
 | 	struct rtas_args *args = &rtas.args; | 
 | 	unsigned long s; | 
 |  | 
 | 	if (!rtas.base) | 
 | 		return; | 
 | 	s = lock_rtas(); | 
 |  | 
 | 	args->token = 10; | 
 | 	args->nargs = 1; | 
 | 	args->nret  = 1; | 
 | 	args->rets  = (rtas_arg_t *)&(args->args[1]); | 
 | 	args->args[0] = (unsigned char)c; | 
 |  | 
 | 	enter_rtas(__pa(args)); | 
 |  | 
 | 	unlock_rtas(s); | 
 | } | 
 |  | 
 | static void call_rtas_display_status_delay(char c) | 
 | { | 
 | 	static int pending_newline = 0;  /* did last write end with unprinted newline? */ | 
 | 	static int width = 16; | 
 |  | 
 | 	if (c == '\n') {	 | 
 | 		while (width-- > 0) | 
 | 			call_rtas_display_status(' '); | 
 | 		width = 16; | 
 | 		mdelay(500); | 
 | 		pending_newline = 1; | 
 | 	} else { | 
 | 		if (pending_newline) { | 
 | 			call_rtas_display_status('\r'); | 
 | 			call_rtas_display_status('\n'); | 
 | 		}  | 
 | 		pending_newline = 0; | 
 | 		if (width--) { | 
 | 			call_rtas_display_status(c); | 
 | 			udelay(10000); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void __init udbg_init_rtas_panel(void) | 
 | { | 
 | 	udbg_putc = call_rtas_display_status_delay; | 
 | } | 
 |  | 
 | #ifdef CONFIG_UDBG_RTAS_CONSOLE | 
 |  | 
 | /* If you think you're dying before early_init_dt_scan_rtas() does its | 
 |  * work, you can hard code the token values for your firmware here and | 
 |  * hardcode rtas.base/entry etc. | 
 |  */ | 
 | static unsigned int rtas_putchar_token = RTAS_UNKNOWN_SERVICE; | 
 | static unsigned int rtas_getchar_token = RTAS_UNKNOWN_SERVICE; | 
 |  | 
 | static void udbg_rtascon_putc(char c) | 
 | { | 
 | 	int tries; | 
 |  | 
 | 	if (!rtas.base) | 
 | 		return; | 
 |  | 
 | 	/* Add CRs before LFs */ | 
 | 	if (c == '\n') | 
 | 		udbg_rtascon_putc('\r'); | 
 |  | 
 | 	/* if there is more than one character to be displayed, wait a bit */ | 
 | 	for (tries = 0; tries < 16; tries++) { | 
 | 		if (rtas_call(rtas_putchar_token, 1, 1, NULL, c) == 0) | 
 | 			break; | 
 | 		udelay(1000); | 
 | 	} | 
 | } | 
 |  | 
 | static int udbg_rtascon_getc_poll(void) | 
 | { | 
 | 	int c; | 
 |  | 
 | 	if (!rtas.base) | 
 | 		return -1; | 
 |  | 
 | 	if (rtas_call(rtas_getchar_token, 0, 2, &c)) | 
 | 		return -1; | 
 |  | 
 | 	return c; | 
 | } | 
 |  | 
 | static int udbg_rtascon_getc(void) | 
 | { | 
 | 	int c; | 
 |  | 
 | 	while ((c = udbg_rtascon_getc_poll()) == -1) | 
 | 		; | 
 |  | 
 | 	return c; | 
 | } | 
 |  | 
 |  | 
 | void __init udbg_init_rtas_console(void) | 
 | { | 
 | 	udbg_putc = udbg_rtascon_putc; | 
 | 	udbg_getc = udbg_rtascon_getc; | 
 | 	udbg_getc_poll = udbg_rtascon_getc_poll; | 
 | } | 
 | #endif /* CONFIG_UDBG_RTAS_CONSOLE */ | 
 |  | 
 | void rtas_progress(char *s, unsigned short hex) | 
 | { | 
 | 	struct device_node *root; | 
 | 	int width; | 
 | 	const int *p; | 
 | 	char *os; | 
 | 	static int display_character, set_indicator; | 
 | 	static int display_width, display_lines, form_feed; | 
 | 	static const int *row_width; | 
 | 	static DEFINE_SPINLOCK(progress_lock); | 
 | 	static int current_line; | 
 | 	static int pending_newline = 0;  /* did last write end with unprinted newline? */ | 
 |  | 
 | 	if (!rtas.base) | 
 | 		return; | 
 |  | 
 | 	if (display_width == 0) { | 
 | 		display_width = 0x10; | 
 | 		if ((root = of_find_node_by_path("/rtas"))) { | 
 | 			if ((p = of_get_property(root, | 
 | 					"ibm,display-line-length", NULL))) | 
 | 				display_width = *p; | 
 | 			if ((p = of_get_property(root, | 
 | 					"ibm,form-feed", NULL))) | 
 | 				form_feed = *p; | 
 | 			if ((p = of_get_property(root, | 
 | 					"ibm,display-number-of-lines", NULL))) | 
 | 				display_lines = *p; | 
 | 			row_width = of_get_property(root, | 
 | 					"ibm,display-truncation-length", NULL); | 
 | 			of_node_put(root); | 
 | 		} | 
 | 		display_character = rtas_token("display-character"); | 
 | 		set_indicator = rtas_token("set-indicator"); | 
 | 	} | 
 |  | 
 | 	if (display_character == RTAS_UNKNOWN_SERVICE) { | 
 | 		/* use hex display if available */ | 
 | 		if (set_indicator != RTAS_UNKNOWN_SERVICE) | 
 | 			rtas_call(set_indicator, 3, 1, NULL, 6, 0, hex); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	spin_lock(&progress_lock); | 
 |  | 
 | 	/* | 
 | 	 * Last write ended with newline, but we didn't print it since | 
 | 	 * it would just clear the bottom line of output. Print it now | 
 | 	 * instead. | 
 | 	 * | 
 | 	 * If no newline is pending and form feed is supported, clear the | 
 | 	 * display with a form feed; otherwise, print a CR to start output | 
 | 	 * at the beginning of the line. | 
 | 	 */ | 
 | 	if (pending_newline) { | 
 | 		rtas_call(display_character, 1, 1, NULL, '\r'); | 
 | 		rtas_call(display_character, 1, 1, NULL, '\n'); | 
 | 		pending_newline = 0; | 
 | 	} else { | 
 | 		current_line = 0; | 
 | 		if (form_feed) | 
 | 			rtas_call(display_character, 1, 1, NULL, | 
 | 				  (char)form_feed); | 
 | 		else | 
 | 			rtas_call(display_character, 1, 1, NULL, '\r'); | 
 | 	} | 
 |   | 
 | 	if (row_width) | 
 | 		width = row_width[current_line]; | 
 | 	else | 
 | 		width = display_width; | 
 | 	os = s; | 
 | 	while (*os) { | 
 | 		if (*os == '\n' || *os == '\r') { | 
 | 			/* If newline is the last character, save it | 
 | 			 * until next call to avoid bumping up the | 
 | 			 * display output. | 
 | 			 */ | 
 | 			if (*os == '\n' && !os[1]) { | 
 | 				pending_newline = 1; | 
 | 				current_line++; | 
 | 				if (current_line > display_lines-1) | 
 | 					current_line = display_lines-1; | 
 | 				spin_unlock(&progress_lock); | 
 | 				return; | 
 | 			} | 
 |   | 
 | 			/* RTAS wants CR-LF, not just LF */ | 
 |   | 
 | 			if (*os == '\n') { | 
 | 				rtas_call(display_character, 1, 1, NULL, '\r'); | 
 | 				rtas_call(display_character, 1, 1, NULL, '\n'); | 
 | 			} else { | 
 | 				/* CR might be used to re-draw a line, so we'll | 
 | 				 * leave it alone and not add LF. | 
 | 				 */ | 
 | 				rtas_call(display_character, 1, 1, NULL, *os); | 
 | 			} | 
 |   | 
 | 			if (row_width) | 
 | 				width = row_width[current_line]; | 
 | 			else | 
 | 				width = display_width; | 
 | 		} else { | 
 | 			width--; | 
 | 			rtas_call(display_character, 1, 1, NULL, *os); | 
 | 		} | 
 |   | 
 | 		os++; | 
 |   | 
 | 		/* if we overwrite the screen length */ | 
 | 		if (width <= 0) | 
 | 			while ((*os != 0) && (*os != '\n') && (*os != '\r')) | 
 | 				os++; | 
 | 	} | 
 |   | 
 | 	spin_unlock(&progress_lock); | 
 | } | 
 | EXPORT_SYMBOL(rtas_progress);		/* needed by rtas_flash module */ | 
 |  | 
 | int rtas_token(const char *service) | 
 | { | 
 | 	const int *tokp; | 
 | 	if (rtas.dev == NULL) | 
 | 		return RTAS_UNKNOWN_SERVICE; | 
 | 	tokp = of_get_property(rtas.dev, service, NULL); | 
 | 	return tokp ? *tokp : RTAS_UNKNOWN_SERVICE; | 
 | } | 
 | EXPORT_SYMBOL(rtas_token); | 
 |  | 
 | int rtas_service_present(const char *service) | 
 | { | 
 | 	return rtas_token(service) != RTAS_UNKNOWN_SERVICE; | 
 | } | 
 | EXPORT_SYMBOL(rtas_service_present); | 
 |  | 
 | #ifdef CONFIG_RTAS_ERROR_LOGGING | 
 | /* | 
 |  * Return the firmware-specified size of the error log buffer | 
 |  *  for all rtas calls that require an error buffer argument. | 
 |  *  This includes 'check-exception' and 'rtas-last-error'. | 
 |  */ | 
 | int rtas_get_error_log_max(void) | 
 | { | 
 | 	static int rtas_error_log_max; | 
 | 	if (rtas_error_log_max) | 
 | 		return rtas_error_log_max; | 
 |  | 
 | 	rtas_error_log_max = rtas_token ("rtas-error-log-max"); | 
 | 	if ((rtas_error_log_max == RTAS_UNKNOWN_SERVICE) || | 
 | 	    (rtas_error_log_max > RTAS_ERROR_LOG_MAX)) { | 
 | 		printk (KERN_WARNING "RTAS: bad log buffer size %d\n", | 
 | 			rtas_error_log_max); | 
 | 		rtas_error_log_max = RTAS_ERROR_LOG_MAX; | 
 | 	} | 
 | 	return rtas_error_log_max; | 
 | } | 
 | EXPORT_SYMBOL(rtas_get_error_log_max); | 
 |  | 
 |  | 
 | static char rtas_err_buf[RTAS_ERROR_LOG_MAX]; | 
 | static int rtas_last_error_token; | 
 |  | 
 | /** Return a copy of the detailed error text associated with the | 
 |  *  most recent failed call to rtas.  Because the error text | 
 |  *  might go stale if there are any other intervening rtas calls, | 
 |  *  this routine must be called atomically with whatever produced | 
 |  *  the error (i.e. with rtas.lock still held from the previous call). | 
 |  */ | 
 | static char *__fetch_rtas_last_error(char *altbuf) | 
 | { | 
 | 	struct rtas_args err_args, save_args; | 
 | 	u32 bufsz; | 
 | 	char *buf = NULL; | 
 |  | 
 | 	if (rtas_last_error_token == -1) | 
 | 		return NULL; | 
 |  | 
 | 	bufsz = rtas_get_error_log_max(); | 
 |  | 
 | 	err_args.token = rtas_last_error_token; | 
 | 	err_args.nargs = 2; | 
 | 	err_args.nret = 1; | 
 | 	err_args.args[0] = (rtas_arg_t)__pa(rtas_err_buf); | 
 | 	err_args.args[1] = bufsz; | 
 | 	err_args.args[2] = 0; | 
 |  | 
 | 	save_args = rtas.args; | 
 | 	rtas.args = err_args; | 
 |  | 
 | 	enter_rtas(__pa(&rtas.args)); | 
 |  | 
 | 	err_args = rtas.args; | 
 | 	rtas.args = save_args; | 
 |  | 
 | 	/* Log the error in the unlikely case that there was one. */ | 
 | 	if (unlikely(err_args.args[2] == 0)) { | 
 | 		if (altbuf) { | 
 | 			buf = altbuf; | 
 | 		} else { | 
 | 			buf = rtas_err_buf; | 
 | 			if (mem_init_done) | 
 | 				buf = kmalloc(RTAS_ERROR_LOG_MAX, GFP_ATOMIC); | 
 | 		} | 
 | 		if (buf) | 
 | 			memcpy(buf, rtas_err_buf, RTAS_ERROR_LOG_MAX); | 
 | 	} | 
 |  | 
 | 	return buf; | 
 | } | 
 |  | 
 | #define get_errorlog_buffer()	kmalloc(RTAS_ERROR_LOG_MAX, GFP_KERNEL) | 
 |  | 
 | #else /* CONFIG_RTAS_ERROR_LOGGING */ | 
 | #define __fetch_rtas_last_error(x)	NULL | 
 | #define get_errorlog_buffer()		NULL | 
 | #endif | 
 |  | 
 | int rtas_call(int token, int nargs, int nret, int *outputs, ...) | 
 | { | 
 | 	va_list list; | 
 | 	int i; | 
 | 	unsigned long s; | 
 | 	struct rtas_args *rtas_args; | 
 | 	char *buff_copy = NULL; | 
 | 	int ret; | 
 |  | 
 | 	if (!rtas.entry || token == RTAS_UNKNOWN_SERVICE) | 
 | 		return -1; | 
 |  | 
 | 	s = lock_rtas(); | 
 | 	rtas_args = &rtas.args; | 
 |  | 
 | 	rtas_args->token = token; | 
 | 	rtas_args->nargs = nargs; | 
 | 	rtas_args->nret  = nret; | 
 | 	rtas_args->rets  = (rtas_arg_t *)&(rtas_args->args[nargs]); | 
 | 	va_start(list, outputs); | 
 | 	for (i = 0; i < nargs; ++i) | 
 | 		rtas_args->args[i] = va_arg(list, rtas_arg_t); | 
 | 	va_end(list); | 
 |  | 
 | 	for (i = 0; i < nret; ++i) | 
 | 		rtas_args->rets[i] = 0; | 
 |  | 
 | 	enter_rtas(__pa(rtas_args)); | 
 |  | 
 | 	/* A -1 return code indicates that the last command couldn't | 
 | 	   be completed due to a hardware error. */ | 
 | 	if (rtas_args->rets[0] == -1) | 
 | 		buff_copy = __fetch_rtas_last_error(NULL); | 
 |  | 
 | 	if (nret > 1 && outputs != NULL) | 
 | 		for (i = 0; i < nret-1; ++i) | 
 | 			outputs[i] = rtas_args->rets[i+1]; | 
 | 	ret = (nret > 0)? rtas_args->rets[0]: 0; | 
 |  | 
 | 	unlock_rtas(s); | 
 |  | 
 | 	if (buff_copy) { | 
 | 		log_error(buff_copy, ERR_TYPE_RTAS_LOG, 0); | 
 | 		if (mem_init_done) | 
 | 			kfree(buff_copy); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(rtas_call); | 
 |  | 
 | /* For RTAS_BUSY (-2), delay for 1 millisecond.  For an extended busy status | 
 |  * code of 990n, perform the hinted delay of 10^n (last digit) milliseconds. | 
 |  */ | 
 | unsigned int rtas_busy_delay_time(int status) | 
 | { | 
 | 	int order; | 
 | 	unsigned int ms = 0; | 
 |  | 
 | 	if (status == RTAS_BUSY) { | 
 | 		ms = 1; | 
 | 	} else if (status >= 9900 && status <= 9905) { | 
 | 		order = status - 9900; | 
 | 		for (ms = 1; order > 0; order--) | 
 | 			ms *= 10; | 
 | 	} | 
 |  | 
 | 	return ms; | 
 | } | 
 | EXPORT_SYMBOL(rtas_busy_delay_time); | 
 |  | 
 | /* For an RTAS busy status code, perform the hinted delay. */ | 
 | unsigned int rtas_busy_delay(int status) | 
 | { | 
 | 	unsigned int ms; | 
 |  | 
 | 	might_sleep(); | 
 | 	ms = rtas_busy_delay_time(status); | 
 | 	if (ms && need_resched()) | 
 | 		msleep(ms); | 
 |  | 
 | 	return ms; | 
 | } | 
 | EXPORT_SYMBOL(rtas_busy_delay); | 
 |  | 
 | static int rtas_error_rc(int rtas_rc) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	switch (rtas_rc) { | 
 | 		case -1: 		/* Hardware Error */ | 
 | 			rc = -EIO; | 
 | 			break; | 
 | 		case -3:		/* Bad indicator/domain/etc */ | 
 | 			rc = -EINVAL; | 
 | 			break; | 
 | 		case -9000:		/* Isolation error */ | 
 | 			rc = -EFAULT; | 
 | 			break; | 
 | 		case -9001:		/* Outstanding TCE/PTE */ | 
 | 			rc = -EEXIST; | 
 | 			break; | 
 | 		case -9002:		/* No usable slot */ | 
 | 			rc = -ENODEV; | 
 | 			break; | 
 | 		default: | 
 | 			printk(KERN_ERR "%s: unexpected RTAS error %d\n", | 
 | 					__func__, rtas_rc); | 
 | 			rc = -ERANGE; | 
 | 			break; | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | int rtas_get_power_level(int powerdomain, int *level) | 
 | { | 
 | 	int token = rtas_token("get-power-level"); | 
 | 	int rc; | 
 |  | 
 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	while ((rc = rtas_call(token, 1, 2, level, powerdomain)) == RTAS_BUSY) | 
 | 		udelay(1); | 
 |  | 
 | 	if (rc < 0) | 
 | 		return rtas_error_rc(rc); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL(rtas_get_power_level); | 
 |  | 
 | int rtas_set_power_level(int powerdomain, int level, int *setlevel) | 
 | { | 
 | 	int token = rtas_token("set-power-level"); | 
 | 	int rc; | 
 |  | 
 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	do { | 
 | 		rc = rtas_call(token, 2, 2, setlevel, powerdomain, level); | 
 | 	} while (rtas_busy_delay(rc)); | 
 |  | 
 | 	if (rc < 0) | 
 | 		return rtas_error_rc(rc); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL(rtas_set_power_level); | 
 |  | 
 | int rtas_get_sensor(int sensor, int index, int *state) | 
 | { | 
 | 	int token = rtas_token("get-sensor-state"); | 
 | 	int rc; | 
 |  | 
 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	do { | 
 | 		rc = rtas_call(token, 2, 2, state, sensor, index); | 
 | 	} while (rtas_busy_delay(rc)); | 
 |  | 
 | 	if (rc < 0) | 
 | 		return rtas_error_rc(rc); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL(rtas_get_sensor); | 
 |  | 
 | bool rtas_indicator_present(int token, int *maxindex) | 
 | { | 
 | 	int proplen, count, i; | 
 | 	const struct indicator_elem { | 
 | 		u32 token; | 
 | 		u32 maxindex; | 
 | 	} *indicators; | 
 |  | 
 | 	indicators = of_get_property(rtas.dev, "rtas-indicators", &proplen); | 
 | 	if (!indicators) | 
 | 		return false; | 
 |  | 
 | 	count = proplen / sizeof(struct indicator_elem); | 
 |  | 
 | 	for (i = 0; i < count; i++) { | 
 | 		if (indicators[i].token != token) | 
 | 			continue; | 
 | 		if (maxindex) | 
 | 			*maxindex = indicators[i].maxindex; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL(rtas_indicator_present); | 
 |  | 
 | int rtas_set_indicator(int indicator, int index, int new_value) | 
 | { | 
 | 	int token = rtas_token("set-indicator"); | 
 | 	int rc; | 
 |  | 
 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	do { | 
 | 		rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); | 
 | 	} while (rtas_busy_delay(rc)); | 
 |  | 
 | 	if (rc < 0) | 
 | 		return rtas_error_rc(rc); | 
 | 	return rc; | 
 | } | 
 | EXPORT_SYMBOL(rtas_set_indicator); | 
 |  | 
 | /* | 
 |  * Ignoring RTAS extended delay | 
 |  */ | 
 | int rtas_set_indicator_fast(int indicator, int index, int new_value) | 
 | { | 
 | 	int rc; | 
 | 	int token = rtas_token("set-indicator"); | 
 |  | 
 | 	if (token == RTAS_UNKNOWN_SERVICE) | 
 | 		return -ENOENT; | 
 |  | 
 | 	rc = rtas_call(token, 3, 1, NULL, indicator, index, new_value); | 
 |  | 
 | 	WARN_ON(rc == -2 || (rc >= 9900 && rc <= 9905)); | 
 |  | 
 | 	if (rc < 0) | 
 | 		return rtas_error_rc(rc); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | void rtas_restart(char *cmd) | 
 | { | 
 | 	if (rtas_flash_term_hook) | 
 | 		rtas_flash_term_hook(SYS_RESTART); | 
 | 	printk("RTAS system-reboot returned %d\n", | 
 | 	       rtas_call(rtas_token("system-reboot"), 0, 1, NULL)); | 
 | 	for (;;); | 
 | } | 
 |  | 
 | void rtas_power_off(void) | 
 | { | 
 | 	if (rtas_flash_term_hook) | 
 | 		rtas_flash_term_hook(SYS_POWER_OFF); | 
 | 	/* allow power on only with power button press */ | 
 | 	printk("RTAS power-off returned %d\n", | 
 | 	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); | 
 | 	for (;;); | 
 | } | 
 |  | 
 | void rtas_halt(void) | 
 | { | 
 | 	if (rtas_flash_term_hook) | 
 | 		rtas_flash_term_hook(SYS_HALT); | 
 | 	/* allow power on only with power button press */ | 
 | 	printk("RTAS power-off returned %d\n", | 
 | 	       rtas_call(rtas_token("power-off"), 2, 1, NULL, -1, -1)); | 
 | 	for (;;); | 
 | } | 
 |  | 
 | /* Must be in the RMO region, so we place it here */ | 
 | static char rtas_os_term_buf[2048]; | 
 |  | 
 | void rtas_os_term(char *str) | 
 | { | 
 | 	int status; | 
 |  | 
 | 	/* | 
 | 	 * Firmware with the ibm,extended-os-term property is guaranteed | 
 | 	 * to always return from an ibm,os-term call. Earlier versions without | 
 | 	 * this property may terminate the partition which we want to avoid | 
 | 	 * since it interferes with panic_timeout. | 
 | 	 */ | 
 | 	if (RTAS_UNKNOWN_SERVICE == rtas_token("ibm,os-term") || | 
 | 	    RTAS_UNKNOWN_SERVICE == rtas_token("ibm,extended-os-term")) | 
 | 		return; | 
 |  | 
 | 	snprintf(rtas_os_term_buf, 2048, "OS panic: %s", str); | 
 |  | 
 | 	do { | 
 | 		status = rtas_call(rtas_token("ibm,os-term"), 1, 1, NULL, | 
 | 				   __pa(rtas_os_term_buf)); | 
 | 	} while (rtas_busy_delay(status)); | 
 |  | 
 | 	if (status != 0) | 
 | 		printk(KERN_EMERG "ibm,os-term call failed %d\n", status); | 
 | } | 
 |  | 
 | static int ibm_suspend_me_token = RTAS_UNKNOWN_SERVICE; | 
 | #ifdef CONFIG_PPC_PSERIES | 
 | static int __rtas_suspend_last_cpu(struct rtas_suspend_me_data *data, int wake_when_done) | 
 | { | 
 | 	u16 slb_size = mmu_slb_size; | 
 | 	int rc = H_MULTI_THREADS_ACTIVE; | 
 | 	int cpu; | 
 |  | 
 | 	slb_set_size(SLB_MIN_SIZE); | 
 | 	printk(KERN_DEBUG "calling ibm,suspend-me on cpu %i\n", smp_processor_id()); | 
 |  | 
 | 	while (rc == H_MULTI_THREADS_ACTIVE && !atomic_read(&data->done) && | 
 | 	       !atomic_read(&data->error)) | 
 | 		rc = rtas_call(data->token, 0, 1, NULL); | 
 |  | 
 | 	if (rc || atomic_read(&data->error)) { | 
 | 		printk(KERN_DEBUG "ibm,suspend-me returned %d\n", rc); | 
 | 		slb_set_size(slb_size); | 
 | 	} | 
 |  | 
 | 	if (atomic_read(&data->error)) | 
 | 		rc = atomic_read(&data->error); | 
 |  | 
 | 	atomic_set(&data->error, rc); | 
 | 	pSeries_coalesce_init(); | 
 |  | 
 | 	if (wake_when_done) { | 
 | 		atomic_set(&data->done, 1); | 
 |  | 
 | 		for_each_online_cpu(cpu) | 
 | 			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); | 
 | 	} | 
 |  | 
 | 	if (atomic_dec_return(&data->working) == 0) | 
 | 		complete(data->complete); | 
 |  | 
 | 	return rc; | 
 | } | 
 |  | 
 | int rtas_suspend_last_cpu(struct rtas_suspend_me_data *data) | 
 | { | 
 | 	atomic_inc(&data->working); | 
 | 	return __rtas_suspend_last_cpu(data, 0); | 
 | } | 
 |  | 
 | static int __rtas_suspend_cpu(struct rtas_suspend_me_data *data, int wake_when_done) | 
 | { | 
 | 	long rc = H_SUCCESS; | 
 | 	unsigned long msr_save; | 
 | 	int cpu; | 
 |  | 
 | 	atomic_inc(&data->working); | 
 |  | 
 | 	/* really need to ensure MSR.EE is off for H_JOIN */ | 
 | 	msr_save = mfmsr(); | 
 | 	mtmsr(msr_save & ~(MSR_EE)); | 
 |  | 
 | 	while (rc == H_SUCCESS && !atomic_read(&data->done) && !atomic_read(&data->error)) | 
 | 		rc = plpar_hcall_norets(H_JOIN); | 
 |  | 
 | 	mtmsr(msr_save); | 
 |  | 
 | 	if (rc == H_SUCCESS) { | 
 | 		/* This cpu was prodded and the suspend is complete. */ | 
 | 		goto out; | 
 | 	} else if (rc == H_CONTINUE) { | 
 | 		/* All other cpus are in H_JOIN, this cpu does | 
 | 		 * the suspend. | 
 | 		 */ | 
 | 		return __rtas_suspend_last_cpu(data, wake_when_done); | 
 | 	} else { | 
 | 		printk(KERN_ERR "H_JOIN on cpu %i failed with rc = %ld\n", | 
 | 		       smp_processor_id(), rc); | 
 | 		atomic_set(&data->error, rc); | 
 | 	} | 
 |  | 
 | 	if (wake_when_done) { | 
 | 		atomic_set(&data->done, 1); | 
 |  | 
 | 		/* This cpu did the suspend or got an error; in either case, | 
 | 		 * we need to prod all other other cpus out of join state. | 
 | 		 * Extra prods are harmless. | 
 | 		 */ | 
 | 		for_each_online_cpu(cpu) | 
 | 			plpar_hcall_norets(H_PROD, get_hard_smp_processor_id(cpu)); | 
 | 	} | 
 | out: | 
 | 	if (atomic_dec_return(&data->working) == 0) | 
 | 		complete(data->complete); | 
 | 	return rc; | 
 | } | 
 |  | 
 | int rtas_suspend_cpu(struct rtas_suspend_me_data *data) | 
 | { | 
 | 	return __rtas_suspend_cpu(data, 0); | 
 | } | 
 |  | 
 | static void rtas_percpu_suspend_me(void *info) | 
 | { | 
 | 	__rtas_suspend_cpu((struct rtas_suspend_me_data *)info, 1); | 
 | } | 
 |  | 
 | enum rtas_cpu_state { | 
 | 	DOWN, | 
 | 	UP, | 
 | }; | 
 |  | 
 | #ifndef CONFIG_SMP | 
 | static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, | 
 | 				cpumask_var_t cpus) | 
 | { | 
 | 	if (!cpumask_empty(cpus)) { | 
 | 		cpumask_clear(cpus); | 
 | 		return -EINVAL; | 
 | 	} else | 
 | 		return 0; | 
 | } | 
 | #else | 
 | /* On return cpumask will be altered to indicate CPUs changed. | 
 |  * CPUs with states changed will be set in the mask, | 
 |  * CPUs with status unchanged will be unset in the mask. */ | 
 | static int rtas_cpu_state_change_mask(enum rtas_cpu_state state, | 
 | 				cpumask_var_t cpus) | 
 | { | 
 | 	int cpu; | 
 | 	int cpuret = 0; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (cpumask_empty(cpus)) | 
 | 		return 0; | 
 |  | 
 | 	for_each_cpu(cpu, cpus) { | 
 | 		switch (state) { | 
 | 		case DOWN: | 
 | 			cpuret = cpu_down(cpu); | 
 | 			break; | 
 | 		case UP: | 
 | 			cpuret = cpu_up(cpu); | 
 | 			break; | 
 | 		} | 
 | 		if (cpuret) { | 
 | 			pr_debug("%s: cpu_%s for cpu#%d returned %d.\n", | 
 | 					__func__, | 
 | 					((state == UP) ? "up" : "down"), | 
 | 					cpu, cpuret); | 
 | 			if (!ret) | 
 | 				ret = cpuret; | 
 | 			if (state == UP) { | 
 | 				/* clear bits for unchanged cpus, return */ | 
 | 				cpumask_shift_right(cpus, cpus, cpu); | 
 | 				cpumask_shift_left(cpus, cpus, cpu); | 
 | 				break; | 
 | 			} else { | 
 | 				/* clear bit for unchanged cpu, continue */ | 
 | 				cpumask_clear_cpu(cpu, cpus); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | #endif | 
 |  | 
 | int rtas_online_cpus_mask(cpumask_var_t cpus) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = rtas_cpu_state_change_mask(UP, cpus); | 
 |  | 
 | 	if (ret) { | 
 | 		cpumask_var_t tmp_mask; | 
 |  | 
 | 		if (!alloc_cpumask_var(&tmp_mask, GFP_TEMPORARY)) | 
 | 			return ret; | 
 |  | 
 | 		/* Use tmp_mask to preserve cpus mask from first failure */ | 
 | 		cpumask_copy(tmp_mask, cpus); | 
 | 		rtas_offline_cpus_mask(tmp_mask); | 
 | 		free_cpumask_var(tmp_mask); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL(rtas_online_cpus_mask); | 
 |  | 
 | int rtas_offline_cpus_mask(cpumask_var_t cpus) | 
 | { | 
 | 	return rtas_cpu_state_change_mask(DOWN, cpus); | 
 | } | 
 | EXPORT_SYMBOL(rtas_offline_cpus_mask); | 
 |  | 
 | int rtas_ibm_suspend_me(struct rtas_args *args) | 
 | { | 
 | 	long state; | 
 | 	long rc; | 
 | 	unsigned long retbuf[PLPAR_HCALL_BUFSIZE]; | 
 | 	struct rtas_suspend_me_data data; | 
 | 	DECLARE_COMPLETION_ONSTACK(done); | 
 | 	cpumask_var_t offline_mask; | 
 | 	int cpuret; | 
 |  | 
 | 	if (!rtas_service_present("ibm,suspend-me")) | 
 | 		return -ENOSYS; | 
 |  | 
 | 	/* Make sure the state is valid */ | 
 | 	rc = plpar_hcall(H_VASI_STATE, retbuf, | 
 | 			 ((u64)args->args[0] << 32) | args->args[1]); | 
 |  | 
 | 	state = retbuf[0]; | 
 |  | 
 | 	if (rc) { | 
 | 		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned %ld\n",rc); | 
 | 		return rc; | 
 | 	} else if (state == H_VASI_ENABLED) { | 
 | 		args->args[args->nargs] = RTAS_NOT_SUSPENDABLE; | 
 | 		return 0; | 
 | 	} else if (state != H_VASI_SUSPENDING) { | 
 | 		printk(KERN_ERR "rtas_ibm_suspend_me: vasi_state returned state %ld\n", | 
 | 		       state); | 
 | 		args->args[args->nargs] = -1; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (!alloc_cpumask_var(&offline_mask, GFP_TEMPORARY)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	atomic_set(&data.working, 0); | 
 | 	atomic_set(&data.done, 0); | 
 | 	atomic_set(&data.error, 0); | 
 | 	data.token = rtas_token("ibm,suspend-me"); | 
 | 	data.complete = &done; | 
 |  | 
 | 	/* All present CPUs must be online */ | 
 | 	cpumask_andnot(offline_mask, cpu_present_mask, cpu_online_mask); | 
 | 	cpuret = rtas_online_cpus_mask(offline_mask); | 
 | 	if (cpuret) { | 
 | 		pr_err("%s: Could not bring present CPUs online.\n", __func__); | 
 | 		atomic_set(&data.error, cpuret); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	stop_topology_update(); | 
 |  | 
 | 	/* Call function on all CPUs.  One of us will make the | 
 | 	 * rtas call | 
 | 	 */ | 
 | 	if (on_each_cpu(rtas_percpu_suspend_me, &data, 0)) | 
 | 		atomic_set(&data.error, -EINVAL); | 
 |  | 
 | 	wait_for_completion(&done); | 
 |  | 
 | 	if (atomic_read(&data.error) != 0) | 
 | 		printk(KERN_ERR "Error doing global join\n"); | 
 |  | 
 | 	start_topology_update(); | 
 |  | 
 | 	/* Take down CPUs not online prior to suspend */ | 
 | 	cpuret = rtas_offline_cpus_mask(offline_mask); | 
 | 	if (cpuret) | 
 | 		pr_warn("%s: Could not restore CPUs to offline state.\n", | 
 | 				__func__); | 
 |  | 
 | out: | 
 | 	free_cpumask_var(offline_mask); | 
 | 	return atomic_read(&data.error); | 
 | } | 
 | #else /* CONFIG_PPC_PSERIES */ | 
 | int rtas_ibm_suspend_me(struct rtas_args *args) | 
 | { | 
 | 	return -ENOSYS; | 
 | } | 
 | #endif | 
 |  | 
 | /** | 
 |  * Find a specific pseries error log in an RTAS extended event log. | 
 |  * @log: RTAS error/event log | 
 |  * @section_id: two character section identifier | 
 |  * | 
 |  * Returns a pointer to the specified errorlog or NULL if not found. | 
 |  */ | 
 | struct pseries_errorlog *get_pseries_errorlog(struct rtas_error_log *log, | 
 | 					      uint16_t section_id) | 
 | { | 
 | 	struct rtas_ext_event_log_v6 *ext_log = | 
 | 		(struct rtas_ext_event_log_v6 *)log->buffer; | 
 | 	struct pseries_errorlog *sect; | 
 | 	unsigned char *p, *log_end; | 
 |  | 
 | 	/* Check that we understand the format */ | 
 | 	if (log->extended_log_length < sizeof(struct rtas_ext_event_log_v6) || | 
 | 	    ext_log->log_format != RTAS_V6EXT_LOG_FORMAT_EVENT_LOG || | 
 | 	    ext_log->company_id != RTAS_V6EXT_COMPANY_ID_IBM) | 
 | 		return NULL; | 
 |  | 
 | 	log_end = log->buffer + log->extended_log_length; | 
 | 	p = ext_log->vendor_log; | 
 |  | 
 | 	while (p < log_end) { | 
 | 		sect = (struct pseries_errorlog *)p; | 
 | 		if (sect->id == section_id) | 
 | 			return sect; | 
 | 		p += sect->length; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | asmlinkage int ppc_rtas(struct rtas_args __user *uargs) | 
 | { | 
 | 	struct rtas_args args; | 
 | 	unsigned long flags; | 
 | 	char *buff_copy, *errbuf = NULL; | 
 | 	int nargs; | 
 | 	int rc; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 |  | 
 | 	if (copy_from_user(&args, uargs, 3 * sizeof(u32)) != 0) | 
 | 		return -EFAULT; | 
 |  | 
 | 	nargs = args.nargs; | 
 | 	if (nargs > ARRAY_SIZE(args.args) | 
 | 	    || args.nret > ARRAY_SIZE(args.args) | 
 | 	    || nargs + args.nret > ARRAY_SIZE(args.args)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* Copy in args. */ | 
 | 	if (copy_from_user(args.args, uargs->args, | 
 | 			   nargs * sizeof(rtas_arg_t)) != 0) | 
 | 		return -EFAULT; | 
 |  | 
 | 	if (args.token == RTAS_UNKNOWN_SERVICE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	args.rets = &args.args[nargs]; | 
 | 	memset(args.rets, 0, args.nret * sizeof(rtas_arg_t)); | 
 |  | 
 | 	/* Need to handle ibm,suspend_me call specially */ | 
 | 	if (args.token == ibm_suspend_me_token) { | 
 | 		rc = rtas_ibm_suspend_me(&args); | 
 | 		if (rc) | 
 | 			return rc; | 
 | 		goto copy_return; | 
 | 	} | 
 |  | 
 | 	buff_copy = get_errorlog_buffer(); | 
 |  | 
 | 	flags = lock_rtas(); | 
 |  | 
 | 	rtas.args = args; | 
 | 	enter_rtas(__pa(&rtas.args)); | 
 | 	args = rtas.args; | 
 |  | 
 | 	/* A -1 return code indicates that the last command couldn't | 
 | 	   be completed due to a hardware error. */ | 
 | 	if (args.rets[0] == -1) | 
 | 		errbuf = __fetch_rtas_last_error(buff_copy); | 
 |  | 
 | 	unlock_rtas(flags); | 
 |  | 
 | 	if (buff_copy) { | 
 | 		if (errbuf) | 
 | 			log_error(errbuf, ERR_TYPE_RTAS_LOG, 0); | 
 | 		kfree(buff_copy); | 
 | 	} | 
 |  | 
 |  copy_return: | 
 | 	/* Copy out args. */ | 
 | 	if (copy_to_user(uargs->args + nargs, | 
 | 			 args.args + nargs, | 
 | 			 args.nret * sizeof(rtas_arg_t)) != 0) | 
 | 		return -EFAULT; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Call early during boot, before mem init or bootmem, to retrieve the RTAS | 
 |  * informations from the device-tree and allocate the RMO buffer for userland | 
 |  * accesses. | 
 |  */ | 
 | void __init rtas_initialize(void) | 
 | { | 
 | 	unsigned long rtas_region = RTAS_INSTANTIATE_MAX; | 
 |  | 
 | 	/* Get RTAS dev node and fill up our "rtas" structure with infos | 
 | 	 * about it. | 
 | 	 */ | 
 | 	rtas.dev = of_find_node_by_name(NULL, "rtas"); | 
 | 	if (rtas.dev) { | 
 | 		const u32 *basep, *entryp, *sizep; | 
 |  | 
 | 		basep = of_get_property(rtas.dev, "linux,rtas-base", NULL); | 
 | 		sizep = of_get_property(rtas.dev, "rtas-size", NULL); | 
 | 		if (basep != NULL && sizep != NULL) { | 
 | 			rtas.base = *basep; | 
 | 			rtas.size = *sizep; | 
 | 			entryp = of_get_property(rtas.dev, | 
 | 					"linux,rtas-entry", NULL); | 
 | 			if (entryp == NULL) /* Ugh */ | 
 | 				rtas.entry = rtas.base; | 
 | 			else | 
 | 				rtas.entry = *entryp; | 
 | 		} else | 
 | 			rtas.dev = NULL; | 
 | 	} | 
 | 	if (!rtas.dev) | 
 | 		return; | 
 |  | 
 | 	/* If RTAS was found, allocate the RMO buffer for it and look for | 
 | 	 * the stop-self token if any | 
 | 	 */ | 
 | #ifdef CONFIG_PPC64 | 
 | 	if (machine_is(pseries) && firmware_has_feature(FW_FEATURE_LPAR)) { | 
 | 		rtas_region = min(ppc64_rma_size, RTAS_INSTANTIATE_MAX); | 
 | 		ibm_suspend_me_token = rtas_token("ibm,suspend-me"); | 
 | 	} | 
 | #endif | 
 | 	rtas_rmo_buf = memblock_alloc_base(RTAS_RMOBUF_MAX, PAGE_SIZE, rtas_region); | 
 |  | 
 | #ifdef CONFIG_RTAS_ERROR_LOGGING | 
 | 	rtas_last_error_token = rtas_token("rtas-last-error"); | 
 | #endif | 
 | } | 
 |  | 
 | int __init early_init_dt_scan_rtas(unsigned long node, | 
 | 		const char *uname, int depth, void *data) | 
 | { | 
 | 	u32 *basep, *entryp, *sizep; | 
 |  | 
 | 	if (depth != 1 || strcmp(uname, "rtas") != 0) | 
 | 		return 0; | 
 |  | 
 | 	basep  = of_get_flat_dt_prop(node, "linux,rtas-base", NULL); | 
 | 	entryp = of_get_flat_dt_prop(node, "linux,rtas-entry", NULL); | 
 | 	sizep  = of_get_flat_dt_prop(node, "rtas-size", NULL); | 
 |  | 
 | 	if (basep && entryp && sizep) { | 
 | 		rtas.base = *basep; | 
 | 		rtas.entry = *entryp; | 
 | 		rtas.size = *sizep; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_UDBG_RTAS_CONSOLE | 
 | 	basep = of_get_flat_dt_prop(node, "put-term-char", NULL); | 
 | 	if (basep) | 
 | 		rtas_putchar_token = *basep; | 
 |  | 
 | 	basep = of_get_flat_dt_prop(node, "get-term-char", NULL); | 
 | 	if (basep) | 
 | 		rtas_getchar_token = *basep; | 
 |  | 
 | 	if (rtas_putchar_token != RTAS_UNKNOWN_SERVICE && | 
 | 	    rtas_getchar_token != RTAS_UNKNOWN_SERVICE) | 
 | 		udbg_init_rtas_console(); | 
 |  | 
 | #endif | 
 |  | 
 | 	/* break now */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static arch_spinlock_t timebase_lock; | 
 | static u64 timebase = 0; | 
 |  | 
 | void __cpuinit rtas_give_timebase(void) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	local_irq_save(flags); | 
 | 	hard_irq_disable(); | 
 | 	arch_spin_lock(&timebase_lock); | 
 | 	rtas_call(rtas_token("freeze-time-base"), 0, 1, NULL); | 
 | 	timebase = get_tb(); | 
 | 	arch_spin_unlock(&timebase_lock); | 
 |  | 
 | 	while (timebase) | 
 | 		barrier(); | 
 | 	rtas_call(rtas_token("thaw-time-base"), 0, 1, NULL); | 
 | 	local_irq_restore(flags); | 
 | } | 
 |  | 
 | void __cpuinit rtas_take_timebase(void) | 
 | { | 
 | 	while (!timebase) | 
 | 		barrier(); | 
 | 	arch_spin_lock(&timebase_lock); | 
 | 	set_tb(timebase >> 32, timebase & 0xffffffff); | 
 | 	timebase = 0; | 
 | 	arch_spin_unlock(&timebase_lock); | 
 | } |