| /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * This module enables machines with Intel VT-x extensions to run virtual | 
 |  * machines without emulation or binary translation. | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include "irq.h" | 
 | #include "mmu.h" | 
 | #include "cpuid.h" | 
 |  | 
 | #include <linux/kvm_host.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/moduleparam.h> | 
 | #include <linux/mod_devicetable.h> | 
 | #include <linux/ftrace_event.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/tboot.h> | 
 | #include "kvm_cache_regs.h" | 
 | #include "x86.h" | 
 |  | 
 | #include <asm/io.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/vmx.h> | 
 | #include <asm/virtext.h> | 
 | #include <asm/mce.h> | 
 | #include <asm/i387.h> | 
 | #include <asm/xcr.h> | 
 | #include <asm/perf_event.h> | 
 | #include <asm/kexec.h> | 
 |  | 
 | #include "trace.h" | 
 |  | 
 | #define __ex(x) __kvm_handle_fault_on_reboot(x) | 
 | #define __ex_clear(x, reg) \ | 
 | 	____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg) | 
 |  | 
 | MODULE_AUTHOR("Qumranet"); | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static const struct x86_cpu_id vmx_cpu_id[] = { | 
 | 	X86_FEATURE_MATCH(X86_FEATURE_VMX), | 
 | 	{} | 
 | }; | 
 | MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id); | 
 |  | 
 | static bool __read_mostly enable_vpid = 1; | 
 | module_param_named(vpid, enable_vpid, bool, 0444); | 
 |  | 
 | static bool __read_mostly flexpriority_enabled = 1; | 
 | module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO); | 
 |  | 
 | static bool __read_mostly enable_ept = 1; | 
 | module_param_named(ept, enable_ept, bool, S_IRUGO); | 
 |  | 
 | static bool __read_mostly enable_unrestricted_guest = 1; | 
 | module_param_named(unrestricted_guest, | 
 | 			enable_unrestricted_guest, bool, S_IRUGO); | 
 |  | 
 | static bool __read_mostly enable_ept_ad_bits = 1; | 
 | module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO); | 
 |  | 
 | static bool __read_mostly emulate_invalid_guest_state = true; | 
 | module_param(emulate_invalid_guest_state, bool, S_IRUGO); | 
 |  | 
 | static bool __read_mostly vmm_exclusive = 1; | 
 | module_param(vmm_exclusive, bool, S_IRUGO); | 
 |  | 
 | static bool __read_mostly fasteoi = 1; | 
 | module_param(fasteoi, bool, S_IRUGO); | 
 |  | 
 | static bool __read_mostly enable_apicv = 1; | 
 | module_param(enable_apicv, bool, S_IRUGO); | 
 |  | 
 | static bool __read_mostly enable_shadow_vmcs = 1; | 
 | module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO); | 
 | /* | 
 |  * If nested=1, nested virtualization is supported, i.e., guests may use | 
 |  * VMX and be a hypervisor for its own guests. If nested=0, guests may not | 
 |  * use VMX instructions. | 
 |  */ | 
 | static bool __read_mostly nested = 0; | 
 | module_param(nested, bool, S_IRUGO); | 
 |  | 
 | #define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD) | 
 | #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE) | 
 | #define KVM_VM_CR0_ALWAYS_ON						\ | 
 | 	(KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE) | 
 | #define KVM_CR4_GUEST_OWNED_BITS				      \ | 
 | 	(X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \ | 
 | 	 | X86_CR4_OSXMMEXCPT) | 
 |  | 
 | #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE) | 
 | #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE) | 
 |  | 
 | #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM)) | 
 |  | 
 | /* | 
 |  * These 2 parameters are used to config the controls for Pause-Loop Exiting: | 
 |  * ple_gap:    upper bound on the amount of time between two successive | 
 |  *             executions of PAUSE in a loop. Also indicate if ple enabled. | 
 |  *             According to test, this time is usually smaller than 128 cycles. | 
 |  * ple_window: upper bound on the amount of time a guest is allowed to execute | 
 |  *             in a PAUSE loop. Tests indicate that most spinlocks are held for | 
 |  *             less than 2^12 cycles | 
 |  * Time is measured based on a counter that runs at the same rate as the TSC, | 
 |  * refer SDM volume 3b section 21.6.13 & 22.1.3. | 
 |  */ | 
 | #define KVM_VMX_DEFAULT_PLE_GAP    128 | 
 | #define KVM_VMX_DEFAULT_PLE_WINDOW 4096 | 
 | static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP; | 
 | module_param(ple_gap, int, S_IRUGO); | 
 |  | 
 | static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW; | 
 | module_param(ple_window, int, S_IRUGO); | 
 |  | 
 | extern const ulong vmx_return; | 
 |  | 
 | #define NR_AUTOLOAD_MSRS 8 | 
 | #define VMCS02_POOL_SIZE 1 | 
 |  | 
 | struct vmcs { | 
 | 	u32 revision_id; | 
 | 	u32 abort; | 
 | 	char data[0]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also | 
 |  * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs | 
 |  * loaded on this CPU (so we can clear them if the CPU goes down). | 
 |  */ | 
 | struct loaded_vmcs { | 
 | 	struct vmcs *vmcs; | 
 | 	int cpu; | 
 | 	int launched; | 
 | 	struct list_head loaded_vmcss_on_cpu_link; | 
 | }; | 
 |  | 
 | struct shared_msr_entry { | 
 | 	unsigned index; | 
 | 	u64 data; | 
 | 	u64 mask; | 
 | }; | 
 |  | 
 | /* | 
 |  * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a | 
 |  * single nested guest (L2), hence the name vmcs12. Any VMX implementation has | 
 |  * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is | 
 |  * stored in guest memory specified by VMPTRLD, but is opaque to the guest, | 
 |  * which must access it using VMREAD/VMWRITE/VMCLEAR instructions. | 
 |  * More than one of these structures may exist, if L1 runs multiple L2 guests. | 
 |  * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the | 
 |  * underlying hardware which will be used to run L2. | 
 |  * This structure is packed to ensure that its layout is identical across | 
 |  * machines (necessary for live migration). | 
 |  * If there are changes in this struct, VMCS12_REVISION must be changed. | 
 |  */ | 
 | typedef u64 natural_width; | 
 | struct __packed vmcs12 { | 
 | 	/* According to the Intel spec, a VMCS region must start with the | 
 | 	 * following two fields. Then follow implementation-specific data. | 
 | 	 */ | 
 | 	u32 revision_id; | 
 | 	u32 abort; | 
 |  | 
 | 	u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */ | 
 | 	u32 padding[7]; /* room for future expansion */ | 
 |  | 
 | 	u64 io_bitmap_a; | 
 | 	u64 io_bitmap_b; | 
 | 	u64 msr_bitmap; | 
 | 	u64 vm_exit_msr_store_addr; | 
 | 	u64 vm_exit_msr_load_addr; | 
 | 	u64 vm_entry_msr_load_addr; | 
 | 	u64 tsc_offset; | 
 | 	u64 virtual_apic_page_addr; | 
 | 	u64 apic_access_addr; | 
 | 	u64 ept_pointer; | 
 | 	u64 guest_physical_address; | 
 | 	u64 vmcs_link_pointer; | 
 | 	u64 guest_ia32_debugctl; | 
 | 	u64 guest_ia32_pat; | 
 | 	u64 guest_ia32_efer; | 
 | 	u64 guest_ia32_perf_global_ctrl; | 
 | 	u64 guest_pdptr0; | 
 | 	u64 guest_pdptr1; | 
 | 	u64 guest_pdptr2; | 
 | 	u64 guest_pdptr3; | 
 | 	u64 host_ia32_pat; | 
 | 	u64 host_ia32_efer; | 
 | 	u64 host_ia32_perf_global_ctrl; | 
 | 	u64 padding64[8]; /* room for future expansion */ | 
 | 	/* | 
 | 	 * To allow migration of L1 (complete with its L2 guests) between | 
 | 	 * machines of different natural widths (32 or 64 bit), we cannot have | 
 | 	 * unsigned long fields with no explict size. We use u64 (aliased | 
 | 	 * natural_width) instead. Luckily, x86 is little-endian. | 
 | 	 */ | 
 | 	natural_width cr0_guest_host_mask; | 
 | 	natural_width cr4_guest_host_mask; | 
 | 	natural_width cr0_read_shadow; | 
 | 	natural_width cr4_read_shadow; | 
 | 	natural_width cr3_target_value0; | 
 | 	natural_width cr3_target_value1; | 
 | 	natural_width cr3_target_value2; | 
 | 	natural_width cr3_target_value3; | 
 | 	natural_width exit_qualification; | 
 | 	natural_width guest_linear_address; | 
 | 	natural_width guest_cr0; | 
 | 	natural_width guest_cr3; | 
 | 	natural_width guest_cr4; | 
 | 	natural_width guest_es_base; | 
 | 	natural_width guest_cs_base; | 
 | 	natural_width guest_ss_base; | 
 | 	natural_width guest_ds_base; | 
 | 	natural_width guest_fs_base; | 
 | 	natural_width guest_gs_base; | 
 | 	natural_width guest_ldtr_base; | 
 | 	natural_width guest_tr_base; | 
 | 	natural_width guest_gdtr_base; | 
 | 	natural_width guest_idtr_base; | 
 | 	natural_width guest_dr7; | 
 | 	natural_width guest_rsp; | 
 | 	natural_width guest_rip; | 
 | 	natural_width guest_rflags; | 
 | 	natural_width guest_pending_dbg_exceptions; | 
 | 	natural_width guest_sysenter_esp; | 
 | 	natural_width guest_sysenter_eip; | 
 | 	natural_width host_cr0; | 
 | 	natural_width host_cr3; | 
 | 	natural_width host_cr4; | 
 | 	natural_width host_fs_base; | 
 | 	natural_width host_gs_base; | 
 | 	natural_width host_tr_base; | 
 | 	natural_width host_gdtr_base; | 
 | 	natural_width host_idtr_base; | 
 | 	natural_width host_ia32_sysenter_esp; | 
 | 	natural_width host_ia32_sysenter_eip; | 
 | 	natural_width host_rsp; | 
 | 	natural_width host_rip; | 
 | 	natural_width paddingl[8]; /* room for future expansion */ | 
 | 	u32 pin_based_vm_exec_control; | 
 | 	u32 cpu_based_vm_exec_control; | 
 | 	u32 exception_bitmap; | 
 | 	u32 page_fault_error_code_mask; | 
 | 	u32 page_fault_error_code_match; | 
 | 	u32 cr3_target_count; | 
 | 	u32 vm_exit_controls; | 
 | 	u32 vm_exit_msr_store_count; | 
 | 	u32 vm_exit_msr_load_count; | 
 | 	u32 vm_entry_controls; | 
 | 	u32 vm_entry_msr_load_count; | 
 | 	u32 vm_entry_intr_info_field; | 
 | 	u32 vm_entry_exception_error_code; | 
 | 	u32 vm_entry_instruction_len; | 
 | 	u32 tpr_threshold; | 
 | 	u32 secondary_vm_exec_control; | 
 | 	u32 vm_instruction_error; | 
 | 	u32 vm_exit_reason; | 
 | 	u32 vm_exit_intr_info; | 
 | 	u32 vm_exit_intr_error_code; | 
 | 	u32 idt_vectoring_info_field; | 
 | 	u32 idt_vectoring_error_code; | 
 | 	u32 vm_exit_instruction_len; | 
 | 	u32 vmx_instruction_info; | 
 | 	u32 guest_es_limit; | 
 | 	u32 guest_cs_limit; | 
 | 	u32 guest_ss_limit; | 
 | 	u32 guest_ds_limit; | 
 | 	u32 guest_fs_limit; | 
 | 	u32 guest_gs_limit; | 
 | 	u32 guest_ldtr_limit; | 
 | 	u32 guest_tr_limit; | 
 | 	u32 guest_gdtr_limit; | 
 | 	u32 guest_idtr_limit; | 
 | 	u32 guest_es_ar_bytes; | 
 | 	u32 guest_cs_ar_bytes; | 
 | 	u32 guest_ss_ar_bytes; | 
 | 	u32 guest_ds_ar_bytes; | 
 | 	u32 guest_fs_ar_bytes; | 
 | 	u32 guest_gs_ar_bytes; | 
 | 	u32 guest_ldtr_ar_bytes; | 
 | 	u32 guest_tr_ar_bytes; | 
 | 	u32 guest_interruptibility_info; | 
 | 	u32 guest_activity_state; | 
 | 	u32 guest_sysenter_cs; | 
 | 	u32 host_ia32_sysenter_cs; | 
 | 	u32 vmx_preemption_timer_value; | 
 | 	u32 padding32[7]; /* room for future expansion */ | 
 | 	u16 virtual_processor_id; | 
 | 	u16 guest_es_selector; | 
 | 	u16 guest_cs_selector; | 
 | 	u16 guest_ss_selector; | 
 | 	u16 guest_ds_selector; | 
 | 	u16 guest_fs_selector; | 
 | 	u16 guest_gs_selector; | 
 | 	u16 guest_ldtr_selector; | 
 | 	u16 guest_tr_selector; | 
 | 	u16 host_es_selector; | 
 | 	u16 host_cs_selector; | 
 | 	u16 host_ss_selector; | 
 | 	u16 host_ds_selector; | 
 | 	u16 host_fs_selector; | 
 | 	u16 host_gs_selector; | 
 | 	u16 host_tr_selector; | 
 | }; | 
 |  | 
 | /* | 
 |  * VMCS12_REVISION is an arbitrary id that should be changed if the content or | 
 |  * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and | 
 |  * VMPTRLD verifies that the VMCS region that L1 is loading contains this id. | 
 |  */ | 
 | #define VMCS12_REVISION 0x11e57ed0 | 
 |  | 
 | /* | 
 |  * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region | 
 |  * and any VMCS region. Although only sizeof(struct vmcs12) are used by the | 
 |  * current implementation, 4K are reserved to avoid future complications. | 
 |  */ | 
 | #define VMCS12_SIZE 0x1000 | 
 |  | 
 | /* Used to remember the last vmcs02 used for some recently used vmcs12s */ | 
 | struct vmcs02_list { | 
 | 	struct list_head list; | 
 | 	gpa_t vmptr; | 
 | 	struct loaded_vmcs vmcs02; | 
 | }; | 
 |  | 
 | /* | 
 |  * The nested_vmx structure is part of vcpu_vmx, and holds information we need | 
 |  * for correct emulation of VMX (i.e., nested VMX) on this vcpu. | 
 |  */ | 
 | struct nested_vmx { | 
 | 	/* Has the level1 guest done vmxon? */ | 
 | 	bool vmxon; | 
 |  | 
 | 	/* The guest-physical address of the current VMCS L1 keeps for L2 */ | 
 | 	gpa_t current_vmptr; | 
 | 	/* The host-usable pointer to the above */ | 
 | 	struct page *current_vmcs12_page; | 
 | 	struct vmcs12 *current_vmcs12; | 
 | 	struct vmcs *current_shadow_vmcs; | 
 | 	/* | 
 | 	 * Indicates if the shadow vmcs must be updated with the | 
 | 	 * data hold by vmcs12 | 
 | 	 */ | 
 | 	bool sync_shadow_vmcs; | 
 |  | 
 | 	/* vmcs02_list cache of VMCSs recently used to run L2 guests */ | 
 | 	struct list_head vmcs02_pool; | 
 | 	int vmcs02_num; | 
 | 	u64 vmcs01_tsc_offset; | 
 | 	/* L2 must run next, and mustn't decide to exit to L1. */ | 
 | 	bool nested_run_pending; | 
 | 	/* | 
 | 	 * Guest pages referred to in vmcs02 with host-physical pointers, so | 
 | 	 * we must keep them pinned while L2 runs. | 
 | 	 */ | 
 | 	struct page *apic_access_page; | 
 | }; | 
 |  | 
 | #define POSTED_INTR_ON  0 | 
 | /* Posted-Interrupt Descriptor */ | 
 | struct pi_desc { | 
 | 	u32 pir[8];     /* Posted interrupt requested */ | 
 | 	u32 control;	/* bit 0 of control is outstanding notification bit */ | 
 | 	u32 rsvd[7]; | 
 | } __aligned(64); | 
 |  | 
 | static bool pi_test_and_set_on(struct pi_desc *pi_desc) | 
 | { | 
 | 	return test_and_set_bit(POSTED_INTR_ON, | 
 | 			(unsigned long *)&pi_desc->control); | 
 | } | 
 |  | 
 | static bool pi_test_and_clear_on(struct pi_desc *pi_desc) | 
 | { | 
 | 	return test_and_clear_bit(POSTED_INTR_ON, | 
 | 			(unsigned long *)&pi_desc->control); | 
 | } | 
 |  | 
 | static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc) | 
 | { | 
 | 	return test_and_set_bit(vector, (unsigned long *)pi_desc->pir); | 
 | } | 
 |  | 
 | struct vcpu_vmx { | 
 | 	struct kvm_vcpu       vcpu; | 
 | 	unsigned long         host_rsp; | 
 | 	u8                    fail; | 
 | 	u8                    cpl; | 
 | 	bool                  nmi_known_unmasked; | 
 | 	u32                   exit_intr_info; | 
 | 	u32                   idt_vectoring_info; | 
 | 	ulong                 rflags; | 
 | 	struct shared_msr_entry *guest_msrs; | 
 | 	int                   nmsrs; | 
 | 	int                   save_nmsrs; | 
 | 	unsigned long	      host_idt_base; | 
 | #ifdef CONFIG_X86_64 | 
 | 	u64 		      msr_host_kernel_gs_base; | 
 | 	u64 		      msr_guest_kernel_gs_base; | 
 | #endif | 
 | 	/* | 
 | 	 * loaded_vmcs points to the VMCS currently used in this vcpu. For a | 
 | 	 * non-nested (L1) guest, it always points to vmcs01. For a nested | 
 | 	 * guest (L2), it points to a different VMCS. | 
 | 	 */ | 
 | 	struct loaded_vmcs    vmcs01; | 
 | 	struct loaded_vmcs   *loaded_vmcs; | 
 | 	bool                  __launched; /* temporary, used in vmx_vcpu_run */ | 
 | 	struct msr_autoload { | 
 | 		unsigned nr; | 
 | 		struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS]; | 
 | 		struct vmx_msr_entry host[NR_AUTOLOAD_MSRS]; | 
 | 	} msr_autoload; | 
 | 	struct { | 
 | 		int           loaded; | 
 | 		u16           fs_sel, gs_sel, ldt_sel; | 
 | #ifdef CONFIG_X86_64 | 
 | 		u16           ds_sel, es_sel; | 
 | #endif | 
 | 		int           gs_ldt_reload_needed; | 
 | 		int           fs_reload_needed; | 
 | 	} host_state; | 
 | 	struct { | 
 | 		int vm86_active; | 
 | 		ulong save_rflags; | 
 | 		struct kvm_segment segs[8]; | 
 | 	} rmode; | 
 | 	struct { | 
 | 		u32 bitmask; /* 4 bits per segment (1 bit per field) */ | 
 | 		struct kvm_save_segment { | 
 | 			u16 selector; | 
 | 			unsigned long base; | 
 | 			u32 limit; | 
 | 			u32 ar; | 
 | 		} seg[8]; | 
 | 	} segment_cache; | 
 | 	int vpid; | 
 | 	bool emulation_required; | 
 |  | 
 | 	/* Support for vnmi-less CPUs */ | 
 | 	int soft_vnmi_blocked; | 
 | 	ktime_t entry_time; | 
 | 	s64 vnmi_blocked_time; | 
 | 	u32 exit_reason; | 
 |  | 
 | 	bool rdtscp_enabled; | 
 |  | 
 | 	/* Posted interrupt descriptor */ | 
 | 	struct pi_desc pi_desc; | 
 |  | 
 | 	/* Support for a guest hypervisor (nested VMX) */ | 
 | 	struct nested_vmx nested; | 
 | }; | 
 |  | 
 | enum segment_cache_field { | 
 | 	SEG_FIELD_SEL = 0, | 
 | 	SEG_FIELD_BASE = 1, | 
 | 	SEG_FIELD_LIMIT = 2, | 
 | 	SEG_FIELD_AR = 3, | 
 |  | 
 | 	SEG_FIELD_NR = 4 | 
 | }; | 
 |  | 
 | static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return container_of(vcpu, struct vcpu_vmx, vcpu); | 
 | } | 
 |  | 
 | #define VMCS12_OFFSET(x) offsetof(struct vmcs12, x) | 
 | #define FIELD(number, name)	[number] = VMCS12_OFFSET(name) | 
 | #define FIELD64(number, name)	[number] = VMCS12_OFFSET(name), \ | 
 | 				[number##_HIGH] = VMCS12_OFFSET(name)+4 | 
 |  | 
 |  | 
 | static const unsigned long shadow_read_only_fields[] = { | 
 | 	/* | 
 | 	 * We do NOT shadow fields that are modified when L0 | 
 | 	 * traps and emulates any vmx instruction (e.g. VMPTRLD, | 
 | 	 * VMXON...) executed by L1. | 
 | 	 * For example, VM_INSTRUCTION_ERROR is read | 
 | 	 * by L1 if a vmx instruction fails (part of the error path). | 
 | 	 * Note the code assumes this logic. If for some reason | 
 | 	 * we start shadowing these fields then we need to | 
 | 	 * force a shadow sync when L0 emulates vmx instructions | 
 | 	 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified | 
 | 	 * by nested_vmx_failValid) | 
 | 	 */ | 
 | 	VM_EXIT_REASON, | 
 | 	VM_EXIT_INTR_INFO, | 
 | 	VM_EXIT_INSTRUCTION_LEN, | 
 | 	IDT_VECTORING_INFO_FIELD, | 
 | 	IDT_VECTORING_ERROR_CODE, | 
 | 	VM_EXIT_INTR_ERROR_CODE, | 
 | 	EXIT_QUALIFICATION, | 
 | 	GUEST_LINEAR_ADDRESS, | 
 | 	GUEST_PHYSICAL_ADDRESS | 
 | }; | 
 | static const int max_shadow_read_only_fields = | 
 | 	ARRAY_SIZE(shadow_read_only_fields); | 
 |  | 
 | static const unsigned long shadow_read_write_fields[] = { | 
 | 	GUEST_RIP, | 
 | 	GUEST_RSP, | 
 | 	GUEST_CR0, | 
 | 	GUEST_CR3, | 
 | 	GUEST_CR4, | 
 | 	GUEST_INTERRUPTIBILITY_INFO, | 
 | 	GUEST_RFLAGS, | 
 | 	GUEST_CS_SELECTOR, | 
 | 	GUEST_CS_AR_BYTES, | 
 | 	GUEST_CS_LIMIT, | 
 | 	GUEST_CS_BASE, | 
 | 	GUEST_ES_BASE, | 
 | 	CR0_GUEST_HOST_MASK, | 
 | 	CR0_READ_SHADOW, | 
 | 	CR4_READ_SHADOW, | 
 | 	TSC_OFFSET, | 
 | 	EXCEPTION_BITMAP, | 
 | 	CPU_BASED_VM_EXEC_CONTROL, | 
 | 	VM_ENTRY_EXCEPTION_ERROR_CODE, | 
 | 	VM_ENTRY_INTR_INFO_FIELD, | 
 | 	VM_ENTRY_INSTRUCTION_LEN, | 
 | 	VM_ENTRY_EXCEPTION_ERROR_CODE, | 
 | 	HOST_FS_BASE, | 
 | 	HOST_GS_BASE, | 
 | 	HOST_FS_SELECTOR, | 
 | 	HOST_GS_SELECTOR | 
 | }; | 
 | static const int max_shadow_read_write_fields = | 
 | 	ARRAY_SIZE(shadow_read_write_fields); | 
 |  | 
 | static const unsigned short vmcs_field_to_offset_table[] = { | 
 | 	FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id), | 
 | 	FIELD(GUEST_ES_SELECTOR, guest_es_selector), | 
 | 	FIELD(GUEST_CS_SELECTOR, guest_cs_selector), | 
 | 	FIELD(GUEST_SS_SELECTOR, guest_ss_selector), | 
 | 	FIELD(GUEST_DS_SELECTOR, guest_ds_selector), | 
 | 	FIELD(GUEST_FS_SELECTOR, guest_fs_selector), | 
 | 	FIELD(GUEST_GS_SELECTOR, guest_gs_selector), | 
 | 	FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector), | 
 | 	FIELD(GUEST_TR_SELECTOR, guest_tr_selector), | 
 | 	FIELD(HOST_ES_SELECTOR, host_es_selector), | 
 | 	FIELD(HOST_CS_SELECTOR, host_cs_selector), | 
 | 	FIELD(HOST_SS_SELECTOR, host_ss_selector), | 
 | 	FIELD(HOST_DS_SELECTOR, host_ds_selector), | 
 | 	FIELD(HOST_FS_SELECTOR, host_fs_selector), | 
 | 	FIELD(HOST_GS_SELECTOR, host_gs_selector), | 
 | 	FIELD(HOST_TR_SELECTOR, host_tr_selector), | 
 | 	FIELD64(IO_BITMAP_A, io_bitmap_a), | 
 | 	FIELD64(IO_BITMAP_B, io_bitmap_b), | 
 | 	FIELD64(MSR_BITMAP, msr_bitmap), | 
 | 	FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr), | 
 | 	FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr), | 
 | 	FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr), | 
 | 	FIELD64(TSC_OFFSET, tsc_offset), | 
 | 	FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr), | 
 | 	FIELD64(APIC_ACCESS_ADDR, apic_access_addr), | 
 | 	FIELD64(EPT_POINTER, ept_pointer), | 
 | 	FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address), | 
 | 	FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer), | 
 | 	FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl), | 
 | 	FIELD64(GUEST_IA32_PAT, guest_ia32_pat), | 
 | 	FIELD64(GUEST_IA32_EFER, guest_ia32_efer), | 
 | 	FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl), | 
 | 	FIELD64(GUEST_PDPTR0, guest_pdptr0), | 
 | 	FIELD64(GUEST_PDPTR1, guest_pdptr1), | 
 | 	FIELD64(GUEST_PDPTR2, guest_pdptr2), | 
 | 	FIELD64(GUEST_PDPTR3, guest_pdptr3), | 
 | 	FIELD64(HOST_IA32_PAT, host_ia32_pat), | 
 | 	FIELD64(HOST_IA32_EFER, host_ia32_efer), | 
 | 	FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl), | 
 | 	FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control), | 
 | 	FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control), | 
 | 	FIELD(EXCEPTION_BITMAP, exception_bitmap), | 
 | 	FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask), | 
 | 	FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match), | 
 | 	FIELD(CR3_TARGET_COUNT, cr3_target_count), | 
 | 	FIELD(VM_EXIT_CONTROLS, vm_exit_controls), | 
 | 	FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count), | 
 | 	FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count), | 
 | 	FIELD(VM_ENTRY_CONTROLS, vm_entry_controls), | 
 | 	FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count), | 
 | 	FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field), | 
 | 	FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code), | 
 | 	FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len), | 
 | 	FIELD(TPR_THRESHOLD, tpr_threshold), | 
 | 	FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control), | 
 | 	FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error), | 
 | 	FIELD(VM_EXIT_REASON, vm_exit_reason), | 
 | 	FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info), | 
 | 	FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code), | 
 | 	FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field), | 
 | 	FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code), | 
 | 	FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len), | 
 | 	FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info), | 
 | 	FIELD(GUEST_ES_LIMIT, guest_es_limit), | 
 | 	FIELD(GUEST_CS_LIMIT, guest_cs_limit), | 
 | 	FIELD(GUEST_SS_LIMIT, guest_ss_limit), | 
 | 	FIELD(GUEST_DS_LIMIT, guest_ds_limit), | 
 | 	FIELD(GUEST_FS_LIMIT, guest_fs_limit), | 
 | 	FIELD(GUEST_GS_LIMIT, guest_gs_limit), | 
 | 	FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit), | 
 | 	FIELD(GUEST_TR_LIMIT, guest_tr_limit), | 
 | 	FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit), | 
 | 	FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit), | 
 | 	FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes), | 
 | 	FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes), | 
 | 	FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes), | 
 | 	FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes), | 
 | 	FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes), | 
 | 	FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes), | 
 | 	FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes), | 
 | 	FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes), | 
 | 	FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info), | 
 | 	FIELD(GUEST_ACTIVITY_STATE, guest_activity_state), | 
 | 	FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs), | 
 | 	FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs), | 
 | 	FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value), | 
 | 	FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask), | 
 | 	FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask), | 
 | 	FIELD(CR0_READ_SHADOW, cr0_read_shadow), | 
 | 	FIELD(CR4_READ_SHADOW, cr4_read_shadow), | 
 | 	FIELD(CR3_TARGET_VALUE0, cr3_target_value0), | 
 | 	FIELD(CR3_TARGET_VALUE1, cr3_target_value1), | 
 | 	FIELD(CR3_TARGET_VALUE2, cr3_target_value2), | 
 | 	FIELD(CR3_TARGET_VALUE3, cr3_target_value3), | 
 | 	FIELD(EXIT_QUALIFICATION, exit_qualification), | 
 | 	FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address), | 
 | 	FIELD(GUEST_CR0, guest_cr0), | 
 | 	FIELD(GUEST_CR3, guest_cr3), | 
 | 	FIELD(GUEST_CR4, guest_cr4), | 
 | 	FIELD(GUEST_ES_BASE, guest_es_base), | 
 | 	FIELD(GUEST_CS_BASE, guest_cs_base), | 
 | 	FIELD(GUEST_SS_BASE, guest_ss_base), | 
 | 	FIELD(GUEST_DS_BASE, guest_ds_base), | 
 | 	FIELD(GUEST_FS_BASE, guest_fs_base), | 
 | 	FIELD(GUEST_GS_BASE, guest_gs_base), | 
 | 	FIELD(GUEST_LDTR_BASE, guest_ldtr_base), | 
 | 	FIELD(GUEST_TR_BASE, guest_tr_base), | 
 | 	FIELD(GUEST_GDTR_BASE, guest_gdtr_base), | 
 | 	FIELD(GUEST_IDTR_BASE, guest_idtr_base), | 
 | 	FIELD(GUEST_DR7, guest_dr7), | 
 | 	FIELD(GUEST_RSP, guest_rsp), | 
 | 	FIELD(GUEST_RIP, guest_rip), | 
 | 	FIELD(GUEST_RFLAGS, guest_rflags), | 
 | 	FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions), | 
 | 	FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp), | 
 | 	FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip), | 
 | 	FIELD(HOST_CR0, host_cr0), | 
 | 	FIELD(HOST_CR3, host_cr3), | 
 | 	FIELD(HOST_CR4, host_cr4), | 
 | 	FIELD(HOST_FS_BASE, host_fs_base), | 
 | 	FIELD(HOST_GS_BASE, host_gs_base), | 
 | 	FIELD(HOST_TR_BASE, host_tr_base), | 
 | 	FIELD(HOST_GDTR_BASE, host_gdtr_base), | 
 | 	FIELD(HOST_IDTR_BASE, host_idtr_base), | 
 | 	FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp), | 
 | 	FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip), | 
 | 	FIELD(HOST_RSP, host_rsp), | 
 | 	FIELD(HOST_RIP, host_rip), | 
 | }; | 
 | static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table); | 
 |  | 
 | static inline short vmcs_field_to_offset(unsigned long field) | 
 | { | 
 | 	if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0) | 
 | 		return -1; | 
 | 	return vmcs_field_to_offset_table[field]; | 
 | } | 
 |  | 
 | static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return to_vmx(vcpu)->nested.current_vmcs12; | 
 | } | 
 |  | 
 | static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr) | 
 | { | 
 | 	struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT); | 
 | 	if (is_error_page(page)) | 
 | 		return NULL; | 
 |  | 
 | 	return page; | 
 | } | 
 |  | 
 | static void nested_release_page(struct page *page) | 
 | { | 
 | 	kvm_release_page_dirty(page); | 
 | } | 
 |  | 
 | static void nested_release_page_clean(struct page *page) | 
 | { | 
 | 	kvm_release_page_clean(page); | 
 | } | 
 |  | 
 | static u64 construct_eptp(unsigned long root_hpa); | 
 | static void kvm_cpu_vmxon(u64 addr); | 
 | static void kvm_cpu_vmxoff(void); | 
 | static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3); | 
 | static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr); | 
 | static void vmx_set_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg); | 
 | static void vmx_get_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg); | 
 | static bool guest_state_valid(struct kvm_vcpu *vcpu); | 
 | static u32 vmx_segment_access_rights(struct kvm_segment *var); | 
 | static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu); | 
 | static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx); | 
 | static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx); | 
 |  | 
 | static DEFINE_PER_CPU(struct vmcs *, vmxarea); | 
 | static DEFINE_PER_CPU(struct vmcs *, current_vmcs); | 
 | /* | 
 |  * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed | 
 |  * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it. | 
 |  */ | 
 | static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu); | 
 | static DEFINE_PER_CPU(struct desc_ptr, host_gdt); | 
 |  | 
 | static unsigned long *vmx_io_bitmap_a; | 
 | static unsigned long *vmx_io_bitmap_b; | 
 | static unsigned long *vmx_msr_bitmap_legacy; | 
 | static unsigned long *vmx_msr_bitmap_longmode; | 
 | static unsigned long *vmx_msr_bitmap_legacy_x2apic; | 
 | static unsigned long *vmx_msr_bitmap_longmode_x2apic; | 
 | static unsigned long *vmx_vmread_bitmap; | 
 | static unsigned long *vmx_vmwrite_bitmap; | 
 |  | 
 | static bool cpu_has_load_ia32_efer; | 
 | static bool cpu_has_load_perf_global_ctrl; | 
 |  | 
 | static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS); | 
 | static DEFINE_SPINLOCK(vmx_vpid_lock); | 
 |  | 
 | static struct vmcs_config { | 
 | 	int size; | 
 | 	int order; | 
 | 	u32 revision_id; | 
 | 	u32 pin_based_exec_ctrl; | 
 | 	u32 cpu_based_exec_ctrl; | 
 | 	u32 cpu_based_2nd_exec_ctrl; | 
 | 	u32 vmexit_ctrl; | 
 | 	u32 vmentry_ctrl; | 
 | } vmcs_config; | 
 |  | 
 | static struct vmx_capability { | 
 | 	u32 ept; | 
 | 	u32 vpid; | 
 | } vmx_capability; | 
 |  | 
 | #define VMX_SEGMENT_FIELD(seg)					\ | 
 | 	[VCPU_SREG_##seg] = {                                   \ | 
 | 		.selector = GUEST_##seg##_SELECTOR,		\ | 
 | 		.base = GUEST_##seg##_BASE,		   	\ | 
 | 		.limit = GUEST_##seg##_LIMIT,		   	\ | 
 | 		.ar_bytes = GUEST_##seg##_AR_BYTES,	   	\ | 
 | 	} | 
 |  | 
 | static const struct kvm_vmx_segment_field { | 
 | 	unsigned selector; | 
 | 	unsigned base; | 
 | 	unsigned limit; | 
 | 	unsigned ar_bytes; | 
 | } kvm_vmx_segment_fields[] = { | 
 | 	VMX_SEGMENT_FIELD(CS), | 
 | 	VMX_SEGMENT_FIELD(DS), | 
 | 	VMX_SEGMENT_FIELD(ES), | 
 | 	VMX_SEGMENT_FIELD(FS), | 
 | 	VMX_SEGMENT_FIELD(GS), | 
 | 	VMX_SEGMENT_FIELD(SS), | 
 | 	VMX_SEGMENT_FIELD(TR), | 
 | 	VMX_SEGMENT_FIELD(LDTR), | 
 | }; | 
 |  | 
 | static u64 host_efer; | 
 |  | 
 | static void ept_save_pdptrs(struct kvm_vcpu *vcpu); | 
 |  | 
 | /* | 
 |  * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it | 
 |  * away by decrementing the array size. | 
 |  */ | 
 | static const u32 vmx_msr_index[] = { | 
 | #ifdef CONFIG_X86_64 | 
 | 	MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR, | 
 | #endif | 
 | 	MSR_EFER, MSR_TSC_AUX, MSR_STAR, | 
 | }; | 
 | #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index) | 
 |  | 
 | static inline bool is_page_fault(u32 intr_info) | 
 | { | 
 | 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
 | 			     INTR_INFO_VALID_MASK)) == | 
 | 		(INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static inline bool is_no_device(u32 intr_info) | 
 | { | 
 | 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
 | 			     INTR_INFO_VALID_MASK)) == | 
 | 		(INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static inline bool is_invalid_opcode(u32 intr_info) | 
 | { | 
 | 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
 | 			     INTR_INFO_VALID_MASK)) == | 
 | 		(INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static inline bool is_external_interrupt(u32 intr_info) | 
 | { | 
 | 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) | 
 | 		== (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static inline bool is_machine_check(u32 intr_info) | 
 | { | 
 | 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK | | 
 | 			     INTR_INFO_VALID_MASK)) == | 
 | 		(INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_msr_bitmap(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_tpr_shadow(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW; | 
 | } | 
 |  | 
 | static inline bool vm_need_tpr_shadow(struct kvm *kvm) | 
 | { | 
 | 	return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm)); | 
 | } | 
 |  | 
 | static inline bool cpu_has_secondary_exec_ctrls(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_exec_ctrl & | 
 | 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_virtualize_apic_accesses(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_virtualize_x2apic_mode(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_apic_register_virt(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_APIC_REGISTER_VIRT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_virtual_intr_delivery(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_posted_intr(void) | 
 | { | 
 | 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_apicv(void) | 
 | { | 
 | 	return cpu_has_vmx_apic_register_virt() && | 
 | 		cpu_has_vmx_virtual_intr_delivery() && | 
 | 		cpu_has_vmx_posted_intr(); | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_flexpriority(void) | 
 | { | 
 | 	return cpu_has_vmx_tpr_shadow() && | 
 | 		cpu_has_vmx_virtualize_apic_accesses(); | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_ept_execute_only(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_eptp_uncacheable(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPTP_UC_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_eptp_writeback(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPTP_WB_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_ept_2m_page(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_ept_1g_page(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_ept_4levels(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_ept_ad_bits(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPT_AD_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_invept_context(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_invept_global(void) | 
 | { | 
 | 	return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_invvpid_single(void) | 
 | { | 
 | 	return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_invvpid_global(void) | 
 | { | 
 | 	return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_ept(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_ENABLE_EPT; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_unrestricted_guest(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_UNRESTRICTED_GUEST; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_ple(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_PAUSE_LOOP_EXITING; | 
 | } | 
 |  | 
 | static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm) | 
 | { | 
 | 	return flexpriority_enabled && irqchip_in_kernel(kvm); | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_vpid(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_ENABLE_VPID; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_rdtscp(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_RDTSCP; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_invpcid(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_ENABLE_INVPCID; | 
 | } | 
 |  | 
 | static inline bool cpu_has_virtual_nmis(void) | 
 | { | 
 | 	return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_wbinvd_exit(void) | 
 | { | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_WBINVD_EXITING; | 
 | } | 
 |  | 
 | static inline bool cpu_has_vmx_shadow_vmcs(void) | 
 | { | 
 | 	u64 vmx_msr; | 
 | 	rdmsrl(MSR_IA32_VMX_MISC, vmx_msr); | 
 | 	/* check if the cpu supports writing r/o exit information fields */ | 
 | 	if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS)) | 
 | 		return false; | 
 |  | 
 | 	return vmcs_config.cpu_based_2nd_exec_ctrl & | 
 | 		SECONDARY_EXEC_SHADOW_VMCS; | 
 | } | 
 |  | 
 | static inline bool report_flexpriority(void) | 
 | { | 
 | 	return flexpriority_enabled; | 
 | } | 
 |  | 
 | static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit) | 
 | { | 
 | 	return vmcs12->cpu_based_vm_exec_control & bit; | 
 | } | 
 |  | 
 | static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit) | 
 | { | 
 | 	return (vmcs12->cpu_based_vm_exec_control & | 
 | 			CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) && | 
 | 		(vmcs12->secondary_vm_exec_control & bit); | 
 | } | 
 |  | 
 | static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12, | 
 | 	struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS; | 
 | } | 
 |  | 
 | static inline bool is_exception(u32 intr_info) | 
 | { | 
 | 	return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK)) | 
 | 		== (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK); | 
 | } | 
 |  | 
 | static void nested_vmx_vmexit(struct kvm_vcpu *vcpu); | 
 | static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, | 
 | 			struct vmcs12 *vmcs12, | 
 | 			u32 reason, unsigned long qualification); | 
 |  | 
 | static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < vmx->nmsrs; ++i) | 
 | 		if (vmx_msr_index[vmx->guest_msrs[i].index] == msr) | 
 | 			return i; | 
 | 	return -1; | 
 | } | 
 |  | 
 | static inline void __invvpid(int ext, u16 vpid, gva_t gva) | 
 | { | 
 |     struct { | 
 | 	u64 vpid : 16; | 
 | 	u64 rsvd : 48; | 
 | 	u64 gva; | 
 |     } operand = { vpid, 0, gva }; | 
 |  | 
 |     asm volatile (__ex(ASM_VMX_INVVPID) | 
 | 		  /* CF==1 or ZF==1 --> rc = -1 */ | 
 | 		  "; ja 1f ; ud2 ; 1:" | 
 | 		  : : "a"(&operand), "c"(ext) : "cc", "memory"); | 
 | } | 
 |  | 
 | static inline void __invept(int ext, u64 eptp, gpa_t gpa) | 
 | { | 
 | 	struct { | 
 | 		u64 eptp, gpa; | 
 | 	} operand = {eptp, gpa}; | 
 |  | 
 | 	asm volatile (__ex(ASM_VMX_INVEPT) | 
 | 			/* CF==1 or ZF==1 --> rc = -1 */ | 
 | 			"; ja 1f ; ud2 ; 1:\n" | 
 | 			: : "a" (&operand), "c" (ext) : "cc", "memory"); | 
 | } | 
 |  | 
 | static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	i = __find_msr_index(vmx, msr); | 
 | 	if (i >= 0) | 
 | 		return &vmx->guest_msrs[i]; | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void vmcs_clear(struct vmcs *vmcs) | 
 | { | 
 | 	u64 phys_addr = __pa(vmcs); | 
 | 	u8 error; | 
 |  | 
 | 	asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0" | 
 | 		      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) | 
 | 		      : "cc", "memory"); | 
 | 	if (error) | 
 | 		printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n", | 
 | 		       vmcs, phys_addr); | 
 | } | 
 |  | 
 | static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs) | 
 | { | 
 | 	vmcs_clear(loaded_vmcs->vmcs); | 
 | 	loaded_vmcs->cpu = -1; | 
 | 	loaded_vmcs->launched = 0; | 
 | } | 
 |  | 
 | static void vmcs_load(struct vmcs *vmcs) | 
 | { | 
 | 	u64 phys_addr = __pa(vmcs); | 
 | 	u8 error; | 
 |  | 
 | 	asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0" | 
 | 			: "=qm"(error) : "a"(&phys_addr), "m"(phys_addr) | 
 | 			: "cc", "memory"); | 
 | 	if (error) | 
 | 		printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n", | 
 | 		       vmcs, phys_addr); | 
 | } | 
 |  | 
 | #ifdef CONFIG_KEXEC | 
 | /* | 
 |  * This bitmap is used to indicate whether the vmclear | 
 |  * operation is enabled on all cpus. All disabled by | 
 |  * default. | 
 |  */ | 
 | static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE; | 
 |  | 
 | static inline void crash_enable_local_vmclear(int cpu) | 
 | { | 
 | 	cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap); | 
 | } | 
 |  | 
 | static inline void crash_disable_local_vmclear(int cpu) | 
 | { | 
 | 	cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap); | 
 | } | 
 |  | 
 | static inline int crash_local_vmclear_enabled(int cpu) | 
 | { | 
 | 	return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap); | 
 | } | 
 |  | 
 | static void crash_vmclear_local_loaded_vmcss(void) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 | 	struct loaded_vmcs *v; | 
 |  | 
 | 	if (!crash_local_vmclear_enabled(cpu)) | 
 | 		return; | 
 |  | 
 | 	list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu), | 
 | 			    loaded_vmcss_on_cpu_link) | 
 | 		vmcs_clear(v->vmcs); | 
 | } | 
 | #else | 
 | static inline void crash_enable_local_vmclear(int cpu) { } | 
 | static inline void crash_disable_local_vmclear(int cpu) { } | 
 | #endif /* CONFIG_KEXEC */ | 
 |  | 
 | static void __loaded_vmcs_clear(void *arg) | 
 | { | 
 | 	struct loaded_vmcs *loaded_vmcs = arg; | 
 | 	int cpu = raw_smp_processor_id(); | 
 |  | 
 | 	if (loaded_vmcs->cpu != cpu) | 
 | 		return; /* vcpu migration can race with cpu offline */ | 
 | 	if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs) | 
 | 		per_cpu(current_vmcs, cpu) = NULL; | 
 | 	crash_disable_local_vmclear(cpu); | 
 | 	list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link); | 
 |  | 
 | 	/* | 
 | 	 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link | 
 | 	 * is before setting loaded_vmcs->vcpu to -1 which is done in | 
 | 	 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist | 
 | 	 * then adds the vmcs into percpu list before it is deleted. | 
 | 	 */ | 
 | 	smp_wmb(); | 
 |  | 
 | 	loaded_vmcs_init(loaded_vmcs); | 
 | 	crash_enable_local_vmclear(cpu); | 
 | } | 
 |  | 
 | static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs) | 
 | { | 
 | 	int cpu = loaded_vmcs->cpu; | 
 |  | 
 | 	if (cpu != -1) | 
 | 		smp_call_function_single(cpu, | 
 | 			 __loaded_vmcs_clear, loaded_vmcs, 1); | 
 | } | 
 |  | 
 | static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx) | 
 | { | 
 | 	if (vmx->vpid == 0) | 
 | 		return; | 
 |  | 
 | 	if (cpu_has_vmx_invvpid_single()) | 
 | 		__invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0); | 
 | } | 
 |  | 
 | static inline void vpid_sync_vcpu_global(void) | 
 | { | 
 | 	if (cpu_has_vmx_invvpid_global()) | 
 | 		__invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0); | 
 | } | 
 |  | 
 | static inline void vpid_sync_context(struct vcpu_vmx *vmx) | 
 | { | 
 | 	if (cpu_has_vmx_invvpid_single()) | 
 | 		vpid_sync_vcpu_single(vmx); | 
 | 	else | 
 | 		vpid_sync_vcpu_global(); | 
 | } | 
 |  | 
 | static inline void ept_sync_global(void) | 
 | { | 
 | 	if (cpu_has_vmx_invept_global()) | 
 | 		__invept(VMX_EPT_EXTENT_GLOBAL, 0, 0); | 
 | } | 
 |  | 
 | static inline void ept_sync_context(u64 eptp) | 
 | { | 
 | 	if (enable_ept) { | 
 | 		if (cpu_has_vmx_invept_context()) | 
 | 			__invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0); | 
 | 		else | 
 | 			ept_sync_global(); | 
 | 	} | 
 | } | 
 |  | 
 | static __always_inline unsigned long vmcs_readl(unsigned long field) | 
 | { | 
 | 	unsigned long value; | 
 |  | 
 | 	asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0") | 
 | 		      : "=a"(value) : "d"(field) : "cc"); | 
 | 	return value; | 
 | } | 
 |  | 
 | static __always_inline u16 vmcs_read16(unsigned long field) | 
 | { | 
 | 	return vmcs_readl(field); | 
 | } | 
 |  | 
 | static __always_inline u32 vmcs_read32(unsigned long field) | 
 | { | 
 | 	return vmcs_readl(field); | 
 | } | 
 |  | 
 | static __always_inline u64 vmcs_read64(unsigned long field) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	return vmcs_readl(field); | 
 | #else | 
 | 	return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32); | 
 | #endif | 
 | } | 
 |  | 
 | static noinline void vmwrite_error(unsigned long field, unsigned long value) | 
 | { | 
 | 	printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n", | 
 | 	       field, value, vmcs_read32(VM_INSTRUCTION_ERROR)); | 
 | 	dump_stack(); | 
 | } | 
 |  | 
 | static void vmcs_writel(unsigned long field, unsigned long value) | 
 | { | 
 | 	u8 error; | 
 |  | 
 | 	asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0" | 
 | 		       : "=q"(error) : "a"(value), "d"(field) : "cc"); | 
 | 	if (unlikely(error)) | 
 | 		vmwrite_error(field, value); | 
 | } | 
 |  | 
 | static void vmcs_write16(unsigned long field, u16 value) | 
 | { | 
 | 	vmcs_writel(field, value); | 
 | } | 
 |  | 
 | static void vmcs_write32(unsigned long field, u32 value) | 
 | { | 
 | 	vmcs_writel(field, value); | 
 | } | 
 |  | 
 | static void vmcs_write64(unsigned long field, u64 value) | 
 | { | 
 | 	vmcs_writel(field, value); | 
 | #ifndef CONFIG_X86_64 | 
 | 	asm volatile (""); | 
 | 	vmcs_writel(field+1, value >> 32); | 
 | #endif | 
 | } | 
 |  | 
 | static void vmcs_clear_bits(unsigned long field, u32 mask) | 
 | { | 
 | 	vmcs_writel(field, vmcs_readl(field) & ~mask); | 
 | } | 
 |  | 
 | static void vmcs_set_bits(unsigned long field, u32 mask) | 
 | { | 
 | 	vmcs_writel(field, vmcs_readl(field) | mask); | 
 | } | 
 |  | 
 | static void vmx_segment_cache_clear(struct vcpu_vmx *vmx) | 
 | { | 
 | 	vmx->segment_cache.bitmask = 0; | 
 | } | 
 |  | 
 | static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg, | 
 | 				       unsigned field) | 
 | { | 
 | 	bool ret; | 
 | 	u32 mask = 1 << (seg * SEG_FIELD_NR + field); | 
 |  | 
 | 	if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) { | 
 | 		vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS); | 
 | 		vmx->segment_cache.bitmask = 0; | 
 | 	} | 
 | 	ret = vmx->segment_cache.bitmask & mask; | 
 | 	vmx->segment_cache.bitmask |= mask; | 
 | 	return ret; | 
 | } | 
 |  | 
 | static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg) | 
 | { | 
 | 	u16 *p = &vmx->segment_cache.seg[seg].selector; | 
 |  | 
 | 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL)) | 
 | 		*p = vmcs_read16(kvm_vmx_segment_fields[seg].selector); | 
 | 	return *p; | 
 | } | 
 |  | 
 | static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg) | 
 | { | 
 | 	ulong *p = &vmx->segment_cache.seg[seg].base; | 
 |  | 
 | 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE)) | 
 | 		*p = vmcs_readl(kvm_vmx_segment_fields[seg].base); | 
 | 	return *p; | 
 | } | 
 |  | 
 | static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg) | 
 | { | 
 | 	u32 *p = &vmx->segment_cache.seg[seg].limit; | 
 |  | 
 | 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT)) | 
 | 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].limit); | 
 | 	return *p; | 
 | } | 
 |  | 
 | static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg) | 
 | { | 
 | 	u32 *p = &vmx->segment_cache.seg[seg].ar; | 
 |  | 
 | 	if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR)) | 
 | 		*p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes); | 
 | 	return *p; | 
 | } | 
 |  | 
 | static void update_exception_bitmap(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 eb; | 
 |  | 
 | 	eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) | | 
 | 	     (1u << NM_VECTOR) | (1u << DB_VECTOR); | 
 | 	if ((vcpu->guest_debug & | 
 | 	     (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) == | 
 | 	    (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) | 
 | 		eb |= 1u << BP_VECTOR; | 
 | 	if (to_vmx(vcpu)->rmode.vm86_active) | 
 | 		eb = ~0; | 
 | 	if (enable_ept) | 
 | 		eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */ | 
 | 	if (vcpu->fpu_active) | 
 | 		eb &= ~(1u << NM_VECTOR); | 
 |  | 
 | 	/* When we are running a nested L2 guest and L1 specified for it a | 
 | 	 * certain exception bitmap, we must trap the same exceptions and pass | 
 | 	 * them to L1. When running L2, we will only handle the exceptions | 
 | 	 * specified above if L1 did not want them. | 
 | 	 */ | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		eb |= get_vmcs12(vcpu)->exception_bitmap; | 
 |  | 
 | 	vmcs_write32(EXCEPTION_BITMAP, eb); | 
 | } | 
 |  | 
 | static void clear_atomic_switch_msr_special(unsigned long entry, | 
 | 		unsigned long exit) | 
 | { | 
 | 	vmcs_clear_bits(VM_ENTRY_CONTROLS, entry); | 
 | 	vmcs_clear_bits(VM_EXIT_CONTROLS, exit); | 
 | } | 
 |  | 
 | static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr) | 
 | { | 
 | 	unsigned i; | 
 | 	struct msr_autoload *m = &vmx->msr_autoload; | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_EFER: | 
 | 		if (cpu_has_load_ia32_efer) { | 
 | 			clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER, | 
 | 					VM_EXIT_LOAD_IA32_EFER); | 
 | 			return; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_CORE_PERF_GLOBAL_CTRL: | 
 | 		if (cpu_has_load_perf_global_ctrl) { | 
 | 			clear_atomic_switch_msr_special( | 
 | 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, | 
 | 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); | 
 | 			return; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < m->nr; ++i) | 
 | 		if (m->guest[i].index == msr) | 
 | 			break; | 
 |  | 
 | 	if (i == m->nr) | 
 | 		return; | 
 | 	--m->nr; | 
 | 	m->guest[i] = m->guest[m->nr]; | 
 | 	m->host[i] = m->host[m->nr]; | 
 | 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); | 
 | 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); | 
 | } | 
 |  | 
 | static void add_atomic_switch_msr_special(unsigned long entry, | 
 | 		unsigned long exit, unsigned long guest_val_vmcs, | 
 | 		unsigned long host_val_vmcs, u64 guest_val, u64 host_val) | 
 | { | 
 | 	vmcs_write64(guest_val_vmcs, guest_val); | 
 | 	vmcs_write64(host_val_vmcs, host_val); | 
 | 	vmcs_set_bits(VM_ENTRY_CONTROLS, entry); | 
 | 	vmcs_set_bits(VM_EXIT_CONTROLS, exit); | 
 | } | 
 |  | 
 | static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr, | 
 | 				  u64 guest_val, u64 host_val) | 
 | { | 
 | 	unsigned i; | 
 | 	struct msr_autoload *m = &vmx->msr_autoload; | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_EFER: | 
 | 		if (cpu_has_load_ia32_efer) { | 
 | 			add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER, | 
 | 					VM_EXIT_LOAD_IA32_EFER, | 
 | 					GUEST_IA32_EFER, | 
 | 					HOST_IA32_EFER, | 
 | 					guest_val, host_val); | 
 | 			return; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_CORE_PERF_GLOBAL_CTRL: | 
 | 		if (cpu_has_load_perf_global_ctrl) { | 
 | 			add_atomic_switch_msr_special( | 
 | 					VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL, | 
 | 					VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL, | 
 | 					GUEST_IA32_PERF_GLOBAL_CTRL, | 
 | 					HOST_IA32_PERF_GLOBAL_CTRL, | 
 | 					guest_val, host_val); | 
 | 			return; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < m->nr; ++i) | 
 | 		if (m->guest[i].index == msr) | 
 | 			break; | 
 |  | 
 | 	if (i == NR_AUTOLOAD_MSRS) { | 
 | 		printk_once(KERN_WARNING"Not enough mst switch entries. " | 
 | 				"Can't add msr %x\n", msr); | 
 | 		return; | 
 | 	} else if (i == m->nr) { | 
 | 		++m->nr; | 
 | 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr); | 
 | 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr); | 
 | 	} | 
 |  | 
 | 	m->guest[i].index = msr; | 
 | 	m->guest[i].value = guest_val; | 
 | 	m->host[i].index = msr; | 
 | 	m->host[i].value = host_val; | 
 | } | 
 |  | 
 | static void reload_tss(void) | 
 | { | 
 | 	/* | 
 | 	 * VT restores TR but not its size.  Useless. | 
 | 	 */ | 
 | 	struct desc_ptr *gdt = &__get_cpu_var(host_gdt); | 
 | 	struct desc_struct *descs; | 
 |  | 
 | 	descs = (void *)gdt->address; | 
 | 	descs[GDT_ENTRY_TSS].type = 9; /* available TSS */ | 
 | 	load_TR_desc(); | 
 | } | 
 |  | 
 | static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset) | 
 | { | 
 | 	u64 guest_efer; | 
 | 	u64 ignore_bits; | 
 |  | 
 | 	guest_efer = vmx->vcpu.arch.efer; | 
 |  | 
 | 	/* | 
 | 	 * NX is emulated; LMA and LME handled by hardware; SCE meaningless | 
 | 	 * outside long mode | 
 | 	 */ | 
 | 	ignore_bits = EFER_NX | EFER_SCE; | 
 | #ifdef CONFIG_X86_64 | 
 | 	ignore_bits |= EFER_LMA | EFER_LME; | 
 | 	/* SCE is meaningful only in long mode on Intel */ | 
 | 	if (guest_efer & EFER_LMA) | 
 | 		ignore_bits &= ~(u64)EFER_SCE; | 
 | #endif | 
 | 	guest_efer &= ~ignore_bits; | 
 | 	guest_efer |= host_efer & ignore_bits; | 
 | 	vmx->guest_msrs[efer_offset].data = guest_efer; | 
 | 	vmx->guest_msrs[efer_offset].mask = ~ignore_bits; | 
 |  | 
 | 	clear_atomic_switch_msr(vmx, MSR_EFER); | 
 | 	/* On ept, can't emulate nx, and must switch nx atomically */ | 
 | 	if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) { | 
 | 		guest_efer = vmx->vcpu.arch.efer; | 
 | 		if (!(guest_efer & EFER_LMA)) | 
 | 			guest_efer &= ~EFER_LME; | 
 | 		add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static unsigned long segment_base(u16 selector) | 
 | { | 
 | 	struct desc_ptr *gdt = &__get_cpu_var(host_gdt); | 
 | 	struct desc_struct *d; | 
 | 	unsigned long table_base; | 
 | 	unsigned long v; | 
 |  | 
 | 	if (!(selector & ~3)) | 
 | 		return 0; | 
 |  | 
 | 	table_base = gdt->address; | 
 |  | 
 | 	if (selector & 4) {           /* from ldt */ | 
 | 		u16 ldt_selector = kvm_read_ldt(); | 
 |  | 
 | 		if (!(ldt_selector & ~3)) | 
 | 			return 0; | 
 |  | 
 | 		table_base = segment_base(ldt_selector); | 
 | 	} | 
 | 	d = (struct desc_struct *)(table_base + (selector & ~7)); | 
 | 	v = get_desc_base(d); | 
 | #ifdef CONFIG_X86_64 | 
 |        if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11)) | 
 |                v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32; | 
 | #endif | 
 | 	return v; | 
 | } | 
 |  | 
 | static inline unsigned long kvm_read_tr_base(void) | 
 | { | 
 | 	u16 tr; | 
 | 	asm("str %0" : "=g"(tr)); | 
 | 	return segment_base(tr); | 
 | } | 
 |  | 
 | static void vmx_save_host_state(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	int i; | 
 |  | 
 | 	if (vmx->host_state.loaded) | 
 | 		return; | 
 |  | 
 | 	vmx->host_state.loaded = 1; | 
 | 	/* | 
 | 	 * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not | 
 | 	 * allow segment selectors with cpl > 0 or ti == 1. | 
 | 	 */ | 
 | 	vmx->host_state.ldt_sel = kvm_read_ldt(); | 
 | 	vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel; | 
 | 	savesegment(fs, vmx->host_state.fs_sel); | 
 | 	if (!(vmx->host_state.fs_sel & 7)) { | 
 | 		vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel); | 
 | 		vmx->host_state.fs_reload_needed = 0; | 
 | 	} else { | 
 | 		vmcs_write16(HOST_FS_SELECTOR, 0); | 
 | 		vmx->host_state.fs_reload_needed = 1; | 
 | 	} | 
 | 	savesegment(gs, vmx->host_state.gs_sel); | 
 | 	if (!(vmx->host_state.gs_sel & 7)) | 
 | 		vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel); | 
 | 	else { | 
 | 		vmcs_write16(HOST_GS_SELECTOR, 0); | 
 | 		vmx->host_state.gs_ldt_reload_needed = 1; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	savesegment(ds, vmx->host_state.ds_sel); | 
 | 	savesegment(es, vmx->host_state.es_sel); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE)); | 
 | 	vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE)); | 
 | #else | 
 | 	vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel)); | 
 | 	vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel)); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); | 
 | 	if (is_long_mode(&vmx->vcpu)) | 
 | 		wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); | 
 | #endif | 
 | 	for (i = 0; i < vmx->save_nmsrs; ++i) | 
 | 		kvm_set_shared_msr(vmx->guest_msrs[i].index, | 
 | 				   vmx->guest_msrs[i].data, | 
 | 				   vmx->guest_msrs[i].mask); | 
 | } | 
 |  | 
 | static void __vmx_load_host_state(struct vcpu_vmx *vmx) | 
 | { | 
 | 	if (!vmx->host_state.loaded) | 
 | 		return; | 
 |  | 
 | 	++vmx->vcpu.stat.host_state_reload; | 
 | 	vmx->host_state.loaded = 0; | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (is_long_mode(&vmx->vcpu)) | 
 | 		rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base); | 
 | #endif | 
 | 	if (vmx->host_state.gs_ldt_reload_needed) { | 
 | 		kvm_load_ldt(vmx->host_state.ldt_sel); | 
 | #ifdef CONFIG_X86_64 | 
 | 		load_gs_index(vmx->host_state.gs_sel); | 
 | #else | 
 | 		loadsegment(gs, vmx->host_state.gs_sel); | 
 | #endif | 
 | 	} | 
 | 	if (vmx->host_state.fs_reload_needed) | 
 | 		loadsegment(fs, vmx->host_state.fs_sel); | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) { | 
 | 		loadsegment(ds, vmx->host_state.ds_sel); | 
 | 		loadsegment(es, vmx->host_state.es_sel); | 
 | 	} | 
 | #endif | 
 | 	reload_tss(); | 
 | #ifdef CONFIG_X86_64 | 
 | 	wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base); | 
 | #endif | 
 | 	/* | 
 | 	 * If the FPU is not active (through the host task or | 
 | 	 * the guest vcpu), then restore the cr0.TS bit. | 
 | 	 */ | 
 | 	if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded) | 
 | 		stts(); | 
 | 	load_gdt(&__get_cpu_var(host_gdt)); | 
 | } | 
 |  | 
 | static void vmx_load_host_state(struct vcpu_vmx *vmx) | 
 | { | 
 | 	preempt_disable(); | 
 | 	__vmx_load_host_state(vmx); | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | /* | 
 |  * Switches to specified vcpu, until a matching vcpu_put(), but assumes | 
 |  * vcpu mutex is already taken. | 
 |  */ | 
 | static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); | 
 |  | 
 | 	if (!vmm_exclusive) | 
 | 		kvm_cpu_vmxon(phys_addr); | 
 | 	else if (vmx->loaded_vmcs->cpu != cpu) | 
 | 		loaded_vmcs_clear(vmx->loaded_vmcs); | 
 |  | 
 | 	if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) { | 
 | 		per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs; | 
 | 		vmcs_load(vmx->loaded_vmcs->vmcs); | 
 | 	} | 
 |  | 
 | 	if (vmx->loaded_vmcs->cpu != cpu) { | 
 | 		struct desc_ptr *gdt = &__get_cpu_var(host_gdt); | 
 | 		unsigned long sysenter_esp; | 
 |  | 
 | 		kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu); | 
 | 		local_irq_disable(); | 
 | 		crash_disable_local_vmclear(cpu); | 
 |  | 
 | 		/* | 
 | 		 * Read loaded_vmcs->cpu should be before fetching | 
 | 		 * loaded_vmcs->loaded_vmcss_on_cpu_link. | 
 | 		 * See the comments in __loaded_vmcs_clear(). | 
 | 		 */ | 
 | 		smp_rmb(); | 
 |  | 
 | 		list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link, | 
 | 			 &per_cpu(loaded_vmcss_on_cpu, cpu)); | 
 | 		crash_enable_local_vmclear(cpu); | 
 | 		local_irq_enable(); | 
 |  | 
 | 		/* | 
 | 		 * Linux uses per-cpu TSS and GDT, so set these when switching | 
 | 		 * processors. | 
 | 		 */ | 
 | 		vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */ | 
 | 		vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */ | 
 |  | 
 | 		rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp); | 
 | 		vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */ | 
 | 		vmx->loaded_vmcs->cpu = cpu; | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	__vmx_load_host_state(to_vmx(vcpu)); | 
 | 	if (!vmm_exclusive) { | 
 | 		__loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs); | 
 | 		vcpu->cpu = -1; | 
 | 		kvm_cpu_vmxoff(); | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_fpu_activate(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ulong cr0; | 
 |  | 
 | 	if (vcpu->fpu_active) | 
 | 		return; | 
 | 	vcpu->fpu_active = 1; | 
 | 	cr0 = vmcs_readl(GUEST_CR0); | 
 | 	cr0 &= ~(X86_CR0_TS | X86_CR0_MP); | 
 | 	cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP); | 
 | 	vmcs_writel(GUEST_CR0, cr0); | 
 | 	update_exception_bitmap(vcpu); | 
 | 	vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS; | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		vcpu->arch.cr0_guest_owned_bits &= | 
 | 			~get_vmcs12(vcpu)->cr0_guest_host_mask; | 
 | 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); | 
 | } | 
 |  | 
 | static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu); | 
 |  | 
 | /* | 
 |  * Return the cr0 value that a nested guest would read. This is a combination | 
 |  * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by | 
 |  * its hypervisor (cr0_read_shadow). | 
 |  */ | 
 | static inline unsigned long nested_read_cr0(struct vmcs12 *fields) | 
 | { | 
 | 	return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) | | 
 | 		(fields->cr0_read_shadow & fields->cr0_guest_host_mask); | 
 | } | 
 | static inline unsigned long nested_read_cr4(struct vmcs12 *fields) | 
 | { | 
 | 	return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) | | 
 | 		(fields->cr4_read_shadow & fields->cr4_guest_host_mask); | 
 | } | 
 |  | 
 | static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* Note that there is no vcpu->fpu_active = 0 here. The caller must | 
 | 	 * set this *before* calling this function. | 
 | 	 */ | 
 | 	vmx_decache_cr0_guest_bits(vcpu); | 
 | 	vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP); | 
 | 	update_exception_bitmap(vcpu); | 
 | 	vcpu->arch.cr0_guest_owned_bits = 0; | 
 | 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		/* | 
 | 		 * L1's specified read shadow might not contain the TS bit, | 
 | 		 * so now that we turned on shadowing of this bit, we need to | 
 | 		 * set this bit of the shadow. Like in nested_vmx_run we need | 
 | 		 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet | 
 | 		 * up-to-date here because we just decached cr0.TS (and we'll | 
 | 		 * only update vmcs12->guest_cr0 on nested exit). | 
 | 		 */ | 
 | 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
 | 		vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) | | 
 | 			(vcpu->arch.cr0 & X86_CR0_TS); | 
 | 		vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); | 
 | 	} else | 
 | 		vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0); | 
 | } | 
 |  | 
 | static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long rflags, save_rflags; | 
 |  | 
 | 	if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) { | 
 | 		__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); | 
 | 		rflags = vmcs_readl(GUEST_RFLAGS); | 
 | 		if (to_vmx(vcpu)->rmode.vm86_active) { | 
 | 			rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS; | 
 | 			save_rflags = to_vmx(vcpu)->rmode.save_rflags; | 
 | 			rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; | 
 | 		} | 
 | 		to_vmx(vcpu)->rflags = rflags; | 
 | 	} | 
 | 	return to_vmx(vcpu)->rflags; | 
 | } | 
 |  | 
 | static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
 | { | 
 | 	__set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail); | 
 | 	to_vmx(vcpu)->rflags = rflags; | 
 | 	if (to_vmx(vcpu)->rmode.vm86_active) { | 
 | 		to_vmx(vcpu)->rmode.save_rflags = rflags; | 
 | 		rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; | 
 | 	} | 
 | 	vmcs_writel(GUEST_RFLAGS, rflags); | 
 | } | 
 |  | 
 | static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
 | { | 
 | 	u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); | 
 | 	int ret = 0; | 
 |  | 
 | 	if (interruptibility & GUEST_INTR_STATE_STI) | 
 | 		ret |= KVM_X86_SHADOW_INT_STI; | 
 | 	if (interruptibility & GUEST_INTR_STATE_MOV_SS) | 
 | 		ret |= KVM_X86_SHADOW_INT_MOV_SS; | 
 |  | 
 | 	return ret & mask; | 
 | } | 
 |  | 
 | static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask) | 
 | { | 
 | 	u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); | 
 | 	u32 interruptibility = interruptibility_old; | 
 |  | 
 | 	interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS); | 
 |  | 
 | 	if (mask & KVM_X86_SHADOW_INT_MOV_SS) | 
 | 		interruptibility |= GUEST_INTR_STATE_MOV_SS; | 
 | 	else if (mask & KVM_X86_SHADOW_INT_STI) | 
 | 		interruptibility |= GUEST_INTR_STATE_STI; | 
 |  | 
 | 	if ((interruptibility != interruptibility_old)) | 
 | 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility); | 
 | } | 
 |  | 
 | static void skip_emulated_instruction(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long rip; | 
 |  | 
 | 	rip = kvm_rip_read(vcpu); | 
 | 	rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
 | 	kvm_rip_write(vcpu, rip); | 
 |  | 
 | 	/* skipping an emulated instruction also counts */ | 
 | 	vmx_set_interrupt_shadow(vcpu, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * KVM wants to inject page-faults which it got to the guest. This function | 
 |  * checks whether in a nested guest, we need to inject them to L1 or L2. | 
 |  * This function assumes it is called with the exit reason in vmcs02 being | 
 |  * a #PF exception (this is the only case in which KVM injects a #PF when L2 | 
 |  * is running). | 
 |  */ | 
 | static int nested_pf_handled(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
 |  | 
 | 	/* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */ | 
 | 	if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR))) | 
 | 		return 0; | 
 |  | 
 | 	nested_vmx_vmexit(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr, | 
 | 				bool has_error_code, u32 error_code, | 
 | 				bool reinject) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	u32 intr_info = nr | INTR_INFO_VALID_MASK; | 
 |  | 
 | 	if (nr == PF_VECTOR && is_guest_mode(vcpu) && | 
 | 	    !vmx->nested.nested_run_pending && nested_pf_handled(vcpu)) | 
 | 		return; | 
 |  | 
 | 	if (has_error_code) { | 
 | 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code); | 
 | 		intr_info |= INTR_INFO_DELIVER_CODE_MASK; | 
 | 	} | 
 |  | 
 | 	if (vmx->rmode.vm86_active) { | 
 | 		int inc_eip = 0; | 
 | 		if (kvm_exception_is_soft(nr)) | 
 | 			inc_eip = vcpu->arch.event_exit_inst_len; | 
 | 		if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE) | 
 | 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (kvm_exception_is_soft(nr)) { | 
 | 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, | 
 | 			     vmx->vcpu.arch.event_exit_inst_len); | 
 | 		intr_info |= INTR_TYPE_SOFT_EXCEPTION; | 
 | 	} else | 
 | 		intr_info |= INTR_TYPE_HARD_EXCEPTION; | 
 |  | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info); | 
 | } | 
 |  | 
 | static bool vmx_rdtscp_supported(void) | 
 | { | 
 | 	return cpu_has_vmx_rdtscp(); | 
 | } | 
 |  | 
 | static bool vmx_invpcid_supported(void) | 
 | { | 
 | 	return cpu_has_vmx_invpcid() && enable_ept; | 
 | } | 
 |  | 
 | /* | 
 |  * Swap MSR entry in host/guest MSR entry array. | 
 |  */ | 
 | static void move_msr_up(struct vcpu_vmx *vmx, int from, int to) | 
 | { | 
 | 	struct shared_msr_entry tmp; | 
 |  | 
 | 	tmp = vmx->guest_msrs[to]; | 
 | 	vmx->guest_msrs[to] = vmx->guest_msrs[from]; | 
 | 	vmx->guest_msrs[from] = tmp; | 
 | } | 
 |  | 
 | static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long *msr_bitmap; | 
 |  | 
 | 	if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) { | 
 | 		if (is_long_mode(vcpu)) | 
 | 			msr_bitmap = vmx_msr_bitmap_longmode_x2apic; | 
 | 		else | 
 | 			msr_bitmap = vmx_msr_bitmap_legacy_x2apic; | 
 | 	} else { | 
 | 		if (is_long_mode(vcpu)) | 
 | 			msr_bitmap = vmx_msr_bitmap_longmode; | 
 | 		else | 
 | 			msr_bitmap = vmx_msr_bitmap_legacy; | 
 | 	} | 
 |  | 
 | 	vmcs_write64(MSR_BITMAP, __pa(msr_bitmap)); | 
 | } | 
 |  | 
 | /* | 
 |  * Set up the vmcs to automatically save and restore system | 
 |  * msrs.  Don't touch the 64-bit msrs if the guest is in legacy | 
 |  * mode, as fiddling with msrs is very expensive. | 
 |  */ | 
 | static void setup_msrs(struct vcpu_vmx *vmx) | 
 | { | 
 | 	int save_nmsrs, index; | 
 |  | 
 | 	save_nmsrs = 0; | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (is_long_mode(&vmx->vcpu)) { | 
 | 		index = __find_msr_index(vmx, MSR_SYSCALL_MASK); | 
 | 		if (index >= 0) | 
 | 			move_msr_up(vmx, index, save_nmsrs++); | 
 | 		index = __find_msr_index(vmx, MSR_LSTAR); | 
 | 		if (index >= 0) | 
 | 			move_msr_up(vmx, index, save_nmsrs++); | 
 | 		index = __find_msr_index(vmx, MSR_CSTAR); | 
 | 		if (index >= 0) | 
 | 			move_msr_up(vmx, index, save_nmsrs++); | 
 | 		index = __find_msr_index(vmx, MSR_TSC_AUX); | 
 | 		if (index >= 0 && vmx->rdtscp_enabled) | 
 | 			move_msr_up(vmx, index, save_nmsrs++); | 
 | 		/* | 
 | 		 * MSR_STAR is only needed on long mode guests, and only | 
 | 		 * if efer.sce is enabled. | 
 | 		 */ | 
 | 		index = __find_msr_index(vmx, MSR_STAR); | 
 | 		if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE)) | 
 | 			move_msr_up(vmx, index, save_nmsrs++); | 
 | 	} | 
 | #endif | 
 | 	index = __find_msr_index(vmx, MSR_EFER); | 
 | 	if (index >= 0 && update_transition_efer(vmx, index)) | 
 | 		move_msr_up(vmx, index, save_nmsrs++); | 
 |  | 
 | 	vmx->save_nmsrs = save_nmsrs; | 
 |  | 
 | 	if (cpu_has_vmx_msr_bitmap()) | 
 | 		vmx_set_msr_bitmap(&vmx->vcpu); | 
 | } | 
 |  | 
 | /* | 
 |  * reads and returns guest's timestamp counter "register" | 
 |  * guest_tsc = host_tsc + tsc_offset    -- 21.3 | 
 |  */ | 
 | static u64 guest_read_tsc(void) | 
 | { | 
 | 	u64 host_tsc, tsc_offset; | 
 |  | 
 | 	rdtscll(host_tsc); | 
 | 	tsc_offset = vmcs_read64(TSC_OFFSET); | 
 | 	return host_tsc + tsc_offset; | 
 | } | 
 |  | 
 | /* | 
 |  * Like guest_read_tsc, but always returns L1's notion of the timestamp | 
 |  * counter, even if a nested guest (L2) is currently running. | 
 |  */ | 
 | u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) | 
 | { | 
 | 	u64 tsc_offset; | 
 |  | 
 | 	tsc_offset = is_guest_mode(vcpu) ? | 
 | 		to_vmx(vcpu)->nested.vmcs01_tsc_offset : | 
 | 		vmcs_read64(TSC_OFFSET); | 
 | 	return host_tsc + tsc_offset; | 
 | } | 
 |  | 
 | /* | 
 |  * Engage any workarounds for mis-matched TSC rates.  Currently limited to | 
 |  * software catchup for faster rates on slower CPUs. | 
 |  */ | 
 | static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) | 
 | { | 
 | 	if (!scale) | 
 | 		return; | 
 |  | 
 | 	if (user_tsc_khz > tsc_khz) { | 
 | 		vcpu->arch.tsc_catchup = 1; | 
 | 		vcpu->arch.tsc_always_catchup = 1; | 
 | 	} else | 
 | 		WARN(1, "user requested TSC rate below hardware speed\n"); | 
 | } | 
 |  | 
 | static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vmcs_read64(TSC_OFFSET); | 
 | } | 
 |  | 
 | /* | 
 |  * writes 'offset' into guest's timestamp counter offset register | 
 |  */ | 
 | static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset) | 
 | { | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		/* | 
 | 		 * We're here if L1 chose not to trap WRMSR to TSC. According | 
 | 		 * to the spec, this should set L1's TSC; The offset that L1 | 
 | 		 * set for L2 remains unchanged, and still needs to be added | 
 | 		 * to the newly set TSC to get L2's TSC. | 
 | 		 */ | 
 | 		struct vmcs12 *vmcs12; | 
 | 		to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset; | 
 | 		/* recalculate vmcs02.TSC_OFFSET: */ | 
 | 		vmcs12 = get_vmcs12(vcpu); | 
 | 		vmcs_write64(TSC_OFFSET, offset + | 
 | 			(nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ? | 
 | 			 vmcs12->tsc_offset : 0)); | 
 | 	} else { | 
 | 		vmcs_write64(TSC_OFFSET, offset); | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host) | 
 | { | 
 | 	u64 offset = vmcs_read64(TSC_OFFSET); | 
 | 	vmcs_write64(TSC_OFFSET, offset + adjustment); | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		/* Even when running L2, the adjustment needs to apply to L1 */ | 
 | 		to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment; | 
 | 	} | 
 | } | 
 |  | 
 | static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) | 
 | { | 
 | 	return target_tsc - native_read_tsc(); | 
 | } | 
 |  | 
 | static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0); | 
 | 	return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31))); | 
 | } | 
 |  | 
 | /* | 
 |  * nested_vmx_allowed() checks whether a guest should be allowed to use VMX | 
 |  * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for | 
 |  * all guests if the "nested" module option is off, and can also be disabled | 
 |  * for a single guest by disabling its VMX cpuid bit. | 
 |  */ | 
 | static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return nested && guest_cpuid_has_vmx(vcpu); | 
 | } | 
 |  | 
 | /* | 
 |  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be | 
 |  * returned for the various VMX controls MSRs when nested VMX is enabled. | 
 |  * The same values should also be used to verify that vmcs12 control fields are | 
 |  * valid during nested entry from L1 to L2. | 
 |  * Each of these control msrs has a low and high 32-bit half: A low bit is on | 
 |  * if the corresponding bit in the (32-bit) control field *must* be on, and a | 
 |  * bit in the high half is on if the corresponding bit in the control field | 
 |  * may be on. See also vmx_control_verify(). | 
 |  * TODO: allow these variables to be modified (downgraded) by module options | 
 |  * or other means. | 
 |  */ | 
 | static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high; | 
 | static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high; | 
 | static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high; | 
 | static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high; | 
 | static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high; | 
 | static u32 nested_vmx_misc_low, nested_vmx_misc_high; | 
 | static __init void nested_vmx_setup_ctls_msrs(void) | 
 | { | 
 | 	/* | 
 | 	 * Note that as a general rule, the high half of the MSRs (bits in | 
 | 	 * the control fields which may be 1) should be initialized by the | 
 | 	 * intersection of the underlying hardware's MSR (i.e., features which | 
 | 	 * can be supported) and the list of features we want to expose - | 
 | 	 * because they are known to be properly supported in our code. | 
 | 	 * Also, usually, the low half of the MSRs (bits which must be 1) can | 
 | 	 * be set to 0, meaning that L1 may turn off any of these bits. The | 
 | 	 * reason is that if one of these bits is necessary, it will appear | 
 | 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control | 
 | 	 * fields of vmcs01 and vmcs02, will turn these bits off - and | 
 | 	 * nested_vmx_exit_handled() will not pass related exits to L1. | 
 | 	 * These rules have exceptions below. | 
 | 	 */ | 
 |  | 
 | 	/* pin-based controls */ | 
 | 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS, | 
 | 	      nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high); | 
 | 	/* | 
 | 	 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is | 
 | 	 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR. | 
 | 	 */ | 
 | 	nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; | 
 | 	nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK | | 
 | 		PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS | | 
 | 		PIN_BASED_VMX_PREEMPTION_TIMER; | 
 | 	nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR; | 
 |  | 
 | 	/* | 
 | 	 * Exit controls | 
 | 	 * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and | 
 | 	 * 17 must be 1. | 
 | 	 */ | 
 | 	nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; | 
 | 	/* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */ | 
 | #ifdef CONFIG_X86_64 | 
 | 	nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE; | 
 | #else | 
 | 	nested_vmx_exit_ctls_high = 0; | 
 | #endif | 
 | 	nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR; | 
 |  | 
 | 	/* entry controls */ | 
 | 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS, | 
 | 		nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high); | 
 | 	/* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */ | 
 | 	nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; | 
 | 	nested_vmx_entry_ctls_high &= | 
 | 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE; | 
 | 	nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR; | 
 |  | 
 | 	/* cpu-based controls */ | 
 | 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS, | 
 | 		nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high); | 
 | 	nested_vmx_procbased_ctls_low = 0; | 
 | 	nested_vmx_procbased_ctls_high &= | 
 | 		CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING | | 
 | 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING | | 
 | 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING | | 
 | 		CPU_BASED_CR3_STORE_EXITING | | 
 | #ifdef CONFIG_X86_64 | 
 | 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING | | 
 | #endif | 
 | 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING | | 
 | 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING | | 
 | 		CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING | | 
 | 		CPU_BASED_PAUSE_EXITING | | 
 | 		CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; | 
 | 	/* | 
 | 	 * We can allow some features even when not supported by the | 
 | 	 * hardware. For example, L1 can specify an MSR bitmap - and we | 
 | 	 * can use it to avoid exits to L1 - even when L0 runs L2 | 
 | 	 * without MSR bitmaps. | 
 | 	 */ | 
 | 	nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS; | 
 |  | 
 | 	/* secondary cpu-based controls */ | 
 | 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2, | 
 | 		nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high); | 
 | 	nested_vmx_secondary_ctls_low = 0; | 
 | 	nested_vmx_secondary_ctls_high &= | 
 | 		SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | | 
 | 		SECONDARY_EXEC_WBINVD_EXITING; | 
 |  | 
 | 	/* miscellaneous data */ | 
 | 	rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high); | 
 | 	nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK | | 
 | 		VMX_MISC_SAVE_EFER_LMA; | 
 | 	nested_vmx_misc_high = 0; | 
 | } | 
 |  | 
 | static inline bool vmx_control_verify(u32 control, u32 low, u32 high) | 
 | { | 
 | 	/* | 
 | 	 * Bits 0 in high must be 0, and bits 1 in low must be 1. | 
 | 	 */ | 
 | 	return ((control & high) | low) == control; | 
 | } | 
 |  | 
 | static inline u64 vmx_control_msr(u32 low, u32 high) | 
 | { | 
 | 	return low | ((u64)high << 32); | 
 | } | 
 |  | 
 | /* | 
 |  * If we allow our guest to use VMX instructions (i.e., nested VMX), we should | 
 |  * also let it use VMX-specific MSRs. | 
 |  * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a | 
 |  * VMX-specific MSR, or 0 when we haven't (and the caller should handle it | 
 |  * like all other MSRs). | 
 |  */ | 
 | static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
 | { | 
 | 	if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC && | 
 | 		     msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) { | 
 | 		/* | 
 | 		 * According to the spec, processors which do not support VMX | 
 | 		 * should throw a #GP(0) when VMX capability MSRs are read. | 
 | 		 */ | 
 | 		kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	switch (msr_index) { | 
 | 	case MSR_IA32_FEATURE_CONTROL: | 
 | 		*pdata = 0; | 
 | 		break; | 
 | 	case MSR_IA32_VMX_BASIC: | 
 | 		/* | 
 | 		 * This MSR reports some information about VMX support. We | 
 | 		 * should return information about the VMX we emulate for the | 
 | 		 * guest, and the VMCS structure we give it - not about the | 
 | 		 * VMX support of the underlying hardware. | 
 | 		 */ | 
 | 		*pdata = VMCS12_REVISION | | 
 | 			   ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) | | 
 | 			   (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT); | 
 | 		break; | 
 | 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS: | 
 | 	case MSR_IA32_VMX_PINBASED_CTLS: | 
 | 		*pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low, | 
 | 					nested_vmx_pinbased_ctls_high); | 
 | 		break; | 
 | 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS: | 
 | 	case MSR_IA32_VMX_PROCBASED_CTLS: | 
 | 		*pdata = vmx_control_msr(nested_vmx_procbased_ctls_low, | 
 | 					nested_vmx_procbased_ctls_high); | 
 | 		break; | 
 | 	case MSR_IA32_VMX_TRUE_EXIT_CTLS: | 
 | 	case MSR_IA32_VMX_EXIT_CTLS: | 
 | 		*pdata = vmx_control_msr(nested_vmx_exit_ctls_low, | 
 | 					nested_vmx_exit_ctls_high); | 
 | 		break; | 
 | 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS: | 
 | 	case MSR_IA32_VMX_ENTRY_CTLS: | 
 | 		*pdata = vmx_control_msr(nested_vmx_entry_ctls_low, | 
 | 					nested_vmx_entry_ctls_high); | 
 | 		break; | 
 | 	case MSR_IA32_VMX_MISC: | 
 | 		*pdata = vmx_control_msr(nested_vmx_misc_low, | 
 | 					 nested_vmx_misc_high); | 
 | 		break; | 
 | 	/* | 
 | 	 * These MSRs specify bits which the guest must keep fixed (on or off) | 
 | 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2). | 
 | 	 * We picked the standard core2 setting. | 
 | 	 */ | 
 | #define VMXON_CR0_ALWAYSON	(X86_CR0_PE | X86_CR0_PG | X86_CR0_NE) | 
 | #define VMXON_CR4_ALWAYSON	X86_CR4_VMXE | 
 | 	case MSR_IA32_VMX_CR0_FIXED0: | 
 | 		*pdata = VMXON_CR0_ALWAYSON; | 
 | 		break; | 
 | 	case MSR_IA32_VMX_CR0_FIXED1: | 
 | 		*pdata = -1ULL; | 
 | 		break; | 
 | 	case MSR_IA32_VMX_CR4_FIXED0: | 
 | 		*pdata = VMXON_CR4_ALWAYSON; | 
 | 		break; | 
 | 	case MSR_IA32_VMX_CR4_FIXED1: | 
 | 		*pdata = -1ULL; | 
 | 		break; | 
 | 	case MSR_IA32_VMX_VMCS_ENUM: | 
 | 		*pdata = 0x1f; | 
 | 		break; | 
 | 	case MSR_IA32_VMX_PROCBASED_CTLS2: | 
 | 		*pdata = vmx_control_msr(nested_vmx_secondary_ctls_low, | 
 | 					nested_vmx_secondary_ctls_high); | 
 | 		break; | 
 | 	case MSR_IA32_VMX_EPT_VPID_CAP: | 
 | 		/* Currently, no nested ept or nested vpid */ | 
 | 		*pdata = 0; | 
 | 		break; | 
 | 	default: | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data) | 
 | { | 
 | 	if (!nested_vmx_allowed(vcpu)) | 
 | 		return 0; | 
 |  | 
 | 	if (msr_index == MSR_IA32_FEATURE_CONTROL) | 
 | 		/* TODO: the right thing. */ | 
 | 		return 1; | 
 | 	/* | 
 | 	 * No need to treat VMX capability MSRs specially: If we don't handle | 
 | 	 * them, handle_wrmsr will #GP(0), which is correct (they are readonly) | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Reads an msr value (of 'msr_index') into 'pdata'. | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
 | { | 
 | 	u64 data; | 
 | 	struct shared_msr_entry *msr; | 
 |  | 
 | 	if (!pdata) { | 
 | 		printk(KERN_ERR "BUG: get_msr called with NULL pdata\n"); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	switch (msr_index) { | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_FS_BASE: | 
 | 		data = vmcs_readl(GUEST_FS_BASE); | 
 | 		break; | 
 | 	case MSR_GS_BASE: | 
 | 		data = vmcs_readl(GUEST_GS_BASE); | 
 | 		break; | 
 | 	case MSR_KERNEL_GS_BASE: | 
 | 		vmx_load_host_state(to_vmx(vcpu)); | 
 | 		data = to_vmx(vcpu)->msr_guest_kernel_gs_base; | 
 | 		break; | 
 | #endif | 
 | 	case MSR_EFER: | 
 | 		return kvm_get_msr_common(vcpu, msr_index, pdata); | 
 | 	case MSR_IA32_TSC: | 
 | 		data = guest_read_tsc(); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_CS: | 
 | 		data = vmcs_read32(GUEST_SYSENTER_CS); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 		data = vmcs_readl(GUEST_SYSENTER_EIP); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		data = vmcs_readl(GUEST_SYSENTER_ESP); | 
 | 		break; | 
 | 	case MSR_TSC_AUX: | 
 | 		if (!to_vmx(vcpu)->rdtscp_enabled) | 
 | 			return 1; | 
 | 		/* Otherwise falls through */ | 
 | 	default: | 
 | 		if (vmx_get_vmx_msr(vcpu, msr_index, pdata)) | 
 | 			return 0; | 
 | 		msr = find_msr_entry(to_vmx(vcpu), msr_index); | 
 | 		if (msr) { | 
 | 			data = msr->data; | 
 | 			break; | 
 | 		} | 
 | 		return kvm_get_msr_common(vcpu, msr_index, pdata); | 
 | 	} | 
 |  | 
 | 	*pdata = data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Writes msr value into into the appropriate "register". | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	struct shared_msr_entry *msr; | 
 | 	int ret = 0; | 
 | 	u32 msr_index = msr_info->index; | 
 | 	u64 data = msr_info->data; | 
 |  | 
 | 	switch (msr_index) { | 
 | 	case MSR_EFER: | 
 | 		ret = kvm_set_msr_common(vcpu, msr_info); | 
 | 		break; | 
 | #ifdef CONFIG_X86_64 | 
 | 	case MSR_FS_BASE: | 
 | 		vmx_segment_cache_clear(vmx); | 
 | 		vmcs_writel(GUEST_FS_BASE, data); | 
 | 		break; | 
 | 	case MSR_GS_BASE: | 
 | 		vmx_segment_cache_clear(vmx); | 
 | 		vmcs_writel(GUEST_GS_BASE, data); | 
 | 		break; | 
 | 	case MSR_KERNEL_GS_BASE: | 
 | 		vmx_load_host_state(vmx); | 
 | 		vmx->msr_guest_kernel_gs_base = data; | 
 | 		break; | 
 | #endif | 
 | 	case MSR_IA32_SYSENTER_CS: | 
 | 		vmcs_write32(GUEST_SYSENTER_CS, data); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_EIP: | 
 | 		vmcs_writel(GUEST_SYSENTER_EIP, data); | 
 | 		break; | 
 | 	case MSR_IA32_SYSENTER_ESP: | 
 | 		vmcs_writel(GUEST_SYSENTER_ESP, data); | 
 | 		break; | 
 | 	case MSR_IA32_TSC: | 
 | 		kvm_write_tsc(vcpu, msr_info); | 
 | 		break; | 
 | 	case MSR_IA32_CR_PAT: | 
 | 		if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { | 
 | 			vmcs_write64(GUEST_IA32_PAT, data); | 
 | 			vcpu->arch.pat = data; | 
 | 			break; | 
 | 		} | 
 | 		ret = kvm_set_msr_common(vcpu, msr_info); | 
 | 		break; | 
 | 	case MSR_IA32_TSC_ADJUST: | 
 | 		ret = kvm_set_msr_common(vcpu, msr_info); | 
 | 		break; | 
 | 	case MSR_TSC_AUX: | 
 | 		if (!vmx->rdtscp_enabled) | 
 | 			return 1; | 
 | 		/* Check reserved bit, higher 32 bits should be zero */ | 
 | 		if ((data >> 32) != 0) | 
 | 			return 1; | 
 | 		/* Otherwise falls through */ | 
 | 	default: | 
 | 		if (vmx_set_vmx_msr(vcpu, msr_index, data)) | 
 | 			break; | 
 | 		msr = find_msr_entry(vmx, msr_index); | 
 | 		if (msr) { | 
 | 			msr->data = data; | 
 | 			if (msr - vmx->guest_msrs < vmx->save_nmsrs) { | 
 | 				preempt_disable(); | 
 | 				kvm_set_shared_msr(msr->index, msr->data, | 
 | 						   msr->mask); | 
 | 				preempt_enable(); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 		ret = kvm_set_msr_common(vcpu, msr_info); | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg) | 
 | { | 
 | 	__set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail); | 
 | 	switch (reg) { | 
 | 	case VCPU_REGS_RSP: | 
 | 		vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP); | 
 | 		break; | 
 | 	case VCPU_REGS_RIP: | 
 | 		vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP); | 
 | 		break; | 
 | 	case VCPU_EXREG_PDPTR: | 
 | 		if (enable_ept) | 
 | 			ept_save_pdptrs(vcpu); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static __init int cpu_has_kvm_support(void) | 
 | { | 
 | 	return cpu_has_vmx(); | 
 | } | 
 |  | 
 | static __init int vmx_disabled_by_bios(void) | 
 | { | 
 | 	u64 msr; | 
 |  | 
 | 	rdmsrl(MSR_IA32_FEATURE_CONTROL, msr); | 
 | 	if (msr & FEATURE_CONTROL_LOCKED) { | 
 | 		/* launched w/ TXT and VMX disabled */ | 
 | 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) | 
 | 			&& tboot_enabled()) | 
 | 			return 1; | 
 | 		/* launched w/o TXT and VMX only enabled w/ TXT */ | 
 | 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) | 
 | 			&& (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX) | 
 | 			&& !tboot_enabled()) { | 
 | 			printk(KERN_WARNING "kvm: disable TXT in the BIOS or " | 
 | 				"activate TXT before enabling KVM\n"); | 
 | 			return 1; | 
 | 		} | 
 | 		/* launched w/o TXT and VMX disabled */ | 
 | 		if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX) | 
 | 			&& !tboot_enabled()) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_cpu_vmxon(u64 addr) | 
 | { | 
 | 	asm volatile (ASM_VMX_VMXON_RAX | 
 | 			: : "a"(&addr), "m"(addr) | 
 | 			: "memory", "cc"); | 
 | } | 
 |  | 
 | static int hardware_enable(void *garbage) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 | 	u64 phys_addr = __pa(per_cpu(vmxarea, cpu)); | 
 | 	u64 old, test_bits; | 
 |  | 
 | 	if (read_cr4() & X86_CR4_VMXE) | 
 | 		return -EBUSY; | 
 |  | 
 | 	INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu)); | 
 |  | 
 | 	/* | 
 | 	 * Now we can enable the vmclear operation in kdump | 
 | 	 * since the loaded_vmcss_on_cpu list on this cpu | 
 | 	 * has been initialized. | 
 | 	 * | 
 | 	 * Though the cpu is not in VMX operation now, there | 
 | 	 * is no problem to enable the vmclear operation | 
 | 	 * for the loaded_vmcss_on_cpu list is empty! | 
 | 	 */ | 
 | 	crash_enable_local_vmclear(cpu); | 
 |  | 
 | 	rdmsrl(MSR_IA32_FEATURE_CONTROL, old); | 
 |  | 
 | 	test_bits = FEATURE_CONTROL_LOCKED; | 
 | 	test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; | 
 | 	if (tboot_enabled()) | 
 | 		test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX; | 
 |  | 
 | 	if ((old & test_bits) != test_bits) { | 
 | 		/* enable and lock */ | 
 | 		wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits); | 
 | 	} | 
 | 	write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */ | 
 |  | 
 | 	if (vmm_exclusive) { | 
 | 		kvm_cpu_vmxon(phys_addr); | 
 | 		ept_sync_global(); | 
 | 	} | 
 |  | 
 | 	native_store_gdt(&__get_cpu_var(host_gdt)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vmclear_local_loaded_vmcss(void) | 
 | { | 
 | 	int cpu = raw_smp_processor_id(); | 
 | 	struct loaded_vmcs *v, *n; | 
 |  | 
 | 	list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu), | 
 | 				 loaded_vmcss_on_cpu_link) | 
 | 		__loaded_vmcs_clear(v); | 
 | } | 
 |  | 
 |  | 
 | /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot() | 
 |  * tricks. | 
 |  */ | 
 | static void kvm_cpu_vmxoff(void) | 
 | { | 
 | 	asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc"); | 
 | } | 
 |  | 
 | static void hardware_disable(void *garbage) | 
 | { | 
 | 	if (vmm_exclusive) { | 
 | 		vmclear_local_loaded_vmcss(); | 
 | 		kvm_cpu_vmxoff(); | 
 | 	} | 
 | 	write_cr4(read_cr4() & ~X86_CR4_VMXE); | 
 | } | 
 |  | 
 | static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt, | 
 | 				      u32 msr, u32 *result) | 
 | { | 
 | 	u32 vmx_msr_low, vmx_msr_high; | 
 | 	u32 ctl = ctl_min | ctl_opt; | 
 |  | 
 | 	rdmsr(msr, vmx_msr_low, vmx_msr_high); | 
 |  | 
 | 	ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */ | 
 | 	ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */ | 
 |  | 
 | 	/* Ensure minimum (required) set of control bits are supported. */ | 
 | 	if (ctl_min & ~ctl) | 
 | 		return -EIO; | 
 |  | 
 | 	*result = ctl; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init bool allow_1_setting(u32 msr, u32 ctl) | 
 | { | 
 | 	u32 vmx_msr_low, vmx_msr_high; | 
 |  | 
 | 	rdmsr(msr, vmx_msr_low, vmx_msr_high); | 
 | 	return vmx_msr_high & ctl; | 
 | } | 
 |  | 
 | static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf) | 
 | { | 
 | 	u32 vmx_msr_low, vmx_msr_high; | 
 | 	u32 min, opt, min2, opt2; | 
 | 	u32 _pin_based_exec_control = 0; | 
 | 	u32 _cpu_based_exec_control = 0; | 
 | 	u32 _cpu_based_2nd_exec_control = 0; | 
 | 	u32 _vmexit_control = 0; | 
 | 	u32 _vmentry_control = 0; | 
 |  | 
 | 	min = CPU_BASED_HLT_EXITING | | 
 | #ifdef CONFIG_X86_64 | 
 | 	      CPU_BASED_CR8_LOAD_EXITING | | 
 | 	      CPU_BASED_CR8_STORE_EXITING | | 
 | #endif | 
 | 	      CPU_BASED_CR3_LOAD_EXITING | | 
 | 	      CPU_BASED_CR3_STORE_EXITING | | 
 | 	      CPU_BASED_USE_IO_BITMAPS | | 
 | 	      CPU_BASED_MOV_DR_EXITING | | 
 | 	      CPU_BASED_USE_TSC_OFFSETING | | 
 | 	      CPU_BASED_MWAIT_EXITING | | 
 | 	      CPU_BASED_MONITOR_EXITING | | 
 | 	      CPU_BASED_INVLPG_EXITING | | 
 | 	      CPU_BASED_RDPMC_EXITING; | 
 |  | 
 | 	opt = CPU_BASED_TPR_SHADOW | | 
 | 	      CPU_BASED_USE_MSR_BITMAPS | | 
 | 	      CPU_BASED_ACTIVATE_SECONDARY_CONTROLS; | 
 | 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS, | 
 | 				&_cpu_based_exec_control) < 0) | 
 | 		return -EIO; | 
 | #ifdef CONFIG_X86_64 | 
 | 	if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) | 
 | 		_cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING & | 
 | 					   ~CPU_BASED_CR8_STORE_EXITING; | 
 | #endif | 
 | 	if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) { | 
 | 		min2 = 0; | 
 | 		opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | | 
 | 			SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | | 
 | 			SECONDARY_EXEC_WBINVD_EXITING | | 
 | 			SECONDARY_EXEC_ENABLE_VPID | | 
 | 			SECONDARY_EXEC_ENABLE_EPT | | 
 | 			SECONDARY_EXEC_UNRESTRICTED_GUEST | | 
 | 			SECONDARY_EXEC_PAUSE_LOOP_EXITING | | 
 | 			SECONDARY_EXEC_RDTSCP | | 
 | 			SECONDARY_EXEC_ENABLE_INVPCID | | 
 | 			SECONDARY_EXEC_APIC_REGISTER_VIRT | | 
 | 			SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | | 
 | 			SECONDARY_EXEC_SHADOW_VMCS; | 
 | 		if (adjust_vmx_controls(min2, opt2, | 
 | 					MSR_IA32_VMX_PROCBASED_CTLS2, | 
 | 					&_cpu_based_2nd_exec_control) < 0) | 
 | 			return -EIO; | 
 | 	} | 
 | #ifndef CONFIG_X86_64 | 
 | 	if (!(_cpu_based_2nd_exec_control & | 
 | 				SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) | 
 | 		_cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW; | 
 | #endif | 
 |  | 
 | 	if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW)) | 
 | 		_cpu_based_2nd_exec_control &= ~( | 
 | 				SECONDARY_EXEC_APIC_REGISTER_VIRT | | 
 | 				SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | | 
 | 				SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); | 
 |  | 
 | 	if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) { | 
 | 		/* CR3 accesses and invlpg don't need to cause VM Exits when EPT | 
 | 		   enabled */ | 
 | 		_cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING | | 
 | 					     CPU_BASED_CR3_STORE_EXITING | | 
 | 					     CPU_BASED_INVLPG_EXITING); | 
 | 		rdmsr(MSR_IA32_VMX_EPT_VPID_CAP, | 
 | 		      vmx_capability.ept, vmx_capability.vpid); | 
 | 	} | 
 |  | 
 | 	min = 0; | 
 | #ifdef CONFIG_X86_64 | 
 | 	min |= VM_EXIT_HOST_ADDR_SPACE_SIZE; | 
 | #endif | 
 | 	opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT | | 
 | 		VM_EXIT_ACK_INTR_ON_EXIT; | 
 | 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS, | 
 | 				&_vmexit_control) < 0) | 
 | 		return -EIO; | 
 |  | 
 | 	min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING; | 
 | 	opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR; | 
 | 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS, | 
 | 				&_pin_based_exec_control) < 0) | 
 | 		return -EIO; | 
 |  | 
 | 	if (!(_cpu_based_2nd_exec_control & | 
 | 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) || | 
 | 		!(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT)) | 
 | 		_pin_based_exec_control &= ~PIN_BASED_POSTED_INTR; | 
 |  | 
 | 	min = 0; | 
 | 	opt = VM_ENTRY_LOAD_IA32_PAT; | 
 | 	if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS, | 
 | 				&_vmentry_control) < 0) | 
 | 		return -EIO; | 
 |  | 
 | 	rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high); | 
 |  | 
 | 	/* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */ | 
 | 	if ((vmx_msr_high & 0x1fff) > PAGE_SIZE) | 
 | 		return -EIO; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	/* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */ | 
 | 	if (vmx_msr_high & (1u<<16)) | 
 | 		return -EIO; | 
 | #endif | 
 |  | 
 | 	/* Require Write-Back (WB) memory type for VMCS accesses. */ | 
 | 	if (((vmx_msr_high >> 18) & 15) != 6) | 
 | 		return -EIO; | 
 |  | 
 | 	vmcs_conf->size = vmx_msr_high & 0x1fff; | 
 | 	vmcs_conf->order = get_order(vmcs_config.size); | 
 | 	vmcs_conf->revision_id = vmx_msr_low; | 
 |  | 
 | 	vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control; | 
 | 	vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control; | 
 | 	vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control; | 
 | 	vmcs_conf->vmexit_ctrl         = _vmexit_control; | 
 | 	vmcs_conf->vmentry_ctrl        = _vmentry_control; | 
 |  | 
 | 	cpu_has_load_ia32_efer = | 
 | 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, | 
 | 				VM_ENTRY_LOAD_IA32_EFER) | 
 | 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, | 
 | 				   VM_EXIT_LOAD_IA32_EFER); | 
 |  | 
 | 	cpu_has_load_perf_global_ctrl = | 
 | 		allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS, | 
 | 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) | 
 | 		&& allow_1_setting(MSR_IA32_VMX_EXIT_CTLS, | 
 | 				   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL); | 
 |  | 
 | 	/* | 
 | 	 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL | 
 | 	 * but due to arrata below it can't be used. Workaround is to use | 
 | 	 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL. | 
 | 	 * | 
 | 	 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32] | 
 | 	 * | 
 | 	 * AAK155             (model 26) | 
 | 	 * AAP115             (model 30) | 
 | 	 * AAT100             (model 37) | 
 | 	 * BC86,AAY89,BD102   (model 44) | 
 | 	 * BA97               (model 46) | 
 | 	 * | 
 | 	 */ | 
 | 	if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) { | 
 | 		switch (boot_cpu_data.x86_model) { | 
 | 		case 26: | 
 | 		case 30: | 
 | 		case 37: | 
 | 		case 44: | 
 | 		case 46: | 
 | 			cpu_has_load_perf_global_ctrl = false; | 
 | 			printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL " | 
 | 					"does not work properly. Using workaround\n"); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct vmcs *alloc_vmcs_cpu(int cpu) | 
 | { | 
 | 	int node = cpu_to_node(cpu); | 
 | 	struct page *pages; | 
 | 	struct vmcs *vmcs; | 
 |  | 
 | 	pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order); | 
 | 	if (!pages) | 
 | 		return NULL; | 
 | 	vmcs = page_address(pages); | 
 | 	memset(vmcs, 0, vmcs_config.size); | 
 | 	vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */ | 
 | 	return vmcs; | 
 | } | 
 |  | 
 | static struct vmcs *alloc_vmcs(void) | 
 | { | 
 | 	return alloc_vmcs_cpu(raw_smp_processor_id()); | 
 | } | 
 |  | 
 | static void free_vmcs(struct vmcs *vmcs) | 
 | { | 
 | 	free_pages((unsigned long)vmcs, vmcs_config.order); | 
 | } | 
 |  | 
 | /* | 
 |  * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded | 
 |  */ | 
 | static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs) | 
 | { | 
 | 	if (!loaded_vmcs->vmcs) | 
 | 		return; | 
 | 	loaded_vmcs_clear(loaded_vmcs); | 
 | 	free_vmcs(loaded_vmcs->vmcs); | 
 | 	loaded_vmcs->vmcs = NULL; | 
 | } | 
 |  | 
 | static void free_kvm_area(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		free_vmcs(per_cpu(vmxarea, cpu)); | 
 | 		per_cpu(vmxarea, cpu) = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | static __init int alloc_kvm_area(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	for_each_possible_cpu(cpu) { | 
 | 		struct vmcs *vmcs; | 
 |  | 
 | 		vmcs = alloc_vmcs_cpu(cpu); | 
 | 		if (!vmcs) { | 
 | 			free_kvm_area(); | 
 | 			return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		per_cpu(vmxarea, cpu) = vmcs; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __init int hardware_setup(void) | 
 | { | 
 | 	if (setup_vmcs_config(&vmcs_config) < 0) | 
 | 		return -EIO; | 
 |  | 
 | 	if (boot_cpu_has(X86_FEATURE_NX)) | 
 | 		kvm_enable_efer_bits(EFER_NX); | 
 |  | 
 | 	if (!cpu_has_vmx_vpid()) | 
 | 		enable_vpid = 0; | 
 | 	if (!cpu_has_vmx_shadow_vmcs()) | 
 | 		enable_shadow_vmcs = 0; | 
 |  | 
 | 	if (!cpu_has_vmx_ept() || | 
 | 	    !cpu_has_vmx_ept_4levels()) { | 
 | 		enable_ept = 0; | 
 | 		enable_unrestricted_guest = 0; | 
 | 		enable_ept_ad_bits = 0; | 
 | 	} | 
 |  | 
 | 	if (!cpu_has_vmx_ept_ad_bits()) | 
 | 		enable_ept_ad_bits = 0; | 
 |  | 
 | 	if (!cpu_has_vmx_unrestricted_guest()) | 
 | 		enable_unrestricted_guest = 0; | 
 |  | 
 | 	if (!cpu_has_vmx_flexpriority()) | 
 | 		flexpriority_enabled = 0; | 
 |  | 
 | 	if (!cpu_has_vmx_tpr_shadow()) | 
 | 		kvm_x86_ops->update_cr8_intercept = NULL; | 
 |  | 
 | 	if (enable_ept && !cpu_has_vmx_ept_2m_page()) | 
 | 		kvm_disable_largepages(); | 
 |  | 
 | 	if (!cpu_has_vmx_ple()) | 
 | 		ple_gap = 0; | 
 |  | 
 | 	if (!cpu_has_vmx_apicv()) | 
 | 		enable_apicv = 0; | 
 |  | 
 | 	if (enable_apicv) | 
 | 		kvm_x86_ops->update_cr8_intercept = NULL; | 
 | 	else { | 
 | 		kvm_x86_ops->hwapic_irr_update = NULL; | 
 | 		kvm_x86_ops->deliver_posted_interrupt = NULL; | 
 | 		kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy; | 
 | 	} | 
 |  | 
 | 	if (nested) | 
 | 		nested_vmx_setup_ctls_msrs(); | 
 |  | 
 | 	return alloc_kvm_area(); | 
 | } | 
 |  | 
 | static __exit void hardware_unsetup(void) | 
 | { | 
 | 	free_kvm_area(); | 
 | } | 
 |  | 
 | static bool emulation_required(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return emulate_invalid_guest_state && !guest_state_valid(vcpu); | 
 | } | 
 |  | 
 | static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg, | 
 | 		struct kvm_segment *save) | 
 | { | 
 | 	if (!emulate_invalid_guest_state) { | 
 | 		/* | 
 | 		 * CS and SS RPL should be equal during guest entry according | 
 | 		 * to VMX spec, but in reality it is not always so. Since vcpu | 
 | 		 * is in the middle of the transition from real mode to | 
 | 		 * protected mode it is safe to assume that RPL 0 is a good | 
 | 		 * default value. | 
 | 		 */ | 
 | 		if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS) | 
 | 			save->selector &= ~SELECTOR_RPL_MASK; | 
 | 		save->dpl = save->selector & SELECTOR_RPL_MASK; | 
 | 		save->s = 1; | 
 | 	} | 
 | 	vmx_set_segment(vcpu, save, seg); | 
 | } | 
 |  | 
 | static void enter_pmode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Update real mode segment cache. It may be not up-to-date if sement | 
 | 	 * register was written while vcpu was in a guest mode. | 
 | 	 */ | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); | 
 |  | 
 | 	vmx->rmode.vm86_active = 0; | 
 |  | 
 | 	vmx_segment_cache_clear(vmx); | 
 |  | 
 | 	vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); | 
 |  | 
 | 	flags = vmcs_readl(GUEST_RFLAGS); | 
 | 	flags &= RMODE_GUEST_OWNED_EFLAGS_BITS; | 
 | 	flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS; | 
 | 	vmcs_writel(GUEST_RFLAGS, flags); | 
 |  | 
 | 	vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) | | 
 | 			(vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME)); | 
 |  | 
 | 	update_exception_bitmap(vcpu); | 
 |  | 
 | 	fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); | 
 | 	fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); | 
 | 	fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); | 
 | 	fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); | 
 | 	fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); | 
 | 	fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); | 
 |  | 
 | 	/* CPL is always 0 when CPU enters protected mode */ | 
 | 	__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); | 
 | 	vmx->cpl = 0; | 
 | } | 
 |  | 
 | static void fix_rmode_seg(int seg, struct kvm_segment *save) | 
 | { | 
 | 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 | 	struct kvm_segment var = *save; | 
 |  | 
 | 	var.dpl = 0x3; | 
 | 	if (seg == VCPU_SREG_CS) | 
 | 		var.type = 0x3; | 
 |  | 
 | 	if (!emulate_invalid_guest_state) { | 
 | 		var.selector = var.base >> 4; | 
 | 		var.base = var.base & 0xffff0; | 
 | 		var.limit = 0xffff; | 
 | 		var.g = 0; | 
 | 		var.db = 0; | 
 | 		var.present = 1; | 
 | 		var.s = 1; | 
 | 		var.l = 0; | 
 | 		var.unusable = 0; | 
 | 		var.type = 0x3; | 
 | 		var.avl = 0; | 
 | 		if (save->base & 0xf) | 
 | 			printk_once(KERN_WARNING "kvm: segment base is not " | 
 | 					"paragraph aligned when entering " | 
 | 					"protected mode (seg=%d)", seg); | 
 | 	} | 
 |  | 
 | 	vmcs_write16(sf->selector, var.selector); | 
 | 	vmcs_write32(sf->base, var.base); | 
 | 	vmcs_write32(sf->limit, var.limit); | 
 | 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var)); | 
 | } | 
 |  | 
 | static void enter_rmode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 |  | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS); | 
 | 	vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS); | 
 |  | 
 | 	vmx->rmode.vm86_active = 1; | 
 |  | 
 | 	/* | 
 | 	 * Very old userspace does not call KVM_SET_TSS_ADDR before entering | 
 | 	 * vcpu. Warn the user that an update is overdue. | 
 | 	 */ | 
 | 	if (!vcpu->kvm->arch.tss_addr) | 
 | 		printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be " | 
 | 			     "called before entering vcpu\n"); | 
 |  | 
 | 	vmx_segment_cache_clear(vmx); | 
 |  | 
 | 	vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr); | 
 | 	vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1); | 
 | 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); | 
 |  | 
 | 	flags = vmcs_readl(GUEST_RFLAGS); | 
 | 	vmx->rmode.save_rflags = flags; | 
 |  | 
 | 	flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM; | 
 |  | 
 | 	vmcs_writel(GUEST_RFLAGS, flags); | 
 | 	vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME); | 
 | 	update_exception_bitmap(vcpu); | 
 |  | 
 | 	fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]); | 
 | 	fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]); | 
 | 	fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]); | 
 | 	fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]); | 
 | 	fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]); | 
 | 	fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]); | 
 |  | 
 | 	kvm_mmu_reset_context(vcpu); | 
 | } | 
 |  | 
 | static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER); | 
 |  | 
 | 	if (!msr) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Force kernel_gs_base reloading before EFER changes, as control | 
 | 	 * of this msr depends on is_long_mode(). | 
 | 	 */ | 
 | 	vmx_load_host_state(to_vmx(vcpu)); | 
 | 	vcpu->arch.efer = efer; | 
 | 	if (efer & EFER_LMA) { | 
 | 		vmcs_write32(VM_ENTRY_CONTROLS, | 
 | 			     vmcs_read32(VM_ENTRY_CONTROLS) | | 
 | 			     VM_ENTRY_IA32E_MODE); | 
 | 		msr->data = efer; | 
 | 	} else { | 
 | 		vmcs_write32(VM_ENTRY_CONTROLS, | 
 | 			     vmcs_read32(VM_ENTRY_CONTROLS) & | 
 | 			     ~VM_ENTRY_IA32E_MODE); | 
 |  | 
 | 		msr->data = efer & ~EFER_LME; | 
 | 	} | 
 | 	setup_msrs(vmx); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 |  | 
 | static void enter_lmode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 guest_tr_ar; | 
 |  | 
 | 	vmx_segment_cache_clear(to_vmx(vcpu)); | 
 |  | 
 | 	guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES); | 
 | 	if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) { | 
 | 		pr_debug_ratelimited("%s: tss fixup for long mode. \n", | 
 | 				     __func__); | 
 | 		vmcs_write32(GUEST_TR_AR_BYTES, | 
 | 			     (guest_tr_ar & ~AR_TYPE_MASK) | 
 | 			     | AR_TYPE_BUSY_64_TSS); | 
 | 	} | 
 | 	vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA); | 
 | } | 
 |  | 
 | static void exit_lmode(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vmcs_write32(VM_ENTRY_CONTROLS, | 
 | 		     vmcs_read32(VM_ENTRY_CONTROLS) | 
 | 		     & ~VM_ENTRY_IA32E_MODE); | 
 | 	vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA); | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | static void vmx_flush_tlb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vpid_sync_context(to_vmx(vcpu)); | 
 | 	if (enable_ept) { | 
 | 		if (!VALID_PAGE(vcpu->arch.mmu.root_hpa)) | 
 | 			return; | 
 | 		ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa)); | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits; | 
 |  | 
 | 	vcpu->arch.cr0 &= ~cr0_guest_owned_bits; | 
 | 	vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits; | 
 | } | 
 |  | 
 | static void vmx_decache_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (enable_ept && is_paging(vcpu)) | 
 | 		vcpu->arch.cr3 = vmcs_readl(GUEST_CR3); | 
 | 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); | 
 | } | 
 |  | 
 | static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits; | 
 |  | 
 | 	vcpu->arch.cr4 &= ~cr4_guest_owned_bits; | 
 | 	vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits; | 
 | } | 
 |  | 
 | static void ept_load_pdptrs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!test_bit(VCPU_EXREG_PDPTR, | 
 | 		      (unsigned long *)&vcpu->arch.regs_dirty)) | 
 | 		return; | 
 |  | 
 | 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { | 
 | 		vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]); | 
 | 		vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]); | 
 | 		vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]); | 
 | 		vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]); | 
 | 	} | 
 | } | 
 |  | 
 | static void ept_save_pdptrs(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) { | 
 | 		vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0); | 
 | 		vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1); | 
 | 		vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2); | 
 | 		vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3); | 
 | 	} | 
 |  | 
 | 	__set_bit(VCPU_EXREG_PDPTR, | 
 | 		  (unsigned long *)&vcpu->arch.regs_avail); | 
 | 	__set_bit(VCPU_EXREG_PDPTR, | 
 | 		  (unsigned long *)&vcpu->arch.regs_dirty); | 
 | } | 
 |  | 
 | static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4); | 
 |  | 
 | static void ept_update_paging_mode_cr0(unsigned long *hw_cr0, | 
 | 					unsigned long cr0, | 
 | 					struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail)) | 
 | 		vmx_decache_cr3(vcpu); | 
 | 	if (!(cr0 & X86_CR0_PG)) { | 
 | 		/* From paging/starting to nonpaging */ | 
 | 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, | 
 | 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) | | 
 | 			     (CPU_BASED_CR3_LOAD_EXITING | | 
 | 			      CPU_BASED_CR3_STORE_EXITING)); | 
 | 		vcpu->arch.cr0 = cr0; | 
 | 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); | 
 | 	} else if (!is_paging(vcpu)) { | 
 | 		/* From nonpaging to paging */ | 
 | 		vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, | 
 | 			     vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) & | 
 | 			     ~(CPU_BASED_CR3_LOAD_EXITING | | 
 | 			       CPU_BASED_CR3_STORE_EXITING)); | 
 | 		vcpu->arch.cr0 = cr0; | 
 | 		vmx_set_cr4(vcpu, kvm_read_cr4(vcpu)); | 
 | 	} | 
 |  | 
 | 	if (!(cr0 & X86_CR0_WP)) | 
 | 		*hw_cr0 &= ~X86_CR0_WP; | 
 | } | 
 |  | 
 | static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	unsigned long hw_cr0; | 
 |  | 
 | 	hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK); | 
 | 	if (enable_unrestricted_guest) | 
 | 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST; | 
 | 	else { | 
 | 		hw_cr0 |= KVM_VM_CR0_ALWAYS_ON; | 
 |  | 
 | 		if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE)) | 
 | 			enter_pmode(vcpu); | 
 |  | 
 | 		if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE)) | 
 | 			enter_rmode(vcpu); | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (vcpu->arch.efer & EFER_LME) { | 
 | 		if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) | 
 | 			enter_lmode(vcpu); | 
 | 		if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) | 
 | 			exit_lmode(vcpu); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	if (enable_ept) | 
 | 		ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu); | 
 |  | 
 | 	if (!vcpu->fpu_active) | 
 | 		hw_cr0 |= X86_CR0_TS | X86_CR0_MP; | 
 |  | 
 | 	vmcs_writel(CR0_READ_SHADOW, cr0); | 
 | 	vmcs_writel(GUEST_CR0, hw_cr0); | 
 | 	vcpu->arch.cr0 = cr0; | 
 |  | 
 | 	/* depends on vcpu->arch.cr0 to be set to a new value */ | 
 | 	vmx->emulation_required = emulation_required(vcpu); | 
 | } | 
 |  | 
 | static u64 construct_eptp(unsigned long root_hpa) | 
 | { | 
 | 	u64 eptp; | 
 |  | 
 | 	/* TODO write the value reading from MSR */ | 
 | 	eptp = VMX_EPT_DEFAULT_MT | | 
 | 		VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT; | 
 | 	if (enable_ept_ad_bits) | 
 | 		eptp |= VMX_EPT_AD_ENABLE_BIT; | 
 | 	eptp |= (root_hpa & PAGE_MASK); | 
 |  | 
 | 	return eptp; | 
 | } | 
 |  | 
 | static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 
 | { | 
 | 	unsigned long guest_cr3; | 
 | 	u64 eptp; | 
 |  | 
 | 	guest_cr3 = cr3; | 
 | 	if (enable_ept) { | 
 | 		eptp = construct_eptp(cr3); | 
 | 		vmcs_write64(EPT_POINTER, eptp); | 
 | 		guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) : | 
 | 			vcpu->kvm->arch.ept_identity_map_addr; | 
 | 		ept_load_pdptrs(vcpu); | 
 | 	} | 
 |  | 
 | 	vmx_flush_tlb(vcpu); | 
 | 	vmcs_writel(GUEST_CR3, guest_cr3); | 
 | } | 
 |  | 
 | static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
 | { | 
 | 	unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ? | 
 | 		    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON); | 
 |  | 
 | 	if (cr4 & X86_CR4_VMXE) { | 
 | 		/* | 
 | 		 * To use VMXON (and later other VMX instructions), a guest | 
 | 		 * must first be able to turn on cr4.VMXE (see handle_vmon()). | 
 | 		 * So basically the check on whether to allow nested VMX | 
 | 		 * is here. | 
 | 		 */ | 
 | 		if (!nested_vmx_allowed(vcpu)) | 
 | 			return 1; | 
 | 	} | 
 | 	if (to_vmx(vcpu)->nested.vmxon && | 
 | 	    ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) | 
 | 		return 1; | 
 |  | 
 | 	vcpu->arch.cr4 = cr4; | 
 | 	if (enable_ept) { | 
 | 		if (!is_paging(vcpu)) { | 
 | 			hw_cr4 &= ~X86_CR4_PAE; | 
 | 			hw_cr4 |= X86_CR4_PSE; | 
 | 			/* | 
 | 			 * SMEP is disabled if CPU is in non-paging mode in | 
 | 			 * hardware. However KVM always uses paging mode to | 
 | 			 * emulate guest non-paging mode with TDP. | 
 | 			 * To emulate this behavior, SMEP needs to be manually | 
 | 			 * disabled when guest switches to non-paging mode. | 
 | 			 */ | 
 | 			hw_cr4 &= ~X86_CR4_SMEP; | 
 | 		} else if (!(cr4 & X86_CR4_PAE)) { | 
 | 			hw_cr4 &= ~X86_CR4_PAE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	vmcs_writel(CR4_READ_SHADOW, cr4); | 
 | 	vmcs_writel(GUEST_CR4, hw_cr4); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vmx_get_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	u32 ar; | 
 |  | 
 | 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { | 
 | 		*var = vmx->rmode.segs[seg]; | 
 | 		if (seg == VCPU_SREG_TR | 
 | 		    || var->selector == vmx_read_guest_seg_selector(vmx, seg)) | 
 | 			return; | 
 | 		var->base = vmx_read_guest_seg_base(vmx, seg); | 
 | 		var->selector = vmx_read_guest_seg_selector(vmx, seg); | 
 | 		return; | 
 | 	} | 
 | 	var->base = vmx_read_guest_seg_base(vmx, seg); | 
 | 	var->limit = vmx_read_guest_seg_limit(vmx, seg); | 
 | 	var->selector = vmx_read_guest_seg_selector(vmx, seg); | 
 | 	ar = vmx_read_guest_seg_ar(vmx, seg); | 
 | 	var->type = ar & 15; | 
 | 	var->s = (ar >> 4) & 1; | 
 | 	var->dpl = (ar >> 5) & 3; | 
 | 	var->present = (ar >> 7) & 1; | 
 | 	var->avl = (ar >> 12) & 1; | 
 | 	var->l = (ar >> 13) & 1; | 
 | 	var->db = (ar >> 14) & 1; | 
 | 	var->g = (ar >> 15) & 1; | 
 | 	var->unusable = (ar >> 16) & 1; | 
 | } | 
 |  | 
 | static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct kvm_segment s; | 
 |  | 
 | 	if (to_vmx(vcpu)->rmode.vm86_active) { | 
 | 		vmx_get_segment(vcpu, &s, seg); | 
 | 		return s.base; | 
 | 	} | 
 | 	return vmx_read_guest_seg_base(to_vmx(vcpu), seg); | 
 | } | 
 |  | 
 | static int vmx_get_cpl(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 |  | 
 | 	if (!is_protmode(vcpu)) | 
 | 		return 0; | 
 |  | 
 | 	if (!is_long_mode(vcpu) | 
 | 	    && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */ | 
 | 		return 3; | 
 |  | 
 | 	if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) { | 
 | 		__set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); | 
 | 		vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3; | 
 | 	} | 
 |  | 
 | 	return vmx->cpl; | 
 | } | 
 |  | 
 |  | 
 | static u32 vmx_segment_access_rights(struct kvm_segment *var) | 
 | { | 
 | 	u32 ar; | 
 |  | 
 | 	if (var->unusable || !var->present) | 
 | 		ar = 1 << 16; | 
 | 	else { | 
 | 		ar = var->type & 15; | 
 | 		ar |= (var->s & 1) << 4; | 
 | 		ar |= (var->dpl & 3) << 5; | 
 | 		ar |= (var->present & 1) << 7; | 
 | 		ar |= (var->avl & 1) << 12; | 
 | 		ar |= (var->l & 1) << 13; | 
 | 		ar |= (var->db & 1) << 14; | 
 | 		ar |= (var->g & 1) << 15; | 
 | 	} | 
 |  | 
 | 	return ar; | 
 | } | 
 |  | 
 | static void vmx_set_segment(struct kvm_vcpu *vcpu, | 
 | 			    struct kvm_segment *var, int seg) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 |  | 
 | 	vmx_segment_cache_clear(vmx); | 
 | 	if (seg == VCPU_SREG_CS) | 
 | 		__clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail); | 
 |  | 
 | 	if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) { | 
 | 		vmx->rmode.segs[seg] = *var; | 
 | 		if (seg == VCPU_SREG_TR) | 
 | 			vmcs_write16(sf->selector, var->selector); | 
 | 		else if (var->s) | 
 | 			fix_rmode_seg(seg, &vmx->rmode.segs[seg]); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	vmcs_writel(sf->base, var->base); | 
 | 	vmcs_write32(sf->limit, var->limit); | 
 | 	vmcs_write16(sf->selector, var->selector); | 
 |  | 
 | 	/* | 
 | 	 *   Fix the "Accessed" bit in AR field of segment registers for older | 
 | 	 * qemu binaries. | 
 | 	 *   IA32 arch specifies that at the time of processor reset the | 
 | 	 * "Accessed" bit in the AR field of segment registers is 1. And qemu | 
 | 	 * is setting it to 0 in the userland code. This causes invalid guest | 
 | 	 * state vmexit when "unrestricted guest" mode is turned on. | 
 | 	 *    Fix for this setup issue in cpu_reset is being pushed in the qemu | 
 | 	 * tree. Newer qemu binaries with that qemu fix would not need this | 
 | 	 * kvm hack. | 
 | 	 */ | 
 | 	if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR)) | 
 | 		var->type |= 0x1; /* Accessed */ | 
 |  | 
 | 	vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var)); | 
 |  | 
 | out: | 
 | 	vmx->emulation_required |= emulation_required(vcpu); | 
 | } | 
 |  | 
 | static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) | 
 | { | 
 | 	u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS); | 
 |  | 
 | 	*db = (ar >> 14) & 1; | 
 | 	*l = (ar >> 13) & 1; | 
 | } | 
 |  | 
 | static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	dt->size = vmcs_read32(GUEST_IDTR_LIMIT); | 
 | 	dt->address = vmcs_readl(GUEST_IDTR_BASE); | 
 | } | 
 |  | 
 | static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	vmcs_write32(GUEST_IDTR_LIMIT, dt->size); | 
 | 	vmcs_writel(GUEST_IDTR_BASE, dt->address); | 
 | } | 
 |  | 
 | static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	dt->size = vmcs_read32(GUEST_GDTR_LIMIT); | 
 | 	dt->address = vmcs_readl(GUEST_GDTR_BASE); | 
 | } | 
 |  | 
 | static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt) | 
 | { | 
 | 	vmcs_write32(GUEST_GDTR_LIMIT, dt->size); | 
 | 	vmcs_writel(GUEST_GDTR_BASE, dt->address); | 
 | } | 
 |  | 
 | static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct kvm_segment var; | 
 | 	u32 ar; | 
 |  | 
 | 	vmx_get_segment(vcpu, &var, seg); | 
 | 	var.dpl = 0x3; | 
 | 	if (seg == VCPU_SREG_CS) | 
 | 		var.type = 0x3; | 
 | 	ar = vmx_segment_access_rights(&var); | 
 |  | 
 | 	if (var.base != (var.selector << 4)) | 
 | 		return false; | 
 | 	if (var.limit != 0xffff) | 
 | 		return false; | 
 | 	if (ar != 0xf3) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool code_segment_valid(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_segment cs; | 
 | 	unsigned int cs_rpl; | 
 |  | 
 | 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	cs_rpl = cs.selector & SELECTOR_RPL_MASK; | 
 |  | 
 | 	if (cs.unusable) | 
 | 		return false; | 
 | 	if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK)) | 
 | 		return false; | 
 | 	if (!cs.s) | 
 | 		return false; | 
 | 	if (cs.type & AR_TYPE_WRITEABLE_MASK) { | 
 | 		if (cs.dpl > cs_rpl) | 
 | 			return false; | 
 | 	} else { | 
 | 		if (cs.dpl != cs_rpl) | 
 | 			return false; | 
 | 	} | 
 | 	if (!cs.present) | 
 | 		return false; | 
 |  | 
 | 	/* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */ | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool stack_segment_valid(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_segment ss; | 
 | 	unsigned int ss_rpl; | 
 |  | 
 | 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); | 
 | 	ss_rpl = ss.selector & SELECTOR_RPL_MASK; | 
 |  | 
 | 	if (ss.unusable) | 
 | 		return true; | 
 | 	if (ss.type != 3 && ss.type != 7) | 
 | 		return false; | 
 | 	if (!ss.s) | 
 | 		return false; | 
 | 	if (ss.dpl != ss_rpl) /* DPL != RPL */ | 
 | 		return false; | 
 | 	if (!ss.present) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	struct kvm_segment var; | 
 | 	unsigned int rpl; | 
 |  | 
 | 	vmx_get_segment(vcpu, &var, seg); | 
 | 	rpl = var.selector & SELECTOR_RPL_MASK; | 
 |  | 
 | 	if (var.unusable) | 
 | 		return true; | 
 | 	if (!var.s) | 
 | 		return false; | 
 | 	if (!var.present) | 
 | 		return false; | 
 | 	if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) { | 
 | 		if (var.dpl < rpl) /* DPL < RPL */ | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	/* TODO: Add other members to kvm_segment_field to allow checking for other access | 
 | 	 * rights flags | 
 | 	 */ | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool tr_valid(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_segment tr; | 
 |  | 
 | 	vmx_get_segment(vcpu, &tr, VCPU_SREG_TR); | 
 |  | 
 | 	if (tr.unusable) | 
 | 		return false; | 
 | 	if (tr.selector & SELECTOR_TI_MASK)	/* TI = 1 */ | 
 | 		return false; | 
 | 	if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */ | 
 | 		return false; | 
 | 	if (!tr.present) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool ldtr_valid(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_segment ldtr; | 
 |  | 
 | 	vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR); | 
 |  | 
 | 	if (ldtr.unusable) | 
 | 		return true; | 
 | 	if (ldtr.selector & SELECTOR_TI_MASK)	/* TI = 1 */ | 
 | 		return false; | 
 | 	if (ldtr.type != 2) | 
 | 		return false; | 
 | 	if (!ldtr.present) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_segment cs, ss; | 
 |  | 
 | 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	vmx_get_segment(vcpu, &ss, VCPU_SREG_SS); | 
 |  | 
 | 	return ((cs.selector & SELECTOR_RPL_MASK) == | 
 | 		 (ss.selector & SELECTOR_RPL_MASK)); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if guest state is valid. Returns true if valid, false if | 
 |  * not. | 
 |  * We assume that registers are always usable | 
 |  */ | 
 | static bool guest_state_valid(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (enable_unrestricted_guest) | 
 | 		return true; | 
 |  | 
 | 	/* real mode guest state checks */ | 
 | 	if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { | 
 | 		if (!rmode_segment_valid(vcpu, VCPU_SREG_CS)) | 
 | 			return false; | 
 | 		if (!rmode_segment_valid(vcpu, VCPU_SREG_SS)) | 
 | 			return false; | 
 | 		if (!rmode_segment_valid(vcpu, VCPU_SREG_DS)) | 
 | 			return false; | 
 | 		if (!rmode_segment_valid(vcpu, VCPU_SREG_ES)) | 
 | 			return false; | 
 | 		if (!rmode_segment_valid(vcpu, VCPU_SREG_FS)) | 
 | 			return false; | 
 | 		if (!rmode_segment_valid(vcpu, VCPU_SREG_GS)) | 
 | 			return false; | 
 | 	} else { | 
 | 	/* protected mode guest state checks */ | 
 | 		if (!cs_ss_rpl_check(vcpu)) | 
 | 			return false; | 
 | 		if (!code_segment_valid(vcpu)) | 
 | 			return false; | 
 | 		if (!stack_segment_valid(vcpu)) | 
 | 			return false; | 
 | 		if (!data_segment_valid(vcpu, VCPU_SREG_DS)) | 
 | 			return false; | 
 | 		if (!data_segment_valid(vcpu, VCPU_SREG_ES)) | 
 | 			return false; | 
 | 		if (!data_segment_valid(vcpu, VCPU_SREG_FS)) | 
 | 			return false; | 
 | 		if (!data_segment_valid(vcpu, VCPU_SREG_GS)) | 
 | 			return false; | 
 | 		if (!tr_valid(vcpu)) | 
 | 			return false; | 
 | 		if (!ldtr_valid(vcpu)) | 
 | 			return false; | 
 | 	} | 
 | 	/* TODO: | 
 | 	 * - Add checks on RIP | 
 | 	 * - Add checks on RFLAGS | 
 | 	 */ | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int init_rmode_tss(struct kvm *kvm) | 
 | { | 
 | 	gfn_t fn; | 
 | 	u16 data = 0; | 
 | 	int r, idx, ret = 0; | 
 |  | 
 | 	idx = srcu_read_lock(&kvm->srcu); | 
 | 	fn = kvm->arch.tss_addr >> PAGE_SHIFT; | 
 | 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE; | 
 | 	r = kvm_write_guest_page(kvm, fn++, &data, | 
 | 			TSS_IOPB_BASE_OFFSET, sizeof(u16)); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	data = ~0; | 
 | 	r = kvm_write_guest_page(kvm, fn, &data, | 
 | 				 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1, | 
 | 				 sizeof(u8)); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 |  | 
 | 	ret = 1; | 
 | out: | 
 | 	srcu_read_unlock(&kvm->srcu, idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int init_rmode_identity_map(struct kvm *kvm) | 
 | { | 
 | 	int i, idx, r, ret; | 
 | 	pfn_t identity_map_pfn; | 
 | 	u32 tmp; | 
 |  | 
 | 	if (!enable_ept) | 
 | 		return 1; | 
 | 	if (unlikely(!kvm->arch.ept_identity_pagetable)) { | 
 | 		printk(KERN_ERR "EPT: identity-mapping pagetable " | 
 | 			"haven't been allocated!\n"); | 
 | 		return 0; | 
 | 	} | 
 | 	if (likely(kvm->arch.ept_identity_pagetable_done)) | 
 | 		return 1; | 
 | 	ret = 0; | 
 | 	identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT; | 
 | 	idx = srcu_read_lock(&kvm->srcu); | 
 | 	r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	/* Set up identity-mapping pagetable for EPT in real mode */ | 
 | 	for (i = 0; i < PT32_ENT_PER_PAGE; i++) { | 
 | 		tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | | 
 | 			_PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE); | 
 | 		r = kvm_write_guest_page(kvm, identity_map_pfn, | 
 | 				&tmp, i * sizeof(tmp), sizeof(tmp)); | 
 | 		if (r < 0) | 
 | 			goto out; | 
 | 	} | 
 | 	kvm->arch.ept_identity_pagetable_done = true; | 
 | 	ret = 1; | 
 | out: | 
 | 	srcu_read_unlock(&kvm->srcu, idx); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void seg_setup(int seg) | 
 | { | 
 | 	const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg]; | 
 | 	unsigned int ar; | 
 |  | 
 | 	vmcs_write16(sf->selector, 0); | 
 | 	vmcs_writel(sf->base, 0); | 
 | 	vmcs_write32(sf->limit, 0xffff); | 
 | 	ar = 0x93; | 
 | 	if (seg == VCPU_SREG_CS) | 
 | 		ar |= 0x08; /* code segment */ | 
 |  | 
 | 	vmcs_write32(sf->ar_bytes, ar); | 
 | } | 
 |  | 
 | static int alloc_apic_access_page(struct kvm *kvm) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kvm_userspace_memory_region kvm_userspace_mem; | 
 | 	int r = 0; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 | 	if (kvm->arch.apic_access_page) | 
 | 		goto out; | 
 | 	kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; | 
 | 	kvm_userspace_mem.flags = 0; | 
 | 	kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL; | 
 | 	kvm_userspace_mem.memory_size = PAGE_SIZE; | 
 | 	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	page = gfn_to_page(kvm, 0xfee00); | 
 | 	if (is_error_page(page)) { | 
 | 		r = -EFAULT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	kvm->arch.apic_access_page = page; | 
 | out: | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int alloc_identity_pagetable(struct kvm *kvm) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kvm_userspace_memory_region kvm_userspace_mem; | 
 | 	int r = 0; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 | 	if (kvm->arch.ept_identity_pagetable) | 
 | 		goto out; | 
 | 	kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; | 
 | 	kvm_userspace_mem.flags = 0; | 
 | 	kvm_userspace_mem.guest_phys_addr = | 
 | 		kvm->arch.ept_identity_map_addr; | 
 | 	kvm_userspace_mem.memory_size = PAGE_SIZE; | 
 | 	r = __kvm_set_memory_region(kvm, &kvm_userspace_mem); | 
 | 	if (r) | 
 | 		goto out; | 
 |  | 
 | 	page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT); | 
 | 	if (is_error_page(page)) { | 
 | 		r = -EFAULT; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	kvm->arch.ept_identity_pagetable = page; | 
 | out: | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static void allocate_vpid(struct vcpu_vmx *vmx) | 
 | { | 
 | 	int vpid; | 
 |  | 
 | 	vmx->vpid = 0; | 
 | 	if (!enable_vpid) | 
 | 		return; | 
 | 	spin_lock(&vmx_vpid_lock); | 
 | 	vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS); | 
 | 	if (vpid < VMX_NR_VPIDS) { | 
 | 		vmx->vpid = vpid; | 
 | 		__set_bit(vpid, vmx_vpid_bitmap); | 
 | 	} | 
 | 	spin_unlock(&vmx_vpid_lock); | 
 | } | 
 |  | 
 | static void free_vpid(struct vcpu_vmx *vmx) | 
 | { | 
 | 	if (!enable_vpid) | 
 | 		return; | 
 | 	spin_lock(&vmx_vpid_lock); | 
 | 	if (vmx->vpid != 0) | 
 | 		__clear_bit(vmx->vpid, vmx_vpid_bitmap); | 
 | 	spin_unlock(&vmx_vpid_lock); | 
 | } | 
 |  | 
 | #define MSR_TYPE_R	1 | 
 | #define MSR_TYPE_W	2 | 
 | static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, | 
 | 						u32 msr, int type) | 
 | { | 
 | 	int f = sizeof(unsigned long); | 
 |  | 
 | 	if (!cpu_has_vmx_msr_bitmap()) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals | 
 | 	 * have the write-low and read-high bitmap offsets the wrong way round. | 
 | 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. | 
 | 	 */ | 
 | 	if (msr <= 0x1fff) { | 
 | 		if (type & MSR_TYPE_R) | 
 | 			/* read-low */ | 
 | 			__clear_bit(msr, msr_bitmap + 0x000 / f); | 
 |  | 
 | 		if (type & MSR_TYPE_W) | 
 | 			/* write-low */ | 
 | 			__clear_bit(msr, msr_bitmap + 0x800 / f); | 
 |  | 
 | 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { | 
 | 		msr &= 0x1fff; | 
 | 		if (type & MSR_TYPE_R) | 
 | 			/* read-high */ | 
 | 			__clear_bit(msr, msr_bitmap + 0x400 / f); | 
 |  | 
 | 		if (type & MSR_TYPE_W) | 
 | 			/* write-high */ | 
 | 			__clear_bit(msr, msr_bitmap + 0xc00 / f); | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap, | 
 | 						u32 msr, int type) | 
 | { | 
 | 	int f = sizeof(unsigned long); | 
 |  | 
 | 	if (!cpu_has_vmx_msr_bitmap()) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals | 
 | 	 * have the write-low and read-high bitmap offsets the wrong way round. | 
 | 	 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff. | 
 | 	 */ | 
 | 	if (msr <= 0x1fff) { | 
 | 		if (type & MSR_TYPE_R) | 
 | 			/* read-low */ | 
 | 			__set_bit(msr, msr_bitmap + 0x000 / f); | 
 |  | 
 | 		if (type & MSR_TYPE_W) | 
 | 			/* write-low */ | 
 | 			__set_bit(msr, msr_bitmap + 0x800 / f); | 
 |  | 
 | 	} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) { | 
 | 		msr &= 0x1fff; | 
 | 		if (type & MSR_TYPE_R) | 
 | 			/* read-high */ | 
 | 			__set_bit(msr, msr_bitmap + 0x400 / f); | 
 |  | 
 | 		if (type & MSR_TYPE_W) | 
 | 			/* write-high */ | 
 | 			__set_bit(msr, msr_bitmap + 0xc00 / f); | 
 |  | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only) | 
 | { | 
 | 	if (!longmode_only) | 
 | 		__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, | 
 | 						msr, MSR_TYPE_R | MSR_TYPE_W); | 
 | 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, | 
 | 						msr, MSR_TYPE_R | MSR_TYPE_W); | 
 | } | 
 |  | 
 | static void vmx_enable_intercept_msr_read_x2apic(u32 msr) | 
 | { | 
 | 	__vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, | 
 | 			msr, MSR_TYPE_R); | 
 | 	__vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, | 
 | 			msr, MSR_TYPE_R); | 
 | } | 
 |  | 
 | static void vmx_disable_intercept_msr_read_x2apic(u32 msr) | 
 | { | 
 | 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, | 
 | 			msr, MSR_TYPE_R); | 
 | 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, | 
 | 			msr, MSR_TYPE_R); | 
 | } | 
 |  | 
 | static void vmx_disable_intercept_msr_write_x2apic(u32 msr) | 
 | { | 
 | 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic, | 
 | 			msr, MSR_TYPE_W); | 
 | 	__vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic, | 
 | 			msr, MSR_TYPE_W); | 
 | } | 
 |  | 
 | static int vmx_vm_has_apicv(struct kvm *kvm) | 
 | { | 
 | 	return enable_apicv && irqchip_in_kernel(kvm); | 
 | } | 
 |  | 
 | /* | 
 |  * Send interrupt to vcpu via posted interrupt way. | 
 |  * 1. If target vcpu is running(non-root mode), send posted interrupt | 
 |  * notification to vcpu and hardware will sync PIR to vIRR atomically. | 
 |  * 2. If target vcpu isn't running(root mode), kick it to pick up the | 
 |  * interrupt from PIR in next vmentry. | 
 |  */ | 
 | static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	int r; | 
 |  | 
 | 	if (pi_test_and_set_pir(vector, &vmx->pi_desc)) | 
 | 		return; | 
 |  | 
 | 	r = pi_test_and_set_on(&vmx->pi_desc); | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | #ifdef CONFIG_SMP | 
 | 	if (!r && (vcpu->mode == IN_GUEST_MODE)) | 
 | 		apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), | 
 | 				POSTED_INTR_VECTOR); | 
 | 	else | 
 | #endif | 
 | 		kvm_vcpu_kick(vcpu); | 
 | } | 
 |  | 
 | static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 |  | 
 | 	if (!pi_test_and_clear_on(&vmx->pi_desc)) | 
 | 		return; | 
 |  | 
 | 	kvm_apic_update_irr(vcpu, vmx->pi_desc.pir); | 
 | } | 
 |  | 
 | static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Set up the vmcs's constant host-state fields, i.e., host-state fields that | 
 |  * will not change in the lifetime of the guest. | 
 |  * Note that host-state that does change is set elsewhere. E.g., host-state | 
 |  * that is set differently for each CPU is set in vmx_vcpu_load(), not here. | 
 |  */ | 
 | static void vmx_set_constant_host_state(struct vcpu_vmx *vmx) | 
 | { | 
 | 	u32 low32, high32; | 
 | 	unsigned long tmpl; | 
 | 	struct desc_ptr dt; | 
 |  | 
 | 	vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */ | 
 | 	vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */ | 
 | 	vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */ | 
 |  | 
 | 	vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */ | 
 | #ifdef CONFIG_X86_64 | 
 | 	/* | 
 | 	 * Load null selectors, so we can avoid reloading them in | 
 | 	 * __vmx_load_host_state(), in case userspace uses the null selectors | 
 | 	 * too (the expected case). | 
 | 	 */ | 
 | 	vmcs_write16(HOST_DS_SELECTOR, 0); | 
 | 	vmcs_write16(HOST_ES_SELECTOR, 0); | 
 | #else | 
 | 	vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
 | 	vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
 | #endif | 
 | 	vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */ | 
 | 	vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */ | 
 |  | 
 | 	native_store_idt(&dt); | 
 | 	vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */ | 
 | 	vmx->host_idt_base = dt.address; | 
 |  | 
 | 	vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */ | 
 |  | 
 | 	rdmsr(MSR_IA32_SYSENTER_CS, low32, high32); | 
 | 	vmcs_write32(HOST_IA32_SYSENTER_CS, low32); | 
 | 	rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl); | 
 | 	vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */ | 
 |  | 
 | 	if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) { | 
 | 		rdmsr(MSR_IA32_CR_PAT, low32, high32); | 
 | 		vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32)); | 
 | 	} | 
 | } | 
 |  | 
 | static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx) | 
 | { | 
 | 	vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS; | 
 | 	if (enable_ept) | 
 | 		vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE; | 
 | 	if (is_guest_mode(&vmx->vcpu)) | 
 | 		vmx->vcpu.arch.cr4_guest_owned_bits &= | 
 | 			~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask; | 
 | 	vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits); | 
 | } | 
 |  | 
 | static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx) | 
 | { | 
 | 	u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl; | 
 |  | 
 | 	if (!vmx_vm_has_apicv(vmx->vcpu.kvm)) | 
 | 		pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR; | 
 | 	return pin_based_exec_ctrl; | 
 | } | 
 |  | 
 | static u32 vmx_exec_control(struct vcpu_vmx *vmx) | 
 | { | 
 | 	u32 exec_control = vmcs_config.cpu_based_exec_ctrl; | 
 | 	if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) { | 
 | 		exec_control &= ~CPU_BASED_TPR_SHADOW; | 
 | #ifdef CONFIG_X86_64 | 
 | 		exec_control |= CPU_BASED_CR8_STORE_EXITING | | 
 | 				CPU_BASED_CR8_LOAD_EXITING; | 
 | #endif | 
 | 	} | 
 | 	if (!enable_ept) | 
 | 		exec_control |= CPU_BASED_CR3_STORE_EXITING | | 
 | 				CPU_BASED_CR3_LOAD_EXITING  | | 
 | 				CPU_BASED_INVLPG_EXITING; | 
 | 	return exec_control; | 
 | } | 
 |  | 
 | static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx) | 
 | { | 
 | 	u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl; | 
 | 	if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) | 
 | 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
 | 	if (vmx->vpid == 0) | 
 | 		exec_control &= ~SECONDARY_EXEC_ENABLE_VPID; | 
 | 	if (!enable_ept) { | 
 | 		exec_control &= ~SECONDARY_EXEC_ENABLE_EPT; | 
 | 		enable_unrestricted_guest = 0; | 
 | 		/* Enable INVPCID for non-ept guests may cause performance regression. */ | 
 | 		exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; | 
 | 	} | 
 | 	if (!enable_unrestricted_guest) | 
 | 		exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST; | 
 | 	if (!ple_gap) | 
 | 		exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING; | 
 | 	if (!vmx_vm_has_apicv(vmx->vcpu.kvm)) | 
 | 		exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT | | 
 | 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY); | 
 | 	exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; | 
 | 	/* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD | 
 | 	   (handle_vmptrld). | 
 | 	   We can NOT enable shadow_vmcs here because we don't have yet | 
 | 	   a current VMCS12 | 
 | 	*/ | 
 | 	exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; | 
 | 	return exec_control; | 
 | } | 
 |  | 
 | static void ept_set_mmio_spte_mask(void) | 
 | { | 
 | 	/* | 
 | 	 * EPT Misconfigurations can be generated if the value of bits 2:0 | 
 | 	 * of an EPT paging-structure entry is 110b (write/execute). | 
 | 	 * Also, magic bits (0xffull << 49) is set to quickly identify mmio | 
 | 	 * spte. | 
 | 	 */ | 
 | 	kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull); | 
 | } | 
 |  | 
 | /* | 
 |  * Sets up the vmcs for emulated real mode. | 
 |  */ | 
 | static int vmx_vcpu_setup(struct vcpu_vmx *vmx) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	unsigned long a; | 
 | #endif | 
 | 	int i; | 
 |  | 
 | 	/* I/O */ | 
 | 	vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a)); | 
 | 	vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b)); | 
 |  | 
 | 	if (enable_shadow_vmcs) { | 
 | 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap)); | 
 | 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap)); | 
 | 	} | 
 | 	if (cpu_has_vmx_msr_bitmap()) | 
 | 		vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy)); | 
 |  | 
 | 	vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */ | 
 |  | 
 | 	/* Control */ | 
 | 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx)); | 
 |  | 
 | 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx)); | 
 |  | 
 | 	if (cpu_has_secondary_exec_ctrls()) { | 
 | 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, | 
 | 				vmx_secondary_exec_control(vmx)); | 
 | 	} | 
 |  | 
 | 	if (vmx_vm_has_apicv(vmx->vcpu.kvm)) { | 
 | 		vmcs_write64(EOI_EXIT_BITMAP0, 0); | 
 | 		vmcs_write64(EOI_EXIT_BITMAP1, 0); | 
 | 		vmcs_write64(EOI_EXIT_BITMAP2, 0); | 
 | 		vmcs_write64(EOI_EXIT_BITMAP3, 0); | 
 |  | 
 | 		vmcs_write16(GUEST_INTR_STATUS, 0); | 
 |  | 
 | 		vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR); | 
 | 		vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc))); | 
 | 	} | 
 |  | 
 | 	if (ple_gap) { | 
 | 		vmcs_write32(PLE_GAP, ple_gap); | 
 | 		vmcs_write32(PLE_WINDOW, ple_window); | 
 | 	} | 
 |  | 
 | 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0); | 
 | 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0); | 
 | 	vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */ | 
 |  | 
 | 	vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */ | 
 | 	vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */ | 
 | 	vmx_set_constant_host_state(vmx); | 
 | #ifdef CONFIG_X86_64 | 
 | 	rdmsrl(MSR_FS_BASE, a); | 
 | 	vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */ | 
 | 	rdmsrl(MSR_GS_BASE, a); | 
 | 	vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */ | 
 | #else | 
 | 	vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */ | 
 | 	vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */ | 
 | #endif | 
 |  | 
 | 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0); | 
 | 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0); | 
 | 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host)); | 
 | 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0); | 
 | 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest)); | 
 |  | 
 | 	if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) { | 
 | 		u32 msr_low, msr_high; | 
 | 		u64 host_pat; | 
 | 		rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high); | 
 | 		host_pat = msr_low | ((u64) msr_high << 32); | 
 | 		/* Write the default value follow host pat */ | 
 | 		vmcs_write64(GUEST_IA32_PAT, host_pat); | 
 | 		/* Keep arch.pat sync with GUEST_IA32_PAT */ | 
 | 		vmx->vcpu.arch.pat = host_pat; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < NR_VMX_MSR; ++i) { | 
 | 		u32 index = vmx_msr_index[i]; | 
 | 		u32 data_low, data_high; | 
 | 		int j = vmx->nmsrs; | 
 |  | 
 | 		if (rdmsr_safe(index, &data_low, &data_high) < 0) | 
 | 			continue; | 
 | 		if (wrmsr_safe(index, data_low, data_high) < 0) | 
 | 			continue; | 
 | 		vmx->guest_msrs[j].index = i; | 
 | 		vmx->guest_msrs[j].data = 0; | 
 | 		vmx->guest_msrs[j].mask = -1ull; | 
 | 		++vmx->nmsrs; | 
 | 	} | 
 |  | 
 | 	vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl); | 
 |  | 
 | 	/* 22.2.1, 20.8.1 */ | 
 | 	vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl); | 
 |  | 
 | 	vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL); | 
 | 	set_cr4_guest_host_mask(vmx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vmx_vcpu_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	u64 msr; | 
 |  | 
 | 	vmx->rmode.vm86_active = 0; | 
 |  | 
 | 	vmx->soft_vnmi_blocked = 0; | 
 |  | 
 | 	vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val(); | 
 | 	kvm_set_cr8(&vmx->vcpu, 0); | 
 | 	msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE; | 
 | 	if (kvm_vcpu_is_bsp(&vmx->vcpu)) | 
 | 		msr |= MSR_IA32_APICBASE_BSP; | 
 | 	kvm_set_apic_base(&vmx->vcpu, msr); | 
 |  | 
 | 	vmx_segment_cache_clear(vmx); | 
 |  | 
 | 	seg_setup(VCPU_SREG_CS); | 
 | 	vmcs_write16(GUEST_CS_SELECTOR, 0xf000); | 
 | 	vmcs_write32(GUEST_CS_BASE, 0xffff0000); | 
 |  | 
 | 	seg_setup(VCPU_SREG_DS); | 
 | 	seg_setup(VCPU_SREG_ES); | 
 | 	seg_setup(VCPU_SREG_FS); | 
 | 	seg_setup(VCPU_SREG_GS); | 
 | 	seg_setup(VCPU_SREG_SS); | 
 |  | 
 | 	vmcs_write16(GUEST_TR_SELECTOR, 0); | 
 | 	vmcs_writel(GUEST_TR_BASE, 0); | 
 | 	vmcs_write32(GUEST_TR_LIMIT, 0xffff); | 
 | 	vmcs_write32(GUEST_TR_AR_BYTES, 0x008b); | 
 |  | 
 | 	vmcs_write16(GUEST_LDTR_SELECTOR, 0); | 
 | 	vmcs_writel(GUEST_LDTR_BASE, 0); | 
 | 	vmcs_write32(GUEST_LDTR_LIMIT, 0xffff); | 
 | 	vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082); | 
 |  | 
 | 	vmcs_write32(GUEST_SYSENTER_CS, 0); | 
 | 	vmcs_writel(GUEST_SYSENTER_ESP, 0); | 
 | 	vmcs_writel(GUEST_SYSENTER_EIP, 0); | 
 |  | 
 | 	vmcs_writel(GUEST_RFLAGS, 0x02); | 
 | 	kvm_rip_write(vcpu, 0xfff0); | 
 |  | 
 | 	vmcs_writel(GUEST_GDTR_BASE, 0); | 
 | 	vmcs_write32(GUEST_GDTR_LIMIT, 0xffff); | 
 |  | 
 | 	vmcs_writel(GUEST_IDTR_BASE, 0); | 
 | 	vmcs_write32(GUEST_IDTR_LIMIT, 0xffff); | 
 |  | 
 | 	vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE); | 
 | 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0); | 
 | 	vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0); | 
 |  | 
 | 	/* Special registers */ | 
 | 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0); | 
 |  | 
 | 	setup_msrs(vmx); | 
 |  | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */ | 
 |  | 
 | 	if (cpu_has_vmx_tpr_shadow()) { | 
 | 		vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0); | 
 | 		if (vm_need_tpr_shadow(vmx->vcpu.kvm)) | 
 | 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, | 
 | 				     __pa(vmx->vcpu.arch.apic->regs)); | 
 | 		vmcs_write32(TPR_THRESHOLD, 0); | 
 | 	} | 
 |  | 
 | 	if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm)) | 
 | 		vmcs_write64(APIC_ACCESS_ADDR, | 
 | 			     page_to_phys(vmx->vcpu.kvm->arch.apic_access_page)); | 
 |  | 
 | 	if (vmx_vm_has_apicv(vcpu->kvm)) | 
 | 		memset(&vmx->pi_desc, 0, sizeof(struct pi_desc)); | 
 |  | 
 | 	if (vmx->vpid != 0) | 
 | 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); | 
 |  | 
 | 	vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET; | 
 | 	vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */ | 
 | 	vmx_set_cr4(&vmx->vcpu, 0); | 
 | 	vmx_set_efer(&vmx->vcpu, 0); | 
 | 	vmx_fpu_activate(&vmx->vcpu); | 
 | 	update_exception_bitmap(&vmx->vcpu); | 
 |  | 
 | 	vpid_sync_context(vmx); | 
 | } | 
 |  | 
 | /* | 
 |  * In nested virtualization, check if L1 asked to exit on external interrupts. | 
 |  * For most existing hypervisors, this will always return true. | 
 |  */ | 
 | static bool nested_exit_on_intr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return get_vmcs12(vcpu)->pin_based_vm_exec_control & | 
 | 		PIN_BASED_EXT_INTR_MASK; | 
 | } | 
 |  | 
 | static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return get_vmcs12(vcpu)->pin_based_vm_exec_control & | 
 | 		PIN_BASED_NMI_EXITING; | 
 | } | 
 |  | 
 | static int enable_irq_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 cpu_based_vm_exec_control; | 
 |  | 
 | 	if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) | 
 | 		/* | 
 | 		 * We get here if vmx_interrupt_allowed() said we can't | 
 | 		 * inject to L1 now because L2 must run. The caller will have | 
 | 		 * to make L2 exit right after entry, so we can inject to L1 | 
 | 		 * more promptly. | 
 | 		 */ | 
 | 		return -EBUSY; | 
 |  | 
 | 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
 | 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING; | 
 | 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int enable_nmi_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 cpu_based_vm_exec_control; | 
 |  | 
 | 	if (!cpu_has_virtual_nmis()) | 
 | 		return enable_irq_window(vcpu); | 
 |  | 
 | 	if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) | 
 | 		return enable_irq_window(vcpu); | 
 |  | 
 | 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
 | 	cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING; | 
 | 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vmx_inject_irq(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	uint32_t intr; | 
 | 	int irq = vcpu->arch.interrupt.nr; | 
 |  | 
 | 	trace_kvm_inj_virq(irq); | 
 |  | 
 | 	++vcpu->stat.irq_injections; | 
 | 	if (vmx->rmode.vm86_active) { | 
 | 		int inc_eip = 0; | 
 | 		if (vcpu->arch.interrupt.soft) | 
 | 			inc_eip = vcpu->arch.event_exit_inst_len; | 
 | 		if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE) | 
 | 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		return; | 
 | 	} | 
 | 	intr = irq | INTR_INFO_VALID_MASK; | 
 | 	if (vcpu->arch.interrupt.soft) { | 
 | 		intr |= INTR_TYPE_SOFT_INTR; | 
 | 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, | 
 | 			     vmx->vcpu.arch.event_exit_inst_len); | 
 | 	} else | 
 | 		intr |= INTR_TYPE_EXT_INTR; | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr); | 
 | } | 
 |  | 
 | static void vmx_inject_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 |  | 
 | 	if (is_guest_mode(vcpu)) | 
 | 		return; | 
 |  | 
 | 	if (!cpu_has_virtual_nmis()) { | 
 | 		/* | 
 | 		 * Tracking the NMI-blocked state in software is built upon | 
 | 		 * finding the next open IRQ window. This, in turn, depends on | 
 | 		 * well-behaving guests: They have to keep IRQs disabled at | 
 | 		 * least as long as the NMI handler runs. Otherwise we may | 
 | 		 * cause NMI nesting, maybe breaking the guest. But as this is | 
 | 		 * highly unlikely, we can live with the residual risk. | 
 | 		 */ | 
 | 		vmx->soft_vnmi_blocked = 1; | 
 | 		vmx->vnmi_blocked_time = 0; | 
 | 	} | 
 |  | 
 | 	++vcpu->stat.nmi_injections; | 
 | 	vmx->nmi_known_unmasked = false; | 
 | 	if (vmx->rmode.vm86_active) { | 
 | 		if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE) | 
 | 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		return; | 
 | 	} | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
 | 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR); | 
 | } | 
 |  | 
 | static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!cpu_has_virtual_nmis()) | 
 | 		return to_vmx(vcpu)->soft_vnmi_blocked; | 
 | 	if (to_vmx(vcpu)->nmi_known_unmasked) | 
 | 		return false; | 
 | 	return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)	& GUEST_INTR_STATE_NMI; | 
 | } | 
 |  | 
 | static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 |  | 
 | 	if (!cpu_has_virtual_nmis()) { | 
 | 		if (vmx->soft_vnmi_blocked != masked) { | 
 | 			vmx->soft_vnmi_blocked = masked; | 
 | 			vmx->vnmi_blocked_time = 0; | 
 | 		} | 
 | 	} else { | 
 | 		vmx->nmi_known_unmasked = !masked; | 
 | 		if (masked) | 
 | 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, | 
 | 				      GUEST_INTR_STATE_NMI); | 
 | 		else | 
 | 			vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO, | 
 | 					GUEST_INTR_STATE_NMI); | 
 | 	} | 
 | } | 
 |  | 
 | static int vmx_nmi_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
 |  | 
 | 		if (to_vmx(vcpu)->nested.nested_run_pending) | 
 | 			return 0; | 
 | 		if (nested_exit_on_nmi(vcpu)) { | 
 | 			nested_vmx_vmexit(vcpu); | 
 | 			vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI; | 
 | 			vmcs12->vm_exit_intr_info = NMI_VECTOR | | 
 | 				INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK; | 
 | 			/* | 
 | 			 * The NMI-triggered VM exit counts as injection: | 
 | 			 * clear this one and block further NMIs. | 
 | 			 */ | 
 | 			vcpu->arch.nmi_pending = 0; | 
 | 			vmx_set_nmi_mask(vcpu, true); | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked) | 
 | 		return 0; | 
 |  | 
 | 	return	!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & | 
 | 		  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI | 
 | 		   | GUEST_INTR_STATE_NMI)); | 
 | } | 
 |  | 
 | static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
 |  | 
 | 		if (to_vmx(vcpu)->nested.nested_run_pending) | 
 | 			return 0; | 
 | 		if (nested_exit_on_intr(vcpu)) { | 
 | 			nested_vmx_vmexit(vcpu); | 
 | 			vmcs12->vm_exit_reason = | 
 | 				EXIT_REASON_EXTERNAL_INTERRUPT; | 
 | 			vmcs12->vm_exit_intr_info = 0; | 
 | 			/* | 
 | 			 * fall through to normal code, but now in L1, not L2 | 
 | 			 */ | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) && | 
 | 		!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & | 
 | 			(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS)); | 
 | } | 
 |  | 
 | static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr) | 
 | { | 
 | 	int ret; | 
 | 	struct kvm_userspace_memory_region tss_mem = { | 
 | 		.slot = TSS_PRIVATE_MEMSLOT, | 
 | 		.guest_phys_addr = addr, | 
 | 		.memory_size = PAGE_SIZE * 3, | 
 | 		.flags = 0, | 
 | 	}; | 
 |  | 
 | 	ret = kvm_set_memory_region(kvm, &tss_mem); | 
 | 	if (ret) | 
 | 		return ret; | 
 | 	kvm->arch.tss_addr = addr; | 
 | 	if (!init_rmode_tss(kvm)) | 
 | 		return  -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool rmode_exception(struct kvm_vcpu *vcpu, int vec) | 
 | { | 
 | 	switch (vec) { | 
 | 	case BP_VECTOR: | 
 | 		/* | 
 | 		 * Update instruction length as we may reinject the exception | 
 | 		 * from user space while in guest debugging mode. | 
 | 		 */ | 
 | 		to_vmx(vcpu)->vcpu.arch.event_exit_inst_len = | 
 | 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
 | 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP) | 
 | 			return false; | 
 | 		/* fall through */ | 
 | 	case DB_VECTOR: | 
 | 		if (vcpu->guest_debug & | 
 | 			(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) | 
 | 			return false; | 
 | 		/* fall through */ | 
 | 	case DE_VECTOR: | 
 | 	case OF_VECTOR: | 
 | 	case BR_VECTOR: | 
 | 	case UD_VECTOR: | 
 | 	case DF_VECTOR: | 
 | 	case SS_VECTOR: | 
 | 	case GP_VECTOR: | 
 | 	case MF_VECTOR: | 
 | 		return true; | 
 | 	break; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static int handle_rmode_exception(struct kvm_vcpu *vcpu, | 
 | 				  int vec, u32 err_code) | 
 | { | 
 | 	/* | 
 | 	 * Instruction with address size override prefix opcode 0x67 | 
 | 	 * Cause the #SS fault with 0 error code in VM86 mode. | 
 | 	 */ | 
 | 	if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) { | 
 | 		if (emulate_instruction(vcpu, 0) == EMULATE_DONE) { | 
 | 			if (vcpu->arch.halt_request) { | 
 | 				vcpu->arch.halt_request = 0; | 
 | 				return kvm_emulate_halt(vcpu); | 
 | 			} | 
 | 			return 1; | 
 | 		} | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Forward all other exceptions that are valid in real mode. | 
 | 	 * FIXME: Breaks guest debugging in real mode, needs to be fixed with | 
 | 	 *        the required debugging infrastructure rework. | 
 | 	 */ | 
 | 	kvm_queue_exception(vcpu, vec); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Trigger machine check on the host. We assume all the MSRs are already set up | 
 |  * by the CPU and that we still run on the same CPU as the MCE occurred on. | 
 |  * We pass a fake environment to the machine check handler because we want | 
 |  * the guest to be always treated like user space, no matter what context | 
 |  * it used internally. | 
 |  */ | 
 | static void kvm_machine_check(void) | 
 | { | 
 | #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64) | 
 | 	struct pt_regs regs = { | 
 | 		.cs = 3, /* Fake ring 3 no matter what the guest ran on */ | 
 | 		.flags = X86_EFLAGS_IF, | 
 | 	}; | 
 |  | 
 | 	do_machine_check(®s, 0); | 
 | #endif | 
 | } | 
 |  | 
 | static int handle_machine_check(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* already handled by vcpu_run */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_exception(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	struct kvm_run *kvm_run = vcpu->run; | 
 | 	u32 intr_info, ex_no, error_code; | 
 | 	unsigned long cr2, rip, dr6; | 
 | 	u32 vect_info; | 
 | 	enum emulation_result er; | 
 |  | 
 | 	vect_info = vmx->idt_vectoring_info; | 
 | 	intr_info = vmx->exit_intr_info; | 
 |  | 
 | 	if (is_machine_check(intr_info)) | 
 | 		return handle_machine_check(vcpu); | 
 |  | 
 | 	if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR) | 
 | 		return 1;  /* already handled by vmx_vcpu_run() */ | 
 |  | 
 | 	if (is_no_device(intr_info)) { | 
 | 		vmx_fpu_activate(vcpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (is_invalid_opcode(intr_info)) { | 
 | 		er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD); | 
 | 		if (er != EMULATE_DONE) | 
 | 			kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	error_code = 0; | 
 | 	if (intr_info & INTR_INFO_DELIVER_CODE_MASK) | 
 | 		error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE); | 
 |  | 
 | 	/* | 
 | 	 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing | 
 | 	 * MMIO, it is better to report an internal error. | 
 | 	 * See the comments in vmx_handle_exit. | 
 | 	 */ | 
 | 	if ((vect_info & VECTORING_INFO_VALID_MASK) && | 
 | 	    !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX; | 
 | 		vcpu->run->internal.ndata = 2; | 
 | 		vcpu->run->internal.data[0] = vect_info; | 
 | 		vcpu->run->internal.data[1] = intr_info; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (is_page_fault(intr_info)) { | 
 | 		/* EPT won't cause page fault directly */ | 
 | 		BUG_ON(enable_ept); | 
 | 		cr2 = vmcs_readl(EXIT_QUALIFICATION); | 
 | 		trace_kvm_page_fault(cr2, error_code); | 
 |  | 
 | 		if (kvm_event_needs_reinjection(vcpu)) | 
 | 			kvm_mmu_unprotect_page_virt(vcpu, cr2); | 
 | 		return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0); | 
 | 	} | 
 |  | 
 | 	ex_no = intr_info & INTR_INFO_VECTOR_MASK; | 
 |  | 
 | 	if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no)) | 
 | 		return handle_rmode_exception(vcpu, ex_no, error_code); | 
 |  | 
 | 	switch (ex_no) { | 
 | 	case DB_VECTOR: | 
 | 		dr6 = vmcs_readl(EXIT_QUALIFICATION); | 
 | 		if (!(vcpu->guest_debug & | 
 | 		      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) { | 
 | 			vcpu->arch.dr6 = dr6 | DR6_FIXED_1; | 
 | 			kvm_queue_exception(vcpu, DB_VECTOR); | 
 | 			return 1; | 
 | 		} | 
 | 		kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1; | 
 | 		kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7); | 
 | 		/* fall through */ | 
 | 	case BP_VECTOR: | 
 | 		/* | 
 | 		 * Update instruction length as we may reinject #BP from | 
 | 		 * user space while in guest debugging mode. Reading it for | 
 | 		 * #DB as well causes no harm, it is not used in that case. | 
 | 		 */ | 
 | 		vmx->vcpu.arch.event_exit_inst_len = | 
 | 			vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
 | 		kvm_run->exit_reason = KVM_EXIT_DEBUG; | 
 | 		rip = kvm_rip_read(vcpu); | 
 | 		kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip; | 
 | 		kvm_run->debug.arch.exception = ex_no; | 
 | 		break; | 
 | 	default: | 
 | 		kvm_run->exit_reason = KVM_EXIT_EXCEPTION; | 
 | 		kvm_run->ex.exception = ex_no; | 
 | 		kvm_run->ex.error_code = error_code; | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_external_interrupt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	++vcpu->stat.irq_exits; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_triple_fault(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_io(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long exit_qualification; | 
 | 	int size, in, string; | 
 | 	unsigned port; | 
 |  | 
 | 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	string = (exit_qualification & 16) != 0; | 
 | 	in = (exit_qualification & 8) != 0; | 
 |  | 
 | 	++vcpu->stat.io_exits; | 
 |  | 
 | 	if (string || in) | 
 | 		return emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
 |  | 
 | 	port = exit_qualification >> 16; | 
 | 	size = (exit_qualification & 7) + 1; | 
 | 	skip_emulated_instruction(vcpu); | 
 |  | 
 | 	return kvm_fast_pio_out(vcpu, size, port); | 
 | } | 
 |  | 
 | static void | 
 | vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall) | 
 | { | 
 | 	/* | 
 | 	 * Patch in the VMCALL instruction: | 
 | 	 */ | 
 | 	hypercall[0] = 0x0f; | 
 | 	hypercall[1] = 0x01; | 
 | 	hypercall[2] = 0xc1; | 
 | } | 
 |  | 
 | /* called to set cr0 as appropriate for a mov-to-cr0 exit. */ | 
 | static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val) | 
 | { | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
 | 		unsigned long orig_val = val; | 
 |  | 
 | 		/* | 
 | 		 * We get here when L2 changed cr0 in a way that did not change | 
 | 		 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr), | 
 | 		 * but did change L0 shadowed bits. So we first calculate the | 
 | 		 * effective cr0 value that L1 would like to write into the | 
 | 		 * hardware. It consists of the L2-owned bits from the new | 
 | 		 * value combined with the L1-owned bits from L1's guest_cr0. | 
 | 		 */ | 
 | 		val = (val & ~vmcs12->cr0_guest_host_mask) | | 
 | 			(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask); | 
 |  | 
 | 		/* TODO: will have to take unrestricted guest mode into | 
 | 		 * account */ | 
 | 		if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) | 
 | 			return 1; | 
 |  | 
 | 		if (kvm_set_cr0(vcpu, val)) | 
 | 			return 1; | 
 | 		vmcs_writel(CR0_READ_SHADOW, orig_val); | 
 | 		return 0; | 
 | 	} else { | 
 | 		if (to_vmx(vcpu)->nested.vmxon && | 
 | 		    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)) | 
 | 			return 1; | 
 | 		return kvm_set_cr0(vcpu, val); | 
 | 	} | 
 | } | 
 |  | 
 | static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val) | 
 | { | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
 | 		unsigned long orig_val = val; | 
 |  | 
 | 		/* analogously to handle_set_cr0 */ | 
 | 		val = (val & ~vmcs12->cr4_guest_host_mask) | | 
 | 			(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask); | 
 | 		if (kvm_set_cr4(vcpu, val)) | 
 | 			return 1; | 
 | 		vmcs_writel(CR4_READ_SHADOW, orig_val); | 
 | 		return 0; | 
 | 	} else | 
 | 		return kvm_set_cr4(vcpu, val); | 
 | } | 
 |  | 
 | /* called to set cr0 as approriate for clts instruction exit. */ | 
 | static void handle_clts(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (is_guest_mode(vcpu)) { | 
 | 		/* | 
 | 		 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS | 
 | 		 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on, | 
 | 		 * just pretend it's off (also in arch.cr0 for fpu_activate). | 
 | 		 */ | 
 | 		vmcs_writel(CR0_READ_SHADOW, | 
 | 			vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS); | 
 | 		vcpu->arch.cr0 &= ~X86_CR0_TS; | 
 | 	} else | 
 | 		vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS)); | 
 | } | 
 |  | 
 | static int handle_cr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long exit_qualification, val; | 
 | 	int cr; | 
 | 	int reg; | 
 | 	int err; | 
 |  | 
 | 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	cr = exit_qualification & 15; | 
 | 	reg = (exit_qualification >> 8) & 15; | 
 | 	switch ((exit_qualification >> 4) & 3) { | 
 | 	case 0: /* mov to cr */ | 
 | 		val = kvm_register_read(vcpu, reg); | 
 | 		trace_kvm_cr_write(cr, val); | 
 | 		switch (cr) { | 
 | 		case 0: | 
 | 			err = handle_set_cr0(vcpu, val); | 
 | 			kvm_complete_insn_gp(vcpu, err); | 
 | 			return 1; | 
 | 		case 3: | 
 | 			err = kvm_set_cr3(vcpu, val); | 
 | 			kvm_complete_insn_gp(vcpu, err); | 
 | 			return 1; | 
 | 		case 4: | 
 | 			err = handle_set_cr4(vcpu, val); | 
 | 			kvm_complete_insn_gp(vcpu, err); | 
 | 			return 1; | 
 | 		case 8: { | 
 | 				u8 cr8_prev = kvm_get_cr8(vcpu); | 
 | 				u8 cr8 = kvm_register_read(vcpu, reg); | 
 | 				err = kvm_set_cr8(vcpu, cr8); | 
 | 				kvm_complete_insn_gp(vcpu, err); | 
 | 				if (irqchip_in_kernel(vcpu->kvm)) | 
 | 					return 1; | 
 | 				if (cr8_prev <= cr8) | 
 | 					return 1; | 
 | 				vcpu->run->exit_reason = KVM_EXIT_SET_TPR; | 
 | 				return 0; | 
 | 			} | 
 | 		} | 
 | 		break; | 
 | 	case 2: /* clts */ | 
 | 		handle_clts(vcpu); | 
 | 		trace_kvm_cr_write(0, kvm_read_cr0(vcpu)); | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		vmx_fpu_activate(vcpu); | 
 | 		return 1; | 
 | 	case 1: /*mov from cr*/ | 
 | 		switch (cr) { | 
 | 		case 3: | 
 | 			val = kvm_read_cr3(vcpu); | 
 | 			kvm_register_write(vcpu, reg, val); | 
 | 			trace_kvm_cr_read(cr, val); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		case 8: | 
 | 			val = kvm_get_cr8(vcpu); | 
 | 			kvm_register_write(vcpu, reg, val); | 
 | 			trace_kvm_cr_read(cr, val); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		} | 
 | 		break; | 
 | 	case 3: /* lmsw */ | 
 | 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f; | 
 | 		trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val); | 
 | 		kvm_lmsw(vcpu, val); | 
 |  | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	vcpu->run->exit_reason = 0; | 
 | 	vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n", | 
 | 	       (int)(exit_qualification >> 4) & 3, cr); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_dr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long exit_qualification; | 
 | 	int dr, reg; | 
 |  | 
 | 	/* Do not handle if the CPL > 0, will trigger GP on re-entry */ | 
 | 	if (!kvm_require_cpl(vcpu, 0)) | 
 | 		return 1; | 
 | 	dr = vmcs_readl(GUEST_DR7); | 
 | 	if (dr & DR7_GD) { | 
 | 		/* | 
 | 		 * As the vm-exit takes precedence over the debug trap, we | 
 | 		 * need to emulate the latter, either for the host or the | 
 | 		 * guest debugging itself. | 
 | 		 */ | 
 | 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | 
 | 			vcpu->run->debug.arch.dr6 = vcpu->arch.dr6; | 
 | 			vcpu->run->debug.arch.dr7 = dr; | 
 | 			vcpu->run->debug.arch.pc = | 
 | 				vmcs_readl(GUEST_CS_BASE) + | 
 | 				vmcs_readl(GUEST_RIP); | 
 | 			vcpu->run->debug.arch.exception = DB_VECTOR; | 
 | 			vcpu->run->exit_reason = KVM_EXIT_DEBUG; | 
 | 			return 0; | 
 | 		} else { | 
 | 			vcpu->arch.dr7 &= ~DR7_GD; | 
 | 			vcpu->arch.dr6 |= DR6_BD; | 
 | 			vmcs_writel(GUEST_DR7, vcpu->arch.dr7); | 
 | 			kvm_queue_exception(vcpu, DB_VECTOR); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	dr = exit_qualification & DEBUG_REG_ACCESS_NUM; | 
 | 	reg = DEBUG_REG_ACCESS_REG(exit_qualification); | 
 | 	if (exit_qualification & TYPE_MOV_FROM_DR) { | 
 | 		unsigned long val; | 
 | 		if (!kvm_get_dr(vcpu, dr, &val)) | 
 | 			kvm_register_write(vcpu, reg, val); | 
 | 	} else | 
 | 		kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val) | 
 | { | 
 | 	vmcs_writel(GUEST_DR7, val); | 
 | } | 
 |  | 
 | static int handle_cpuid(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_emulate_cpuid(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_rdmsr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
 | 	u64 data; | 
 |  | 
 | 	if (vmx_get_msr(vcpu, ecx, &data)) { | 
 | 		trace_kvm_msr_read_ex(ecx); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	trace_kvm_msr_read(ecx, data); | 
 |  | 
 | 	/* FIXME: handling of bits 32:63 of rax, rdx */ | 
 | 	vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u; | 
 | 	vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u; | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_wrmsr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct msr_data msr; | 
 | 	u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX]; | 
 | 	u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u) | 
 | 		| ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32); | 
 |  | 
 | 	msr.data = data; | 
 | 	msr.index = ecx; | 
 | 	msr.host_initiated = false; | 
 | 	if (vmx_set_msr(vcpu, &msr) != 0) { | 
 | 		trace_kvm_msr_write_ex(ecx, data); | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	trace_kvm_msr_write(ecx, data); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_interrupt_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 cpu_based_vm_exec_control; | 
 |  | 
 | 	/* clear pending irq */ | 
 | 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
 | 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; | 
 | 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	++vcpu->stat.irq_window_exits; | 
 |  | 
 | 	/* | 
 | 	 * If the user space waits to inject interrupts, exit as soon as | 
 | 	 * possible | 
 | 	 */ | 
 | 	if (!irqchip_in_kernel(vcpu->kvm) && | 
 | 	    vcpu->run->request_interrupt_window && | 
 | 	    !kvm_cpu_has_interrupt(vcpu)) { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_halt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return kvm_emulate_halt(vcpu); | 
 | } | 
 |  | 
 | static int handle_vmcall(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	kvm_emulate_hypercall(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_invd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
 | } | 
 |  | 
 | static int handle_invlpg(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 |  | 
 | 	kvm_mmu_invlpg(vcpu, exit_qualification); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_rdpmc(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = kvm_rdpmc(vcpu); | 
 | 	kvm_complete_insn_gp(vcpu, err); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_wbinvd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	kvm_emulate_wbinvd(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_xsetbv(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 new_bv = kvm_read_edx_eax(vcpu); | 
 | 	u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
 |  | 
 | 	if (kvm_set_xcr(vcpu, index, new_bv) == 0) | 
 | 		skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_apic_access(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (likely(fasteoi)) { | 
 | 		unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 		int access_type, offset; | 
 |  | 
 | 		access_type = exit_qualification & APIC_ACCESS_TYPE; | 
 | 		offset = exit_qualification & APIC_ACCESS_OFFSET; | 
 | 		/* | 
 | 		 * Sane guest uses MOV to write EOI, with written value | 
 | 		 * not cared. So make a short-circuit here by avoiding | 
 | 		 * heavy instruction emulation. | 
 | 		 */ | 
 | 		if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) && | 
 | 		    (offset == APIC_EOI)) { | 
 | 			kvm_lapic_set_eoi(vcpu); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 | 	return emulate_instruction(vcpu, 0) == EMULATE_DONE; | 
 | } | 
 |  | 
 | static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	int vector = exit_qualification & 0xff; | 
 |  | 
 | 	/* EOI-induced VM exit is trap-like and thus no need to adjust IP */ | 
 | 	kvm_apic_set_eoi_accelerated(vcpu, vector); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_apic_write(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	u32 offset = exit_qualification & 0xfff; | 
 |  | 
 | 	/* APIC-write VM exit is trap-like and thus no need to adjust IP */ | 
 | 	kvm_apic_write_nodecode(vcpu, offset); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_task_switch(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	unsigned long exit_qualification; | 
 | 	bool has_error_code = false; | 
 | 	u32 error_code = 0; | 
 | 	u16 tss_selector; | 
 | 	int reason, type, idt_v, idt_index; | 
 |  | 
 | 	idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK); | 
 | 	idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK); | 
 | 	type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK); | 
 |  | 
 | 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 |  | 
 | 	reason = (u32)exit_qualification >> 30; | 
 | 	if (reason == TASK_SWITCH_GATE && idt_v) { | 
 | 		switch (type) { | 
 | 		case INTR_TYPE_NMI_INTR: | 
 | 			vcpu->arch.nmi_injected = false; | 
 | 			vmx_set_nmi_mask(vcpu, true); | 
 | 			break; | 
 | 		case INTR_TYPE_EXT_INTR: | 
 | 		case INTR_TYPE_SOFT_INTR: | 
 | 			kvm_clear_interrupt_queue(vcpu); | 
 | 			break; | 
 | 		case INTR_TYPE_HARD_EXCEPTION: | 
 | 			if (vmx->idt_vectoring_info & | 
 | 			    VECTORING_INFO_DELIVER_CODE_MASK) { | 
 | 				has_error_code = true; | 
 | 				error_code = | 
 | 					vmcs_read32(IDT_VECTORING_ERROR_CODE); | 
 | 			} | 
 | 			/* fall through */ | 
 | 		case INTR_TYPE_SOFT_EXCEPTION: | 
 | 			kvm_clear_exception_queue(vcpu); | 
 | 			break; | 
 | 		default: | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	tss_selector = exit_qualification; | 
 |  | 
 | 	if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION && | 
 | 		       type != INTR_TYPE_EXT_INTR && | 
 | 		       type != INTR_TYPE_NMI_INTR)) | 
 | 		skip_emulated_instruction(vcpu); | 
 |  | 
 | 	if (kvm_task_switch(vcpu, tss_selector, | 
 | 			    type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason, | 
 | 			    has_error_code, error_code) == EMULATE_FAIL) { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
 | 		vcpu->run->internal.ndata = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* clear all local breakpoint enable flags */ | 
 | 	vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55); | 
 |  | 
 | 	/* | 
 | 	 * TODO: What about debug traps on tss switch? | 
 | 	 *       Are we supposed to inject them and update dr6? | 
 | 	 */ | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_ept_violation(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long exit_qualification; | 
 | 	gpa_t gpa; | 
 | 	u32 error_code; | 
 | 	int gla_validity; | 
 |  | 
 | 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 |  | 
 | 	gla_validity = (exit_qualification >> 7) & 0x3; | 
 | 	if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) { | 
 | 		printk(KERN_ERR "EPT: Handling EPT violation failed!\n"); | 
 | 		printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n", | 
 | 			(long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS), | 
 | 			vmcs_readl(GUEST_LINEAR_ADDRESS)); | 
 | 		printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n", | 
 | 			(long unsigned int)exit_qualification); | 
 | 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; | 
 | 		vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); | 
 | 	trace_kvm_page_fault(gpa, exit_qualification); | 
 |  | 
 | 	/* It is a write fault? */ | 
 | 	error_code = exit_qualification & (1U << 1); | 
 | 	/* ept page table is present? */ | 
 | 	error_code |= (exit_qualification >> 3) & 0x1; | 
 |  | 
 | 	return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0); | 
 | } | 
 |  | 
 | static u64 ept_rsvd_mask(u64 spte, int level) | 
 | { | 
 | 	int i; | 
 | 	u64 mask = 0; | 
 |  | 
 | 	for (i = 51; i > boot_cpu_data.x86_phys_bits; i--) | 
 | 		mask |= (1ULL << i); | 
 |  | 
 | 	if (level > 2) | 
 | 		/* bits 7:3 reserved */ | 
 | 		mask |= 0xf8; | 
 | 	else if (level == 2) { | 
 | 		if (spte & (1ULL << 7)) | 
 | 			/* 2MB ref, bits 20:12 reserved */ | 
 | 			mask |= 0x1ff000; | 
 | 		else | 
 | 			/* bits 6:3 reserved */ | 
 | 			mask |= 0x78; | 
 | 	} | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte, | 
 | 				       int level) | 
 | { | 
 | 	printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level); | 
 |  | 
 | 	/* 010b (write-only) */ | 
 | 	WARN_ON((spte & 0x7) == 0x2); | 
 |  | 
 | 	/* 110b (write/execute) */ | 
 | 	WARN_ON((spte & 0x7) == 0x6); | 
 |  | 
 | 	/* 100b (execute-only) and value not supported by logical processor */ | 
 | 	if (!cpu_has_vmx_ept_execute_only()) | 
 | 		WARN_ON((spte & 0x7) == 0x4); | 
 |  | 
 | 	/* not 000b */ | 
 | 	if ((spte & 0x7)) { | 
 | 		u64 rsvd_bits = spte & ept_rsvd_mask(spte, level); | 
 |  | 
 | 		if (rsvd_bits != 0) { | 
 | 			printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n", | 
 | 					 __func__, rsvd_bits); | 
 | 			WARN_ON(1); | 
 | 		} | 
 |  | 
 | 		if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) { | 
 | 			u64 ept_mem_type = (spte & 0x38) >> 3; | 
 |  | 
 | 			if (ept_mem_type == 2 || ept_mem_type == 3 || | 
 | 			    ept_mem_type == 7) { | 
 | 				printk(KERN_ERR "%s: ept_mem_type=0x%llx\n", | 
 | 						__func__, ept_mem_type); | 
 | 				WARN_ON(1); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static int handle_ept_misconfig(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 sptes[4]; | 
 | 	int nr_sptes, i, ret; | 
 | 	gpa_t gpa; | 
 |  | 
 | 	gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS); | 
 |  | 
 | 	ret = handle_mmio_page_fault_common(vcpu, gpa, true); | 
 | 	if (likely(ret == 1)) | 
 | 		return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) == | 
 | 					      EMULATE_DONE; | 
 | 	if (unlikely(!ret)) | 
 | 		return 1; | 
 |  | 
 | 	/* It is the real ept misconfig */ | 
 | 	printk(KERN_ERR "EPT: Misconfiguration.\n"); | 
 | 	printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa); | 
 |  | 
 | 	nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes); | 
 |  | 
 | 	for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i) | 
 | 		ept_misconfig_inspect_spte(vcpu, sptes[i-1], i); | 
 |  | 
 | 	vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; | 
 | 	vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int handle_nmi_window(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 cpu_based_vm_exec_control; | 
 |  | 
 | 	/* clear pending NMI */ | 
 | 	cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
 | 	cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; | 
 | 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control); | 
 | 	++vcpu->stat.nmi_window_exits; | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_invalid_guest_state(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	enum emulation_result err = EMULATE_DONE; | 
 | 	int ret = 1; | 
 | 	u32 cpu_exec_ctrl; | 
 | 	bool intr_window_requested; | 
 | 	unsigned count = 130; | 
 |  | 
 | 	cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL); | 
 | 	intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING; | 
 |  | 
 | 	while (!guest_state_valid(vcpu) && count-- != 0) { | 
 | 		if (intr_window_requested && vmx_interrupt_allowed(vcpu)) | 
 | 			return handle_interrupt_window(&vmx->vcpu); | 
 |  | 
 | 		if (test_bit(KVM_REQ_EVENT, &vcpu->requests)) | 
 | 			return 1; | 
 |  | 
 | 		err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE); | 
 |  | 
 | 		if (err == EMULATE_DO_MMIO) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (err != EMULATE_DONE) { | 
 | 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 			vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
 | 			vcpu->run->internal.ndata = 0; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (vcpu->arch.halt_request) { | 
 | 			vcpu->arch.halt_request = 0; | 
 | 			ret = kvm_emulate_halt(vcpu); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		if (signal_pending(current)) | 
 | 			goto out; | 
 | 		if (need_resched()) | 
 | 			schedule(); | 
 | 	} | 
 |  | 
 | 	vmx->emulation_required = emulation_required(vcpu); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE | 
 |  * exiting, so only get here on cpu with PAUSE-Loop-Exiting. | 
 |  */ | 
 | static int handle_pause(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	kvm_vcpu_on_spin(vcpu); | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_invalid_op(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12. | 
 |  * We could reuse a single VMCS for all the L2 guests, but we also want the | 
 |  * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this | 
 |  * allows keeping them loaded on the processor, and in the future will allow | 
 |  * optimizations where prepare_vmcs02 doesn't need to set all the fields on | 
 |  * every entry if they never change. | 
 |  * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE | 
 |  * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first. | 
 |  * | 
 |  * The following functions allocate and free a vmcs02 in this pool. | 
 |  */ | 
 |  | 
 | /* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */ | 
 | static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx) | 
 | { | 
 | 	struct vmcs02_list *item; | 
 | 	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) | 
 | 		if (item->vmptr == vmx->nested.current_vmptr) { | 
 | 			list_move(&item->list, &vmx->nested.vmcs02_pool); | 
 | 			return &item->vmcs02; | 
 | 		} | 
 |  | 
 | 	if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) { | 
 | 		/* Recycle the least recently used VMCS. */ | 
 | 		item = list_entry(vmx->nested.vmcs02_pool.prev, | 
 | 			struct vmcs02_list, list); | 
 | 		item->vmptr = vmx->nested.current_vmptr; | 
 | 		list_move(&item->list, &vmx->nested.vmcs02_pool); | 
 | 		return &item->vmcs02; | 
 | 	} | 
 |  | 
 | 	/* Create a new VMCS */ | 
 | 	item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL); | 
 | 	if (!item) | 
 | 		return NULL; | 
 | 	item->vmcs02.vmcs = alloc_vmcs(); | 
 | 	if (!item->vmcs02.vmcs) { | 
 | 		kfree(item); | 
 | 		return NULL; | 
 | 	} | 
 | 	loaded_vmcs_init(&item->vmcs02); | 
 | 	item->vmptr = vmx->nested.current_vmptr; | 
 | 	list_add(&(item->list), &(vmx->nested.vmcs02_pool)); | 
 | 	vmx->nested.vmcs02_num++; | 
 | 	return &item->vmcs02; | 
 | } | 
 |  | 
 | /* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */ | 
 | static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr) | 
 | { | 
 | 	struct vmcs02_list *item; | 
 | 	list_for_each_entry(item, &vmx->nested.vmcs02_pool, list) | 
 | 		if (item->vmptr == vmptr) { | 
 | 			free_loaded_vmcs(&item->vmcs02); | 
 | 			list_del(&item->list); | 
 | 			kfree(item); | 
 | 			vmx->nested.vmcs02_num--; | 
 | 			return; | 
 | 		} | 
 | } | 
 |  | 
 | /* | 
 |  * Free all VMCSs saved for this vcpu, except the one pointed by | 
 |  * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one | 
 |  * currently used, if running L2), and vmcs01 when running L2. | 
 |  */ | 
 | static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx) | 
 | { | 
 | 	struct vmcs02_list *item, *n; | 
 | 	list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) { | 
 | 		if (vmx->loaded_vmcs != &item->vmcs02) | 
 | 			free_loaded_vmcs(&item->vmcs02); | 
 | 		list_del(&item->list); | 
 | 		kfree(item); | 
 | 	} | 
 | 	vmx->nested.vmcs02_num = 0; | 
 |  | 
 | 	if (vmx->loaded_vmcs != &vmx->vmcs01) | 
 | 		free_loaded_vmcs(&vmx->vmcs01); | 
 | } | 
 |  | 
 | static void nested_vmx_failValid(struct kvm_vcpu *vcpu, | 
 | 				 u32 vm_instruction_error); | 
 |  | 
 | /* | 
 |  * Emulate the VMXON instruction. | 
 |  * Currently, we just remember that VMX is active, and do not save or even | 
 |  * inspect the argument to VMXON (the so-called "VMXON pointer") because we | 
 |  * do not currently need to store anything in that guest-allocated memory | 
 |  * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their | 
 |  * argument is different from the VMXON pointer (which the spec says they do). | 
 |  */ | 
 | static int handle_vmon(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_segment cs; | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	struct vmcs *shadow_vmcs; | 
 |  | 
 | 	/* The Intel VMX Instruction Reference lists a bunch of bits that | 
 | 	 * are prerequisite to running VMXON, most notably cr4.VMXE must be | 
 | 	 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this). | 
 | 	 * Otherwise, we should fail with #UD. We test these now: | 
 | 	 */ | 
 | 	if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) || | 
 | 	    !kvm_read_cr0_bits(vcpu, X86_CR0_PE) || | 
 | 	    (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) { | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	if (is_long_mode(vcpu) && !cs.l) { | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (vmx_get_cpl(vcpu)) { | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 | 	if (vmx->nested.vmxon) { | 
 | 		nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION); | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	} | 
 | 	if (enable_shadow_vmcs) { | 
 | 		shadow_vmcs = alloc_vmcs(); | 
 | 		if (!shadow_vmcs) | 
 | 			return -ENOMEM; | 
 | 		/* mark vmcs as shadow */ | 
 | 		shadow_vmcs->revision_id |= (1u << 31); | 
 | 		/* init shadow vmcs */ | 
 | 		vmcs_clear(shadow_vmcs); | 
 | 		vmx->nested.current_shadow_vmcs = shadow_vmcs; | 
 | 	} | 
 |  | 
 | 	INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool)); | 
 | 	vmx->nested.vmcs02_num = 0; | 
 |  | 
 | 	vmx->nested.vmxon = true; | 
 |  | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Intel's VMX Instruction Reference specifies a common set of prerequisites | 
 |  * for running VMX instructions (except VMXON, whose prerequisites are | 
 |  * slightly different). It also specifies what exception to inject otherwise. | 
 |  */ | 
 | static int nested_vmx_check_permission(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_segment cs; | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 |  | 
 | 	if (!vmx->nested.vmxon) { | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	vmx_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) || | 
 | 	    (is_long_mode(vcpu) && !cs.l)) { | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (vmx_get_cpl(vcpu)) { | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static inline void nested_release_vmcs12(struct vcpu_vmx *vmx) | 
 | { | 
 | 	u32 exec_control; | 
 | 	if (enable_shadow_vmcs) { | 
 | 		if (vmx->nested.current_vmcs12 != NULL) { | 
 | 			/* copy to memory all shadowed fields in case | 
 | 			   they were modified */ | 
 | 			copy_shadow_to_vmcs12(vmx); | 
 | 			vmx->nested.sync_shadow_vmcs = false; | 
 | 			exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); | 
 | 			exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS; | 
 | 			vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); | 
 | 			vmcs_write64(VMCS_LINK_POINTER, -1ull); | 
 | 		} | 
 | 	} | 
 | 	kunmap(vmx->nested.current_vmcs12_page); | 
 | 	nested_release_page(vmx->nested.current_vmcs12_page); | 
 | } | 
 |  | 
 | /* | 
 |  * Free whatever needs to be freed from vmx->nested when L1 goes down, or | 
 |  * just stops using VMX. | 
 |  */ | 
 | static void free_nested(struct vcpu_vmx *vmx) | 
 | { | 
 | 	if (!vmx->nested.vmxon) | 
 | 		return; | 
 | 	vmx->nested.vmxon = false; | 
 | 	if (vmx->nested.current_vmptr != -1ull) { | 
 | 		nested_release_vmcs12(vmx); | 
 | 		vmx->nested.current_vmptr = -1ull; | 
 | 		vmx->nested.current_vmcs12 = NULL; | 
 | 	} | 
 | 	if (enable_shadow_vmcs) | 
 | 		free_vmcs(vmx->nested.current_shadow_vmcs); | 
 | 	/* Unpin physical memory we referred to in current vmcs02 */ | 
 | 	if (vmx->nested.apic_access_page) { | 
 | 		nested_release_page(vmx->nested.apic_access_page); | 
 | 		vmx->nested.apic_access_page = 0; | 
 | 	} | 
 |  | 
 | 	nested_free_all_saved_vmcss(vmx); | 
 | } | 
 |  | 
 | /* Emulate the VMXOFF instruction */ | 
 | static int handle_vmoff(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!nested_vmx_check_permission(vcpu)) | 
 | 		return 1; | 
 | 	free_nested(to_vmx(vcpu)); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Decode the memory-address operand of a vmx instruction, as recorded on an | 
 |  * exit caused by such an instruction (run by a guest hypervisor). | 
 |  * On success, returns 0. When the operand is invalid, returns 1 and throws | 
 |  * #UD or #GP. | 
 |  */ | 
 | static int get_vmx_mem_address(struct kvm_vcpu *vcpu, | 
 | 				 unsigned long exit_qualification, | 
 | 				 u32 vmx_instruction_info, gva_t *ret) | 
 | { | 
 | 	/* | 
 | 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction | 
 | 	 * Execution", on an exit, vmx_instruction_info holds most of the | 
 | 	 * addressing components of the operand. Only the displacement part | 
 | 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information"). | 
 | 	 * For how an actual address is calculated from all these components, | 
 | 	 * refer to Vol. 1, "Operand Addressing". | 
 | 	 */ | 
 | 	int  scaling = vmx_instruction_info & 3; | 
 | 	int  addr_size = (vmx_instruction_info >> 7) & 7; | 
 | 	bool is_reg = vmx_instruction_info & (1u << 10); | 
 | 	int  seg_reg = (vmx_instruction_info >> 15) & 7; | 
 | 	int  index_reg = (vmx_instruction_info >> 18) & 0xf; | 
 | 	bool index_is_valid = !(vmx_instruction_info & (1u << 22)); | 
 | 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf; | 
 | 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27)); | 
 |  | 
 | 	if (is_reg) { | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* Addr = segment_base + offset */ | 
 | 	/* offset = base + [index * scale] + displacement */ | 
 | 	*ret = vmx_get_segment_base(vcpu, seg_reg); | 
 | 	if (base_is_valid) | 
 | 		*ret += kvm_register_read(vcpu, base_reg); | 
 | 	if (index_is_valid) | 
 | 		*ret += kvm_register_read(vcpu, index_reg)<<scaling; | 
 | 	*ret += exit_qualification; /* holds the displacement */ | 
 |  | 
 | 	if (addr_size == 1) /* 32 bit */ | 
 | 		*ret &= 0xffffffff; | 
 |  | 
 | 	/* | 
 | 	 * TODO: throw #GP (and return 1) in various cases that the VM* | 
 | 	 * instructions require it - e.g., offset beyond segment limit, | 
 | 	 * unusable or unreadable/unwritable segment, non-canonical 64-bit | 
 | 	 * address, and so on. Currently these are not checked. | 
 | 	 */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(), | 
 |  * set the success or error code of an emulated VMX instruction, as specified | 
 |  * by Vol 2B, VMX Instruction Reference, "Conventions". | 
 |  */ | 
 | static void nested_vmx_succeed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu) | 
 | 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | | 
 | 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF)); | 
 | } | 
 |  | 
 | static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) | 
 | 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF | | 
 | 			    X86_EFLAGS_SF | X86_EFLAGS_OF)) | 
 | 			| X86_EFLAGS_CF); | 
 | } | 
 |  | 
 | static void nested_vmx_failValid(struct kvm_vcpu *vcpu, | 
 | 					u32 vm_instruction_error) | 
 | { | 
 | 	if (to_vmx(vcpu)->nested.current_vmptr == -1ull) { | 
 | 		/* | 
 | 		 * failValid writes the error number to the current VMCS, which | 
 | 		 * can't be done there isn't a current VMCS. | 
 | 		 */ | 
 | 		nested_vmx_failInvalid(vcpu); | 
 | 		return; | 
 | 	} | 
 | 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu) | 
 | 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF | | 
 | 			    X86_EFLAGS_SF | X86_EFLAGS_OF)) | 
 | 			| X86_EFLAGS_ZF); | 
 | 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error; | 
 | 	/* | 
 | 	 * We don't need to force a shadow sync because | 
 | 	 * VM_INSTRUCTION_ERROR is not shadowed | 
 | 	 */ | 
 | } | 
 |  | 
 | /* Emulate the VMCLEAR instruction */ | 
 | static int handle_vmclear(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	gva_t gva; | 
 | 	gpa_t vmptr; | 
 | 	struct vmcs12 *vmcs12; | 
 | 	struct page *page; | 
 | 	struct x86_exception e; | 
 |  | 
 | 	if (!nested_vmx_check_permission(vcpu)) | 
 | 		return 1; | 
 |  | 
 | 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), | 
 | 			vmcs_read32(VMX_INSTRUCTION_INFO), &gva)) | 
 | 		return 1; | 
 |  | 
 | 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr, | 
 | 				sizeof(vmptr), &e)) { | 
 | 		kvm_inject_page_fault(vcpu, &e); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!IS_ALIGNED(vmptr, PAGE_SIZE)) { | 
 | 		nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS); | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (vmptr == vmx->nested.current_vmptr) { | 
 | 		nested_release_vmcs12(vmx); | 
 | 		vmx->nested.current_vmptr = -1ull; | 
 | 		vmx->nested.current_vmcs12 = NULL; | 
 | 	} | 
 |  | 
 | 	page = nested_get_page(vcpu, vmptr); | 
 | 	if (page == NULL) { | 
 | 		/* | 
 | 		 * For accurate processor emulation, VMCLEAR beyond available | 
 | 		 * physical memory should do nothing at all. However, it is | 
 | 		 * possible that a nested vmx bug, not a guest hypervisor bug, | 
 | 		 * resulted in this case, so let's shut down before doing any | 
 | 		 * more damage: | 
 | 		 */ | 
 | 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		return 1; | 
 | 	} | 
 | 	vmcs12 = kmap(page); | 
 | 	vmcs12->launch_state = 0; | 
 | 	kunmap(page); | 
 | 	nested_release_page(page); | 
 |  | 
 | 	nested_free_vmcs02(vmx, vmptr); | 
 |  | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	nested_vmx_succeed(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch); | 
 |  | 
 | /* Emulate the VMLAUNCH instruction */ | 
 | static int handle_vmlaunch(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return nested_vmx_run(vcpu, true); | 
 | } | 
 |  | 
 | /* Emulate the VMRESUME instruction */ | 
 | static int handle_vmresume(struct kvm_vcpu *vcpu) | 
 | { | 
 |  | 
 | 	return nested_vmx_run(vcpu, false); | 
 | } | 
 |  | 
 | enum vmcs_field_type { | 
 | 	VMCS_FIELD_TYPE_U16 = 0, | 
 | 	VMCS_FIELD_TYPE_U64 = 1, | 
 | 	VMCS_FIELD_TYPE_U32 = 2, | 
 | 	VMCS_FIELD_TYPE_NATURAL_WIDTH = 3 | 
 | }; | 
 |  | 
 | static inline int vmcs_field_type(unsigned long field) | 
 | { | 
 | 	if (0x1 & field)	/* the *_HIGH fields are all 32 bit */ | 
 | 		return VMCS_FIELD_TYPE_U32; | 
 | 	return (field >> 13) & 0x3 ; | 
 | } | 
 |  | 
 | static inline int vmcs_field_readonly(unsigned long field) | 
 | { | 
 | 	return (((field >> 10) & 0x3) == 1); | 
 | } | 
 |  | 
 | /* | 
 |  * Read a vmcs12 field. Since these can have varying lengths and we return | 
 |  * one type, we chose the biggest type (u64) and zero-extend the return value | 
 |  * to that size. Note that the caller, handle_vmread, might need to use only | 
 |  * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of | 
 |  * 64-bit fields are to be returned). | 
 |  */ | 
 | static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu, | 
 | 					unsigned long field, u64 *ret) | 
 | { | 
 | 	short offset = vmcs_field_to_offset(field); | 
 | 	char *p; | 
 |  | 
 | 	if (offset < 0) | 
 | 		return 0; | 
 |  | 
 | 	p = ((char *)(get_vmcs12(vcpu))) + offset; | 
 |  | 
 | 	switch (vmcs_field_type(field)) { | 
 | 	case VMCS_FIELD_TYPE_NATURAL_WIDTH: | 
 | 		*ret = *((natural_width *)p); | 
 | 		return 1; | 
 | 	case VMCS_FIELD_TYPE_U16: | 
 | 		*ret = *((u16 *)p); | 
 | 		return 1; | 
 | 	case VMCS_FIELD_TYPE_U32: | 
 | 		*ret = *((u32 *)p); | 
 | 		return 1; | 
 | 	case VMCS_FIELD_TYPE_U64: | 
 | 		*ret = *((u64 *)p); | 
 | 		return 1; | 
 | 	default: | 
 | 		return 0; /* can never happen. */ | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu, | 
 | 				    unsigned long field, u64 field_value){ | 
 | 	short offset = vmcs_field_to_offset(field); | 
 | 	char *p = ((char *) get_vmcs12(vcpu)) + offset; | 
 | 	if (offset < 0) | 
 | 		return false; | 
 |  | 
 | 	switch (vmcs_field_type(field)) { | 
 | 	case VMCS_FIELD_TYPE_U16: | 
 | 		*(u16 *)p = field_value; | 
 | 		return true; | 
 | 	case VMCS_FIELD_TYPE_U32: | 
 | 		*(u32 *)p = field_value; | 
 | 		return true; | 
 | 	case VMCS_FIELD_TYPE_U64: | 
 | 		*(u64 *)p = field_value; | 
 | 		return true; | 
 | 	case VMCS_FIELD_TYPE_NATURAL_WIDTH: | 
 | 		*(natural_width *)p = field_value; | 
 | 		return true; | 
 | 	default: | 
 | 		return false; /* can never happen. */ | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx) | 
 | { | 
 | 	int i; | 
 | 	unsigned long field; | 
 | 	u64 field_value; | 
 | 	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs; | 
 | 	unsigned long *fields = (unsigned long *)shadow_read_write_fields; | 
 | 	int num_fields = max_shadow_read_write_fields; | 
 |  | 
 | 	vmcs_load(shadow_vmcs); | 
 |  | 
 | 	for (i = 0; i < num_fields; i++) { | 
 | 		field = fields[i]; | 
 | 		switch (vmcs_field_type(field)) { | 
 | 		case VMCS_FIELD_TYPE_U16: | 
 | 			field_value = vmcs_read16(field); | 
 | 			break; | 
 | 		case VMCS_FIELD_TYPE_U32: | 
 | 			field_value = vmcs_read32(field); | 
 | 			break; | 
 | 		case VMCS_FIELD_TYPE_U64: | 
 | 			field_value = vmcs_read64(field); | 
 | 			break; | 
 | 		case VMCS_FIELD_TYPE_NATURAL_WIDTH: | 
 | 			field_value = vmcs_readl(field); | 
 | 			break; | 
 | 		} | 
 | 		vmcs12_write_any(&vmx->vcpu, field, field_value); | 
 | 	} | 
 |  | 
 | 	vmcs_clear(shadow_vmcs); | 
 | 	vmcs_load(vmx->loaded_vmcs->vmcs); | 
 | } | 
 |  | 
 | static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx) | 
 | { | 
 | 	unsigned long *fields[] = { | 
 | 		(unsigned long *)shadow_read_write_fields, | 
 | 		(unsigned long *)shadow_read_only_fields | 
 | 	}; | 
 | 	int num_lists =  ARRAY_SIZE(fields); | 
 | 	int max_fields[] = { | 
 | 		max_shadow_read_write_fields, | 
 | 		max_shadow_read_only_fields | 
 | 	}; | 
 | 	int i, q; | 
 | 	unsigned long field; | 
 | 	u64 field_value = 0; | 
 | 	struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs; | 
 |  | 
 | 	vmcs_load(shadow_vmcs); | 
 |  | 
 | 	for (q = 0; q < num_lists; q++) { | 
 | 		for (i = 0; i < max_fields[q]; i++) { | 
 | 			field = fields[q][i]; | 
 | 			vmcs12_read_any(&vmx->vcpu, field, &field_value); | 
 |  | 
 | 			switch (vmcs_field_type(field)) { | 
 | 			case VMCS_FIELD_TYPE_U16: | 
 | 				vmcs_write16(field, (u16)field_value); | 
 | 				break; | 
 | 			case VMCS_FIELD_TYPE_U32: | 
 | 				vmcs_write32(field, (u32)field_value); | 
 | 				break; | 
 | 			case VMCS_FIELD_TYPE_U64: | 
 | 				vmcs_write64(field, (u64)field_value); | 
 | 				break; | 
 | 			case VMCS_FIELD_TYPE_NATURAL_WIDTH: | 
 | 				vmcs_writel(field, (long)field_value); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	vmcs_clear(shadow_vmcs); | 
 | 	vmcs_load(vmx->loaded_vmcs->vmcs); | 
 | } | 
 |  | 
 | /* | 
 |  * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was | 
 |  * used before) all generate the same failure when it is missing. | 
 |  */ | 
 | static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	if (vmx->nested.current_vmptr == -1ull) { | 
 | 		nested_vmx_failInvalid(vcpu); | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 0; | 
 | 	} | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int handle_vmread(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long field; | 
 | 	u64 field_value; | 
 | 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); | 
 | 	gva_t gva = 0; | 
 |  | 
 | 	if (!nested_vmx_check_permission(vcpu) || | 
 | 	    !nested_vmx_check_vmcs12(vcpu)) | 
 | 		return 1; | 
 |  | 
 | 	/* Decode instruction info and find the field to read */ | 
 | 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); | 
 | 	/* Read the field, zero-extended to a u64 field_value */ | 
 | 	if (!vmcs12_read_any(vcpu, field, &field_value)) { | 
 | 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	} | 
 | 	/* | 
 | 	 * Now copy part of this value to register or memory, as requested. | 
 | 	 * Note that the number of bits actually copied is 32 or 64 depending | 
 | 	 * on the guest's mode (32 or 64 bit), not on the given field's length. | 
 | 	 */ | 
 | 	if (vmx_instruction_info & (1u << 10)) { | 
 | 		kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf), | 
 | 			field_value); | 
 | 	} else { | 
 | 		if (get_vmx_mem_address(vcpu, exit_qualification, | 
 | 				vmx_instruction_info, &gva)) | 
 | 			return 1; | 
 | 		/* _system ok, as nested_vmx_check_permission verified cpl=0 */ | 
 | 		kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva, | 
 | 			     &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL); | 
 | 	} | 
 |  | 
 | 	nested_vmx_succeed(vcpu); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | static int handle_vmwrite(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long field; | 
 | 	gva_t gva; | 
 | 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); | 
 | 	/* The value to write might be 32 or 64 bits, depending on L1's long | 
 | 	 * mode, and eventually we need to write that into a field of several | 
 | 	 * possible lengths. The code below first zero-extends the value to 64 | 
 | 	 * bit (field_value), and then copies only the approriate number of | 
 | 	 * bits into the vmcs12 field. | 
 | 	 */ | 
 | 	u64 field_value = 0; | 
 | 	struct x86_exception e; | 
 |  | 
 | 	if (!nested_vmx_check_permission(vcpu) || | 
 | 	    !nested_vmx_check_vmcs12(vcpu)) | 
 | 		return 1; | 
 |  | 
 | 	if (vmx_instruction_info & (1u << 10)) | 
 | 		field_value = kvm_register_read(vcpu, | 
 | 			(((vmx_instruction_info) >> 3) & 0xf)); | 
 | 	else { | 
 | 		if (get_vmx_mem_address(vcpu, exit_qualification, | 
 | 				vmx_instruction_info, &gva)) | 
 | 			return 1; | 
 | 		if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, | 
 | 			   &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) { | 
 | 			kvm_inject_page_fault(vcpu, &e); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf)); | 
 | 	if (vmcs_field_readonly(field)) { | 
 | 		nested_vmx_failValid(vcpu, | 
 | 			VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT); | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!vmcs12_write_any(vcpu, field, field_value)) { | 
 | 		nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT); | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	nested_vmx_succeed(vcpu); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Emulate the VMPTRLD instruction */ | 
 | static int handle_vmptrld(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	gva_t gva; | 
 | 	gpa_t vmptr; | 
 | 	struct x86_exception e; | 
 | 	u32 exec_control; | 
 |  | 
 | 	if (!nested_vmx_check_permission(vcpu)) | 
 | 		return 1; | 
 |  | 
 | 	if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION), | 
 | 			vmcs_read32(VMX_INSTRUCTION_INFO), &gva)) | 
 | 		return 1; | 
 |  | 
 | 	if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr, | 
 | 				sizeof(vmptr), &e)) { | 
 | 		kvm_inject_page_fault(vcpu, &e); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!IS_ALIGNED(vmptr, PAGE_SIZE)) { | 
 | 		nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS); | 
 | 		skip_emulated_instruction(vcpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (vmx->nested.current_vmptr != vmptr) { | 
 | 		struct vmcs12 *new_vmcs12; | 
 | 		struct page *page; | 
 | 		page = nested_get_page(vcpu, vmptr); | 
 | 		if (page == NULL) { | 
 | 			nested_vmx_failInvalid(vcpu); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		} | 
 | 		new_vmcs12 = kmap(page); | 
 | 		if (new_vmcs12->revision_id != VMCS12_REVISION) { | 
 | 			kunmap(page); | 
 | 			nested_release_page_clean(page); | 
 | 			nested_vmx_failValid(vcpu, | 
 | 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID); | 
 | 			skip_emulated_instruction(vcpu); | 
 | 			return 1; | 
 | 		} | 
 | 		if (vmx->nested.current_vmptr != -1ull) | 
 | 			nested_release_vmcs12(vmx); | 
 |  | 
 | 		vmx->nested.current_vmptr = vmptr; | 
 | 		vmx->nested.current_vmcs12 = new_vmcs12; | 
 | 		vmx->nested.current_vmcs12_page = page; | 
 | 		if (enable_shadow_vmcs) { | 
 | 			exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); | 
 | 			exec_control |= SECONDARY_EXEC_SHADOW_VMCS; | 
 | 			vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); | 
 | 			vmcs_write64(VMCS_LINK_POINTER, | 
 | 				     __pa(vmx->nested.current_shadow_vmcs)); | 
 | 			vmx->nested.sync_shadow_vmcs = true; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	nested_vmx_succeed(vcpu); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* Emulate the VMPTRST instruction */ | 
 | static int handle_vmptrst(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); | 
 | 	gva_t vmcs_gva; | 
 | 	struct x86_exception e; | 
 |  | 
 | 	if (!nested_vmx_check_permission(vcpu)) | 
 | 		return 1; | 
 |  | 
 | 	if (get_vmx_mem_address(vcpu, exit_qualification, | 
 | 			vmx_instruction_info, &vmcs_gva)) | 
 | 		return 1; | 
 | 	/* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */ | 
 | 	if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva, | 
 | 				 (void *)&to_vmx(vcpu)->nested.current_vmptr, | 
 | 				 sizeof(u64), &e)) { | 
 | 		kvm_inject_page_fault(vcpu, &e); | 
 | 		return 1; | 
 | 	} | 
 | 	nested_vmx_succeed(vcpu); | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * The exit handlers return 1 if the exit was handled fully and guest execution | 
 |  * may resume.  Otherwise they set the kvm_run parameter to indicate what needs | 
 |  * to be done to userspace and return 0. | 
 |  */ | 
 | static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = { | 
 | 	[EXIT_REASON_EXCEPTION_NMI]           = handle_exception, | 
 | 	[EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt, | 
 | 	[EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault, | 
 | 	[EXIT_REASON_NMI_WINDOW]	      = handle_nmi_window, | 
 | 	[EXIT_REASON_IO_INSTRUCTION]          = handle_io, | 
 | 	[EXIT_REASON_CR_ACCESS]               = handle_cr, | 
 | 	[EXIT_REASON_DR_ACCESS]               = handle_dr, | 
 | 	[EXIT_REASON_CPUID]                   = handle_cpuid, | 
 | 	[EXIT_REASON_MSR_READ]                = handle_rdmsr, | 
 | 	[EXIT_REASON_MSR_WRITE]               = handle_wrmsr, | 
 | 	[EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window, | 
 | 	[EXIT_REASON_HLT]                     = handle_halt, | 
 | 	[EXIT_REASON_INVD]		      = handle_invd, | 
 | 	[EXIT_REASON_INVLPG]		      = handle_invlpg, | 
 | 	[EXIT_REASON_RDPMC]                   = handle_rdpmc, | 
 | 	[EXIT_REASON_VMCALL]                  = handle_vmcall, | 
 | 	[EXIT_REASON_VMCLEAR]	              = handle_vmclear, | 
 | 	[EXIT_REASON_VMLAUNCH]                = handle_vmlaunch, | 
 | 	[EXIT_REASON_VMPTRLD]                 = handle_vmptrld, | 
 | 	[EXIT_REASON_VMPTRST]                 = handle_vmptrst, | 
 | 	[EXIT_REASON_VMREAD]                  = handle_vmread, | 
 | 	[EXIT_REASON_VMRESUME]                = handle_vmresume, | 
 | 	[EXIT_REASON_VMWRITE]                 = handle_vmwrite, | 
 | 	[EXIT_REASON_VMOFF]                   = handle_vmoff, | 
 | 	[EXIT_REASON_VMON]                    = handle_vmon, | 
 | 	[EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold, | 
 | 	[EXIT_REASON_APIC_ACCESS]             = handle_apic_access, | 
 | 	[EXIT_REASON_APIC_WRITE]              = handle_apic_write, | 
 | 	[EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced, | 
 | 	[EXIT_REASON_WBINVD]                  = handle_wbinvd, | 
 | 	[EXIT_REASON_XSETBV]                  = handle_xsetbv, | 
 | 	[EXIT_REASON_TASK_SWITCH]             = handle_task_switch, | 
 | 	[EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check, | 
 | 	[EXIT_REASON_EPT_VIOLATION]	      = handle_ept_violation, | 
 | 	[EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig, | 
 | 	[EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause, | 
 | 	[EXIT_REASON_MWAIT_INSTRUCTION]	      = handle_invalid_op, | 
 | 	[EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op, | 
 | }; | 
 |  | 
 | static const int kvm_vmx_max_exit_handlers = | 
 | 	ARRAY_SIZE(kvm_vmx_exit_handlers); | 
 |  | 
 | static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu, | 
 | 				       struct vmcs12 *vmcs12) | 
 | { | 
 | 	unsigned long exit_qualification; | 
 | 	gpa_t bitmap, last_bitmap; | 
 | 	unsigned int port; | 
 | 	int size; | 
 | 	u8 b; | 
 |  | 
 | 	if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING)) | 
 | 		return 1; | 
 |  | 
 | 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS)) | 
 | 		return 0; | 
 |  | 
 | 	exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 |  | 
 | 	port = exit_qualification >> 16; | 
 | 	size = (exit_qualification & 7) + 1; | 
 |  | 
 | 	last_bitmap = (gpa_t)-1; | 
 | 	b = -1; | 
 |  | 
 | 	while (size > 0) { | 
 | 		if (port < 0x8000) | 
 | 			bitmap = vmcs12->io_bitmap_a; | 
 | 		else if (port < 0x10000) | 
 | 			bitmap = vmcs12->io_bitmap_b; | 
 | 		else | 
 | 			return 1; | 
 | 		bitmap += (port & 0x7fff) / 8; | 
 |  | 
 | 		if (last_bitmap != bitmap) | 
 | 			if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1)) | 
 | 				return 1; | 
 | 		if (b & (1 << (port & 7))) | 
 | 			return 1; | 
 |  | 
 | 		port++; | 
 | 		size--; | 
 | 		last_bitmap = bitmap; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return 1 if we should exit from L2 to L1 to handle an MSR access access, | 
 |  * rather than handle it ourselves in L0. I.e., check whether L1 expressed | 
 |  * disinterest in the current event (read or write a specific MSR) by using an | 
 |  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps. | 
 |  */ | 
 | static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu, | 
 | 	struct vmcs12 *vmcs12, u32 exit_reason) | 
 | { | 
 | 	u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX]; | 
 | 	gpa_t bitmap; | 
 |  | 
 | 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS)) | 
 | 		return 1; | 
 |  | 
 | 	/* | 
 | 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps, | 
 | 	 * for the four combinations of read/write and low/high MSR numbers. | 
 | 	 * First we need to figure out which of the four to use: | 
 | 	 */ | 
 | 	bitmap = vmcs12->msr_bitmap; | 
 | 	if (exit_reason == EXIT_REASON_MSR_WRITE) | 
 | 		bitmap += 2048; | 
 | 	if (msr_index >= 0xc0000000) { | 
 | 		msr_index -= 0xc0000000; | 
 | 		bitmap += 1024; | 
 | 	} | 
 |  | 
 | 	/* Then read the msr_index'th bit from this bitmap: */ | 
 | 	if (msr_index < 1024*8) { | 
 | 		unsigned char b; | 
 | 		if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1)) | 
 | 			return 1; | 
 | 		return 1 & (b >> (msr_index & 7)); | 
 | 	} else | 
 | 		return 1; /* let L1 handle the wrong parameter */ | 
 | } | 
 |  | 
 | /* | 
 |  * Return 1 if we should exit from L2 to L1 to handle a CR access exit, | 
 |  * rather than handle it ourselves in L0. I.e., check if L1 wanted to | 
 |  * intercept (via guest_host_mask etc.) the current event. | 
 |  */ | 
 | static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu, | 
 | 	struct vmcs12 *vmcs12) | 
 | { | 
 | 	unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	int cr = exit_qualification & 15; | 
 | 	int reg = (exit_qualification >> 8) & 15; | 
 | 	unsigned long val = kvm_register_read(vcpu, reg); | 
 |  | 
 | 	switch ((exit_qualification >> 4) & 3) { | 
 | 	case 0: /* mov to cr */ | 
 | 		switch (cr) { | 
 | 		case 0: | 
 | 			if (vmcs12->cr0_guest_host_mask & | 
 | 			    (val ^ vmcs12->cr0_read_shadow)) | 
 | 				return 1; | 
 | 			break; | 
 | 		case 3: | 
 | 			if ((vmcs12->cr3_target_count >= 1 && | 
 | 					vmcs12->cr3_target_value0 == val) || | 
 | 				(vmcs12->cr3_target_count >= 2 && | 
 | 					vmcs12->cr3_target_value1 == val) || | 
 | 				(vmcs12->cr3_target_count >= 3 && | 
 | 					vmcs12->cr3_target_value2 == val) || | 
 | 				(vmcs12->cr3_target_count >= 4 && | 
 | 					vmcs12->cr3_target_value3 == val)) | 
 | 				return 0; | 
 | 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING)) | 
 | 				return 1; | 
 | 			break; | 
 | 		case 4: | 
 | 			if (vmcs12->cr4_guest_host_mask & | 
 | 			    (vmcs12->cr4_read_shadow ^ val)) | 
 | 				return 1; | 
 | 			break; | 
 | 		case 8: | 
 | 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING)) | 
 | 				return 1; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case 2: /* clts */ | 
 | 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) && | 
 | 		    (vmcs12->cr0_read_shadow & X86_CR0_TS)) | 
 | 			return 1; | 
 | 		break; | 
 | 	case 1: /* mov from cr */ | 
 | 		switch (cr) { | 
 | 		case 3: | 
 | 			if (vmcs12->cpu_based_vm_exec_control & | 
 | 			    CPU_BASED_CR3_STORE_EXITING) | 
 | 				return 1; | 
 | 			break; | 
 | 		case 8: | 
 | 			if (vmcs12->cpu_based_vm_exec_control & | 
 | 			    CPU_BASED_CR8_STORE_EXITING) | 
 | 				return 1; | 
 | 			break; | 
 | 		} | 
 | 		break; | 
 | 	case 3: /* lmsw */ | 
 | 		/* | 
 | 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of | 
 | 		 * cr0. Other attempted changes are ignored, with no exit. | 
 | 		 */ | 
 | 		if (vmcs12->cr0_guest_host_mask & 0xe & | 
 | 		    (val ^ vmcs12->cr0_read_shadow)) | 
 | 			return 1; | 
 | 		if ((vmcs12->cr0_guest_host_mask & 0x1) && | 
 | 		    !(vmcs12->cr0_read_shadow & 0x1) && | 
 | 		    (val & 0x1)) | 
 | 			return 1; | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we | 
 |  * should handle it ourselves in L0 (and then continue L2). Only call this | 
 |  * when in is_guest_mode (L2). | 
 |  */ | 
 | static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
 | 	u32 exit_reason = vmx->exit_reason; | 
 |  | 
 | 	if (vmx->nested.nested_run_pending) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(vmx->fail)) { | 
 | 		pr_info_ratelimited("%s failed vm entry %x\n", __func__, | 
 | 				    vmcs_read32(VM_INSTRUCTION_ERROR)); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	switch (exit_reason) { | 
 | 	case EXIT_REASON_EXCEPTION_NMI: | 
 | 		if (!is_exception(intr_info)) | 
 | 			return 0; | 
 | 		else if (is_page_fault(intr_info)) | 
 | 			return enable_ept; | 
 | 		return vmcs12->exception_bitmap & | 
 | 				(1u << (intr_info & INTR_INFO_VECTOR_MASK)); | 
 | 	case EXIT_REASON_EXTERNAL_INTERRUPT: | 
 | 		return 0; | 
 | 	case EXIT_REASON_TRIPLE_FAULT: | 
 | 		return 1; | 
 | 	case EXIT_REASON_PENDING_INTERRUPT: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING); | 
 | 	case EXIT_REASON_NMI_WINDOW: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING); | 
 | 	case EXIT_REASON_TASK_SWITCH: | 
 | 		return 1; | 
 | 	case EXIT_REASON_CPUID: | 
 | 		return 1; | 
 | 	case EXIT_REASON_HLT: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING); | 
 | 	case EXIT_REASON_INVD: | 
 | 		return 1; | 
 | 	case EXIT_REASON_INVLPG: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING); | 
 | 	case EXIT_REASON_RDPMC: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING); | 
 | 	case EXIT_REASON_RDTSC: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING); | 
 | 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR: | 
 | 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD: | 
 | 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD: | 
 | 	case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE: | 
 | 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON: | 
 | 		/* | 
 | 		 * VMX instructions trap unconditionally. This allows L1 to | 
 | 		 * emulate them for its L2 guest, i.e., allows 3-level nesting! | 
 | 		 */ | 
 | 		return 1; | 
 | 	case EXIT_REASON_CR_ACCESS: | 
 | 		return nested_vmx_exit_handled_cr(vcpu, vmcs12); | 
 | 	case EXIT_REASON_DR_ACCESS: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING); | 
 | 	case EXIT_REASON_IO_INSTRUCTION: | 
 | 		return nested_vmx_exit_handled_io(vcpu, vmcs12); | 
 | 	case EXIT_REASON_MSR_READ: | 
 | 	case EXIT_REASON_MSR_WRITE: | 
 | 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason); | 
 | 	case EXIT_REASON_INVALID_STATE: | 
 | 		return 1; | 
 | 	case EXIT_REASON_MWAIT_INSTRUCTION: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING); | 
 | 	case EXIT_REASON_MONITOR_INSTRUCTION: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING); | 
 | 	case EXIT_REASON_PAUSE_INSTRUCTION: | 
 | 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) || | 
 | 			nested_cpu_has2(vmcs12, | 
 | 				SECONDARY_EXEC_PAUSE_LOOP_EXITING); | 
 | 	case EXIT_REASON_MCE_DURING_VMENTRY: | 
 | 		return 0; | 
 | 	case EXIT_REASON_TPR_BELOW_THRESHOLD: | 
 | 		return 1; | 
 | 	case EXIT_REASON_APIC_ACCESS: | 
 | 		return nested_cpu_has2(vmcs12, | 
 | 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES); | 
 | 	case EXIT_REASON_EPT_VIOLATION: | 
 | 	case EXIT_REASON_EPT_MISCONFIG: | 
 | 		return 0; | 
 | 	case EXIT_REASON_PREEMPTION_TIMER: | 
 | 		return vmcs12->pin_based_vm_exec_control & | 
 | 			PIN_BASED_VMX_PREEMPTION_TIMER; | 
 | 	case EXIT_REASON_WBINVD: | 
 | 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING); | 
 | 	case EXIT_REASON_XSETBV: | 
 | 		return 1; | 
 | 	default: | 
 | 		return 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2) | 
 | { | 
 | 	*info1 = vmcs_readl(EXIT_QUALIFICATION); | 
 | 	*info2 = vmcs_read32(VM_EXIT_INTR_INFO); | 
 | } | 
 |  | 
 | /* | 
 |  * The guest has exited.  See if we can fix it or if we need userspace | 
 |  * assistance. | 
 |  */ | 
 | static int vmx_handle_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	u32 exit_reason = vmx->exit_reason; | 
 | 	u32 vectoring_info = vmx->idt_vectoring_info; | 
 |  | 
 | 	/* If guest state is invalid, start emulating */ | 
 | 	if (vmx->emulation_required) | 
 | 		return handle_invalid_guest_state(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if | 
 | 	 * we did not inject a still-pending event to L1 now because of | 
 | 	 * nested_run_pending, we need to re-enable this bit. | 
 | 	 */ | 
 | 	if (vmx->nested.nested_run_pending) | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH || | 
 | 	    exit_reason == EXIT_REASON_VMRESUME)) | 
 | 		vmx->nested.nested_run_pending = 1; | 
 | 	else | 
 | 		vmx->nested.nested_run_pending = 0; | 
 |  | 
 | 	if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) { | 
 | 		nested_vmx_vmexit(vcpu); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
 | 		vcpu->run->fail_entry.hardware_entry_failure_reason | 
 | 			= exit_reason; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(vmx->fail)) { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY; | 
 | 		vcpu->run->fail_entry.hardware_entry_failure_reason | 
 | 			= vmcs_read32(VM_INSTRUCTION_ERROR); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Note: | 
 | 	 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by | 
 | 	 * delivery event since it indicates guest is accessing MMIO. | 
 | 	 * The vm-exit can be triggered again after return to guest that | 
 | 	 * will cause infinite loop. | 
 | 	 */ | 
 | 	if ((vectoring_info & VECTORING_INFO_VALID_MASK) && | 
 | 			(exit_reason != EXIT_REASON_EXCEPTION_NMI && | 
 | 			exit_reason != EXIT_REASON_EPT_VIOLATION && | 
 | 			exit_reason != EXIT_REASON_TASK_SWITCH)) { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; | 
 | 		vcpu->run->internal.ndata = 2; | 
 | 		vcpu->run->internal.data[0] = vectoring_info; | 
 | 		vcpu->run->internal.data[1] = exit_reason; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked && | 
 | 	    !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis( | 
 | 	                                get_vmcs12(vcpu), vcpu)))) { | 
 | 		if (vmx_interrupt_allowed(vcpu)) { | 
 | 			vmx->soft_vnmi_blocked = 0; | 
 | 		} else if (vmx->vnmi_blocked_time > 1000000000LL && | 
 | 			   vcpu->arch.nmi_pending) { | 
 | 			/* | 
 | 			 * This CPU don't support us in finding the end of an | 
 | 			 * NMI-blocked window if the guest runs with IRQs | 
 | 			 * disabled. So we pull the trigger after 1 s of | 
 | 			 * futile waiting, but inform the user about this. | 
 | 			 */ | 
 | 			printk(KERN_WARNING "%s: Breaking out of NMI-blocked " | 
 | 			       "state on VCPU %d after 1 s timeout\n", | 
 | 			       __func__, vcpu->vcpu_id); | 
 | 			vmx->soft_vnmi_blocked = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (exit_reason < kvm_vmx_max_exit_handlers | 
 | 	    && kvm_vmx_exit_handlers[exit_reason]) | 
 | 		return kvm_vmx_exit_handlers[exit_reason](vcpu); | 
 | 	else { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; | 
 | 		vcpu->run->hw.hardware_exit_reason = exit_reason; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr) | 
 | { | 
 | 	if (irr == -1 || tpr < irr) { | 
 | 		vmcs_write32(TPR_THRESHOLD, 0); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	vmcs_write32(TPR_THRESHOLD, irr); | 
 | } | 
 |  | 
 | static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set) | 
 | { | 
 | 	u32 sec_exec_control; | 
 |  | 
 | 	/* | 
 | 	 * There is not point to enable virtualize x2apic without enable | 
 | 	 * apicv | 
 | 	 */ | 
 | 	if (!cpu_has_vmx_virtualize_x2apic_mode() || | 
 | 				!vmx_vm_has_apicv(vcpu->kvm)) | 
 | 		return; | 
 |  | 
 | 	if (!vm_need_tpr_shadow(vcpu->kvm)) | 
 | 		return; | 
 |  | 
 | 	sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); | 
 |  | 
 | 	if (set) { | 
 | 		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
 | 		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; | 
 | 	} else { | 
 | 		sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE; | 
 | 		sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
 | 	} | 
 | 	vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control); | 
 |  | 
 | 	vmx_set_msr_bitmap(vcpu); | 
 | } | 
 |  | 
 | static void vmx_hwapic_isr_update(struct kvm *kvm, int isr) | 
 | { | 
 | 	u16 status; | 
 | 	u8 old; | 
 |  | 
 | 	if (!vmx_vm_has_apicv(kvm)) | 
 | 		return; | 
 |  | 
 | 	if (isr == -1) | 
 | 		isr = 0; | 
 |  | 
 | 	status = vmcs_read16(GUEST_INTR_STATUS); | 
 | 	old = status >> 8; | 
 | 	if (isr != old) { | 
 | 		status &= 0xff; | 
 | 		status |= isr << 8; | 
 | 		vmcs_write16(GUEST_INTR_STATUS, status); | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_set_rvi(int vector) | 
 | { | 
 | 	u16 status; | 
 | 	u8 old; | 
 |  | 
 | 	status = vmcs_read16(GUEST_INTR_STATUS); | 
 | 	old = (u8)status & 0xff; | 
 | 	if ((u8)vector != old) { | 
 | 		status &= ~0xff; | 
 | 		status |= (u8)vector; | 
 | 		vmcs_write16(GUEST_INTR_STATUS, status); | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr) | 
 | { | 
 | 	if (max_irr == -1) | 
 | 		return; | 
 |  | 
 | 	vmx_set_rvi(max_irr); | 
 | } | 
 |  | 
 | static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap) | 
 | { | 
 | 	if (!vmx_vm_has_apicv(vcpu->kvm)) | 
 | 		return; | 
 |  | 
 | 	vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]); | 
 | 	vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]); | 
 | 	vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]); | 
 | 	vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]); | 
 | } | 
 |  | 
 | static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx) | 
 | { | 
 | 	u32 exit_intr_info; | 
 |  | 
 | 	if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY | 
 | 	      || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI)) | 
 | 		return; | 
 |  | 
 | 	vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
 | 	exit_intr_info = vmx->exit_intr_info; | 
 |  | 
 | 	/* Handle machine checks before interrupts are enabled */ | 
 | 	if (is_machine_check(exit_intr_info)) | 
 | 		kvm_machine_check(); | 
 |  | 
 | 	/* We need to handle NMIs before interrupts are enabled */ | 
 | 	if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR && | 
 | 	    (exit_intr_info & INTR_INFO_VALID_MASK)) { | 
 | 		kvm_before_handle_nmi(&vmx->vcpu); | 
 | 		asm("int $2"); | 
 | 		kvm_after_handle_nmi(&vmx->vcpu); | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_handle_external_intr(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
 |  | 
 | 	/* | 
 | 	 * If external interrupt exists, IF bit is set in rflags/eflags on the | 
 | 	 * interrupt stack frame, and interrupt will be enabled on a return | 
 | 	 * from interrupt handler. | 
 | 	 */ | 
 | 	if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK)) | 
 | 			== (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) { | 
 | 		unsigned int vector; | 
 | 		unsigned long entry; | 
 | 		gate_desc *desc; | 
 | 		struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | #ifdef CONFIG_X86_64 | 
 | 		unsigned long tmp; | 
 | #endif | 
 |  | 
 | 		vector =  exit_intr_info & INTR_INFO_VECTOR_MASK; | 
 | 		desc = (gate_desc *)vmx->host_idt_base + vector; | 
 | 		entry = gate_offset(*desc); | 
 | 		asm volatile( | 
 | #ifdef CONFIG_X86_64 | 
 | 			"mov %%" _ASM_SP ", %[sp]\n\t" | 
 | 			"and $0xfffffffffffffff0, %%" _ASM_SP "\n\t" | 
 | 			"push $%c[ss]\n\t" | 
 | 			"push %[sp]\n\t" | 
 | #endif | 
 | 			"pushf\n\t" | 
 | 			"orl $0x200, (%%" _ASM_SP ")\n\t" | 
 | 			__ASM_SIZE(push) " $%c[cs]\n\t" | 
 | 			"call *%[entry]\n\t" | 
 | 			: | 
 | #ifdef CONFIG_X86_64 | 
 | 			[sp]"=&r"(tmp) | 
 | #endif | 
 | 			: | 
 | 			[entry]"r"(entry), | 
 | 			[ss]"i"(__KERNEL_DS), | 
 | 			[cs]"i"(__KERNEL_CS) | 
 | 			); | 
 | 	} else | 
 | 		local_irq_enable(); | 
 | } | 
 |  | 
 | static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx) | 
 | { | 
 | 	u32 exit_intr_info; | 
 | 	bool unblock_nmi; | 
 | 	u8 vector; | 
 | 	bool idtv_info_valid; | 
 |  | 
 | 	idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK; | 
 |  | 
 | 	if (cpu_has_virtual_nmis()) { | 
 | 		if (vmx->nmi_known_unmasked) | 
 | 			return; | 
 | 		/* | 
 | 		 * Can't use vmx->exit_intr_info since we're not sure what | 
 | 		 * the exit reason is. | 
 | 		 */ | 
 | 		exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
 | 		unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0; | 
 | 		vector = exit_intr_info & INTR_INFO_VECTOR_MASK; | 
 | 		/* | 
 | 		 * SDM 3: 27.7.1.2 (September 2008) | 
 | 		 * Re-set bit "block by NMI" before VM entry if vmexit caused by | 
 | 		 * a guest IRET fault. | 
 | 		 * SDM 3: 23.2.2 (September 2008) | 
 | 		 * Bit 12 is undefined in any of the following cases: | 
 | 		 *  If the VM exit sets the valid bit in the IDT-vectoring | 
 | 		 *   information field. | 
 | 		 *  If the VM exit is due to a double fault. | 
 | 		 */ | 
 | 		if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi && | 
 | 		    vector != DF_VECTOR && !idtv_info_valid) | 
 | 			vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, | 
 | 				      GUEST_INTR_STATE_NMI); | 
 | 		else | 
 | 			vmx->nmi_known_unmasked = | 
 | 				!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) | 
 | 				  & GUEST_INTR_STATE_NMI); | 
 | 	} else if (unlikely(vmx->soft_vnmi_blocked)) | 
 | 		vmx->vnmi_blocked_time += | 
 | 			ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time)); | 
 | } | 
 |  | 
 | static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu, | 
 | 				      u32 idt_vectoring_info, | 
 | 				      int instr_len_field, | 
 | 				      int error_code_field) | 
 | { | 
 | 	u8 vector; | 
 | 	int type; | 
 | 	bool idtv_info_valid; | 
 |  | 
 | 	idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK; | 
 |  | 
 | 	vcpu->arch.nmi_injected = false; | 
 | 	kvm_clear_exception_queue(vcpu); | 
 | 	kvm_clear_interrupt_queue(vcpu); | 
 |  | 
 | 	if (!idtv_info_valid) | 
 | 		return; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK; | 
 | 	type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK; | 
 |  | 
 | 	switch (type) { | 
 | 	case INTR_TYPE_NMI_INTR: | 
 | 		vcpu->arch.nmi_injected = true; | 
 | 		/* | 
 | 		 * SDM 3: 27.7.1.2 (September 2008) | 
 | 		 * Clear bit "block by NMI" before VM entry if a NMI | 
 | 		 * delivery faulted. | 
 | 		 */ | 
 | 		vmx_set_nmi_mask(vcpu, false); | 
 | 		break; | 
 | 	case INTR_TYPE_SOFT_EXCEPTION: | 
 | 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); | 
 | 		/* fall through */ | 
 | 	case INTR_TYPE_HARD_EXCEPTION: | 
 | 		if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) { | 
 | 			u32 err = vmcs_read32(error_code_field); | 
 | 			kvm_queue_exception_e(vcpu, vector, err); | 
 | 		} else | 
 | 			kvm_queue_exception(vcpu, vector); | 
 | 		break; | 
 | 	case INTR_TYPE_SOFT_INTR: | 
 | 		vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field); | 
 | 		/* fall through */ | 
 | 	case INTR_TYPE_EXT_INTR: | 
 | 		kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_complete_interrupts(struct vcpu_vmx *vmx) | 
 | { | 
 | 	__vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info, | 
 | 				  VM_EXIT_INSTRUCTION_LEN, | 
 | 				  IDT_VECTORING_ERROR_CODE); | 
 | } | 
 |  | 
 | static void vmx_cancel_injection(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	__vmx_complete_interrupts(vcpu, | 
 | 				  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD), | 
 | 				  VM_ENTRY_INSTRUCTION_LEN, | 
 | 				  VM_ENTRY_EXCEPTION_ERROR_CODE); | 
 |  | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); | 
 | } | 
 |  | 
 | static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx) | 
 | { | 
 | 	int i, nr_msrs; | 
 | 	struct perf_guest_switch_msr *msrs; | 
 |  | 
 | 	msrs = perf_guest_get_msrs(&nr_msrs); | 
 |  | 
 | 	if (!msrs) | 
 | 		return; | 
 |  | 
 | 	for (i = 0; i < nr_msrs; i++) | 
 | 		if (msrs[i].host == msrs[i].guest) | 
 | 			clear_atomic_switch_msr(vmx, msrs[i].msr); | 
 | 		else | 
 | 			add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest, | 
 | 					msrs[i].host); | 
 | } | 
 |  | 
 | static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	unsigned long debugctlmsr; | 
 |  | 
 | 	/* Record the guest's net vcpu time for enforced NMI injections. */ | 
 | 	if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) | 
 | 		vmx->entry_time = ktime_get(); | 
 |  | 
 | 	/* Don't enter VMX if guest state is invalid, let the exit handler | 
 | 	   start emulation until we arrive back to a valid state */ | 
 | 	if (vmx->emulation_required) | 
 | 		return; | 
 |  | 
 | 	if (vmx->nested.sync_shadow_vmcs) { | 
 | 		copy_vmcs12_to_shadow(vmx); | 
 | 		vmx->nested.sync_shadow_vmcs = false; | 
 | 	} | 
 |  | 
 | 	if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty)) | 
 | 		vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]); | 
 | 	if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty)) | 
 | 		vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]); | 
 |  | 
 | 	/* When single-stepping over STI and MOV SS, we must clear the | 
 | 	 * corresponding interruptibility bits in the guest state. Otherwise | 
 | 	 * vmentry fails as it then expects bit 14 (BS) in pending debug | 
 | 	 * exceptions being set, but that's not correct for the guest debugging | 
 | 	 * case. */ | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 
 | 		vmx_set_interrupt_shadow(vcpu, 0); | 
 |  | 
 | 	atomic_switch_perf_msrs(vmx); | 
 | 	debugctlmsr = get_debugctlmsr(); | 
 |  | 
 | 	vmx->__launched = vmx->loaded_vmcs->launched; | 
 | 	asm( | 
 | 		/* Store host registers */ | 
 | 		"push %%" _ASM_DX "; push %%" _ASM_BP ";" | 
 | 		"push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */ | 
 | 		"push %%" _ASM_CX " \n\t" | 
 | 		"cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t" | 
 | 		"je 1f \n\t" | 
 | 		"mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t" | 
 | 		__ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t" | 
 | 		"1: \n\t" | 
 | 		/* Reload cr2 if changed */ | 
 | 		"mov %c[cr2](%0), %%" _ASM_AX " \n\t" | 
 | 		"mov %%cr2, %%" _ASM_DX " \n\t" | 
 | 		"cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t" | 
 | 		"je 2f \n\t" | 
 | 		"mov %%" _ASM_AX", %%cr2 \n\t" | 
 | 		"2: \n\t" | 
 | 		/* Check if vmlaunch of vmresume is needed */ | 
 | 		"cmpl $0, %c[launched](%0) \n\t" | 
 | 		/* Load guest registers.  Don't clobber flags. */ | 
 | 		"mov %c[rax](%0), %%" _ASM_AX " \n\t" | 
 | 		"mov %c[rbx](%0), %%" _ASM_BX " \n\t" | 
 | 		"mov %c[rdx](%0), %%" _ASM_DX " \n\t" | 
 | 		"mov %c[rsi](%0), %%" _ASM_SI " \n\t" | 
 | 		"mov %c[rdi](%0), %%" _ASM_DI " \n\t" | 
 | 		"mov %c[rbp](%0), %%" _ASM_BP " \n\t" | 
 | #ifdef CONFIG_X86_64 | 
 | 		"mov %c[r8](%0),  %%r8  \n\t" | 
 | 		"mov %c[r9](%0),  %%r9  \n\t" | 
 | 		"mov %c[r10](%0), %%r10 \n\t" | 
 | 		"mov %c[r11](%0), %%r11 \n\t" | 
 | 		"mov %c[r12](%0), %%r12 \n\t" | 
 | 		"mov %c[r13](%0), %%r13 \n\t" | 
 | 		"mov %c[r14](%0), %%r14 \n\t" | 
 | 		"mov %c[r15](%0), %%r15 \n\t" | 
 | #endif | 
 | 		"mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */ | 
 |  | 
 | 		/* Enter guest mode */ | 
 | 		"jne 1f \n\t" | 
 | 		__ex(ASM_VMX_VMLAUNCH) "\n\t" | 
 | 		"jmp 2f \n\t" | 
 | 		"1: " __ex(ASM_VMX_VMRESUME) "\n\t" | 
 | 		"2: " | 
 | 		/* Save guest registers, load host registers, keep flags */ | 
 | 		"mov %0, %c[wordsize](%%" _ASM_SP ") \n\t" | 
 | 		"pop %0 \n\t" | 
 | 		"mov %%" _ASM_AX ", %c[rax](%0) \n\t" | 
 | 		"mov %%" _ASM_BX ", %c[rbx](%0) \n\t" | 
 | 		__ASM_SIZE(pop) " %c[rcx](%0) \n\t" | 
 | 		"mov %%" _ASM_DX ", %c[rdx](%0) \n\t" | 
 | 		"mov %%" _ASM_SI ", %c[rsi](%0) \n\t" | 
 | 		"mov %%" _ASM_DI ", %c[rdi](%0) \n\t" | 
 | 		"mov %%" _ASM_BP ", %c[rbp](%0) \n\t" | 
 | #ifdef CONFIG_X86_64 | 
 | 		"mov %%r8,  %c[r8](%0) \n\t" | 
 | 		"mov %%r9,  %c[r9](%0) \n\t" | 
 | 		"mov %%r10, %c[r10](%0) \n\t" | 
 | 		"mov %%r11, %c[r11](%0) \n\t" | 
 | 		"mov %%r12, %c[r12](%0) \n\t" | 
 | 		"mov %%r13, %c[r13](%0) \n\t" | 
 | 		"mov %%r14, %c[r14](%0) \n\t" | 
 | 		"mov %%r15, %c[r15](%0) \n\t" | 
 | #endif | 
 | 		"mov %%cr2, %%" _ASM_AX "   \n\t" | 
 | 		"mov %%" _ASM_AX ", %c[cr2](%0) \n\t" | 
 |  | 
 | 		"pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t" | 
 | 		"setbe %c[fail](%0) \n\t" | 
 | 		".pushsection .rodata \n\t" | 
 | 		".global vmx_return \n\t" | 
 | 		"vmx_return: " _ASM_PTR " 2b \n\t" | 
 | 		".popsection" | 
 | 	      : : "c"(vmx), "d"((unsigned long)HOST_RSP), | 
 | 		[launched]"i"(offsetof(struct vcpu_vmx, __launched)), | 
 | 		[fail]"i"(offsetof(struct vcpu_vmx, fail)), | 
 | 		[host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)), | 
 | 		[rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])), | 
 | 		[rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])), | 
 | 		[rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])), | 
 | 		[rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])), | 
 | 		[rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])), | 
 | 		[rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])), | 
 | 		[rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])), | 
 | #ifdef CONFIG_X86_64 | 
 | 		[r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])), | 
 | 		[r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])), | 
 | 		[r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])), | 
 | 		[r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])), | 
 | 		[r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])), | 
 | 		[r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])), | 
 | 		[r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])), | 
 | 		[r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])), | 
 | #endif | 
 | 		[cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)), | 
 | 		[wordsize]"i"(sizeof(ulong)) | 
 | 	      : "cc", "memory" | 
 | #ifdef CONFIG_X86_64 | 
 | 		, "rax", "rbx", "rdi", "rsi" | 
 | 		, "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15" | 
 | #else | 
 | 		, "eax", "ebx", "edi", "esi" | 
 | #endif | 
 | 	      ); | 
 |  | 
 | 	/* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */ | 
 | 	if (debugctlmsr) | 
 | 		update_debugctlmsr(debugctlmsr); | 
 |  | 
 | #ifndef CONFIG_X86_64 | 
 | 	/* | 
 | 	 * The sysexit path does not restore ds/es, so we must set them to | 
 | 	 * a reasonable value ourselves. | 
 | 	 * | 
 | 	 * We can't defer this to vmx_load_host_state() since that function | 
 | 	 * may be executed in interrupt context, which saves and restore segments | 
 | 	 * around it, nullifying its effect. | 
 | 	 */ | 
 | 	loadsegment(ds, __USER_DS); | 
 | 	loadsegment(es, __USER_DS); | 
 | #endif | 
 |  | 
 | 	vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP) | 
 | 				  | (1 << VCPU_EXREG_RFLAGS) | 
 | 				  | (1 << VCPU_EXREG_CPL) | 
 | 				  | (1 << VCPU_EXREG_PDPTR) | 
 | 				  | (1 << VCPU_EXREG_SEGMENTS) | 
 | 				  | (1 << VCPU_EXREG_CR3)); | 
 | 	vcpu->arch.regs_dirty = 0; | 
 |  | 
 | 	vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD); | 
 |  | 
 | 	vmx->loaded_vmcs->launched = 1; | 
 |  | 
 | 	vmx->exit_reason = vmcs_read32(VM_EXIT_REASON); | 
 | 	trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX); | 
 |  | 
 | 	vmx_complete_atomic_exit(vmx); | 
 | 	vmx_recover_nmi_blocking(vmx); | 
 | 	vmx_complete_interrupts(vmx); | 
 | } | 
 |  | 
 | static void vmx_free_vcpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 |  | 
 | 	free_vpid(vmx); | 
 | 	free_nested(vmx); | 
 | 	free_loaded_vmcs(vmx->loaded_vmcs); | 
 | 	kfree(vmx->guest_msrs); | 
 | 	kvm_vcpu_uninit(vcpu); | 
 | 	kmem_cache_free(kvm_vcpu_cache, vmx); | 
 | } | 
 |  | 
 | static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id) | 
 | { | 
 | 	int err; | 
 | 	struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL); | 
 | 	int cpu; | 
 |  | 
 | 	if (!vmx) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	allocate_vpid(vmx); | 
 |  | 
 | 	err = kvm_vcpu_init(&vmx->vcpu, kvm, id); | 
 | 	if (err) | 
 | 		goto free_vcpu; | 
 |  | 
 | 	vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL); | 
 | 	err = -ENOMEM; | 
 | 	if (!vmx->guest_msrs) { | 
 | 		goto uninit_vcpu; | 
 | 	} | 
 |  | 
 | 	vmx->loaded_vmcs = &vmx->vmcs01; | 
 | 	vmx->loaded_vmcs->vmcs = alloc_vmcs(); | 
 | 	if (!vmx->loaded_vmcs->vmcs) | 
 | 		goto free_msrs; | 
 | 	if (!vmm_exclusive) | 
 | 		kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id()))); | 
 | 	loaded_vmcs_init(vmx->loaded_vmcs); | 
 | 	if (!vmm_exclusive) | 
 | 		kvm_cpu_vmxoff(); | 
 |  | 
 | 	cpu = get_cpu(); | 
 | 	vmx_vcpu_load(&vmx->vcpu, cpu); | 
 | 	vmx->vcpu.cpu = cpu; | 
 | 	err = vmx_vcpu_setup(vmx); | 
 | 	vmx_vcpu_put(&vmx->vcpu); | 
 | 	put_cpu(); | 
 | 	if (err) | 
 | 		goto free_vmcs; | 
 | 	if (vm_need_virtualize_apic_accesses(kvm)) { | 
 | 		err = alloc_apic_access_page(kvm); | 
 | 		if (err) | 
 | 			goto free_vmcs; | 
 | 	} | 
 |  | 
 | 	if (enable_ept) { | 
 | 		if (!kvm->arch.ept_identity_map_addr) | 
 | 			kvm->arch.ept_identity_map_addr = | 
 | 				VMX_EPT_IDENTITY_PAGETABLE_ADDR; | 
 | 		err = -ENOMEM; | 
 | 		if (alloc_identity_pagetable(kvm) != 0) | 
 | 			goto free_vmcs; | 
 | 		if (!init_rmode_identity_map(kvm)) | 
 | 			goto free_vmcs; | 
 | 	} | 
 |  | 
 | 	vmx->nested.current_vmptr = -1ull; | 
 | 	vmx->nested.current_vmcs12 = NULL; | 
 |  | 
 | 	return &vmx->vcpu; | 
 |  | 
 | free_vmcs: | 
 | 	free_loaded_vmcs(vmx->loaded_vmcs); | 
 | free_msrs: | 
 | 	kfree(vmx->guest_msrs); | 
 | uninit_vcpu: | 
 | 	kvm_vcpu_uninit(&vmx->vcpu); | 
 | free_vcpu: | 
 | 	free_vpid(vmx); | 
 | 	kmem_cache_free(kvm_vcpu_cache, vmx); | 
 | 	return ERR_PTR(err); | 
 | } | 
 |  | 
 | static void __init vmx_check_processor_compat(void *rtn) | 
 | { | 
 | 	struct vmcs_config vmcs_conf; | 
 |  | 
 | 	*(int *)rtn = 0; | 
 | 	if (setup_vmcs_config(&vmcs_conf) < 0) | 
 | 		*(int *)rtn = -EIO; | 
 | 	if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) { | 
 | 		printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n", | 
 | 				smp_processor_id()); | 
 | 		*(int *)rtn = -EIO; | 
 | 	} | 
 | } | 
 |  | 
 | static int get_ept_level(void) | 
 | { | 
 | 	return VMX_EPT_DEFAULT_GAW + 1; | 
 | } | 
 |  | 
 | static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio) | 
 | { | 
 | 	u64 ret; | 
 |  | 
 | 	/* For VT-d and EPT combination | 
 | 	 * 1. MMIO: always map as UC | 
 | 	 * 2. EPT with VT-d: | 
 | 	 *   a. VT-d without snooping control feature: can't guarantee the | 
 | 	 *	result, try to trust guest. | 
 | 	 *   b. VT-d with snooping control feature: snooping control feature of | 
 | 	 *	VT-d engine can guarantee the cache correctness. Just set it | 
 | 	 *	to WB to keep consistent with host. So the same as item 3. | 
 | 	 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep | 
 | 	 *    consistent with host MTRR | 
 | 	 */ | 
 | 	if (is_mmio) | 
 | 		ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT; | 
 | 	else if (vcpu->kvm->arch.iommu_domain && | 
 | 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY)) | 
 | 		ret = kvm_get_guest_memory_type(vcpu, gfn) << | 
 | 		      VMX_EPT_MT_EPTE_SHIFT; | 
 | 	else | 
 | 		ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT) | 
 | 			| VMX_EPT_IPAT_BIT; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int vmx_get_lpage_level(void) | 
 | { | 
 | 	if (enable_ept && !cpu_has_vmx_ept_1g_page()) | 
 | 		return PT_DIRECTORY_LEVEL; | 
 | 	else | 
 | 		/* For shadow and EPT supported 1GB page */ | 
 | 		return PT_PDPE_LEVEL; | 
 | } | 
 |  | 
 | static void vmx_cpuid_update(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_cpuid_entry2 *best; | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	u32 exec_control; | 
 |  | 
 | 	vmx->rdtscp_enabled = false; | 
 | 	if (vmx_rdtscp_supported()) { | 
 | 		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); | 
 | 		if (exec_control & SECONDARY_EXEC_RDTSCP) { | 
 | 			best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | 
 | 			if (best && (best->edx & bit(X86_FEATURE_RDTSCP))) | 
 | 				vmx->rdtscp_enabled = true; | 
 | 			else { | 
 | 				exec_control &= ~SECONDARY_EXEC_RDTSCP; | 
 | 				vmcs_write32(SECONDARY_VM_EXEC_CONTROL, | 
 | 						exec_control); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Exposing INVPCID only when PCID is exposed */ | 
 | 	best = kvm_find_cpuid_entry(vcpu, 0x7, 0); | 
 | 	if (vmx_invpcid_supported() && | 
 | 	    best && (best->ebx & bit(X86_FEATURE_INVPCID)) && | 
 | 	    guest_cpuid_has_pcid(vcpu)) { | 
 | 		exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); | 
 | 		exec_control |= SECONDARY_EXEC_ENABLE_INVPCID; | 
 | 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, | 
 | 			     exec_control); | 
 | 	} else { | 
 | 		if (cpu_has_secondary_exec_ctrls()) { | 
 | 			exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL); | 
 | 			exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID; | 
 | 			vmcs_write32(SECONDARY_VM_EXEC_CONTROL, | 
 | 				     exec_control); | 
 | 		} | 
 | 		if (best) | 
 | 			best->ebx &= ~bit(X86_FEATURE_INVPCID); | 
 | 	} | 
 | } | 
 |  | 
 | static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry) | 
 | { | 
 | 	if (func == 1 && nested) | 
 | 		entry->ecx |= bit(X86_FEATURE_VMX); | 
 | } | 
 |  | 
 | /* | 
 |  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested | 
 |  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it | 
 |  * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2 | 
 |  * guest in a way that will both be appropriate to L1's requests, and our | 
 |  * needs. In addition to modifying the active vmcs (which is vmcs02), this | 
 |  * function also has additional necessary side-effects, like setting various | 
 |  * vcpu->arch fields. | 
 |  */ | 
 | static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	u32 exec_control; | 
 |  | 
 | 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector); | 
 | 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector); | 
 | 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector); | 
 | 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector); | 
 | 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector); | 
 | 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector); | 
 | 	vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector); | 
 | 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector); | 
 | 	vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit); | 
 | 	vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit); | 
 | 	vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit); | 
 | 	vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit); | 
 | 	vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit); | 
 | 	vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit); | 
 | 	vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit); | 
 | 	vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit); | 
 | 	vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit); | 
 | 	vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit); | 
 | 	vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes); | 
 | 	vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes); | 
 | 	vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes); | 
 | 	vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes); | 
 | 	vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes); | 
 | 	vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes); | 
 | 	vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes); | 
 | 	vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes); | 
 | 	vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base); | 
 | 	vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base); | 
 | 	vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base); | 
 | 	vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base); | 
 | 	vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base); | 
 | 	vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base); | 
 | 	vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base); | 
 | 	vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base); | 
 | 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base); | 
 | 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base); | 
 |  | 
 | 	vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl); | 
 | 	vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, | 
 | 		vmcs12->vm_entry_intr_info_field); | 
 | 	vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, | 
 | 		vmcs12->vm_entry_exception_error_code); | 
 | 	vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, | 
 | 		vmcs12->vm_entry_instruction_len); | 
 | 	vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, | 
 | 		vmcs12->guest_interruptibility_info); | 
 | 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs); | 
 | 	kvm_set_dr(vcpu, 7, vmcs12->guest_dr7); | 
 | 	vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags); | 
 | 	vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, | 
 | 		vmcs12->guest_pending_dbg_exceptions); | 
 | 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp); | 
 | 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip); | 
 |  | 
 | 	vmcs_write64(VMCS_LINK_POINTER, -1ull); | 
 |  | 
 | 	vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, | 
 | 		(vmcs_config.pin_based_exec_ctrl | | 
 | 		 vmcs12->pin_based_vm_exec_control)); | 
 |  | 
 | 	if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER) | 
 | 		vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, | 
 | 			     vmcs12->vmx_preemption_timer_value); | 
 |  | 
 | 	/* | 
 | 	 * Whether page-faults are trapped is determined by a combination of | 
 | 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF. | 
 | 	 * If enable_ept, L0 doesn't care about page faults and we should | 
 | 	 * set all of these to L1's desires. However, if !enable_ept, L0 does | 
 | 	 * care about (at least some) page faults, and because it is not easy | 
 | 	 * (if at all possible?) to merge L0 and L1's desires, we simply ask | 
 | 	 * to exit on each and every L2 page fault. This is done by setting | 
 | 	 * MASK=MATCH=0 and (see below) EB.PF=1. | 
 | 	 * Note that below we don't need special code to set EB.PF beyond the | 
 | 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept, | 
 | 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when | 
 | 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1. | 
 | 	 * | 
 | 	 * A problem with this approach (when !enable_ept) is that L1 may be | 
 | 	 * injected with more page faults than it asked for. This could have | 
 | 	 * caused problems, but in practice existing hypervisors don't care. | 
 | 	 * To fix this, we will need to emulate the PFEC checking (on the L1 | 
 | 	 * page tables), using walk_addr(), when injecting PFs to L1. | 
 | 	 */ | 
 | 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, | 
 | 		enable_ept ? vmcs12->page_fault_error_code_mask : 0); | 
 | 	vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, | 
 | 		enable_ept ? vmcs12->page_fault_error_code_match : 0); | 
 |  | 
 | 	if (cpu_has_secondary_exec_ctrls()) { | 
 | 		u32 exec_control = vmx_secondary_exec_control(vmx); | 
 | 		if (!vmx->rdtscp_enabled) | 
 | 			exec_control &= ~SECONDARY_EXEC_RDTSCP; | 
 | 		/* Take the following fields only from vmcs12 */ | 
 | 		exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
 | 		if (nested_cpu_has(vmcs12, | 
 | 				CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) | 
 | 			exec_control |= vmcs12->secondary_vm_exec_control; | 
 |  | 
 | 		if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) { | 
 | 			/* | 
 | 			 * Translate L1 physical address to host physical | 
 | 			 * address for vmcs02. Keep the page pinned, so this | 
 | 			 * physical address remains valid. We keep a reference | 
 | 			 * to it so we can release it later. | 
 | 			 */ | 
 | 			if (vmx->nested.apic_access_page) /* shouldn't happen */ | 
 | 				nested_release_page(vmx->nested.apic_access_page); | 
 | 			vmx->nested.apic_access_page = | 
 | 				nested_get_page(vcpu, vmcs12->apic_access_addr); | 
 | 			/* | 
 | 			 * If translation failed, no matter: This feature asks | 
 | 			 * to exit when accessing the given address, and if it | 
 | 			 * can never be accessed, this feature won't do | 
 | 			 * anything anyway. | 
 | 			 */ | 
 | 			if (!vmx->nested.apic_access_page) | 
 | 				exec_control &= | 
 | 				  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES; | 
 | 			else | 
 | 				vmcs_write64(APIC_ACCESS_ADDR, | 
 | 				  page_to_phys(vmx->nested.apic_access_page)); | 
 | 		} | 
 |  | 
 | 		vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control); | 
 | 	} | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * Set host-state according to L0's settings (vmcs12 is irrelevant here) | 
 | 	 * Some constant fields are set here by vmx_set_constant_host_state(). | 
 | 	 * Other fields are different per CPU, and will be set later when | 
 | 	 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called. | 
 | 	 */ | 
 | 	vmx_set_constant_host_state(vmx); | 
 |  | 
 | 	/* | 
 | 	 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before | 
 | 	 * entry, but only if the current (host) sp changed from the value | 
 | 	 * we wrote last (vmx->host_rsp). This cache is no longer relevant | 
 | 	 * if we switch vmcs, and rather than hold a separate cache per vmcs, | 
 | 	 * here we just force the write to happen on entry. | 
 | 	 */ | 
 | 	vmx->host_rsp = 0; | 
 |  | 
 | 	exec_control = vmx_exec_control(vmx); /* L0's desires */ | 
 | 	exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING; | 
 | 	exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING; | 
 | 	exec_control &= ~CPU_BASED_TPR_SHADOW; | 
 | 	exec_control |= vmcs12->cpu_based_vm_exec_control; | 
 | 	/* | 
 | 	 * Merging of IO and MSR bitmaps not currently supported. | 
 | 	 * Rather, exit every time. | 
 | 	 */ | 
 | 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS; | 
 | 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS; | 
 | 	exec_control |= CPU_BASED_UNCOND_IO_EXITING; | 
 |  | 
 | 	vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control); | 
 |  | 
 | 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the | 
 | 	 * bitwise-or of what L1 wants to trap for L2, and what we want to | 
 | 	 * trap. Note that CR0.TS also needs updating - we do this later. | 
 | 	 */ | 
 | 	update_exception_bitmap(vcpu); | 
 | 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask; | 
 | 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); | 
 |  | 
 | 	/* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */ | 
 | 	vmcs_write32(VM_EXIT_CONTROLS, | 
 | 		vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl); | 
 | 	vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls | | 
 | 		(vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE)); | 
 |  | 
 | 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) | 
 | 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat); | 
 | 	else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) | 
 | 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat); | 
 |  | 
 |  | 
 | 	set_cr4_guest_host_mask(vmx); | 
 |  | 
 | 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING) | 
 | 		vmcs_write64(TSC_OFFSET, | 
 | 			vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset); | 
 | 	else | 
 | 		vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); | 
 |  | 
 | 	if (enable_vpid) { | 
 | 		/* | 
 | 		 * Trivially support vpid by letting L2s share their parent | 
 | 		 * L1's vpid. TODO: move to a more elaborate solution, giving | 
 | 		 * each L2 its own vpid and exposing the vpid feature to L1. | 
 | 		 */ | 
 | 		vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid); | 
 | 		vmx_flush_tlb(vcpu); | 
 | 	} | 
 |  | 
 | 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) | 
 | 		vcpu->arch.efer = vmcs12->guest_ia32_efer; | 
 | 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) | 
 | 		vcpu->arch.efer |= (EFER_LMA | EFER_LME); | 
 | 	else | 
 | 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); | 
 | 	/* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */ | 
 | 	vmx_set_efer(vcpu, vcpu->arch.efer); | 
 |  | 
 | 	/* | 
 | 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified | 
 | 	 * TS bit (for lazy fpu) and bits which we consider mandatory enabled. | 
 | 	 * The CR0_READ_SHADOW is what L2 should have expected to read given | 
 | 	 * the specifications by L1; It's not enough to take | 
 | 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we | 
 | 	 * have more bits than L1 expected. | 
 | 	 */ | 
 | 	vmx_set_cr0(vcpu, vmcs12->guest_cr0); | 
 | 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12)); | 
 |  | 
 | 	vmx_set_cr4(vcpu, vmcs12->guest_cr4); | 
 | 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12)); | 
 |  | 
 | 	/* shadow page tables on either EPT or shadow page tables */ | 
 | 	kvm_set_cr3(vcpu, vmcs12->guest_cr3); | 
 | 	kvm_mmu_reset_context(vcpu); | 
 |  | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip); | 
 | } | 
 |  | 
 | /* | 
 |  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1 | 
 |  * for running an L2 nested guest. | 
 |  */ | 
 | static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch) | 
 | { | 
 | 	struct vmcs12 *vmcs12; | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	int cpu; | 
 | 	struct loaded_vmcs *vmcs02; | 
 | 	bool ia32e; | 
 |  | 
 | 	if (!nested_vmx_check_permission(vcpu) || | 
 | 	    !nested_vmx_check_vmcs12(vcpu)) | 
 | 		return 1; | 
 |  | 
 | 	skip_emulated_instruction(vcpu); | 
 | 	vmcs12 = get_vmcs12(vcpu); | 
 |  | 
 | 	if (enable_shadow_vmcs) | 
 | 		copy_shadow_to_vmcs12(vmx); | 
 |  | 
 | 	/* | 
 | 	 * The nested entry process starts with enforcing various prerequisites | 
 | 	 * on vmcs12 as required by the Intel SDM, and act appropriately when | 
 | 	 * they fail: As the SDM explains, some conditions should cause the | 
 | 	 * instruction to fail, while others will cause the instruction to seem | 
 | 	 * to succeed, but return an EXIT_REASON_INVALID_STATE. | 
 | 	 * To speed up the normal (success) code path, we should avoid checking | 
 | 	 * for misconfigurations which will anyway be caught by the processor | 
 | 	 * when using the merged vmcs02. | 
 | 	 */ | 
 | 	if (vmcs12->launch_state == launch) { | 
 | 		nested_vmx_failValid(vcpu, | 
 | 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS | 
 | 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) { | 
 | 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) && | 
 | 			!IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) { | 
 | 		/*TODO: Also verify bits beyond physical address width are 0*/ | 
 | 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) && | 
 | 			!IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) { | 
 | 		/*TODO: Also verify bits beyond physical address width are 0*/ | 
 | 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (vmcs12->vm_entry_msr_load_count > 0 || | 
 | 	    vmcs12->vm_exit_msr_load_count > 0 || | 
 | 	    vmcs12->vm_exit_msr_store_count > 0) { | 
 | 		pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n", | 
 | 				    __func__); | 
 | 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control, | 
 | 	      nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) || | 
 | 	    !vmx_control_verify(vmcs12->secondary_vm_exec_control, | 
 | 	      nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) || | 
 | 	    !vmx_control_verify(vmcs12->pin_based_vm_exec_control, | 
 | 	      nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) || | 
 | 	    !vmx_control_verify(vmcs12->vm_exit_controls, | 
 | 	      nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) || | 
 | 	    !vmx_control_verify(vmcs12->vm_entry_controls, | 
 | 	      nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high)) | 
 | 	{ | 
 | 		nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) || | 
 | 	    ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { | 
 | 		nested_vmx_failValid(vcpu, | 
 | 			VMXERR_ENTRY_INVALID_HOST_STATE_FIELD); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) || | 
 | 	    ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) { | 
 | 		nested_vmx_entry_failure(vcpu, vmcs12, | 
 | 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); | 
 | 		return 1; | 
 | 	} | 
 | 	if (vmcs12->vmcs_link_pointer != -1ull) { | 
 | 		nested_vmx_entry_failure(vcpu, vmcs12, | 
 | 			EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the load IA32_EFER VM-entry control is 1, the following checks | 
 | 	 * are performed on the field for the IA32_EFER MSR: | 
 | 	 * - Bits reserved in the IA32_EFER MSR must be 0. | 
 | 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of | 
 | 	 *   the IA-32e mode guest VM-exit control. It must also be identical | 
 | 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to | 
 | 	 *   CR0.PG) is 1. | 
 | 	 */ | 
 | 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) { | 
 | 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0; | 
 | 		if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) || | 
 | 		    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) || | 
 | 		    ((vmcs12->guest_cr0 & X86_CR0_PG) && | 
 | 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) { | 
 | 			nested_vmx_entry_failure(vcpu, vmcs12, | 
 | 				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the | 
 | 	 * IA32_EFER MSR must be 0 in the field for that register. In addition, | 
 | 	 * the values of the LMA and LME bits in the field must each be that of | 
 | 	 * the host address-space size VM-exit control. | 
 | 	 */ | 
 | 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) { | 
 | 		ia32e = (vmcs12->vm_exit_controls & | 
 | 			 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0; | 
 | 		if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) || | 
 | 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) || | 
 | 		    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) { | 
 | 			nested_vmx_entry_failure(vcpu, vmcs12, | 
 | 				EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT); | 
 | 			return 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We're finally done with prerequisite checking, and can start with | 
 | 	 * the nested entry. | 
 | 	 */ | 
 |  | 
 | 	vmcs02 = nested_get_current_vmcs02(vmx); | 
 | 	if (!vmcs02) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	enter_guest_mode(vcpu); | 
 |  | 
 | 	vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET); | 
 |  | 
 | 	cpu = get_cpu(); | 
 | 	vmx->loaded_vmcs = vmcs02; | 
 | 	vmx_vcpu_put(vcpu); | 
 | 	vmx_vcpu_load(vcpu, cpu); | 
 | 	vcpu->cpu = cpu; | 
 | 	put_cpu(); | 
 |  | 
 | 	vmx_segment_cache_clear(vmx); | 
 |  | 
 | 	vmcs12->launch_state = 1; | 
 |  | 
 | 	prepare_vmcs02(vcpu, vmcs12); | 
 |  | 
 | 	/* | 
 | 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point | 
 | 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet | 
 | 	 * returned as far as L1 is concerned. It will only return (and set | 
 | 	 * the success flag) when L2 exits (see nested_vmx_vmexit()). | 
 | 	 */ | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date | 
 |  * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK). | 
 |  * This function returns the new value we should put in vmcs12.guest_cr0. | 
 |  * It's not enough to just return the vmcs02 GUEST_CR0. Rather, | 
 |  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now | 
 |  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0 | 
 |  *     didn't trap the bit, because if L1 did, so would L0). | 
 |  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have | 
 |  *     been modified by L2, and L1 knows it. So just leave the old value of | 
 |  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0 | 
 |  *     isn't relevant, because if L0 traps this bit it can set it to anything. | 
 |  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have | 
 |  *     changed these bits, and therefore they need to be updated, but L0 | 
 |  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather | 
 |  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there. | 
 |  */ | 
 | static inline unsigned long | 
 | vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
 | { | 
 | 	return | 
 | 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) | | 
 | 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) | | 
 | 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask | | 
 | 			vcpu->arch.cr0_guest_owned_bits)); | 
 | } | 
 |  | 
 | static inline unsigned long | 
 | vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
 | { | 
 | 	return | 
 | 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) | | 
 | 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) | | 
 | 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask | | 
 | 			vcpu->arch.cr4_guest_owned_bits)); | 
 | } | 
 |  | 
 | static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu, | 
 | 				       struct vmcs12 *vmcs12) | 
 | { | 
 | 	u32 idt_vectoring; | 
 | 	unsigned int nr; | 
 |  | 
 | 	if (vcpu->arch.exception.pending) { | 
 | 		nr = vcpu->arch.exception.nr; | 
 | 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK; | 
 |  | 
 | 		if (kvm_exception_is_soft(nr)) { | 
 | 			vmcs12->vm_exit_instruction_len = | 
 | 				vcpu->arch.event_exit_inst_len; | 
 | 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION; | 
 | 		} else | 
 | 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION; | 
 |  | 
 | 		if (vcpu->arch.exception.has_error_code) { | 
 | 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK; | 
 | 			vmcs12->idt_vectoring_error_code = | 
 | 				vcpu->arch.exception.error_code; | 
 | 		} | 
 |  | 
 | 		vmcs12->idt_vectoring_info_field = idt_vectoring; | 
 | 	} else if (vcpu->arch.nmi_pending) { | 
 | 		vmcs12->idt_vectoring_info_field = | 
 | 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR; | 
 | 	} else if (vcpu->arch.interrupt.pending) { | 
 | 		nr = vcpu->arch.interrupt.nr; | 
 | 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK; | 
 |  | 
 | 		if (vcpu->arch.interrupt.soft) { | 
 | 			idt_vectoring |= INTR_TYPE_SOFT_INTR; | 
 | 			vmcs12->vm_entry_instruction_len = | 
 | 				vcpu->arch.event_exit_inst_len; | 
 | 		} else | 
 | 			idt_vectoring |= INTR_TYPE_EXT_INTR; | 
 |  | 
 | 		vmcs12->idt_vectoring_info_field = idt_vectoring; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits | 
 |  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12), | 
 |  * and this function updates it to reflect the changes to the guest state while | 
 |  * L2 was running (and perhaps made some exits which were handled directly by L0 | 
 |  * without going back to L1), and to reflect the exit reason. | 
 |  * Note that we do not have to copy here all VMCS fields, just those that | 
 |  * could have changed by the L2 guest or the exit - i.e., the guest-state and | 
 |  * exit-information fields only. Other fields are modified by L1 with VMWRITE, | 
 |  * which already writes to vmcs12 directly. | 
 |  */ | 
 | static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12) | 
 | { | 
 | 	/* update guest state fields: */ | 
 | 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12); | 
 | 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12); | 
 |  | 
 | 	kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7); | 
 | 	vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | 
 | 	vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP); | 
 | 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS); | 
 |  | 
 | 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR); | 
 | 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR); | 
 | 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR); | 
 | 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR); | 
 | 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR); | 
 | 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR); | 
 | 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR); | 
 | 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR); | 
 | 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT); | 
 | 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT); | 
 | 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT); | 
 | 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT); | 
 | 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT); | 
 | 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT); | 
 | 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT); | 
 | 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT); | 
 | 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT); | 
 | 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT); | 
 | 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES); | 
 | 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES); | 
 | 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES); | 
 | 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES); | 
 | 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES); | 
 | 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES); | 
 | 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES); | 
 | 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES); | 
 | 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE); | 
 | 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE); | 
 | 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE); | 
 | 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE); | 
 | 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE); | 
 | 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE); | 
 | 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE); | 
 | 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE); | 
 | 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE); | 
 | 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE); | 
 |  | 
 | 	vmcs12->guest_interruptibility_info = | 
 | 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO); | 
 | 	vmcs12->guest_pending_dbg_exceptions = | 
 | 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS); | 
 |  | 
 | 	vmcs12->vm_entry_controls = | 
 | 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) | | 
 | 		(vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE); | 
 |  | 
 | 	/* TODO: These cannot have changed unless we have MSR bitmaps and | 
 | 	 * the relevant bit asks not to trap the change */ | 
 | 	vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL); | 
 | 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT) | 
 | 		vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT); | 
 | 	vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS); | 
 | 	vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP); | 
 | 	vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP); | 
 |  | 
 | 	/* update exit information fields: */ | 
 |  | 
 | 	vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason; | 
 | 	vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION); | 
 |  | 
 | 	vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO); | 
 | 	if ((vmcs12->vm_exit_intr_info & | 
 | 	     (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) == | 
 | 	    (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) | 
 | 		vmcs12->vm_exit_intr_error_code = | 
 | 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE); | 
 | 	vmcs12->idt_vectoring_info_field = 0; | 
 | 	vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN); | 
 | 	vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO); | 
 |  | 
 | 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) { | 
 | 		/* vm_entry_intr_info_field is cleared on exit. Emulate this | 
 | 		 * instead of reading the real value. */ | 
 | 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK; | 
 |  | 
 | 		/* | 
 | 		 * Transfer the event that L0 or L1 may wanted to inject into | 
 | 		 * L2 to IDT_VECTORING_INFO_FIELD. | 
 | 		 */ | 
 | 		vmcs12_save_pending_event(vcpu, vmcs12); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is | 
 | 	 * preserved above and would only end up incorrectly in L1. | 
 | 	 */ | 
 | 	vcpu->arch.nmi_injected = false; | 
 | 	kvm_clear_exception_queue(vcpu); | 
 | 	kvm_clear_interrupt_queue(vcpu); | 
 | } | 
 |  | 
 | /* | 
 |  * A part of what we need to when the nested L2 guest exits and we want to | 
 |  * run its L1 parent, is to reset L1's guest state to the host state specified | 
 |  * in vmcs12. | 
 |  * This function is to be called not only on normal nested exit, but also on | 
 |  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry | 
 |  * Failures During or After Loading Guest State"). | 
 |  * This function should be called when the active VMCS is L1's (vmcs01). | 
 |  */ | 
 | static void load_vmcs12_host_state(struct kvm_vcpu *vcpu, | 
 | 				   struct vmcs12 *vmcs12) | 
 | { | 
 | 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) | 
 | 		vcpu->arch.efer = vmcs12->host_ia32_efer; | 
 | 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) | 
 | 		vcpu->arch.efer |= (EFER_LMA | EFER_LME); | 
 | 	else | 
 | 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME); | 
 | 	vmx_set_efer(vcpu, vcpu->arch.efer); | 
 |  | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip); | 
 | 	vmx_set_rflags(vcpu, X86_EFLAGS_BIT1); | 
 | 	/* | 
 | 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't | 
 | 	 * actually changed, because it depends on the current state of | 
 | 	 * fpu_active (which may have changed). | 
 | 	 * Note that vmx_set_cr0 refers to efer set above. | 
 | 	 */ | 
 | 	kvm_set_cr0(vcpu, vmcs12->host_cr0); | 
 | 	/* | 
 | 	 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need | 
 | 	 * to apply the same changes to L1's vmcs. We just set cr0 correctly, | 
 | 	 * but we also need to update cr0_guest_host_mask and exception_bitmap. | 
 | 	 */ | 
 | 	update_exception_bitmap(vcpu); | 
 | 	vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0); | 
 | 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits); | 
 |  | 
 | 	/* | 
 | 	 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01 | 
 | 	 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask(); | 
 | 	 */ | 
 | 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK); | 
 | 	kvm_set_cr4(vcpu, vmcs12->host_cr4); | 
 |  | 
 | 	/* shadow page tables on either EPT or shadow page tables */ | 
 | 	kvm_set_cr3(vcpu, vmcs12->host_cr3); | 
 | 	kvm_mmu_reset_context(vcpu); | 
 |  | 
 | 	if (enable_vpid) { | 
 | 		/* | 
 | 		 * Trivially support vpid by letting L2s share their parent | 
 | 		 * L1's vpid. TODO: move to a more elaborate solution, giving | 
 | 		 * each L2 its own vpid and exposing the vpid feature to L1. | 
 | 		 */ | 
 | 		vmx_flush_tlb(vcpu); | 
 | 	} | 
 |  | 
 |  | 
 | 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs); | 
 | 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp); | 
 | 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip); | 
 | 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base); | 
 | 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base); | 
 | 	vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base); | 
 | 	vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base); | 
 | 	vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base); | 
 | 	vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector); | 
 | 	vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector); | 
 | 	vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector); | 
 | 	vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector); | 
 | 	vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector); | 
 | 	vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector); | 
 | 	vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector); | 
 |  | 
 | 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) | 
 | 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat); | 
 | 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) | 
 | 		vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL, | 
 | 			vmcs12->host_ia32_perf_global_ctrl); | 
 |  | 
 | 	kvm_set_dr(vcpu, 7, 0x400); | 
 | 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1 | 
 |  * and modify vmcs12 to make it see what it would expect to see there if | 
 |  * L2 was its real guest. Must only be called when in L2 (is_guest_mode()) | 
 |  */ | 
 | static void nested_vmx_vmexit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct vcpu_vmx *vmx = to_vmx(vcpu); | 
 | 	int cpu; | 
 | 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu); | 
 |  | 
 | 	/* trying to cancel vmlaunch/vmresume is a bug */ | 
 | 	WARN_ON_ONCE(vmx->nested.nested_run_pending); | 
 |  | 
 | 	leave_guest_mode(vcpu); | 
 | 	prepare_vmcs12(vcpu, vmcs12); | 
 |  | 
 | 	cpu = get_cpu(); | 
 | 	vmx->loaded_vmcs = &vmx->vmcs01; | 
 | 	vmx_vcpu_put(vcpu); | 
 | 	vmx_vcpu_load(vcpu, cpu); | 
 | 	vcpu->cpu = cpu; | 
 | 	put_cpu(); | 
 |  | 
 | 	vmx_segment_cache_clear(vmx); | 
 |  | 
 | 	/* if no vmcs02 cache requested, remove the one we used */ | 
 | 	if (VMCS02_POOL_SIZE == 0) | 
 | 		nested_free_vmcs02(vmx, vmx->nested.current_vmptr); | 
 |  | 
 | 	load_vmcs12_host_state(vcpu, vmcs12); | 
 |  | 
 | 	/* Update TSC_OFFSET if TSC was changed while L2 ran */ | 
 | 	vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset); | 
 |  | 
 | 	/* This is needed for same reason as it was needed in prepare_vmcs02 */ | 
 | 	vmx->host_rsp = 0; | 
 |  | 
 | 	/* Unpin physical memory we referred to in vmcs02 */ | 
 | 	if (vmx->nested.apic_access_page) { | 
 | 		nested_release_page(vmx->nested.apic_access_page); | 
 | 		vmx->nested.apic_access_page = 0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Exiting from L2 to L1, we're now back to L1 which thinks it just | 
 | 	 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the | 
 | 	 * success or failure flag accordingly. | 
 | 	 */ | 
 | 	if (unlikely(vmx->fail)) { | 
 | 		vmx->fail = 0; | 
 | 		nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR)); | 
 | 	} else | 
 | 		nested_vmx_succeed(vcpu); | 
 | 	if (enable_shadow_vmcs) | 
 | 		vmx->nested.sync_shadow_vmcs = true; | 
 | } | 
 |  | 
 | /* | 
 |  * L1's failure to enter L2 is a subset of a normal exit, as explained in | 
 |  * 23.7 "VM-entry failures during or after loading guest state" (this also | 
 |  * lists the acceptable exit-reason and exit-qualification parameters). | 
 |  * It should only be called before L2 actually succeeded to run, and when | 
 |  * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss). | 
 |  */ | 
 | static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu, | 
 | 			struct vmcs12 *vmcs12, | 
 | 			u32 reason, unsigned long qualification) | 
 | { | 
 | 	load_vmcs12_host_state(vcpu, vmcs12); | 
 | 	vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY; | 
 | 	vmcs12->exit_qualification = qualification; | 
 | 	nested_vmx_succeed(vcpu); | 
 | 	if (enable_shadow_vmcs) | 
 | 		to_vmx(vcpu)->nested.sync_shadow_vmcs = true; | 
 | } | 
 |  | 
 | static int vmx_check_intercept(struct kvm_vcpu *vcpu, | 
 | 			       struct x86_instruction_info *info, | 
 | 			       enum x86_intercept_stage stage) | 
 | { | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | static struct kvm_x86_ops vmx_x86_ops = { | 
 | 	.cpu_has_kvm_support = cpu_has_kvm_support, | 
 | 	.disabled_by_bios = vmx_disabled_by_bios, | 
 | 	.hardware_setup = hardware_setup, | 
 | 	.hardware_unsetup = hardware_unsetup, | 
 | 	.check_processor_compatibility = vmx_check_processor_compat, | 
 | 	.hardware_enable = hardware_enable, | 
 | 	.hardware_disable = hardware_disable, | 
 | 	.cpu_has_accelerated_tpr = report_flexpriority, | 
 |  | 
 | 	.vcpu_create = vmx_create_vcpu, | 
 | 	.vcpu_free = vmx_free_vcpu, | 
 | 	.vcpu_reset = vmx_vcpu_reset, | 
 |  | 
 | 	.prepare_guest_switch = vmx_save_host_state, | 
 | 	.vcpu_load = vmx_vcpu_load, | 
 | 	.vcpu_put = vmx_vcpu_put, | 
 |  | 
 | 	.update_db_bp_intercept = update_exception_bitmap, | 
 | 	.get_msr = vmx_get_msr, | 
 | 	.set_msr = vmx_set_msr, | 
 | 	.get_segment_base = vmx_get_segment_base, | 
 | 	.get_segment = vmx_get_segment, | 
 | 	.set_segment = vmx_set_segment, | 
 | 	.get_cpl = vmx_get_cpl, | 
 | 	.get_cs_db_l_bits = vmx_get_cs_db_l_bits, | 
 | 	.decache_cr0_guest_bits = vmx_decache_cr0_guest_bits, | 
 | 	.decache_cr3 = vmx_decache_cr3, | 
 | 	.decache_cr4_guest_bits = vmx_decache_cr4_guest_bits, | 
 | 	.set_cr0 = vmx_set_cr0, | 
 | 	.set_cr3 = vmx_set_cr3, | 
 | 	.set_cr4 = vmx_set_cr4, | 
 | 	.set_efer = vmx_set_efer, | 
 | 	.get_idt = vmx_get_idt, | 
 | 	.set_idt = vmx_set_idt, | 
 | 	.get_gdt = vmx_get_gdt, | 
 | 	.set_gdt = vmx_set_gdt, | 
 | 	.set_dr7 = vmx_set_dr7, | 
 | 	.cache_reg = vmx_cache_reg, | 
 | 	.get_rflags = vmx_get_rflags, | 
 | 	.set_rflags = vmx_set_rflags, | 
 | 	.fpu_activate = vmx_fpu_activate, | 
 | 	.fpu_deactivate = vmx_fpu_deactivate, | 
 |  | 
 | 	.tlb_flush = vmx_flush_tlb, | 
 |  | 
 | 	.run = vmx_vcpu_run, | 
 | 	.handle_exit = vmx_handle_exit, | 
 | 	.skip_emulated_instruction = skip_emulated_instruction, | 
 | 	.set_interrupt_shadow = vmx_set_interrupt_shadow, | 
 | 	.get_interrupt_shadow = vmx_get_interrupt_shadow, | 
 | 	.patch_hypercall = vmx_patch_hypercall, | 
 | 	.set_irq = vmx_inject_irq, | 
 | 	.set_nmi = vmx_inject_nmi, | 
 | 	.queue_exception = vmx_queue_exception, | 
 | 	.cancel_injection = vmx_cancel_injection, | 
 | 	.interrupt_allowed = vmx_interrupt_allowed, | 
 | 	.nmi_allowed = vmx_nmi_allowed, | 
 | 	.get_nmi_mask = vmx_get_nmi_mask, | 
 | 	.set_nmi_mask = vmx_set_nmi_mask, | 
 | 	.enable_nmi_window = enable_nmi_window, | 
 | 	.enable_irq_window = enable_irq_window, | 
 | 	.update_cr8_intercept = update_cr8_intercept, | 
 | 	.set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode, | 
 | 	.vm_has_apicv = vmx_vm_has_apicv, | 
 | 	.load_eoi_exitmap = vmx_load_eoi_exitmap, | 
 | 	.hwapic_irr_update = vmx_hwapic_irr_update, | 
 | 	.hwapic_isr_update = vmx_hwapic_isr_update, | 
 | 	.sync_pir_to_irr = vmx_sync_pir_to_irr, | 
 | 	.deliver_posted_interrupt = vmx_deliver_posted_interrupt, | 
 |  | 
 | 	.set_tss_addr = vmx_set_tss_addr, | 
 | 	.get_tdp_level = get_ept_level, | 
 | 	.get_mt_mask = vmx_get_mt_mask, | 
 |  | 
 | 	.get_exit_info = vmx_get_exit_info, | 
 |  | 
 | 	.get_lpage_level = vmx_get_lpage_level, | 
 |  | 
 | 	.cpuid_update = vmx_cpuid_update, | 
 |  | 
 | 	.rdtscp_supported = vmx_rdtscp_supported, | 
 | 	.invpcid_supported = vmx_invpcid_supported, | 
 |  | 
 | 	.set_supported_cpuid = vmx_set_supported_cpuid, | 
 |  | 
 | 	.has_wbinvd_exit = cpu_has_vmx_wbinvd_exit, | 
 |  | 
 | 	.set_tsc_khz = vmx_set_tsc_khz, | 
 | 	.read_tsc_offset = vmx_read_tsc_offset, | 
 | 	.write_tsc_offset = vmx_write_tsc_offset, | 
 | 	.adjust_tsc_offset = vmx_adjust_tsc_offset, | 
 | 	.compute_tsc_offset = vmx_compute_tsc_offset, | 
 | 	.read_l1_tsc = vmx_read_l1_tsc, | 
 |  | 
 | 	.set_tdp_cr3 = vmx_set_cr3, | 
 |  | 
 | 	.check_intercept = vmx_check_intercept, | 
 | 	.handle_external_intr = vmx_handle_external_intr, | 
 | }; | 
 |  | 
 | static int __init vmx_init(void) | 
 | { | 
 | 	int r, i, msr; | 
 |  | 
 | 	rdmsrl_safe(MSR_EFER, &host_efer); | 
 |  | 
 | 	for (i = 0; i < NR_VMX_MSR; ++i) | 
 | 		kvm_define_shared_msr(i, vmx_msr_index[i]); | 
 |  | 
 | 	vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL); | 
 | 	if (!vmx_io_bitmap_a) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	r = -ENOMEM; | 
 |  | 
 | 	vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL); | 
 | 	if (!vmx_io_bitmap_b) | 
 | 		goto out; | 
 |  | 
 | 	vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL); | 
 | 	if (!vmx_msr_bitmap_legacy) | 
 | 		goto out1; | 
 |  | 
 | 	vmx_msr_bitmap_legacy_x2apic = | 
 | 				(unsigned long *)__get_free_page(GFP_KERNEL); | 
 | 	if (!vmx_msr_bitmap_legacy_x2apic) | 
 | 		goto out2; | 
 |  | 
 | 	vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL); | 
 | 	if (!vmx_msr_bitmap_longmode) | 
 | 		goto out3; | 
 |  | 
 | 	vmx_msr_bitmap_longmode_x2apic = | 
 | 				(unsigned long *)__get_free_page(GFP_KERNEL); | 
 | 	if (!vmx_msr_bitmap_longmode_x2apic) | 
 | 		goto out4; | 
 | 	vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); | 
 | 	if (!vmx_vmread_bitmap) | 
 | 		goto out5; | 
 |  | 
 | 	vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL); | 
 | 	if (!vmx_vmwrite_bitmap) | 
 | 		goto out6; | 
 |  | 
 | 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE); | 
 | 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE); | 
 | 	/* shadowed read/write fields */ | 
 | 	for (i = 0; i < max_shadow_read_write_fields; i++) { | 
 | 		clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap); | 
 | 		clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap); | 
 | 	} | 
 | 	/* shadowed read only fields */ | 
 | 	for (i = 0; i < max_shadow_read_only_fields; i++) | 
 | 		clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap); | 
 |  | 
 | 	/* | 
 | 	 * Allow direct access to the PC debug port (it is often used for I/O | 
 | 	 * delays, but the vmexits simply slow things down). | 
 | 	 */ | 
 | 	memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE); | 
 | 	clear_bit(0x80, vmx_io_bitmap_a); | 
 |  | 
 | 	memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE); | 
 |  | 
 | 	memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE); | 
 | 	memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE); | 
 |  | 
 | 	set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */ | 
 |  | 
 | 	r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), | 
 | 		     __alignof__(struct vcpu_vmx), THIS_MODULE); | 
 | 	if (r) | 
 | 		goto out7; | 
 |  | 
 | #ifdef CONFIG_KEXEC | 
 | 	rcu_assign_pointer(crash_vmclear_loaded_vmcss, | 
 | 			   crash_vmclear_local_loaded_vmcss); | 
 | #endif | 
 |  | 
 | 	vmx_disable_intercept_for_msr(MSR_FS_BASE, false); | 
 | 	vmx_disable_intercept_for_msr(MSR_GS_BASE, false); | 
 | 	vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true); | 
 | 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false); | 
 | 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false); | 
 | 	vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false); | 
 | 	memcpy(vmx_msr_bitmap_legacy_x2apic, | 
 | 			vmx_msr_bitmap_legacy, PAGE_SIZE); | 
 | 	memcpy(vmx_msr_bitmap_longmode_x2apic, | 
 | 			vmx_msr_bitmap_longmode, PAGE_SIZE); | 
 |  | 
 | 	if (enable_apicv) { | 
 | 		for (msr = 0x800; msr <= 0x8ff; msr++) | 
 | 			vmx_disable_intercept_msr_read_x2apic(msr); | 
 |  | 
 | 		/* According SDM, in x2apic mode, the whole id reg is used. | 
 | 		 * But in KVM, it only use the highest eight bits. Need to | 
 | 		 * intercept it */ | 
 | 		vmx_enable_intercept_msr_read_x2apic(0x802); | 
 | 		/* TMCCT */ | 
 | 		vmx_enable_intercept_msr_read_x2apic(0x839); | 
 | 		/* TPR */ | 
 | 		vmx_disable_intercept_msr_write_x2apic(0x808); | 
 | 		/* EOI */ | 
 | 		vmx_disable_intercept_msr_write_x2apic(0x80b); | 
 | 		/* SELF-IPI */ | 
 | 		vmx_disable_intercept_msr_write_x2apic(0x83f); | 
 | 	} | 
 |  | 
 | 	if (enable_ept) { | 
 | 		kvm_mmu_set_mask_ptes(0ull, | 
 | 			(enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull, | 
 | 			(enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull, | 
 | 			0ull, VMX_EPT_EXECUTABLE_MASK); | 
 | 		ept_set_mmio_spte_mask(); | 
 | 		kvm_enable_tdp(); | 
 | 	} else | 
 | 		kvm_disable_tdp(); | 
 |  | 
 | 	return 0; | 
 |  | 
 | out7: | 
 | 	free_page((unsigned long)vmx_vmwrite_bitmap); | 
 | out6: | 
 | 	free_page((unsigned long)vmx_vmread_bitmap); | 
 | out5: | 
 | 	free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic); | 
 | out4: | 
 | 	free_page((unsigned long)vmx_msr_bitmap_longmode); | 
 | out3: | 
 | 	free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic); | 
 | out2: | 
 | 	free_page((unsigned long)vmx_msr_bitmap_legacy); | 
 | out1: | 
 | 	free_page((unsigned long)vmx_io_bitmap_b); | 
 | out: | 
 | 	free_page((unsigned long)vmx_io_bitmap_a); | 
 | 	return r; | 
 | } | 
 |  | 
 | static void __exit vmx_exit(void) | 
 | { | 
 | 	free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic); | 
 | 	free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic); | 
 | 	free_page((unsigned long)vmx_msr_bitmap_legacy); | 
 | 	free_page((unsigned long)vmx_msr_bitmap_longmode); | 
 | 	free_page((unsigned long)vmx_io_bitmap_b); | 
 | 	free_page((unsigned long)vmx_io_bitmap_a); | 
 | 	free_page((unsigned long)vmx_vmwrite_bitmap); | 
 | 	free_page((unsigned long)vmx_vmread_bitmap); | 
 |  | 
 | #ifdef CONFIG_KEXEC | 
 | 	rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL); | 
 | 	synchronize_rcu(); | 
 | #endif | 
 |  | 
 | 	kvm_exit(); | 
 | } | 
 |  | 
 | module_init(vmx_init) | 
 | module_exit(vmx_exit) |