| /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * derived from drivers/kvm/kvm_main.c | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * Copyright (C) 2008 Qumranet, Inc. | 
 |  * Copyright IBM Corporation, 2008 | 
 |  * Copyright 2010 Red Hat, Inc. and/or its affiliates. | 
 |  * | 
 |  * Authors: | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  *   Amit Shah    <amit.shah@qumranet.com> | 
 |  *   Ben-Ami Yassour <benami@il.ibm.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 |  | 
 | #include <linux/kvm_host.h> | 
 | #include "irq.h" | 
 | #include "mmu.h" | 
 | #include "i8254.h" | 
 | #include "tss.h" | 
 | #include "kvm_cache_regs.h" | 
 | #include "x86.h" | 
 | #include "cpuid.h" | 
 |  | 
 | #include <linux/clocksource.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/kvm.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/vmalloc.h> | 
 | #include <linux/module.h> | 
 | #include <linux/mman.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/iommu.h> | 
 | #include <linux/intel-iommu.h> | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/user-return-notifier.h> | 
 | #include <linux/srcu.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/perf_event.h> | 
 | #include <linux/uaccess.h> | 
 | #include <linux/hash.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/timekeeper_internal.h> | 
 | #include <linux/pvclock_gtod.h> | 
 | #include <trace/events/kvm.h> | 
 |  | 
 | #define CREATE_TRACE_POINTS | 
 | #include "trace.h" | 
 |  | 
 | #include <asm/debugreg.h> | 
 | #include <asm/msr.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/mtrr.h> | 
 | #include <asm/mce.h> | 
 | #include <asm/i387.h> | 
 | #include <asm/fpu-internal.h> /* Ugh! */ | 
 | #include <asm/xcr.h> | 
 | #include <asm/pvclock.h> | 
 | #include <asm/div64.h> | 
 |  | 
 | #define MAX_IO_MSRS 256 | 
 | #define KVM_MAX_MCE_BANKS 32 | 
 | #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P) | 
 |  | 
 | #define emul_to_vcpu(ctxt) \ | 
 | 	container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt) | 
 |  | 
 | /* EFER defaults: | 
 |  * - enable syscall per default because its emulated by KVM | 
 |  * - enable LME and LMA per default on 64 bit KVM | 
 |  */ | 
 | #ifdef CONFIG_X86_64 | 
 | static | 
 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | 
 | #else | 
 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); | 
 | #endif | 
 |  | 
 | #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM | 
 | #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU | 
 |  | 
 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); | 
 | static void process_nmi(struct kvm_vcpu *vcpu); | 
 |  | 
 | struct kvm_x86_ops *kvm_x86_ops; | 
 | EXPORT_SYMBOL_GPL(kvm_x86_ops); | 
 |  | 
 | static bool ignore_msrs = 0; | 
 | module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR); | 
 |  | 
 | bool kvm_has_tsc_control; | 
 | EXPORT_SYMBOL_GPL(kvm_has_tsc_control); | 
 | u32  kvm_max_guest_tsc_khz; | 
 | EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz); | 
 |  | 
 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ | 
 | static u32 tsc_tolerance_ppm = 250; | 
 | module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR); | 
 |  | 
 | #define KVM_NR_SHARED_MSRS 16 | 
 |  | 
 | struct kvm_shared_msrs_global { | 
 | 	int nr; | 
 | 	u32 msrs[KVM_NR_SHARED_MSRS]; | 
 | }; | 
 |  | 
 | struct kvm_shared_msrs { | 
 | 	struct user_return_notifier urn; | 
 | 	bool registered; | 
 | 	struct kvm_shared_msr_values { | 
 | 		u64 host; | 
 | 		u64 curr; | 
 | 	} values[KVM_NR_SHARED_MSRS]; | 
 | }; | 
 |  | 
 | static struct kvm_shared_msrs_global __read_mostly shared_msrs_global; | 
 | static struct kvm_shared_msrs __percpu *shared_msrs; | 
 |  | 
 | struct kvm_stats_debugfs_item debugfs_entries[] = { | 
 | 	{ "pf_fixed", VCPU_STAT(pf_fixed) }, | 
 | 	{ "pf_guest", VCPU_STAT(pf_guest) }, | 
 | 	{ "tlb_flush", VCPU_STAT(tlb_flush) }, | 
 | 	{ "invlpg", VCPU_STAT(invlpg) }, | 
 | 	{ "exits", VCPU_STAT(exits) }, | 
 | 	{ "io_exits", VCPU_STAT(io_exits) }, | 
 | 	{ "mmio_exits", VCPU_STAT(mmio_exits) }, | 
 | 	{ "signal_exits", VCPU_STAT(signal_exits) }, | 
 | 	{ "irq_window", VCPU_STAT(irq_window_exits) }, | 
 | 	{ "nmi_window", VCPU_STAT(nmi_window_exits) }, | 
 | 	{ "halt_exits", VCPU_STAT(halt_exits) }, | 
 | 	{ "halt_wakeup", VCPU_STAT(halt_wakeup) }, | 
 | 	{ "hypercalls", VCPU_STAT(hypercalls) }, | 
 | 	{ "request_irq", VCPU_STAT(request_irq_exits) }, | 
 | 	{ "irq_exits", VCPU_STAT(irq_exits) }, | 
 | 	{ "host_state_reload", VCPU_STAT(host_state_reload) }, | 
 | 	{ "efer_reload", VCPU_STAT(efer_reload) }, | 
 | 	{ "fpu_reload", VCPU_STAT(fpu_reload) }, | 
 | 	{ "insn_emulation", VCPU_STAT(insn_emulation) }, | 
 | 	{ "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) }, | 
 | 	{ "irq_injections", VCPU_STAT(irq_injections) }, | 
 | 	{ "nmi_injections", VCPU_STAT(nmi_injections) }, | 
 | 	{ "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) }, | 
 | 	{ "mmu_pte_write", VM_STAT(mmu_pte_write) }, | 
 | 	{ "mmu_pte_updated", VM_STAT(mmu_pte_updated) }, | 
 | 	{ "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) }, | 
 | 	{ "mmu_flooded", VM_STAT(mmu_flooded) }, | 
 | 	{ "mmu_recycled", VM_STAT(mmu_recycled) }, | 
 | 	{ "mmu_cache_miss", VM_STAT(mmu_cache_miss) }, | 
 | 	{ "mmu_unsync", VM_STAT(mmu_unsync) }, | 
 | 	{ "remote_tlb_flush", VM_STAT(remote_tlb_flush) }, | 
 | 	{ "largepages", VM_STAT(lpages) }, | 
 | 	{ NULL } | 
 | }; | 
 |  | 
 | u64 __read_mostly host_xcr0; | 
 |  | 
 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); | 
 |  | 
 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++) | 
 | 		vcpu->arch.apf.gfns[i] = ~0; | 
 | } | 
 |  | 
 | static void kvm_on_user_return(struct user_return_notifier *urn) | 
 | { | 
 | 	unsigned slot; | 
 | 	struct kvm_shared_msrs *locals | 
 | 		= container_of(urn, struct kvm_shared_msrs, urn); | 
 | 	struct kvm_shared_msr_values *values; | 
 |  | 
 | 	for (slot = 0; slot < shared_msrs_global.nr; ++slot) { | 
 | 		values = &locals->values[slot]; | 
 | 		if (values->host != values->curr) { | 
 | 			wrmsrl(shared_msrs_global.msrs[slot], values->host); | 
 | 			values->curr = values->host; | 
 | 		} | 
 | 	} | 
 | 	locals->registered = false; | 
 | 	user_return_notifier_unregister(urn); | 
 | } | 
 |  | 
 | static void shared_msr_update(unsigned slot, u32 msr) | 
 | { | 
 | 	u64 value; | 
 | 	unsigned int cpu = smp_processor_id(); | 
 | 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | 
 |  | 
 | 	/* only read, and nobody should modify it at this time, | 
 | 	 * so don't need lock */ | 
 | 	if (slot >= shared_msrs_global.nr) { | 
 | 		printk(KERN_ERR "kvm: invalid MSR slot!"); | 
 | 		return; | 
 | 	} | 
 | 	rdmsrl_safe(msr, &value); | 
 | 	smsr->values[slot].host = value; | 
 | 	smsr->values[slot].curr = value; | 
 | } | 
 |  | 
 | void kvm_define_shared_msr(unsigned slot, u32 msr) | 
 | { | 
 | 	if (slot >= shared_msrs_global.nr) | 
 | 		shared_msrs_global.nr = slot + 1; | 
 | 	shared_msrs_global.msrs[slot] = msr; | 
 | 	/* we need ensured the shared_msr_global have been updated */ | 
 | 	smp_wmb(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_define_shared_msr); | 
 |  | 
 | static void kvm_shared_msr_cpu_online(void) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	for (i = 0; i < shared_msrs_global.nr; ++i) | 
 | 		shared_msr_update(i, shared_msrs_global.msrs[i]); | 
 | } | 
 |  | 
 | void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask) | 
 | { | 
 | 	unsigned int cpu = smp_processor_id(); | 
 | 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | 
 |  | 
 | 	if (((value ^ smsr->values[slot].curr) & mask) == 0) | 
 | 		return; | 
 | 	smsr->values[slot].curr = value; | 
 | 	wrmsrl(shared_msrs_global.msrs[slot], value); | 
 | 	if (!smsr->registered) { | 
 | 		smsr->urn.on_user_return = kvm_on_user_return; | 
 | 		user_return_notifier_register(&smsr->urn); | 
 | 		smsr->registered = true; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_shared_msr); | 
 |  | 
 | static void drop_user_return_notifiers(void *ignore) | 
 | { | 
 | 	unsigned int cpu = smp_processor_id(); | 
 | 	struct kvm_shared_msrs *smsr = per_cpu_ptr(shared_msrs, cpu); | 
 |  | 
 | 	if (smsr->registered) | 
 | 		kvm_on_user_return(&smsr->urn); | 
 | } | 
 |  | 
 | u64 kvm_get_apic_base(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->arch.apic_base; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_apic_base); | 
 |  | 
 | void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	/* TODO: reserve bits check */ | 
 | 	kvm_lapic_set_base(vcpu, data); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_apic_base); | 
 |  | 
 | asmlinkage void kvm_spurious_fault(void) | 
 | { | 
 | 	/* Fault while not rebooting.  We want the trace. */ | 
 | 	BUG(); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); | 
 |  | 
 | #define EXCPT_BENIGN		0 | 
 | #define EXCPT_CONTRIBUTORY	1 | 
 | #define EXCPT_PF		2 | 
 |  | 
 | static int exception_class(int vector) | 
 | { | 
 | 	switch (vector) { | 
 | 	case PF_VECTOR: | 
 | 		return EXCPT_PF; | 
 | 	case DE_VECTOR: | 
 | 	case TS_VECTOR: | 
 | 	case NP_VECTOR: | 
 | 	case SS_VECTOR: | 
 | 	case GP_VECTOR: | 
 | 		return EXCPT_CONTRIBUTORY; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return EXCPT_BENIGN; | 
 | } | 
 |  | 
 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, | 
 | 		unsigned nr, bool has_error, u32 error_code, | 
 | 		bool reinject) | 
 | { | 
 | 	u32 prev_nr; | 
 | 	int class1, class2; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	if (!vcpu->arch.exception.pending) { | 
 | 	queue: | 
 | 		vcpu->arch.exception.pending = true; | 
 | 		vcpu->arch.exception.has_error_code = has_error; | 
 | 		vcpu->arch.exception.nr = nr; | 
 | 		vcpu->arch.exception.error_code = error_code; | 
 | 		vcpu->arch.exception.reinject = reinject; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* to check exception */ | 
 | 	prev_nr = vcpu->arch.exception.nr; | 
 | 	if (prev_nr == DF_VECTOR) { | 
 | 		/* triple fault -> shutdown */ | 
 | 		kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 		return; | 
 | 	} | 
 | 	class1 = exception_class(prev_nr); | 
 | 	class2 = exception_class(nr); | 
 | 	if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) | 
 | 		|| (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | 
 | 		/* generate double fault per SDM Table 5-5 */ | 
 | 		vcpu->arch.exception.pending = true; | 
 | 		vcpu->arch.exception.has_error_code = true; | 
 | 		vcpu->arch.exception.nr = DF_VECTOR; | 
 | 		vcpu->arch.exception.error_code = 0; | 
 | 	} else | 
 | 		/* replace previous exception with a new one in a hope | 
 | 		   that instruction re-execution will regenerate lost | 
 | 		   exception */ | 
 | 		goto queue; | 
 | } | 
 |  | 
 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) | 
 | { | 
 | 	kvm_multiple_exception(vcpu, nr, false, 0, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | 
 |  | 
 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr) | 
 | { | 
 | 	kvm_multiple_exception(vcpu, nr, false, 0, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | 
 |  | 
 | void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) | 
 | { | 
 | 	if (err) | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 	else | 
 | 		kvm_x86_ops->skip_emulated_instruction(vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | 
 |  | 
 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) | 
 | { | 
 | 	++vcpu->stat.pf_guest; | 
 | 	vcpu->arch.cr2 = fault->address; | 
 | 	kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_inject_page_fault); | 
 |  | 
 | void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) | 
 | { | 
 | 	if (mmu_is_nested(vcpu) && !fault->nested_page_fault) | 
 | 		vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault); | 
 | 	else | 
 | 		vcpu->arch.mmu.inject_page_fault(vcpu, fault); | 
 | } | 
 |  | 
 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	atomic_inc(&vcpu->arch.nmi_queued); | 
 | 	kvm_make_request(KVM_REQ_NMI, vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_inject_nmi); | 
 |  | 
 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) | 
 | { | 
 | 	kvm_multiple_exception(vcpu, nr, true, error_code, false); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | 
 |  | 
 | void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) | 
 | { | 
 | 	kvm_multiple_exception(vcpu, nr, true, error_code, true); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_requeue_exception_e); | 
 |  | 
 | /* | 
 |  * Checks if cpl <= required_cpl; if true, return true.  Otherwise queue | 
 |  * a #GP and return false. | 
 |  */ | 
 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | 
 | { | 
 | 	if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl) | 
 | 		return true; | 
 | 	kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | 
 | 	return false; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_require_cpl); | 
 |  | 
 | /* | 
 |  * This function will be used to read from the physical memory of the currently | 
 |  * running guest. The difference to kvm_read_guest_page is that this function | 
 |  * can read from guest physical or from the guest's guest physical memory. | 
 |  */ | 
 | int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, | 
 | 			    gfn_t ngfn, void *data, int offset, int len, | 
 | 			    u32 access) | 
 | { | 
 | 	gfn_t real_gfn; | 
 | 	gpa_t ngpa; | 
 |  | 
 | 	ngpa     = gfn_to_gpa(ngfn); | 
 | 	real_gfn = mmu->translate_gpa(vcpu, ngpa, access); | 
 | 	if (real_gfn == UNMAPPED_GVA) | 
 | 		return -EFAULT; | 
 |  | 
 | 	real_gfn = gpa_to_gfn(real_gfn); | 
 |  | 
 | 	return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu); | 
 |  | 
 | int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, | 
 | 			       void *data, int offset, int len, u32 access) | 
 | { | 
 | 	return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn, | 
 | 				       data, offset, len, access); | 
 | } | 
 |  | 
 | /* | 
 |  * Load the pae pdptrs.  Return true is they are all valid. | 
 |  */ | 
 | int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3) | 
 | { | 
 | 	gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; | 
 | 	unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2; | 
 | 	int i; | 
 | 	int ret; | 
 | 	u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; | 
 |  | 
 | 	ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte, | 
 | 				      offset * sizeof(u64), sizeof(pdpte), | 
 | 				      PFERR_USER_MASK|PFERR_WRITE_MASK); | 
 | 	if (ret < 0) { | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { | 
 | 		if (is_present_gpte(pdpte[i]) && | 
 | 		    (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) { | 
 | 			ret = 0; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | 	ret = 1; | 
 |  | 
 | 	memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); | 
 | 	__set_bit(VCPU_EXREG_PDPTR, | 
 | 		  (unsigned long *)&vcpu->arch.regs_avail); | 
 | 	__set_bit(VCPU_EXREG_PDPTR, | 
 | 		  (unsigned long *)&vcpu->arch.regs_dirty); | 
 | out: | 
 |  | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(load_pdptrs); | 
 |  | 
 | static bool pdptrs_changed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)]; | 
 | 	bool changed = true; | 
 | 	int offset; | 
 | 	gfn_t gfn; | 
 | 	int r; | 
 |  | 
 | 	if (is_long_mode(vcpu) || !is_pae(vcpu)) | 
 | 		return false; | 
 |  | 
 | 	if (!test_bit(VCPU_EXREG_PDPTR, | 
 | 		      (unsigned long *)&vcpu->arch.regs_avail)) | 
 | 		return true; | 
 |  | 
 | 	gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT; | 
 | 	offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1); | 
 | 	r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte), | 
 | 				       PFERR_USER_MASK | PFERR_WRITE_MASK); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0; | 
 | out: | 
 |  | 
 | 	return changed; | 
 | } | 
 |  | 
 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) | 
 | { | 
 | 	unsigned long old_cr0 = kvm_read_cr0(vcpu); | 
 | 	unsigned long update_bits = X86_CR0_PG | X86_CR0_WP | | 
 | 				    X86_CR0_CD | X86_CR0_NW; | 
 |  | 
 | 	cr0 |= X86_CR0_ET; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (cr0 & 0xffffffff00000000UL) | 
 | 		return 1; | 
 | #endif | 
 |  | 
 | 	cr0 &= ~CR0_RESERVED_BITS; | 
 |  | 
 | 	if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) | 
 | 		return 1; | 
 |  | 
 | 	if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) | 
 | 		return 1; | 
 |  | 
 | 	if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) { | 
 | #ifdef CONFIG_X86_64 | 
 | 		if ((vcpu->arch.efer & EFER_LME)) { | 
 | 			int cs_db, cs_l; | 
 |  | 
 | 			if (!is_pae(vcpu)) | 
 | 				return 1; | 
 | 			kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 
 | 			if (cs_l) | 
 | 				return 1; | 
 | 		} else | 
 | #endif | 
 | 		if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, | 
 | 						 kvm_read_cr3(vcpu))) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) | 
 | 		return 1; | 
 |  | 
 | 	kvm_x86_ops->set_cr0(vcpu, cr0); | 
 |  | 
 | 	if ((cr0 ^ old_cr0) & X86_CR0_PG) { | 
 | 		kvm_clear_async_pf_completion_queue(vcpu); | 
 | 		kvm_async_pf_hash_reset(vcpu); | 
 | 	} | 
 |  | 
 | 	if ((cr0 ^ old_cr0) & update_bits) | 
 | 		kvm_mmu_reset_context(vcpu); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr0); | 
 |  | 
 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) | 
 | { | 
 | 	(void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_lmsw); | 
 |  | 
 | static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) && | 
 | 			!vcpu->guest_xcr0_loaded) { | 
 | 		/* kvm_set_xcr() also depends on this */ | 
 | 		xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); | 
 | 		vcpu->guest_xcr0_loaded = 1; | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (vcpu->guest_xcr0_loaded) { | 
 | 		if (vcpu->arch.xcr0 != host_xcr0) | 
 | 			xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0); | 
 | 		vcpu->guest_xcr0_loaded = 0; | 
 | 	} | 
 | } | 
 |  | 
 | int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | 
 | { | 
 | 	u64 xcr0; | 
 |  | 
 | 	/* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now  */ | 
 | 	if (index != XCR_XFEATURE_ENABLED_MASK) | 
 | 		return 1; | 
 | 	xcr0 = xcr; | 
 | 	if (!(xcr0 & XSTATE_FP)) | 
 | 		return 1; | 
 | 	if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE)) | 
 | 		return 1; | 
 | 	if (xcr0 & ~host_xcr0) | 
 | 		return 1; | 
 | 	kvm_put_guest_xcr0(vcpu); | 
 | 	vcpu->arch.xcr0 = xcr0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) | 
 | { | 
 | 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || | 
 | 	    __kvm_set_xcr(vcpu, index, xcr)) { | 
 | 		kvm_inject_gp(vcpu, 0); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_xcr); | 
 |  | 
 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | 
 | { | 
 | 	unsigned long old_cr4 = kvm_read_cr4(vcpu); | 
 | 	unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | | 
 | 				   X86_CR4_PAE | X86_CR4_SMEP; | 
 | 	if (cr4 & CR4_RESERVED_BITS) | 
 | 		return 1; | 
 |  | 
 | 	if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE)) | 
 | 		return 1; | 
 |  | 
 | 	if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP)) | 
 | 		return 1; | 
 |  | 
 | 	if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS)) | 
 | 		return 1; | 
 |  | 
 | 	if (is_long_mode(vcpu)) { | 
 | 		if (!(cr4 & X86_CR4_PAE)) | 
 | 			return 1; | 
 | 	} else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) | 
 | 		   && ((cr4 ^ old_cr4) & pdptr_bits) | 
 | 		   && !load_pdptrs(vcpu, vcpu->arch.walk_mmu, | 
 | 				   kvm_read_cr3(vcpu))) | 
 | 		return 1; | 
 |  | 
 | 	if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { | 
 | 		if (!guest_cpuid_has_pcid(vcpu)) | 
 | 			return 1; | 
 |  | 
 | 		/* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ | 
 | 		if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	if (kvm_x86_ops->set_cr4(vcpu, cr4)) | 
 | 		return 1; | 
 |  | 
 | 	if (((cr4 ^ old_cr4) & pdptr_bits) || | 
 | 	    (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | 
 | 		kvm_mmu_reset_context(vcpu); | 
 |  | 
 | 	if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE) | 
 | 		kvm_update_cpuid(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr4); | 
 |  | 
 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) | 
 | { | 
 | 	if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) { | 
 | 		kvm_mmu_sync_roots(vcpu); | 
 | 		kvm_mmu_flush_tlb(vcpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (is_long_mode(vcpu)) { | 
 | 		if (kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)) { | 
 | 			if (cr3 & CR3_PCID_ENABLED_RESERVED_BITS) | 
 | 				return 1; | 
 | 		} else | 
 | 			if (cr3 & CR3_L_MODE_RESERVED_BITS) | 
 | 				return 1; | 
 | 	} else { | 
 | 		if (is_pae(vcpu)) { | 
 | 			if (cr3 & CR3_PAE_RESERVED_BITS) | 
 | 				return 1; | 
 | 			if (is_paging(vcpu) && | 
 | 			    !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) | 
 | 				return 1; | 
 | 		} | 
 | 		/* | 
 | 		 * We don't check reserved bits in nonpae mode, because | 
 | 		 * this isn't enforced, and VMware depends on this. | 
 | 		 */ | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Does the new cr3 value map to physical memory? (Note, we | 
 | 	 * catch an invalid cr3 even in real-mode, because it would | 
 | 	 * cause trouble later on when we turn on paging anyway.) | 
 | 	 * | 
 | 	 * A real CPU would silently accept an invalid cr3 and would | 
 | 	 * attempt to use it - with largely undefined (and often hard | 
 | 	 * to debug) behavior on the guest side. | 
 | 	 */ | 
 | 	if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT))) | 
 | 		return 1; | 
 | 	vcpu->arch.cr3 = cr3; | 
 | 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); | 
 | 	vcpu->arch.mmu.new_cr3(vcpu); | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr3); | 
 |  | 
 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) | 
 | { | 
 | 	if (cr8 & CR8_RESERVED_BITS) | 
 | 		return 1; | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		kvm_lapic_set_tpr(vcpu, cr8); | 
 | 	else | 
 | 		vcpu->arch.cr8 = cr8; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_cr8); | 
 |  | 
 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		return kvm_lapic_get_cr8(vcpu); | 
 | 	else | 
 | 		return vcpu->arch.cr8; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_cr8); | 
 |  | 
 | static void kvm_update_dr7(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long dr7; | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | 
 | 		dr7 = vcpu->arch.guest_debug_dr7; | 
 | 	else | 
 | 		dr7 = vcpu->arch.dr7; | 
 | 	kvm_x86_ops->set_dr7(vcpu, dr7); | 
 | 	vcpu->arch.switch_db_regs = (dr7 & DR7_BP_EN_MASK); | 
 | } | 
 |  | 
 | static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | 
 | { | 
 | 	switch (dr) { | 
 | 	case 0 ... 3: | 
 | 		vcpu->arch.db[dr] = val; | 
 | 		if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) | 
 | 			vcpu->arch.eff_db[dr] = val; | 
 | 		break; | 
 | 	case 4: | 
 | 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | 
 | 			return 1; /* #UD */ | 
 | 		/* fall through */ | 
 | 	case 6: | 
 | 		if (val & 0xffffffff00000000ULL) | 
 | 			return -1; /* #GP */ | 
 | 		vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1; | 
 | 		break; | 
 | 	case 5: | 
 | 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | 
 | 			return 1; /* #UD */ | 
 | 		/* fall through */ | 
 | 	default: /* 7 */ | 
 | 		if (val & 0xffffffff00000000ULL) | 
 | 			return -1; /* #GP */ | 
 | 		vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; | 
 | 		kvm_update_dr7(vcpu); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) | 
 | { | 
 | 	int res; | 
 |  | 
 | 	res = __kvm_set_dr(vcpu, dr, val); | 
 | 	if (res > 0) | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 	else if (res < 0) | 
 | 		kvm_inject_gp(vcpu, 0); | 
 |  | 
 | 	return res; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_dr); | 
 |  | 
 | static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) | 
 | { | 
 | 	switch (dr) { | 
 | 	case 0 ... 3: | 
 | 		*val = vcpu->arch.db[dr]; | 
 | 		break; | 
 | 	case 4: | 
 | 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | 
 | 			return 1; | 
 | 		/* fall through */ | 
 | 	case 6: | 
 | 		*val = vcpu->arch.dr6; | 
 | 		break; | 
 | 	case 5: | 
 | 		if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) | 
 | 			return 1; | 
 | 		/* fall through */ | 
 | 	default: /* 7 */ | 
 | 		*val = vcpu->arch.dr7; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val) | 
 | { | 
 | 	if (_kvm_get_dr(vcpu, dr, val)) { | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_dr); | 
 |  | 
 | bool kvm_rdpmc(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u32 ecx = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
 | 	u64 data; | 
 | 	int err; | 
 |  | 
 | 	err = kvm_pmu_read_pmc(vcpu, ecx, &data); | 
 | 	if (err) | 
 | 		return err; | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RAX, (u32)data); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RDX, data >> 32); | 
 | 	return err; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_rdpmc); | 
 |  | 
 | /* | 
 |  * List of msr numbers which we expose to userspace through KVM_GET_MSRS | 
 |  * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. | 
 |  * | 
 |  * This list is modified at module load time to reflect the | 
 |  * capabilities of the host cpu. This capabilities test skips MSRs that are | 
 |  * kvm-specific. Those are put in the beginning of the list. | 
 |  */ | 
 |  | 
 | #define KVM_SAVE_MSRS_BEGIN	10 | 
 | static u32 msrs_to_save[] = { | 
 | 	MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | 
 | 	MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, | 
 | 	HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, | 
 | 	HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, | 
 | 	MSR_KVM_PV_EOI_EN, | 
 | 	MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | 
 | 	MSR_STAR, | 
 | #ifdef CONFIG_X86_64 | 
 | 	MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | 
 | #endif | 
 | 	MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA | 
 | }; | 
 |  | 
 | static unsigned num_msrs_to_save; | 
 |  | 
 | static const u32 emulated_msrs[] = { | 
 | 	MSR_IA32_TSC_ADJUST, | 
 | 	MSR_IA32_TSCDEADLINE, | 
 | 	MSR_IA32_MISC_ENABLE, | 
 | 	MSR_IA32_MCG_STATUS, | 
 | 	MSR_IA32_MCG_CTL, | 
 | }; | 
 |  | 
 | bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	if (efer & efer_reserved_bits) | 
 | 		return false; | 
 |  | 
 | 	if (efer & EFER_FFXSR) { | 
 | 		struct kvm_cpuid_entry2 *feat; | 
 |  | 
 | 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | 
 | 		if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT))) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	if (efer & EFER_SVME) { | 
 | 		struct kvm_cpuid_entry2 *feat; | 
 |  | 
 | 		feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0); | 
 | 		if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM))) | 
 | 			return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_valid_efer); | 
 |  | 
 | static int set_efer(struct kvm_vcpu *vcpu, u64 efer) | 
 | { | 
 | 	u64 old_efer = vcpu->arch.efer; | 
 |  | 
 | 	if (!kvm_valid_efer(vcpu, efer)) | 
 | 		return 1; | 
 |  | 
 | 	if (is_paging(vcpu) | 
 | 	    && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) | 
 | 		return 1; | 
 |  | 
 | 	efer &= ~EFER_LMA; | 
 | 	efer |= vcpu->arch.efer & EFER_LMA; | 
 |  | 
 | 	kvm_x86_ops->set_efer(vcpu, efer); | 
 |  | 
 | 	/* Update reserved bits */ | 
 | 	if ((efer ^ old_efer) & EFER_NX) | 
 | 		kvm_mmu_reset_context(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_enable_efer_bits(u64 mask) | 
 | { | 
 |        efer_reserved_bits &= ~mask; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | 
 |  | 
 |  | 
 | /* | 
 |  * Writes msr value into into the appropriate "register". | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | int kvm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr) | 
 | { | 
 | 	return kvm_x86_ops->set_msr(vcpu, msr); | 
 | } | 
 |  | 
 | /* | 
 |  * Adapt set_msr() to msr_io()'s calling convention | 
 |  */ | 
 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | 
 | { | 
 | 	struct msr_data msr; | 
 |  | 
 | 	msr.data = *data; | 
 | 	msr.index = index; | 
 | 	msr.host_initiated = true; | 
 | 	return kvm_set_msr(vcpu, &msr); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | struct pvclock_gtod_data { | 
 | 	seqcount_t	seq; | 
 |  | 
 | 	struct { /* extract of a clocksource struct */ | 
 | 		int vclock_mode; | 
 | 		cycle_t	cycle_last; | 
 | 		cycle_t	mask; | 
 | 		u32	mult; | 
 | 		u32	shift; | 
 | 	} clock; | 
 |  | 
 | 	/* open coded 'struct timespec' */ | 
 | 	u64		monotonic_time_snsec; | 
 | 	time_t		monotonic_time_sec; | 
 | }; | 
 |  | 
 | static struct pvclock_gtod_data pvclock_gtod_data; | 
 |  | 
 | static void update_pvclock_gtod(struct timekeeper *tk) | 
 | { | 
 | 	struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | 
 |  | 
 | 	write_seqcount_begin(&vdata->seq); | 
 |  | 
 | 	/* copy pvclock gtod data */ | 
 | 	vdata->clock.vclock_mode	= tk->clock->archdata.vclock_mode; | 
 | 	vdata->clock.cycle_last		= tk->clock->cycle_last; | 
 | 	vdata->clock.mask		= tk->clock->mask; | 
 | 	vdata->clock.mult		= tk->mult; | 
 | 	vdata->clock.shift		= tk->shift; | 
 |  | 
 | 	vdata->monotonic_time_sec	= tk->xtime_sec | 
 | 					+ tk->wall_to_monotonic.tv_sec; | 
 | 	vdata->monotonic_time_snsec	= tk->xtime_nsec | 
 | 					+ (tk->wall_to_monotonic.tv_nsec | 
 | 						<< tk->shift); | 
 | 	while (vdata->monotonic_time_snsec >= | 
 | 					(((u64)NSEC_PER_SEC) << tk->shift)) { | 
 | 		vdata->monotonic_time_snsec -= | 
 | 					((u64)NSEC_PER_SEC) << tk->shift; | 
 | 		vdata->monotonic_time_sec++; | 
 | 	} | 
 |  | 
 | 	write_seqcount_end(&vdata->seq); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock) | 
 | { | 
 | 	int version; | 
 | 	int r; | 
 | 	struct pvclock_wall_clock wc; | 
 | 	struct timespec boot; | 
 |  | 
 | 	if (!wall_clock) | 
 | 		return; | 
 |  | 
 | 	r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); | 
 | 	if (r) | 
 | 		return; | 
 |  | 
 | 	if (version & 1) | 
 | 		++version;  /* first time write, random junk */ | 
 |  | 
 | 	++version; | 
 |  | 
 | 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 
 |  | 
 | 	/* | 
 | 	 * The guest calculates current wall clock time by adding | 
 | 	 * system time (updated by kvm_guest_time_update below) to the | 
 | 	 * wall clock specified here.  guest system time equals host | 
 | 	 * system time for us, thus we must fill in host boot time here. | 
 | 	 */ | 
 | 	getboottime(&boot); | 
 |  | 
 | 	if (kvm->arch.kvmclock_offset) { | 
 | 		struct timespec ts = ns_to_timespec(kvm->arch.kvmclock_offset); | 
 | 		boot = timespec_sub(boot, ts); | 
 | 	} | 
 | 	wc.sec = boot.tv_sec; | 
 | 	wc.nsec = boot.tv_nsec; | 
 | 	wc.version = version; | 
 |  | 
 | 	kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | 
 |  | 
 | 	version++; | 
 | 	kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | 
 | } | 
 |  | 
 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) | 
 | { | 
 | 	uint32_t quotient, remainder; | 
 |  | 
 | 	/* Don't try to replace with do_div(), this one calculates | 
 | 	 * "(dividend << 32) / divisor" */ | 
 | 	__asm__ ( "divl %4" | 
 | 		  : "=a" (quotient), "=d" (remainder) | 
 | 		  : "0" (0), "1" (dividend), "r" (divisor) ); | 
 | 	return quotient; | 
 | } | 
 |  | 
 | static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz, | 
 | 			       s8 *pshift, u32 *pmultiplier) | 
 | { | 
 | 	uint64_t scaled64; | 
 | 	int32_t  shift = 0; | 
 | 	uint64_t tps64; | 
 | 	uint32_t tps32; | 
 |  | 
 | 	tps64 = base_khz * 1000LL; | 
 | 	scaled64 = scaled_khz * 1000LL; | 
 | 	while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { | 
 | 		tps64 >>= 1; | 
 | 		shift--; | 
 | 	} | 
 |  | 
 | 	tps32 = (uint32_t)tps64; | 
 | 	while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { | 
 | 		if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | 
 | 			scaled64 >>= 1; | 
 | 		else | 
 | 			tps32 <<= 1; | 
 | 		shift++; | 
 | 	} | 
 |  | 
 | 	*pshift = shift; | 
 | 	*pmultiplier = div_frac(scaled64, tps32); | 
 |  | 
 | 	pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n", | 
 | 		 __func__, base_khz, scaled_khz, shift, *pmultiplier); | 
 | } | 
 |  | 
 | static inline u64 get_kernel_ns(void) | 
 | { | 
 | 	struct timespec ts; | 
 |  | 
 | 	WARN_ON(preemptible()); | 
 | 	ktime_get_ts(&ts); | 
 | 	monotonic_to_bootbased(&ts); | 
 | 	return timespec_to_ns(&ts); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); | 
 | #endif | 
 |  | 
 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); | 
 | unsigned long max_tsc_khz; | 
 |  | 
 | static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec) | 
 | { | 
 | 	return pvclock_scale_delta(nsec, vcpu->arch.virtual_tsc_mult, | 
 | 				   vcpu->arch.virtual_tsc_shift); | 
 | } | 
 |  | 
 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) | 
 | { | 
 | 	u64 v = (u64)khz * (1000000 + ppm); | 
 | 	do_div(v, 1000000); | 
 | 	return v; | 
 | } | 
 |  | 
 | static void kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 this_tsc_khz) | 
 | { | 
 | 	u32 thresh_lo, thresh_hi; | 
 | 	int use_scaling = 0; | 
 |  | 
 | 	/* tsc_khz can be zero if TSC calibration fails */ | 
 | 	if (this_tsc_khz == 0) | 
 | 		return; | 
 |  | 
 | 	/* Compute a scale to convert nanoseconds in TSC cycles */ | 
 | 	kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000, | 
 | 			   &vcpu->arch.virtual_tsc_shift, | 
 | 			   &vcpu->arch.virtual_tsc_mult); | 
 | 	vcpu->arch.virtual_tsc_khz = this_tsc_khz; | 
 |  | 
 | 	/* | 
 | 	 * Compute the variation in TSC rate which is acceptable | 
 | 	 * within the range of tolerance and decide if the | 
 | 	 * rate being applied is within that bounds of the hardware | 
 | 	 * rate.  If so, no scaling or compensation need be done. | 
 | 	 */ | 
 | 	thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | 
 | 	thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | 
 | 	if (this_tsc_khz < thresh_lo || this_tsc_khz > thresh_hi) { | 
 | 		pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz, thresh_lo, thresh_hi); | 
 | 		use_scaling = 1; | 
 | 	} | 
 | 	kvm_x86_ops->set_tsc_khz(vcpu, this_tsc_khz, use_scaling); | 
 | } | 
 |  | 
 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | 
 | { | 
 | 	u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, | 
 | 				      vcpu->arch.virtual_tsc_mult, | 
 | 				      vcpu->arch.virtual_tsc_shift); | 
 | 	tsc += vcpu->arch.this_tsc_write; | 
 | 	return tsc; | 
 | } | 
 |  | 
 | void kvm_track_tsc_matching(struct kvm_vcpu *vcpu) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	bool vcpus_matched; | 
 | 	bool do_request = false; | 
 | 	struct kvm_arch *ka = &vcpu->kvm->arch; | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 |  | 
 | 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | 
 | 			 atomic_read(&vcpu->kvm->online_vcpus)); | 
 |  | 
 | 	if (vcpus_matched && gtod->clock.vclock_mode == VCLOCK_TSC) | 
 | 		if (!ka->use_master_clock) | 
 | 			do_request = 1; | 
 |  | 
 | 	if (!vcpus_matched && ka->use_master_clock) | 
 | 			do_request = 1; | 
 |  | 
 | 	if (do_request) | 
 | 		kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); | 
 |  | 
 | 	trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | 
 | 			    atomic_read(&vcpu->kvm->online_vcpus), | 
 | 		            ka->use_master_clock, gtod->clock.vclock_mode); | 
 | #endif | 
 | } | 
 |  | 
 | static void update_ia32_tsc_adjust_msr(struct kvm_vcpu *vcpu, s64 offset) | 
 | { | 
 | 	u64 curr_offset = kvm_x86_ops->read_tsc_offset(vcpu); | 
 | 	vcpu->arch.ia32_tsc_adjust_msr += offset - curr_offset; | 
 | } | 
 |  | 
 | void kvm_write_tsc(struct kvm_vcpu *vcpu, struct msr_data *msr) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	u64 offset, ns, elapsed; | 
 | 	unsigned long flags; | 
 | 	s64 usdiff; | 
 | 	bool matched; | 
 | 	u64 data = msr->data; | 
 |  | 
 | 	raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); | 
 | 	offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); | 
 | 	ns = get_kernel_ns(); | 
 | 	elapsed = ns - kvm->arch.last_tsc_nsec; | 
 |  | 
 | 	if (vcpu->arch.virtual_tsc_khz) { | 
 | 		/* n.b - signed multiplication and division required */ | 
 | 		usdiff = data - kvm->arch.last_tsc_write; | 
 | #ifdef CONFIG_X86_64 | 
 | 		usdiff = (usdiff * 1000) / vcpu->arch.virtual_tsc_khz; | 
 | #else | 
 | 		/* do_div() only does unsigned */ | 
 | 		asm("idivl %2; xor %%edx, %%edx" | 
 | 		: "=A"(usdiff) | 
 | 		: "A"(usdiff * 1000), "rm"(vcpu->arch.virtual_tsc_khz)); | 
 | #endif | 
 | 		do_div(elapsed, 1000); | 
 | 		usdiff -= elapsed; | 
 | 		if (usdiff < 0) | 
 | 			usdiff = -usdiff; | 
 | 	} else | 
 | 		usdiff = USEC_PER_SEC; /* disable TSC match window below */ | 
 |  | 
 | 	/* | 
 | 	 * Special case: TSC write with a small delta (1 second) of virtual | 
 | 	 * cycle time against real time is interpreted as an attempt to | 
 | 	 * synchronize the CPU. | 
 |          * | 
 | 	 * For a reliable TSC, we can match TSC offsets, and for an unstable | 
 | 	 * TSC, we add elapsed time in this computation.  We could let the | 
 | 	 * compensation code attempt to catch up if we fall behind, but | 
 | 	 * it's better to try to match offsets from the beginning. | 
 |          */ | 
 | 	if (usdiff < USEC_PER_SEC && | 
 | 	    vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { | 
 | 		if (!check_tsc_unstable()) { | 
 | 			offset = kvm->arch.cur_tsc_offset; | 
 | 			pr_debug("kvm: matched tsc offset for %llu\n", data); | 
 | 		} else { | 
 | 			u64 delta = nsec_to_cycles(vcpu, elapsed); | 
 | 			data += delta; | 
 | 			offset = kvm_x86_ops->compute_tsc_offset(vcpu, data); | 
 | 			pr_debug("kvm: adjusted tsc offset by %llu\n", delta); | 
 | 		} | 
 | 		matched = true; | 
 | 	} else { | 
 | 		/* | 
 | 		 * We split periods of matched TSC writes into generations. | 
 | 		 * For each generation, we track the original measured | 
 | 		 * nanosecond time, offset, and write, so if TSCs are in | 
 | 		 * sync, we can match exact offset, and if not, we can match | 
 | 		 * exact software computation in compute_guest_tsc() | 
 | 		 * | 
 | 		 * These values are tracked in kvm->arch.cur_xxx variables. | 
 | 		 */ | 
 | 		kvm->arch.cur_tsc_generation++; | 
 | 		kvm->arch.cur_tsc_nsec = ns; | 
 | 		kvm->arch.cur_tsc_write = data; | 
 | 		kvm->arch.cur_tsc_offset = offset; | 
 | 		matched = false; | 
 | 		pr_debug("kvm: new tsc generation %u, clock %llu\n", | 
 | 			 kvm->arch.cur_tsc_generation, data); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We also track th most recent recorded KHZ, write and time to | 
 | 	 * allow the matching interval to be extended at each write. | 
 | 	 */ | 
 | 	kvm->arch.last_tsc_nsec = ns; | 
 | 	kvm->arch.last_tsc_write = data; | 
 | 	kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; | 
 |  | 
 | 	/* Reset of TSC must disable overshoot protection below */ | 
 | 	vcpu->arch.hv_clock.tsc_timestamp = 0; | 
 | 	vcpu->arch.last_guest_tsc = data; | 
 |  | 
 | 	/* Keep track of which generation this VCPU has synchronized to */ | 
 | 	vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | 
 | 	vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | 
 | 	vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | 
 |  | 
 | 	if (guest_cpuid_has_tsc_adjust(vcpu) && !msr->host_initiated) | 
 | 		update_ia32_tsc_adjust_msr(vcpu, offset); | 
 | 	kvm_x86_ops->write_tsc_offset(vcpu, offset); | 
 | 	raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); | 
 |  | 
 | 	spin_lock(&kvm->arch.pvclock_gtod_sync_lock); | 
 | 	if (matched) | 
 | 		kvm->arch.nr_vcpus_matched_tsc++; | 
 | 	else | 
 | 		kvm->arch.nr_vcpus_matched_tsc = 0; | 
 |  | 
 | 	kvm_track_tsc_matching(vcpu); | 
 | 	spin_unlock(&kvm->arch.pvclock_gtod_sync_lock); | 
 | } | 
 |  | 
 | EXPORT_SYMBOL_GPL(kvm_write_tsc); | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 |  | 
 | static cycle_t read_tsc(void) | 
 | { | 
 | 	cycle_t ret; | 
 | 	u64 last; | 
 |  | 
 | 	/* | 
 | 	 * Empirically, a fence (of type that depends on the CPU) | 
 | 	 * before rdtsc is enough to ensure that rdtsc is ordered | 
 | 	 * with respect to loads.  The various CPU manuals are unclear | 
 | 	 * as to whether rdtsc can be reordered with later loads, | 
 | 	 * but no one has ever seen it happen. | 
 | 	 */ | 
 | 	rdtsc_barrier(); | 
 | 	ret = (cycle_t)vget_cycles(); | 
 |  | 
 | 	last = pvclock_gtod_data.clock.cycle_last; | 
 |  | 
 | 	if (likely(ret >= last)) | 
 | 		return ret; | 
 |  | 
 | 	/* | 
 | 	 * GCC likes to generate cmov here, but this branch is extremely | 
 | 	 * predictable (it's just a funciton of time and the likely is | 
 | 	 * very likely) and there's a data dependence, so force GCC | 
 | 	 * to generate a branch instead.  I don't barrier() because | 
 | 	 * we don't actually need a barrier, and if this function | 
 | 	 * ever gets inlined it will generate worse code. | 
 | 	 */ | 
 | 	asm volatile (""); | 
 | 	return last; | 
 | } | 
 |  | 
 | static inline u64 vgettsc(cycle_t *cycle_now) | 
 | { | 
 | 	long v; | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 |  | 
 | 	*cycle_now = read_tsc(); | 
 |  | 
 | 	v = (*cycle_now - gtod->clock.cycle_last) & gtod->clock.mask; | 
 | 	return v * gtod->clock.mult; | 
 | } | 
 |  | 
 | static int do_monotonic(struct timespec *ts, cycle_t *cycle_now) | 
 | { | 
 | 	unsigned long seq; | 
 | 	u64 ns; | 
 | 	int mode; | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 |  | 
 | 	ts->tv_nsec = 0; | 
 | 	do { | 
 | 		seq = read_seqcount_begin(>od->seq); | 
 | 		mode = gtod->clock.vclock_mode; | 
 | 		ts->tv_sec = gtod->monotonic_time_sec; | 
 | 		ns = gtod->monotonic_time_snsec; | 
 | 		ns += vgettsc(cycle_now); | 
 | 		ns >>= gtod->clock.shift; | 
 | 	} while (unlikely(read_seqcount_retry(>od->seq, seq))); | 
 | 	timespec_add_ns(ts, ns); | 
 |  | 
 | 	return mode; | 
 | } | 
 |  | 
 | /* returns true if host is using tsc clocksource */ | 
 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, cycle_t *cycle_now) | 
 | { | 
 | 	struct timespec ts; | 
 |  | 
 | 	/* checked again under seqlock below */ | 
 | 	if (pvclock_gtod_data.clock.vclock_mode != VCLOCK_TSC) | 
 | 		return false; | 
 |  | 
 | 	if (do_monotonic(&ts, cycle_now) != VCLOCK_TSC) | 
 | 		return false; | 
 |  | 
 | 	monotonic_to_bootbased(&ts); | 
 | 	*kernel_ns = timespec_to_ns(&ts); | 
 |  | 
 | 	return true; | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * | 
 |  * Assuming a stable TSC across physical CPUS, and a stable TSC | 
 |  * across virtual CPUs, the following condition is possible. | 
 |  * Each numbered line represents an event visible to both | 
 |  * CPUs at the next numbered event. | 
 |  * | 
 |  * "timespecX" represents host monotonic time. "tscX" represents | 
 |  * RDTSC value. | 
 |  * | 
 |  * 		VCPU0 on CPU0		|	VCPU1 on CPU1 | 
 |  * | 
 |  * 1.  read timespec0,tsc0 | 
 |  * 2.					| timespec1 = timespec0 + N | 
 |  * 					| tsc1 = tsc0 + M | 
 |  * 3. transition to guest		| transition to guest | 
 |  * 4. ret0 = timespec0 + (rdtsc - tsc0) | | 
 |  * 5.				        | ret1 = timespec1 + (rdtsc - tsc1) | 
 |  * 				        | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | 
 |  * | 
 |  * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | 
 |  * | 
 |  * 	- ret0 < ret1 | 
 |  *	- timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | 
 |  *		... | 
 |  *	- 0 < N - M => M < N | 
 |  * | 
 |  * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | 
 |  * always the case (the difference between two distinct xtime instances | 
 |  * might be smaller then the difference between corresponding TSC reads, | 
 |  * when updating guest vcpus pvclock areas). | 
 |  * | 
 |  * To avoid that problem, do not allow visibility of distinct | 
 |  * system_timestamp/tsc_timestamp values simultaneously: use a master | 
 |  * copy of host monotonic time values. Update that master copy | 
 |  * in lockstep. | 
 |  * | 
 |  * Rely on synchronization of host TSCs and guest TSCs for monotonicity. | 
 |  * | 
 |  */ | 
 |  | 
 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	struct kvm_arch *ka = &kvm->arch; | 
 | 	int vclock_mode; | 
 | 	bool host_tsc_clocksource, vcpus_matched; | 
 |  | 
 | 	vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == | 
 | 			atomic_read(&kvm->online_vcpus)); | 
 |  | 
 | 	/* | 
 | 	 * If the host uses TSC clock, then passthrough TSC as stable | 
 | 	 * to the guest. | 
 | 	 */ | 
 | 	host_tsc_clocksource = kvm_get_time_and_clockread( | 
 | 					&ka->master_kernel_ns, | 
 | 					&ka->master_cycle_now); | 
 |  | 
 | 	ka->use_master_clock = host_tsc_clocksource & vcpus_matched; | 
 |  | 
 | 	if (ka->use_master_clock) | 
 | 		atomic_set(&kvm_guest_has_master_clock, 1); | 
 |  | 
 | 	vclock_mode = pvclock_gtod_data.clock.vclock_mode; | 
 | 	trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, | 
 | 					vcpus_matched); | 
 | #endif | 
 | } | 
 |  | 
 | static int kvm_guest_time_update(struct kvm_vcpu *v) | 
 | { | 
 | 	unsigned long flags, this_tsc_khz; | 
 | 	struct kvm_vcpu_arch *vcpu = &v->arch; | 
 | 	struct kvm_arch *ka = &v->kvm->arch; | 
 | 	s64 kernel_ns, max_kernel_ns; | 
 | 	u64 tsc_timestamp, host_tsc; | 
 | 	struct pvclock_vcpu_time_info guest_hv_clock; | 
 | 	u8 pvclock_flags; | 
 | 	bool use_master_clock; | 
 |  | 
 | 	kernel_ns = 0; | 
 | 	host_tsc = 0; | 
 |  | 
 | 	/* | 
 | 	 * If the host uses TSC clock, then passthrough TSC as stable | 
 | 	 * to the guest. | 
 | 	 */ | 
 | 	spin_lock(&ka->pvclock_gtod_sync_lock); | 
 | 	use_master_clock = ka->use_master_clock; | 
 | 	if (use_master_clock) { | 
 | 		host_tsc = ka->master_cycle_now; | 
 | 		kernel_ns = ka->master_kernel_ns; | 
 | 	} | 
 | 	spin_unlock(&ka->pvclock_gtod_sync_lock); | 
 |  | 
 | 	/* Keep irq disabled to prevent changes to the clock */ | 
 | 	local_irq_save(flags); | 
 | 	this_tsc_khz = __get_cpu_var(cpu_tsc_khz); | 
 | 	if (unlikely(this_tsc_khz == 0)) { | 
 | 		local_irq_restore(flags); | 
 | 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | 
 | 		return 1; | 
 | 	} | 
 | 	if (!use_master_clock) { | 
 | 		host_tsc = native_read_tsc(); | 
 | 		kernel_ns = get_kernel_ns(); | 
 | 	} | 
 |  | 
 | 	tsc_timestamp = kvm_x86_ops->read_l1_tsc(v, host_tsc); | 
 |  | 
 | 	/* | 
 | 	 * We may have to catch up the TSC to match elapsed wall clock | 
 | 	 * time for two reasons, even if kvmclock is used. | 
 | 	 *   1) CPU could have been running below the maximum TSC rate | 
 | 	 *   2) Broken TSC compensation resets the base at each VCPU | 
 | 	 *      entry to avoid unknown leaps of TSC even when running | 
 | 	 *      again on the same CPU.  This may cause apparent elapsed | 
 | 	 *      time to disappear, and the guest to stand still or run | 
 | 	 *	very slowly. | 
 | 	 */ | 
 | 	if (vcpu->tsc_catchup) { | 
 | 		u64 tsc = compute_guest_tsc(v, kernel_ns); | 
 | 		if (tsc > tsc_timestamp) { | 
 | 			adjust_tsc_offset_guest(v, tsc - tsc_timestamp); | 
 | 			tsc_timestamp = tsc; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	local_irq_restore(flags); | 
 |  | 
 | 	if (!vcpu->pv_time_enabled) | 
 | 		return 0; | 
 |  | 
 | 	/* | 
 | 	 * Time as measured by the TSC may go backwards when resetting the base | 
 | 	 * tsc_timestamp.  The reason for this is that the TSC resolution is | 
 | 	 * higher than the resolution of the other clock scales.  Thus, many | 
 | 	 * possible measurments of the TSC correspond to one measurement of any | 
 | 	 * other clock, and so a spread of values is possible.  This is not a | 
 | 	 * problem for the computation of the nanosecond clock; with TSC rates | 
 | 	 * around 1GHZ, there can only be a few cycles which correspond to one | 
 | 	 * nanosecond value, and any path through this code will inevitably | 
 | 	 * take longer than that.  However, with the kernel_ns value itself, | 
 | 	 * the precision may be much lower, down to HZ granularity.  If the | 
 | 	 * first sampling of TSC against kernel_ns ends in the low part of the | 
 | 	 * range, and the second in the high end of the range, we can get: | 
 | 	 * | 
 | 	 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new | 
 | 	 * | 
 | 	 * As the sampling errors potentially range in the thousands of cycles, | 
 | 	 * it is possible such a time value has already been observed by the | 
 | 	 * guest.  To protect against this, we must compute the system time as | 
 | 	 * observed by the guest and ensure the new system time is greater. | 
 | 	 */ | 
 | 	max_kernel_ns = 0; | 
 | 	if (vcpu->hv_clock.tsc_timestamp) { | 
 | 		max_kernel_ns = vcpu->last_guest_tsc - | 
 | 				vcpu->hv_clock.tsc_timestamp; | 
 | 		max_kernel_ns = pvclock_scale_delta(max_kernel_ns, | 
 | 				    vcpu->hv_clock.tsc_to_system_mul, | 
 | 				    vcpu->hv_clock.tsc_shift); | 
 | 		max_kernel_ns += vcpu->last_kernel_ns; | 
 | 	} | 
 |  | 
 | 	if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) { | 
 | 		kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz, | 
 | 				   &vcpu->hv_clock.tsc_shift, | 
 | 				   &vcpu->hv_clock.tsc_to_system_mul); | 
 | 		vcpu->hw_tsc_khz = this_tsc_khz; | 
 | 	} | 
 |  | 
 | 	/* with a master <monotonic time, tsc value> tuple, | 
 | 	 * pvclock clock reads always increase at the (scaled) rate | 
 | 	 * of guest TSC - no need to deal with sampling errors. | 
 | 	 */ | 
 | 	if (!use_master_clock) { | 
 | 		if (max_kernel_ns > kernel_ns) | 
 | 			kernel_ns = max_kernel_ns; | 
 | 	} | 
 | 	/* With all the info we got, fill in the values */ | 
 | 	vcpu->hv_clock.tsc_timestamp = tsc_timestamp; | 
 | 	vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; | 
 | 	vcpu->last_kernel_ns = kernel_ns; | 
 | 	vcpu->last_guest_tsc = tsc_timestamp; | 
 |  | 
 | 	/* | 
 | 	 * The interface expects us to write an even number signaling that the | 
 | 	 * update is finished. Since the guest won't see the intermediate | 
 | 	 * state, we just increase by 2 at the end. | 
 | 	 */ | 
 | 	vcpu->hv_clock.version += 2; | 
 |  | 
 | 	if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time, | 
 | 		&guest_hv_clock, sizeof(guest_hv_clock)))) | 
 | 		return 0; | 
 |  | 
 | 	/* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | 
 | 	pvclock_flags = (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED); | 
 |  | 
 | 	if (vcpu->pvclock_set_guest_stopped_request) { | 
 | 		pvclock_flags |= PVCLOCK_GUEST_STOPPED; | 
 | 		vcpu->pvclock_set_guest_stopped_request = false; | 
 | 	} | 
 |  | 
 | 	/* If the host uses TSC clocksource, then it is stable */ | 
 | 	if (use_master_clock) | 
 | 		pvclock_flags |= PVCLOCK_TSC_STABLE_BIT; | 
 |  | 
 | 	vcpu->hv_clock.flags = pvclock_flags; | 
 |  | 
 | 	kvm_write_guest_cached(v->kvm, &vcpu->pv_time, | 
 | 				&vcpu->hv_clock, | 
 | 				sizeof(vcpu->hv_clock)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool msr_mtrr_valid(unsigned msr) | 
 | { | 
 | 	switch (msr) { | 
 | 	case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1: | 
 | 	case MSR_MTRRfix64K_00000: | 
 | 	case MSR_MTRRfix16K_80000: | 
 | 	case MSR_MTRRfix16K_A0000: | 
 | 	case MSR_MTRRfix4K_C0000: | 
 | 	case MSR_MTRRfix4K_C8000: | 
 | 	case MSR_MTRRfix4K_D0000: | 
 | 	case MSR_MTRRfix4K_D8000: | 
 | 	case MSR_MTRRfix4K_E0000: | 
 | 	case MSR_MTRRfix4K_E8000: | 
 | 	case MSR_MTRRfix4K_F0000: | 
 | 	case MSR_MTRRfix4K_F8000: | 
 | 	case MSR_MTRRdefType: | 
 | 	case MSR_IA32_CR_PAT: | 
 | 		return true; | 
 | 	case 0x2f8: | 
 | 		return true; | 
 | 	} | 
 | 	return false; | 
 | } | 
 |  | 
 | static bool valid_pat_type(unsigned t) | 
 | { | 
 | 	return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */ | 
 | } | 
 |  | 
 | static bool valid_mtrr_type(unsigned t) | 
 | { | 
 | 	return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */ | 
 | } | 
 |  | 
 | static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!msr_mtrr_valid(msr)) | 
 | 		return false; | 
 |  | 
 | 	if (msr == MSR_IA32_CR_PAT) { | 
 | 		for (i = 0; i < 8; i++) | 
 | 			if (!valid_pat_type((data >> (i * 8)) & 0xff)) | 
 | 				return false; | 
 | 		return true; | 
 | 	} else if (msr == MSR_MTRRdefType) { | 
 | 		if (data & ~0xcff) | 
 | 			return false; | 
 | 		return valid_mtrr_type(data & 0xff); | 
 | 	} else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) { | 
 | 		for (i = 0; i < 8 ; i++) | 
 | 			if (!valid_mtrr_type((data >> (i * 8)) & 0xff)) | 
 | 				return false; | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* variable MTRRs */ | 
 | 	return valid_mtrr_type(data & 0xff); | 
 | } | 
 |  | 
 | static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
 | { | 
 | 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; | 
 |  | 
 | 	if (!mtrr_valid(vcpu, msr, data)) | 
 | 		return 1; | 
 |  | 
 | 	if (msr == MSR_MTRRdefType) { | 
 | 		vcpu->arch.mtrr_state.def_type = data; | 
 | 		vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10; | 
 | 	} else if (msr == MSR_MTRRfix64K_00000) | 
 | 		p[0] = data; | 
 | 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | 
 | 		p[1 + msr - MSR_MTRRfix16K_80000] = data; | 
 | 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | 
 | 		p[3 + msr - MSR_MTRRfix4K_C0000] = data; | 
 | 	else if (msr == MSR_IA32_CR_PAT) | 
 | 		vcpu->arch.pat = data; | 
 | 	else {	/* Variable MTRRs */ | 
 | 		int idx, is_mtrr_mask; | 
 | 		u64 *pt; | 
 |  | 
 | 		idx = (msr - 0x200) / 2; | 
 | 		is_mtrr_mask = msr - 0x200 - 2 * idx; | 
 | 		if (!is_mtrr_mask) | 
 | 			pt = | 
 | 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | 
 | 		else | 
 | 			pt = | 
 | 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | 
 | 		*pt = data; | 
 | 	} | 
 |  | 
 | 	kvm_mmu_reset_context(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
 | { | 
 | 	u64 mcg_cap = vcpu->arch.mcg_cap; | 
 | 	unsigned bank_num = mcg_cap & 0xff; | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 		vcpu->arch.mcg_status = data; | 
 | 		break; | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 		if (!(mcg_cap & MCG_CTL_P)) | 
 | 			return 1; | 
 | 		if (data != 0 && data != ~(u64)0) | 
 | 			return -1; | 
 | 		vcpu->arch.mcg_ctl = data; | 
 | 		break; | 
 | 	default: | 
 | 		if (msr >= MSR_IA32_MC0_CTL && | 
 | 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) { | 
 | 			u32 offset = msr - MSR_IA32_MC0_CTL; | 
 | 			/* only 0 or all 1s can be written to IA32_MCi_CTL | 
 | 			 * some Linux kernels though clear bit 10 in bank 4 to | 
 | 			 * workaround a BIOS/GART TBL issue on AMD K8s, ignore | 
 | 			 * this to avoid an uncatched #GP in the guest | 
 | 			 */ | 
 | 			if ((offset & 0x3) == 0 && | 
 | 			    data != 0 && (data | (1 << 10)) != ~(u64)0) | 
 | 				return -1; | 
 | 			vcpu->arch.mce_banks[offset] = data; | 
 | 			break; | 
 | 		} | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	int lm = is_long_mode(vcpu); | 
 | 	u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64 | 
 | 		: (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32; | 
 | 	u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64 | 
 | 		: kvm->arch.xen_hvm_config.blob_size_32; | 
 | 	u32 page_num = data & ~PAGE_MASK; | 
 | 	u64 page_addr = data & PAGE_MASK; | 
 | 	u8 *page; | 
 | 	int r; | 
 |  | 
 | 	r = -E2BIG; | 
 | 	if (page_num >= blob_size) | 
 | 		goto out; | 
 | 	r = -ENOMEM; | 
 | 	page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE); | 
 | 	if (IS_ERR(page)) { | 
 | 		r = PTR_ERR(page); | 
 | 		goto out; | 
 | 	} | 
 | 	if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE)) | 
 | 		goto out_free; | 
 | 	r = 0; | 
 | out_free: | 
 | 	kfree(page); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static bool kvm_hv_hypercall_enabled(struct kvm *kvm) | 
 | { | 
 | 	return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE; | 
 | } | 
 |  | 
 | static bool kvm_hv_msr_partition_wide(u32 msr) | 
 | { | 
 | 	bool r = false; | 
 | 	switch (msr) { | 
 | 	case HV_X64_MSR_GUEST_OS_ID: | 
 | 	case HV_X64_MSR_HYPERCALL: | 
 | 		r = true; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	switch (msr) { | 
 | 	case HV_X64_MSR_GUEST_OS_ID: | 
 | 		kvm->arch.hv_guest_os_id = data; | 
 | 		/* setting guest os id to zero disables hypercall page */ | 
 | 		if (!kvm->arch.hv_guest_os_id) | 
 | 			kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE; | 
 | 		break; | 
 | 	case HV_X64_MSR_HYPERCALL: { | 
 | 		u64 gfn; | 
 | 		unsigned long addr; | 
 | 		u8 instructions[4]; | 
 |  | 
 | 		/* if guest os id is not set hypercall should remain disabled */ | 
 | 		if (!kvm->arch.hv_guest_os_id) | 
 | 			break; | 
 | 		if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) { | 
 | 			kvm->arch.hv_hypercall = data; | 
 | 			break; | 
 | 		} | 
 | 		gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT; | 
 | 		addr = gfn_to_hva(kvm, gfn); | 
 | 		if (kvm_is_error_hva(addr)) | 
 | 			return 1; | 
 | 		kvm_x86_ops->patch_hypercall(vcpu, instructions); | 
 | 		((unsigned char *)instructions)[3] = 0xc3; /* ret */ | 
 | 		if (__copy_to_user((void __user *)addr, instructions, 4)) | 
 | 			return 1; | 
 | 		kvm->arch.hv_hypercall = data; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " | 
 | 			    "data 0x%llx\n", msr, data); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data) | 
 | { | 
 | 	switch (msr) { | 
 | 	case HV_X64_MSR_APIC_ASSIST_PAGE: { | 
 | 		unsigned long addr; | 
 |  | 
 | 		if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) { | 
 | 			vcpu->arch.hv_vapic = data; | 
 | 			break; | 
 | 		} | 
 | 		addr = gfn_to_hva(vcpu->kvm, data >> | 
 | 				  HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT); | 
 | 		if (kvm_is_error_hva(addr)) | 
 | 			return 1; | 
 | 		if (__clear_user((void __user *)addr, PAGE_SIZE)) | 
 | 			return 1; | 
 | 		vcpu->arch.hv_vapic = data; | 
 | 		break; | 
 | 	} | 
 | 	case HV_X64_MSR_EOI: | 
 | 		return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data); | 
 | 	case HV_X64_MSR_ICR: | 
 | 		return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data); | 
 | 	case HV_X64_MSR_TPR: | 
 | 		return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data); | 
 | 	default: | 
 | 		vcpu_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x " | 
 | 			    "data 0x%llx\n", msr, data); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) | 
 | { | 
 | 	gpa_t gpa = data & ~0x3f; | 
 |  | 
 | 	/* Bits 2:5 are reserved, Should be zero */ | 
 | 	if (data & 0x3c) | 
 | 		return 1; | 
 |  | 
 | 	vcpu->arch.apf.msr_val = data; | 
 |  | 
 | 	if (!(data & KVM_ASYNC_PF_ENABLED)) { | 
 | 		kvm_clear_async_pf_completion_queue(vcpu); | 
 | 		kvm_async_pf_hash_reset(vcpu); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, | 
 | 					sizeof(u32))) | 
 | 		return 1; | 
 |  | 
 | 	vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS); | 
 | 	kvm_async_pf_wakeup_all(vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvmclock_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	vcpu->arch.pv_time_enabled = false; | 
 | } | 
 |  | 
 | static void accumulate_steal_time(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 delta; | 
 |  | 
 | 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	delta = current->sched_info.run_delay - vcpu->arch.st.last_steal; | 
 | 	vcpu->arch.st.last_steal = current->sched_info.run_delay; | 
 | 	vcpu->arch.st.accum_steal = delta; | 
 | } | 
 |  | 
 | static void record_steal_time(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, | 
 | 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time)))) | 
 | 		return; | 
 |  | 
 | 	vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal; | 
 | 	vcpu->arch.st.steal.version += 2; | 
 | 	vcpu->arch.st.accum_steal = 0; | 
 |  | 
 | 	kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime, | 
 | 		&vcpu->arch.st.steal, sizeof(struct kvm_steal_time)); | 
 | } | 
 |  | 
 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) | 
 | { | 
 | 	bool pr = false; | 
 | 	u32 msr = msr_info->index; | 
 | 	u64 data = msr_info->data; | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_AMD64_NB_CFG: | 
 | 	case MSR_IA32_UCODE_REV: | 
 | 	case MSR_IA32_UCODE_WRITE: | 
 | 	case MSR_VM_HSAVE_PA: | 
 | 	case MSR_AMD64_PATCH_LOADER: | 
 | 	case MSR_AMD64_BU_CFG2: | 
 | 		break; | 
 |  | 
 | 	case MSR_EFER: | 
 | 		return set_efer(vcpu, data); | 
 | 	case MSR_K7_HWCR: | 
 | 		data &= ~(u64)0x40;	/* ignore flush filter disable */ | 
 | 		data &= ~(u64)0x100;	/* ignore ignne emulation enable */ | 
 | 		data &= ~(u64)0x8;	/* ignore TLB cache disable */ | 
 | 		if (data != 0) { | 
 | 			vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n", | 
 | 				    data); | 
 | 			return 1; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_FAM10H_MMIO_CONF_BASE: | 
 | 		if (data != 0) { | 
 | 			vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: " | 
 | 				    "0x%llx\n", data); | 
 | 			return 1; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_IA32_DEBUGCTLMSR: | 
 | 		if (!data) { | 
 | 			/* We support the non-activated case already */ | 
 | 			break; | 
 | 		} else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) { | 
 | 			/* Values other than LBR and BTF are vendor-specific, | 
 | 			   thus reserved and should throw a #GP */ | 
 | 			return 1; | 
 | 		} | 
 | 		vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n", | 
 | 			    __func__, data); | 
 | 		break; | 
 | 	case 0x200 ... 0x2ff: | 
 | 		return set_msr_mtrr(vcpu, msr, data); | 
 | 	case MSR_IA32_APICBASE: | 
 | 		kvm_set_apic_base(vcpu, data); | 
 | 		break; | 
 | 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: | 
 | 		return kvm_x2apic_msr_write(vcpu, msr, data); | 
 | 	case MSR_IA32_TSCDEADLINE: | 
 | 		kvm_set_lapic_tscdeadline_msr(vcpu, data); | 
 | 		break; | 
 | 	case MSR_IA32_TSC_ADJUST: | 
 | 		if (guest_cpuid_has_tsc_adjust(vcpu)) { | 
 | 			if (!msr_info->host_initiated) { | 
 | 				u64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; | 
 | 				kvm_x86_ops->adjust_tsc_offset(vcpu, adj, true); | 
 | 			} | 
 | 			vcpu->arch.ia32_tsc_adjust_msr = data; | 
 | 		} | 
 | 		break; | 
 | 	case MSR_IA32_MISC_ENABLE: | 
 | 		vcpu->arch.ia32_misc_enable_msr = data; | 
 | 		break; | 
 | 	case MSR_KVM_WALL_CLOCK_NEW: | 
 | 	case MSR_KVM_WALL_CLOCK: | 
 | 		vcpu->kvm->arch.wall_clock = data; | 
 | 		kvm_write_wall_clock(vcpu->kvm, data); | 
 | 		break; | 
 | 	case MSR_KVM_SYSTEM_TIME_NEW: | 
 | 	case MSR_KVM_SYSTEM_TIME: { | 
 | 		u64 gpa_offset; | 
 | 		kvmclock_reset(vcpu); | 
 |  | 
 | 		vcpu->arch.time = data; | 
 | 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 |  | 
 | 		/* we verify if the enable bit is set... */ | 
 | 		if (!(data & 1)) | 
 | 			break; | 
 |  | 
 | 		gpa_offset = data & ~(PAGE_MASK | 1); | 
 |  | 
 | 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, | 
 | 		     &vcpu->arch.pv_time, data & ~1ULL, | 
 | 		     sizeof(struct pvclock_vcpu_time_info))) | 
 | 			vcpu->arch.pv_time_enabled = false; | 
 | 		else | 
 | 			vcpu->arch.pv_time_enabled = true; | 
 |  | 
 | 		break; | 
 | 	} | 
 | 	case MSR_KVM_ASYNC_PF_EN: | 
 | 		if (kvm_pv_enable_async_pf(vcpu, data)) | 
 | 			return 1; | 
 | 		break; | 
 | 	case MSR_KVM_STEAL_TIME: | 
 |  | 
 | 		if (unlikely(!sched_info_on())) | 
 | 			return 1; | 
 |  | 
 | 		if (data & KVM_STEAL_RESERVED_MASK) | 
 | 			return 1; | 
 |  | 
 | 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime, | 
 | 						data & KVM_STEAL_VALID_BITS, | 
 | 						sizeof(struct kvm_steal_time))) | 
 | 			return 1; | 
 |  | 
 | 		vcpu->arch.st.msr_val = data; | 
 |  | 
 | 		if (!(data & KVM_MSR_ENABLED)) | 
 | 			break; | 
 |  | 
 | 		vcpu->arch.st.last_steal = current->sched_info.run_delay; | 
 |  | 
 | 		preempt_disable(); | 
 | 		accumulate_steal_time(vcpu); | 
 | 		preempt_enable(); | 
 |  | 
 | 		kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | 
 |  | 
 | 		break; | 
 | 	case MSR_KVM_PV_EOI_EN: | 
 | 		if (kvm_lapic_enable_pv_eoi(vcpu, data)) | 
 | 			return 1; | 
 | 		break; | 
 |  | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | 
 | 		return set_msr_mce(vcpu, msr, data); | 
 |  | 
 | 	/* Performance counters are not protected by a CPUID bit, | 
 | 	 * so we should check all of them in the generic path for the sake of | 
 | 	 * cross vendor migration. | 
 | 	 * Writing a zero into the event select MSRs disables them, | 
 | 	 * which we perfectly emulate ;-). Any other value should be at least | 
 | 	 * reported, some guests depend on them. | 
 | 	 */ | 
 | 	case MSR_K7_EVNTSEL0: | 
 | 	case MSR_K7_EVNTSEL1: | 
 | 	case MSR_K7_EVNTSEL2: | 
 | 	case MSR_K7_EVNTSEL3: | 
 | 		if (data != 0) | 
 | 			vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " | 
 | 				    "0x%x data 0x%llx\n", msr, data); | 
 | 		break; | 
 | 	/* at least RHEL 4 unconditionally writes to the perfctr registers, | 
 | 	 * so we ignore writes to make it happy. | 
 | 	 */ | 
 | 	case MSR_K7_PERFCTR0: | 
 | 	case MSR_K7_PERFCTR1: | 
 | 	case MSR_K7_PERFCTR2: | 
 | 	case MSR_K7_PERFCTR3: | 
 | 		vcpu_unimpl(vcpu, "unimplemented perfctr wrmsr: " | 
 | 			    "0x%x data 0x%llx\n", msr, data); | 
 | 		break; | 
 | 	case MSR_P6_PERFCTR0: | 
 | 	case MSR_P6_PERFCTR1: | 
 | 		pr = true; | 
 | 	case MSR_P6_EVNTSEL0: | 
 | 	case MSR_P6_EVNTSEL1: | 
 | 		if (kvm_pmu_msr(vcpu, msr)) | 
 | 			return kvm_pmu_set_msr(vcpu, msr_info); | 
 |  | 
 | 		if (pr || data != 0) | 
 | 			vcpu_unimpl(vcpu, "disabled perfctr wrmsr: " | 
 | 				    "0x%x data 0x%llx\n", msr, data); | 
 | 		break; | 
 | 	case MSR_K7_CLK_CTL: | 
 | 		/* | 
 | 		 * Ignore all writes to this no longer documented MSR. | 
 | 		 * Writes are only relevant for old K7 processors, | 
 | 		 * all pre-dating SVM, but a recommended workaround from | 
 | 		 * AMD for these chips. It is possible to specify the | 
 | 		 * affected processor models on the command line, hence | 
 | 		 * the need to ignore the workaround. | 
 | 		 */ | 
 | 		break; | 
 | 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: | 
 | 		if (kvm_hv_msr_partition_wide(msr)) { | 
 | 			int r; | 
 | 			mutex_lock(&vcpu->kvm->lock); | 
 | 			r = set_msr_hyperv_pw(vcpu, msr, data); | 
 | 			mutex_unlock(&vcpu->kvm->lock); | 
 | 			return r; | 
 | 		} else | 
 | 			return set_msr_hyperv(vcpu, msr, data); | 
 | 		break; | 
 | 	case MSR_IA32_BBL_CR_CTL3: | 
 | 		/* Drop writes to this legacy MSR -- see rdmsr | 
 | 		 * counterpart for further detail. | 
 | 		 */ | 
 | 		vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data); | 
 | 		break; | 
 | 	case MSR_AMD64_OSVW_ID_LENGTH: | 
 | 		if (!guest_cpuid_has_osvw(vcpu)) | 
 | 			return 1; | 
 | 		vcpu->arch.osvw.length = data; | 
 | 		break; | 
 | 	case MSR_AMD64_OSVW_STATUS: | 
 | 		if (!guest_cpuid_has_osvw(vcpu)) | 
 | 			return 1; | 
 | 		vcpu->arch.osvw.status = data; | 
 | 		break; | 
 | 	default: | 
 | 		if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr)) | 
 | 			return xen_hvm_config(vcpu, data); | 
 | 		if (kvm_pmu_msr(vcpu, msr)) | 
 | 			return kvm_pmu_set_msr(vcpu, msr_info); | 
 | 		if (!ignore_msrs) { | 
 | 			vcpu_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n", | 
 | 				    msr, data); | 
 | 			return 1; | 
 | 		} else { | 
 | 			vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", | 
 | 				    msr, data); | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | 
 |  | 
 |  | 
 | /* | 
 |  * Reads an msr value (of 'msr_index') into 'pdata'. | 
 |  * Returns 0 on success, non-0 otherwise. | 
 |  * Assumes vcpu_load() was already called. | 
 |  */ | 
 | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata) | 
 | { | 
 | 	return kvm_x86_ops->get_msr(vcpu, msr_index, pdata); | 
 | } | 
 |  | 
 | static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 
 | { | 
 | 	u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges; | 
 |  | 
 | 	if (!msr_mtrr_valid(msr)) | 
 | 		return 1; | 
 |  | 
 | 	if (msr == MSR_MTRRdefType) | 
 | 		*pdata = vcpu->arch.mtrr_state.def_type + | 
 | 			 (vcpu->arch.mtrr_state.enabled << 10); | 
 | 	else if (msr == MSR_MTRRfix64K_00000) | 
 | 		*pdata = p[0]; | 
 | 	else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000) | 
 | 		*pdata = p[1 + msr - MSR_MTRRfix16K_80000]; | 
 | 	else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000) | 
 | 		*pdata = p[3 + msr - MSR_MTRRfix4K_C0000]; | 
 | 	else if (msr == MSR_IA32_CR_PAT) | 
 | 		*pdata = vcpu->arch.pat; | 
 | 	else {	/* Variable MTRRs */ | 
 | 		int idx, is_mtrr_mask; | 
 | 		u64 *pt; | 
 |  | 
 | 		idx = (msr - 0x200) / 2; | 
 | 		is_mtrr_mask = msr - 0x200 - 2 * idx; | 
 | 		if (!is_mtrr_mask) | 
 | 			pt = | 
 | 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo; | 
 | 		else | 
 | 			pt = | 
 | 			  (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo; | 
 | 		*pdata = *pt; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 
 | { | 
 | 	u64 data; | 
 | 	u64 mcg_cap = vcpu->arch.mcg_cap; | 
 | 	unsigned bank_num = mcg_cap & 0xff; | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_IA32_P5_MC_ADDR: | 
 | 	case MSR_IA32_P5_MC_TYPE: | 
 | 		data = 0; | 
 | 		break; | 
 | 	case MSR_IA32_MCG_CAP: | 
 | 		data = vcpu->arch.mcg_cap; | 
 | 		break; | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 		if (!(mcg_cap & MCG_CTL_P)) | 
 | 			return 1; | 
 | 		data = vcpu->arch.mcg_ctl; | 
 | 		break; | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 		data = vcpu->arch.mcg_status; | 
 | 		break; | 
 | 	default: | 
 | 		if (msr >= MSR_IA32_MC0_CTL && | 
 | 		    msr < MSR_IA32_MC0_CTL + 4 * bank_num) { | 
 | 			u32 offset = msr - MSR_IA32_MC0_CTL; | 
 | 			data = vcpu->arch.mce_banks[offset]; | 
 | 			break; | 
 | 		} | 
 | 		return 1; | 
 | 	} | 
 | 	*pdata = data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 
 | { | 
 | 	u64 data = 0; | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	switch (msr) { | 
 | 	case HV_X64_MSR_GUEST_OS_ID: | 
 | 		data = kvm->arch.hv_guest_os_id; | 
 | 		break; | 
 | 	case HV_X64_MSR_HYPERCALL: | 
 | 		data = kvm->arch.hv_hypercall; | 
 | 		break; | 
 | 	default: | 
 | 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	*pdata = data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 
 | { | 
 | 	u64 data = 0; | 
 |  | 
 | 	switch (msr) { | 
 | 	case HV_X64_MSR_VP_INDEX: { | 
 | 		int r; | 
 | 		struct kvm_vcpu *v; | 
 | 		kvm_for_each_vcpu(r, v, vcpu->kvm) | 
 | 			if (v == vcpu) | 
 | 				data = r; | 
 | 		break; | 
 | 	} | 
 | 	case HV_X64_MSR_EOI: | 
 | 		return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata); | 
 | 	case HV_X64_MSR_ICR: | 
 | 		return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata); | 
 | 	case HV_X64_MSR_TPR: | 
 | 		return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata); | 
 | 	case HV_X64_MSR_APIC_ASSIST_PAGE: | 
 | 		data = vcpu->arch.hv_vapic; | 
 | 		break; | 
 | 	default: | 
 | 		vcpu_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr); | 
 | 		return 1; | 
 | 	} | 
 | 	*pdata = data; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata) | 
 | { | 
 | 	u64 data; | 
 |  | 
 | 	switch (msr) { | 
 | 	case MSR_IA32_PLATFORM_ID: | 
 | 	case MSR_IA32_EBL_CR_POWERON: | 
 | 	case MSR_IA32_DEBUGCTLMSR: | 
 | 	case MSR_IA32_LASTBRANCHFROMIP: | 
 | 	case MSR_IA32_LASTBRANCHTOIP: | 
 | 	case MSR_IA32_LASTINTFROMIP: | 
 | 	case MSR_IA32_LASTINTTOIP: | 
 | 	case MSR_K8_SYSCFG: | 
 | 	case MSR_K7_HWCR: | 
 | 	case MSR_VM_HSAVE_PA: | 
 | 	case MSR_K7_EVNTSEL0: | 
 | 	case MSR_K7_PERFCTR0: | 
 | 	case MSR_K8_INT_PENDING_MSG: | 
 | 	case MSR_AMD64_NB_CFG: | 
 | 	case MSR_FAM10H_MMIO_CONF_BASE: | 
 | 	case MSR_AMD64_BU_CFG2: | 
 | 		data = 0; | 
 | 		break; | 
 | 	case MSR_P6_PERFCTR0: | 
 | 	case MSR_P6_PERFCTR1: | 
 | 	case MSR_P6_EVNTSEL0: | 
 | 	case MSR_P6_EVNTSEL1: | 
 | 		if (kvm_pmu_msr(vcpu, msr)) | 
 | 			return kvm_pmu_get_msr(vcpu, msr, pdata); | 
 | 		data = 0; | 
 | 		break; | 
 | 	case MSR_IA32_UCODE_REV: | 
 | 		data = 0x100000000ULL; | 
 | 		break; | 
 | 	case MSR_MTRRcap: | 
 | 		data = 0x500 | KVM_NR_VAR_MTRR; | 
 | 		break; | 
 | 	case 0x200 ... 0x2ff: | 
 | 		return get_msr_mtrr(vcpu, msr, pdata); | 
 | 	case 0xcd: /* fsb frequency */ | 
 | 		data = 3; | 
 | 		break; | 
 | 		/* | 
 | 		 * MSR_EBC_FREQUENCY_ID | 
 | 		 * Conservative value valid for even the basic CPU models. | 
 | 		 * Models 0,1: 000 in bits 23:21 indicating a bus speed of | 
 | 		 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | 
 | 		 * and 266MHz for model 3, or 4. Set Core Clock | 
 | 		 * Frequency to System Bus Frequency Ratio to 1 (bits | 
 | 		 * 31:24) even though these are only valid for CPU | 
 | 		 * models > 2, however guests may end up dividing or | 
 | 		 * multiplying by zero otherwise. | 
 | 		 */ | 
 | 	case MSR_EBC_FREQUENCY_ID: | 
 | 		data = 1 << 24; | 
 | 		break; | 
 | 	case MSR_IA32_APICBASE: | 
 | 		data = kvm_get_apic_base(vcpu); | 
 | 		break; | 
 | 	case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff: | 
 | 		return kvm_x2apic_msr_read(vcpu, msr, pdata); | 
 | 		break; | 
 | 	case MSR_IA32_TSCDEADLINE: | 
 | 		data = kvm_get_lapic_tscdeadline_msr(vcpu); | 
 | 		break; | 
 | 	case MSR_IA32_TSC_ADJUST: | 
 | 		data = (u64)vcpu->arch.ia32_tsc_adjust_msr; | 
 | 		break; | 
 | 	case MSR_IA32_MISC_ENABLE: | 
 | 		data = vcpu->arch.ia32_misc_enable_msr; | 
 | 		break; | 
 | 	case MSR_IA32_PERF_STATUS: | 
 | 		/* TSC increment by tick */ | 
 | 		data = 1000ULL; | 
 | 		/* CPU multiplier */ | 
 | 		data |= (((uint64_t)4ULL) << 40); | 
 | 		break; | 
 | 	case MSR_EFER: | 
 | 		data = vcpu->arch.efer; | 
 | 		break; | 
 | 	case MSR_KVM_WALL_CLOCK: | 
 | 	case MSR_KVM_WALL_CLOCK_NEW: | 
 | 		data = vcpu->kvm->arch.wall_clock; | 
 | 		break; | 
 | 	case MSR_KVM_SYSTEM_TIME: | 
 | 	case MSR_KVM_SYSTEM_TIME_NEW: | 
 | 		data = vcpu->arch.time; | 
 | 		break; | 
 | 	case MSR_KVM_ASYNC_PF_EN: | 
 | 		data = vcpu->arch.apf.msr_val; | 
 | 		break; | 
 | 	case MSR_KVM_STEAL_TIME: | 
 | 		data = vcpu->arch.st.msr_val; | 
 | 		break; | 
 | 	case MSR_KVM_PV_EOI_EN: | 
 | 		data = vcpu->arch.pv_eoi.msr_val; | 
 | 		break; | 
 | 	case MSR_IA32_P5_MC_ADDR: | 
 | 	case MSR_IA32_P5_MC_TYPE: | 
 | 	case MSR_IA32_MCG_CAP: | 
 | 	case MSR_IA32_MCG_CTL: | 
 | 	case MSR_IA32_MCG_STATUS: | 
 | 	case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1: | 
 | 		return get_msr_mce(vcpu, msr, pdata); | 
 | 	case MSR_K7_CLK_CTL: | 
 | 		/* | 
 | 		 * Provide expected ramp-up count for K7. All other | 
 | 		 * are set to zero, indicating minimum divisors for | 
 | 		 * every field. | 
 | 		 * | 
 | 		 * This prevents guest kernels on AMD host with CPU | 
 | 		 * type 6, model 8 and higher from exploding due to | 
 | 		 * the rdmsr failing. | 
 | 		 */ | 
 | 		data = 0x20000000; | 
 | 		break; | 
 | 	case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: | 
 | 		if (kvm_hv_msr_partition_wide(msr)) { | 
 | 			int r; | 
 | 			mutex_lock(&vcpu->kvm->lock); | 
 | 			r = get_msr_hyperv_pw(vcpu, msr, pdata); | 
 | 			mutex_unlock(&vcpu->kvm->lock); | 
 | 			return r; | 
 | 		} else | 
 | 			return get_msr_hyperv(vcpu, msr, pdata); | 
 | 		break; | 
 | 	case MSR_IA32_BBL_CR_CTL3: | 
 | 		/* This legacy MSR exists but isn't fully documented in current | 
 | 		 * silicon.  It is however accessed by winxp in very narrow | 
 | 		 * scenarios where it sets bit #19, itself documented as | 
 | 		 * a "reserved" bit.  Best effort attempt to source coherent | 
 | 		 * read data here should the balance of the register be | 
 | 		 * interpreted by the guest: | 
 | 		 * | 
 | 		 * L2 cache control register 3: 64GB range, 256KB size, | 
 | 		 * enabled, latency 0x1, configured | 
 | 		 */ | 
 | 		data = 0xbe702111; | 
 | 		break; | 
 | 	case MSR_AMD64_OSVW_ID_LENGTH: | 
 | 		if (!guest_cpuid_has_osvw(vcpu)) | 
 | 			return 1; | 
 | 		data = vcpu->arch.osvw.length; | 
 | 		break; | 
 | 	case MSR_AMD64_OSVW_STATUS: | 
 | 		if (!guest_cpuid_has_osvw(vcpu)) | 
 | 			return 1; | 
 | 		data = vcpu->arch.osvw.status; | 
 | 		break; | 
 | 	default: | 
 | 		if (kvm_pmu_msr(vcpu, msr)) | 
 | 			return kvm_pmu_get_msr(vcpu, msr, pdata); | 
 | 		if (!ignore_msrs) { | 
 | 			vcpu_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr); | 
 | 			return 1; | 
 | 		} else { | 
 | 			vcpu_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr); | 
 | 			data = 0; | 
 | 		} | 
 | 		break; | 
 | 	} | 
 | 	*pdata = data; | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | 
 |  | 
 | /* | 
 |  * Read or write a bunch of msrs. All parameters are kernel addresses. | 
 |  * | 
 |  * @return number of msrs set successfully. | 
 |  */ | 
 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | 
 | 		    struct kvm_msr_entry *entries, | 
 | 		    int (*do_msr)(struct kvm_vcpu *vcpu, | 
 | 				  unsigned index, u64 *data)) | 
 | { | 
 | 	int i, idx; | 
 |  | 
 | 	idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 	for (i = 0; i < msrs->nmsrs; ++i) | 
 | 		if (do_msr(vcpu, entries[i].index, &entries[i].data)) | 
 | 			break; | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 |  | 
 | 	return i; | 
 | } | 
 |  | 
 | /* | 
 |  * Read or write a bunch of msrs. Parameters are user addresses. | 
 |  * | 
 |  * @return number of msrs set successfully. | 
 |  */ | 
 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | 
 | 		  int (*do_msr)(struct kvm_vcpu *vcpu, | 
 | 				unsigned index, u64 *data), | 
 | 		  int writeback) | 
 | { | 
 | 	struct kvm_msrs msrs; | 
 | 	struct kvm_msr_entry *entries; | 
 | 	int r, n; | 
 | 	unsigned size; | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (copy_from_user(&msrs, user_msrs, sizeof msrs)) | 
 | 		goto out; | 
 |  | 
 | 	r = -E2BIG; | 
 | 	if (msrs.nmsrs >= MAX_IO_MSRS) | 
 | 		goto out; | 
 |  | 
 | 	size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; | 
 | 	entries = memdup_user(user_msrs->entries, size); | 
 | 	if (IS_ERR(entries)) { | 
 | 		r = PTR_ERR(entries); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	r = n = __msr_io(vcpu, &msrs, entries, do_msr); | 
 | 	if (r < 0) | 
 | 		goto out_free; | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (writeback && copy_to_user(user_msrs->entries, entries, size)) | 
 | 		goto out_free; | 
 |  | 
 | 	r = n; | 
 |  | 
 | out_free: | 
 | 	kfree(entries); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_dev_ioctl_check_extension(long ext) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	switch (ext) { | 
 | 	case KVM_CAP_IRQCHIP: | 
 | 	case KVM_CAP_HLT: | 
 | 	case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | 
 | 	case KVM_CAP_SET_TSS_ADDR: | 
 | 	case KVM_CAP_EXT_CPUID: | 
 | 	case KVM_CAP_CLOCKSOURCE: | 
 | 	case KVM_CAP_PIT: | 
 | 	case KVM_CAP_NOP_IO_DELAY: | 
 | 	case KVM_CAP_MP_STATE: | 
 | 	case KVM_CAP_SYNC_MMU: | 
 | 	case KVM_CAP_USER_NMI: | 
 | 	case KVM_CAP_REINJECT_CONTROL: | 
 | 	case KVM_CAP_IRQ_INJECT_STATUS: | 
 | 	case KVM_CAP_IRQFD: | 
 | 	case KVM_CAP_IOEVENTFD: | 
 | 	case KVM_CAP_PIT2: | 
 | 	case KVM_CAP_PIT_STATE2: | 
 | 	case KVM_CAP_SET_IDENTITY_MAP_ADDR: | 
 | 	case KVM_CAP_XEN_HVM: | 
 | 	case KVM_CAP_ADJUST_CLOCK: | 
 | 	case KVM_CAP_VCPU_EVENTS: | 
 | 	case KVM_CAP_HYPERV: | 
 | 	case KVM_CAP_HYPERV_VAPIC: | 
 | 	case KVM_CAP_HYPERV_SPIN: | 
 | 	case KVM_CAP_PCI_SEGMENT: | 
 | 	case KVM_CAP_DEBUGREGS: | 
 | 	case KVM_CAP_X86_ROBUST_SINGLESTEP: | 
 | 	case KVM_CAP_XSAVE: | 
 | 	case KVM_CAP_ASYNC_PF: | 
 | 	case KVM_CAP_GET_TSC_KHZ: | 
 | 	case KVM_CAP_KVMCLOCK_CTRL: | 
 | 	case KVM_CAP_READONLY_MEM: | 
 | #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT | 
 | 	case KVM_CAP_ASSIGN_DEV_IRQ: | 
 | 	case KVM_CAP_PCI_2_3: | 
 | #endif | 
 | 		r = 1; | 
 | 		break; | 
 | 	case KVM_CAP_COALESCED_MMIO: | 
 | 		r = KVM_COALESCED_MMIO_PAGE_OFFSET; | 
 | 		break; | 
 | 	case KVM_CAP_VAPIC: | 
 | 		r = !kvm_x86_ops->cpu_has_accelerated_tpr(); | 
 | 		break; | 
 | 	case KVM_CAP_NR_VCPUS: | 
 | 		r = KVM_SOFT_MAX_VCPUS; | 
 | 		break; | 
 | 	case KVM_CAP_MAX_VCPUS: | 
 | 		r = KVM_MAX_VCPUS; | 
 | 		break; | 
 | 	case KVM_CAP_NR_MEMSLOTS: | 
 | 		r = KVM_USER_MEM_SLOTS; | 
 | 		break; | 
 | 	case KVM_CAP_PV_MMU:	/* obsolete */ | 
 | 		r = 0; | 
 | 		break; | 
 | #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT | 
 | 	case KVM_CAP_IOMMU: | 
 | 		r = iommu_present(&pci_bus_type); | 
 | 		break; | 
 | #endif | 
 | 	case KVM_CAP_MCE: | 
 | 		r = KVM_MAX_MCE_BANKS; | 
 | 		break; | 
 | 	case KVM_CAP_XCRS: | 
 | 		r = cpu_has_xsave; | 
 | 		break; | 
 | 	case KVM_CAP_TSC_CONTROL: | 
 | 		r = kvm_has_tsc_control; | 
 | 		break; | 
 | 	case KVM_CAP_TSC_DEADLINE_TIMER: | 
 | 		r = boot_cpu_has(X86_FEATURE_TSC_DEADLINE_TIMER); | 
 | 		break; | 
 | 	default: | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	return r; | 
 |  | 
 | } | 
 |  | 
 | long kvm_arch_dev_ioctl(struct file *filp, | 
 | 			unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	long r; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_GET_MSR_INDEX_LIST: { | 
 | 		struct kvm_msr_list __user *user_msr_list = argp; | 
 | 		struct kvm_msr_list msr_list; | 
 | 		unsigned n; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list)) | 
 | 			goto out; | 
 | 		n = msr_list.nmsrs; | 
 | 		msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs); | 
 | 		if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list)) | 
 | 			goto out; | 
 | 		r = -E2BIG; | 
 | 		if (n < msr_list.nmsrs) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(user_msr_list->indices, &msrs_to_save, | 
 | 				 num_msrs_to_save * sizeof(u32))) | 
 | 			goto out; | 
 | 		if (copy_to_user(user_msr_list->indices + num_msrs_to_save, | 
 | 				 &emulated_msrs, | 
 | 				 ARRAY_SIZE(emulated_msrs) * sizeof(u32))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_SUPPORTED_CPUID: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = kvm_dev_ioctl_get_supported_cpuid(&cpuid, | 
 | 						      cpuid_arg->entries); | 
 | 		if (r) | 
 | 			goto out; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_X86_GET_MCE_CAP_SUPPORTED: { | 
 | 		u64 mce_cap; | 
 |  | 
 | 		mce_cap = KVM_MCE_CAP_SUPPORTED; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &mce_cap, sizeof mce_cap)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static void wbinvd_ipi(void *garbage) | 
 | { | 
 | 	wbinvd(); | 
 | } | 
 |  | 
 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->kvm->arch.iommu_domain && | 
 | 		!(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY); | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) | 
 | { | 
 | 	/* Address WBINVD may be executed by guest */ | 
 | 	if (need_emulate_wbinvd(vcpu)) { | 
 | 		if (kvm_x86_ops->has_wbinvd_exit()) | 
 | 			cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | 
 | 		else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | 
 | 			smp_call_function_single(vcpu->cpu, | 
 | 					wbinvd_ipi, NULL, 1); | 
 | 	} | 
 |  | 
 | 	kvm_x86_ops->vcpu_load(vcpu, cpu); | 
 |  | 
 | 	/* Apply any externally detected TSC adjustments (due to suspend) */ | 
 | 	if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | 
 | 		adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | 
 | 		vcpu->arch.tsc_offset_adjustment = 0; | 
 | 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | 
 | 	} | 
 |  | 
 | 	if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) { | 
 | 		s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : | 
 | 				native_read_tsc() - vcpu->arch.last_host_tsc; | 
 | 		if (tsc_delta < 0) | 
 | 			mark_tsc_unstable("KVM discovered backwards TSC"); | 
 | 		if (check_tsc_unstable()) { | 
 | 			u64 offset = kvm_x86_ops->compute_tsc_offset(vcpu, | 
 | 						vcpu->arch.last_guest_tsc); | 
 | 			kvm_x86_ops->write_tsc_offset(vcpu, offset); | 
 | 			vcpu->arch.tsc_catchup = 1; | 
 | 		} | 
 | 		/* | 
 | 		 * On a host with synchronized TSC, there is no need to update | 
 | 		 * kvmclock on vcpu->cpu migration | 
 | 		 */ | 
 | 		if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | 
 | 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 		if (vcpu->cpu != cpu) | 
 | 			kvm_migrate_timers(vcpu); | 
 | 		vcpu->cpu = cpu; | 
 | 	} | 
 |  | 
 | 	accumulate_steal_time(vcpu); | 
 | 	kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_x86_ops->vcpu_put(vcpu); | 
 | 	kvm_put_guest_fpu(vcpu); | 
 | 	vcpu->arch.last_host_tsc = native_read_tsc(); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_lapic_state *s) | 
 | { | 
 | 	kvm_x86_ops->sync_pir_to_irr(vcpu); | 
 | 	memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_lapic_state *s) | 
 | { | 
 | 	kvm_apic_post_state_restore(vcpu, s); | 
 | 	update_cr8_intercept(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_interrupt *irq) | 
 | { | 
 | 	if (irq->irq >= KVM_NR_INTERRUPTS) | 
 | 		return -EINVAL; | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	kvm_queue_interrupt(vcpu, irq->irq, false); | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_inject_nmi(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, | 
 | 					   struct kvm_tpr_access_ctl *tac) | 
 | { | 
 | 	if (tac->flags) | 
 | 		return -EINVAL; | 
 | 	vcpu->arch.tpr_access_reporting = !!tac->enabled; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, | 
 | 					u64 mcg_cap) | 
 | { | 
 | 	int r; | 
 | 	unsigned bank_num = mcg_cap & 0xff, bank; | 
 |  | 
 | 	r = -EINVAL; | 
 | 	if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS) | 
 | 		goto out; | 
 | 	if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000)) | 
 | 		goto out; | 
 | 	r = 0; | 
 | 	vcpu->arch.mcg_cap = mcg_cap; | 
 | 	/* Init IA32_MCG_CTL to all 1s */ | 
 | 	if (mcg_cap & MCG_CTL_P) | 
 | 		vcpu->arch.mcg_ctl = ~(u64)0; | 
 | 	/* Init IA32_MCi_CTL to all 1s */ | 
 | 	for (bank = 0; bank < bank_num; bank++) | 
 | 		vcpu->arch.mce_banks[bank*4] = ~(u64)0; | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, | 
 | 				      struct kvm_x86_mce *mce) | 
 | { | 
 | 	u64 mcg_cap = vcpu->arch.mcg_cap; | 
 | 	unsigned bank_num = mcg_cap & 0xff; | 
 | 	u64 *banks = vcpu->arch.mce_banks; | 
 |  | 
 | 	if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | 
 | 		return -EINVAL; | 
 | 	/* | 
 | 	 * if IA32_MCG_CTL is not all 1s, the uncorrected error | 
 | 	 * reporting is disabled | 
 | 	 */ | 
 | 	if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | 
 | 	    vcpu->arch.mcg_ctl != ~(u64)0) | 
 | 		return 0; | 
 | 	banks += 4 * mce->bank; | 
 | 	/* | 
 | 	 * if IA32_MCi_CTL is not all 1s, the uncorrected error | 
 | 	 * reporting is disabled for the bank | 
 | 	 */ | 
 | 	if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | 
 | 		return 0; | 
 | 	if (mce->status & MCI_STATUS_UC) { | 
 | 		if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | 
 | 		    !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) { | 
 | 			kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | 
 | 			return 0; | 
 | 		} | 
 | 		if (banks[1] & MCI_STATUS_VAL) | 
 | 			mce->status |= MCI_STATUS_OVER; | 
 | 		banks[2] = mce->addr; | 
 | 		banks[3] = mce->misc; | 
 | 		vcpu->arch.mcg_status = mce->mcg_status; | 
 | 		banks[1] = mce->status; | 
 | 		kvm_queue_exception(vcpu, MC_VECTOR); | 
 | 	} else if (!(banks[1] & MCI_STATUS_VAL) | 
 | 		   || !(banks[1] & MCI_STATUS_UC)) { | 
 | 		if (banks[1] & MCI_STATUS_VAL) | 
 | 			mce->status |= MCI_STATUS_OVER; | 
 | 		banks[2] = mce->addr; | 
 | 		banks[3] = mce->misc; | 
 | 		banks[1] = mce->status; | 
 | 	} else | 
 | 		banks[1] |= MCI_STATUS_OVER; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, | 
 | 					       struct kvm_vcpu_events *events) | 
 | { | 
 | 	process_nmi(vcpu); | 
 | 	events->exception.injected = | 
 | 		vcpu->arch.exception.pending && | 
 | 		!kvm_exception_is_soft(vcpu->arch.exception.nr); | 
 | 	events->exception.nr = vcpu->arch.exception.nr; | 
 | 	events->exception.has_error_code = vcpu->arch.exception.has_error_code; | 
 | 	events->exception.pad = 0; | 
 | 	events->exception.error_code = vcpu->arch.exception.error_code; | 
 |  | 
 | 	events->interrupt.injected = | 
 | 		vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft; | 
 | 	events->interrupt.nr = vcpu->arch.interrupt.nr; | 
 | 	events->interrupt.soft = 0; | 
 | 	events->interrupt.shadow = | 
 | 		kvm_x86_ops->get_interrupt_shadow(vcpu, | 
 | 			KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI); | 
 |  | 
 | 	events->nmi.injected = vcpu->arch.nmi_injected; | 
 | 	events->nmi.pending = vcpu->arch.nmi_pending != 0; | 
 | 	events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu); | 
 | 	events->nmi.pad = 0; | 
 |  | 
 | 	events->sipi_vector = 0; /* never valid when reporting to user space */ | 
 |  | 
 | 	events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING | 
 | 			 | KVM_VCPUEVENT_VALID_SHADOW); | 
 | 	memset(&events->reserved, 0, sizeof(events->reserved)); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, | 
 | 					      struct kvm_vcpu_events *events) | 
 | { | 
 | 	if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING | 
 | 			      | KVM_VCPUEVENT_VALID_SIPI_VECTOR | 
 | 			      | KVM_VCPUEVENT_VALID_SHADOW)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	process_nmi(vcpu); | 
 | 	vcpu->arch.exception.pending = events->exception.injected; | 
 | 	vcpu->arch.exception.nr = events->exception.nr; | 
 | 	vcpu->arch.exception.has_error_code = events->exception.has_error_code; | 
 | 	vcpu->arch.exception.error_code = events->exception.error_code; | 
 |  | 
 | 	vcpu->arch.interrupt.pending = events->interrupt.injected; | 
 | 	vcpu->arch.interrupt.nr = events->interrupt.nr; | 
 | 	vcpu->arch.interrupt.soft = events->interrupt.soft; | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) | 
 | 		kvm_x86_ops->set_interrupt_shadow(vcpu, | 
 | 						  events->interrupt.shadow); | 
 |  | 
 | 	vcpu->arch.nmi_injected = events->nmi.injected; | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) | 
 | 		vcpu->arch.nmi_pending = events->nmi.pending; | 
 | 	kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked); | 
 |  | 
 | 	if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && | 
 | 	    kvm_vcpu_has_lapic(vcpu)) | 
 | 		vcpu->arch.apic->sipi_vector = events->sipi_vector; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, | 
 | 					     struct kvm_debugregs *dbgregs) | 
 | { | 
 | 	memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db)); | 
 | 	dbgregs->dr6 = vcpu->arch.dr6; | 
 | 	dbgregs->dr7 = vcpu->arch.dr7; | 
 | 	dbgregs->flags = 0; | 
 | 	memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved)); | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | 
 | 					    struct kvm_debugregs *dbgregs) | 
 | { | 
 | 	if (dbgregs->flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db)); | 
 | 	vcpu->arch.dr6 = dbgregs->dr6; | 
 | 	vcpu->arch.dr7 = dbgregs->dr7; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, | 
 | 					 struct kvm_xsave *guest_xsave) | 
 | { | 
 | 	if (cpu_has_xsave) | 
 | 		memcpy(guest_xsave->region, | 
 | 			&vcpu->arch.guest_fpu.state->xsave, | 
 | 			xstate_size); | 
 | 	else { | 
 | 		memcpy(guest_xsave->region, | 
 | 			&vcpu->arch.guest_fpu.state->fxsave, | 
 | 			sizeof(struct i387_fxsave_struct)); | 
 | 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] = | 
 | 			XSTATE_FPSSE; | 
 | 	} | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, | 
 | 					struct kvm_xsave *guest_xsave) | 
 | { | 
 | 	u64 xstate_bv = | 
 | 		*(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)]; | 
 |  | 
 | 	if (cpu_has_xsave) | 
 | 		memcpy(&vcpu->arch.guest_fpu.state->xsave, | 
 | 			guest_xsave->region, xstate_size); | 
 | 	else { | 
 | 		if (xstate_bv & ~XSTATE_FPSSE) | 
 | 			return -EINVAL; | 
 | 		memcpy(&vcpu->arch.guest_fpu.state->fxsave, | 
 | 			guest_xsave->region, sizeof(struct i387_fxsave_struct)); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, | 
 | 					struct kvm_xcrs *guest_xcrs) | 
 | { | 
 | 	if (!cpu_has_xsave) { | 
 | 		guest_xcrs->nr_xcrs = 0; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	guest_xcrs->nr_xcrs = 1; | 
 | 	guest_xcrs->flags = 0; | 
 | 	guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | 
 | 	guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | 
 | } | 
 |  | 
 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | 
 | 				       struct kvm_xcrs *guest_xcrs) | 
 | { | 
 | 	int i, r = 0; | 
 |  | 
 | 	if (!cpu_has_xsave) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | 
 | 		return -EINVAL; | 
 |  | 
 | 	for (i = 0; i < guest_xcrs->nr_xcrs; i++) | 
 | 		/* Only support XCR0 currently */ | 
 | 		if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) { | 
 | 			r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, | 
 | 				guest_xcrs->xcrs[0].value); | 
 | 			break; | 
 | 		} | 
 | 	if (r) | 
 | 		r = -EINVAL; | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * kvm_set_guest_paused() indicates to the guest kernel that it has been | 
 |  * stopped by the hypervisor.  This function will be called from the host only. | 
 |  * EINVAL is returned when the host attempts to set the flag for a guest that | 
 |  * does not support pv clocks. | 
 |  */ | 
 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!vcpu->arch.pv_time_enabled) | 
 | 		return -EINVAL; | 
 | 	vcpu->arch.pvclock_set_guest_stopped_request = true; | 
 | 	kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | long kvm_arch_vcpu_ioctl(struct file *filp, | 
 | 			 unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int r; | 
 | 	union { | 
 | 		struct kvm_lapic_state *lapic; | 
 | 		struct kvm_xsave *xsave; | 
 | 		struct kvm_xcrs *xcrs; | 
 | 		void *buffer; | 
 | 	} u; | 
 |  | 
 | 	u.buffer = NULL; | 
 | 	switch (ioctl) { | 
 | 	case KVM_GET_LAPIC: { | 
 | 		r = -EINVAL; | 
 | 		if (!vcpu->arch.apic) | 
 | 			goto out; | 
 | 		u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); | 
 |  | 
 | 		r = -ENOMEM; | 
 | 		if (!u.lapic) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_LAPIC: { | 
 | 		r = -EINVAL; | 
 | 		if (!vcpu->arch.apic) | 
 | 			goto out; | 
 | 		u.lapic = memdup_user(argp, sizeof(*u.lapic)); | 
 | 		if (IS_ERR(u.lapic)) | 
 | 			return PTR_ERR(u.lapic); | 
 |  | 
 | 		r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_INTERRUPT: { | 
 | 		struct kvm_interrupt irq; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&irq, argp, sizeof irq)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_NMI: { | 
 | 		r = kvm_vcpu_ioctl_nmi(vcpu); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_CPUID: { | 
 | 		struct kvm_cpuid __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_CPUID2: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | 
 | 					      cpuid_arg->entries); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_CPUID2: { | 
 | 		struct kvm_cpuid2 __user *cpuid_arg = argp; | 
 | 		struct kvm_cpuid2 cpuid; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | 
 | 					      cpuid_arg->entries); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_MSRS: | 
 | 		r = msr_io(vcpu, argp, kvm_get_msr, 1); | 
 | 		break; | 
 | 	case KVM_SET_MSRS: | 
 | 		r = msr_io(vcpu, argp, do_set_msr, 0); | 
 | 		break; | 
 | 	case KVM_TPR_ACCESS_REPORTING: { | 
 | 		struct kvm_tpr_access_ctl tac; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&tac, argp, sizeof tac)) | 
 | 			goto out; | 
 | 		r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &tac, sizeof tac)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	}; | 
 | 	case KVM_SET_VAPIC_ADDR: { | 
 | 		struct kvm_vapic_addr va; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (!irqchip_in_kernel(vcpu->kvm)) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&va, argp, sizeof va)) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_X86_SETUP_MCE: { | 
 | 		u64 mcg_cap; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_X86_SET_MCE: { | 
 | 		struct kvm_x86_mce mce; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&mce, argp, sizeof mce)) | 
 | 			goto out; | 
 | 		r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_VCPU_EVENTS: { | 
 | 		struct kvm_vcpu_events events; | 
 |  | 
 | 		kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_VCPU_EVENTS: { | 
 | 		struct kvm_vcpu_events events; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | 
 | 			break; | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_DEBUGREGS: { | 
 | 		struct kvm_debugregs dbgregs; | 
 |  | 
 | 		kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &dbgregs, | 
 | 				 sizeof(struct kvm_debugregs))) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_DEBUGREGS: { | 
 | 		struct kvm_debugregs dbgregs; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&dbgregs, argp, | 
 | 				   sizeof(struct kvm_debugregs))) | 
 | 			break; | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_XSAVE: { | 
 | 		u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); | 
 | 		r = -ENOMEM; | 
 | 		if (!u.xsave) | 
 | 			break; | 
 |  | 
 | 		kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_XSAVE: { | 
 | 		u.xsave = memdup_user(argp, sizeof(*u.xsave)); | 
 | 		if (IS_ERR(u.xsave)) | 
 | 			return PTR_ERR(u.xsave); | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_XCRS: { | 
 | 		u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); | 
 | 		r = -ENOMEM; | 
 | 		if (!u.xcrs) | 
 | 			break; | 
 |  | 
 | 		kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, u.xcrs, | 
 | 				 sizeof(struct kvm_xcrs))) | 
 | 			break; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_XCRS: { | 
 | 		u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); | 
 | 		if (IS_ERR(u.xcrs)) | 
 | 			return PTR_ERR(u.xcrs); | 
 |  | 
 | 		r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_TSC_KHZ: { | 
 | 		u32 user_tsc_khz; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		user_tsc_khz = (u32)arg; | 
 |  | 
 | 		if (user_tsc_khz >= kvm_max_guest_tsc_khz) | 
 | 			goto out; | 
 |  | 
 | 		if (user_tsc_khz == 0) | 
 | 			user_tsc_khz = tsc_khz; | 
 |  | 
 | 		kvm_set_tsc_khz(vcpu, user_tsc_khz); | 
 |  | 
 | 		r = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	case KVM_GET_TSC_KHZ: { | 
 | 		r = vcpu->arch.virtual_tsc_khz; | 
 | 		goto out; | 
 | 	} | 
 | 	case KVM_KVMCLOCK_CTRL: { | 
 | 		r = kvm_set_guest_paused(vcpu); | 
 | 		goto out; | 
 | 	} | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	kfree(u.buffer); | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) | 
 | { | 
 | 	return VM_FAULT_SIGBUS; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	if (addr > (unsigned int)(-3 * PAGE_SIZE)) | 
 | 		return -EINVAL; | 
 | 	ret = kvm_x86_ops->set_tss_addr(kvm, addr); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, | 
 | 					      u64 ident_addr) | 
 | { | 
 | 	kvm->arch.ept_identity_map_addr = ident_addr; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, | 
 | 					  u32 kvm_nr_mmu_pages) | 
 | { | 
 | 	if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | 
 | 		return -EINVAL; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 	kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | 
 | 	kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; | 
 |  | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm) | 
 | { | 
 | 	return kvm->arch.n_max_mmu_pages; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = 0; | 
 | 	switch (chip->chip_id) { | 
 | 	case KVM_IRQCHIP_PIC_MASTER: | 
 | 		memcpy(&chip->chip.pic, | 
 | 			&pic_irqchip(kvm)->pics[0], | 
 | 			sizeof(struct kvm_pic_state)); | 
 | 		break; | 
 | 	case KVM_IRQCHIP_PIC_SLAVE: | 
 | 		memcpy(&chip->chip.pic, | 
 | 			&pic_irqchip(kvm)->pics[1], | 
 | 			sizeof(struct kvm_pic_state)); | 
 | 		break; | 
 | 	case KVM_IRQCHIP_IOAPIC: | 
 | 		r = kvm_get_ioapic(kvm, &chip->chip.ioapic); | 
 | 		break; | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = 0; | 
 | 	switch (chip->chip_id) { | 
 | 	case KVM_IRQCHIP_PIC_MASTER: | 
 | 		spin_lock(&pic_irqchip(kvm)->lock); | 
 | 		memcpy(&pic_irqchip(kvm)->pics[0], | 
 | 			&chip->chip.pic, | 
 | 			sizeof(struct kvm_pic_state)); | 
 | 		spin_unlock(&pic_irqchip(kvm)->lock); | 
 | 		break; | 
 | 	case KVM_IRQCHIP_PIC_SLAVE: | 
 | 		spin_lock(&pic_irqchip(kvm)->lock); | 
 | 		memcpy(&pic_irqchip(kvm)->pics[1], | 
 | 			&chip->chip.pic, | 
 | 			sizeof(struct kvm_pic_state)); | 
 | 		spin_unlock(&pic_irqchip(kvm)->lock); | 
 | 		break; | 
 | 	case KVM_IRQCHIP_IOAPIC: | 
 | 		r = kvm_set_ioapic(kvm, &chip->chip.ioapic); | 
 | 		break; | 
 | 	default: | 
 | 		r = -EINVAL; | 
 | 		break; | 
 | 	} | 
 | 	kvm_pic_update_irq(pic_irqchip(kvm)); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	mutex_lock(&kvm->arch.vpit->pit_state.lock); | 
 | 	memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state)); | 
 | 	mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	mutex_lock(&kvm->arch.vpit->pit_state.lock); | 
 | 	memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state)); | 
 | 	kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0); | 
 | 	mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | 
 | { | 
 | 	int r = 0; | 
 |  | 
 | 	mutex_lock(&kvm->arch.vpit->pit_state.lock); | 
 | 	memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, | 
 | 		sizeof(ps->channels)); | 
 | 	ps->flags = kvm->arch.vpit->pit_state.flags; | 
 | 	mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 
 | 	memset(&ps->reserved, 0, sizeof(ps->reserved)); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | 
 | { | 
 | 	int r = 0, start = 0; | 
 | 	u32 prev_legacy, cur_legacy; | 
 | 	mutex_lock(&kvm->arch.vpit->pit_state.lock); | 
 | 	prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; | 
 | 	cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; | 
 | 	if (!prev_legacy && cur_legacy) | 
 | 		start = 1; | 
 | 	memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels, | 
 | 	       sizeof(kvm->arch.vpit->pit_state.channels)); | 
 | 	kvm->arch.vpit->pit_state.flags = ps->flags; | 
 | 	kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start); | 
 | 	mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, | 
 | 				 struct kvm_reinject_control *control) | 
 | { | 
 | 	if (!kvm->arch.vpit) | 
 | 		return -ENXIO; | 
 | 	mutex_lock(&kvm->arch.vpit->pit_state.lock); | 
 | 	kvm->arch.vpit->pit_state.reinject = control->pit_reinject; | 
 | 	mutex_unlock(&kvm->arch.vpit->pit_state.lock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot | 
 |  * @kvm: kvm instance | 
 |  * @log: slot id and address to which we copy the log | 
 |  * | 
 |  * We need to keep it in mind that VCPU threads can write to the bitmap | 
 |  * concurrently.  So, to avoid losing data, we keep the following order for | 
 |  * each bit: | 
 |  * | 
 |  *   1. Take a snapshot of the bit and clear it if needed. | 
 |  *   2. Write protect the corresponding page. | 
 |  *   3. Flush TLB's if needed. | 
 |  *   4. Copy the snapshot to the userspace. | 
 |  * | 
 |  * Between 2 and 3, the guest may write to the page using the remaining TLB | 
 |  * entry.  This is not a problem because the page will be reported dirty at | 
 |  * step 4 using the snapshot taken before and step 3 ensures that successive | 
 |  * writes will be logged for the next call. | 
 |  */ | 
 | int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log) | 
 | { | 
 | 	int r; | 
 | 	struct kvm_memory_slot *memslot; | 
 | 	unsigned long n, i; | 
 | 	unsigned long *dirty_bitmap; | 
 | 	unsigned long *dirty_bitmap_buffer; | 
 | 	bool is_dirty = false; | 
 |  | 
 | 	mutex_lock(&kvm->slots_lock); | 
 |  | 
 | 	r = -EINVAL; | 
 | 	if (log->slot >= KVM_USER_MEM_SLOTS) | 
 | 		goto out; | 
 |  | 
 | 	memslot = id_to_memslot(kvm->memslots, log->slot); | 
 |  | 
 | 	dirty_bitmap = memslot->dirty_bitmap; | 
 | 	r = -ENOENT; | 
 | 	if (!dirty_bitmap) | 
 | 		goto out; | 
 |  | 
 | 	n = kvm_dirty_bitmap_bytes(memslot); | 
 |  | 
 | 	dirty_bitmap_buffer = dirty_bitmap + n / sizeof(long); | 
 | 	memset(dirty_bitmap_buffer, 0, n); | 
 |  | 
 | 	spin_lock(&kvm->mmu_lock); | 
 |  | 
 | 	for (i = 0; i < n / sizeof(long); i++) { | 
 | 		unsigned long mask; | 
 | 		gfn_t offset; | 
 |  | 
 | 		if (!dirty_bitmap[i]) | 
 | 			continue; | 
 |  | 
 | 		is_dirty = true; | 
 |  | 
 | 		mask = xchg(&dirty_bitmap[i], 0); | 
 | 		dirty_bitmap_buffer[i] = mask; | 
 |  | 
 | 		offset = i * BITS_PER_LONG; | 
 | 		kvm_mmu_write_protect_pt_masked(kvm, memslot, offset, mask); | 
 | 	} | 
 | 	if (is_dirty) | 
 | 		kvm_flush_remote_tlbs(kvm); | 
 |  | 
 | 	spin_unlock(&kvm->mmu_lock); | 
 |  | 
 | 	r = -EFAULT; | 
 | 	if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n)) | 
 | 		goto out; | 
 |  | 
 | 	r = 0; | 
 | out: | 
 | 	mutex_unlock(&kvm->slots_lock); | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, | 
 | 			bool line_status) | 
 | { | 
 | 	if (!irqchip_in_kernel(kvm)) | 
 | 		return -ENXIO; | 
 |  | 
 | 	irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | 
 | 					irq_event->irq, irq_event->level, | 
 | 					line_status); | 
 | 	return 0; | 
 | } | 
 |  | 
 | long kvm_arch_vm_ioctl(struct file *filp, | 
 | 		       unsigned int ioctl, unsigned long arg) | 
 | { | 
 | 	struct kvm *kvm = filp->private_data; | 
 | 	void __user *argp = (void __user *)arg; | 
 | 	int r = -ENOTTY; | 
 | 	/* | 
 | 	 * This union makes it completely explicit to gcc-3.x | 
 | 	 * that these two variables' stack usage should be | 
 | 	 * combined, not added together. | 
 | 	 */ | 
 | 	union { | 
 | 		struct kvm_pit_state ps; | 
 | 		struct kvm_pit_state2 ps2; | 
 | 		struct kvm_pit_config pit_config; | 
 | 	} u; | 
 |  | 
 | 	switch (ioctl) { | 
 | 	case KVM_SET_TSS_ADDR: | 
 | 		r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | 
 | 		break; | 
 | 	case KVM_SET_IDENTITY_MAP_ADDR: { | 
 | 		u64 ident_addr; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&ident_addr, argp, sizeof ident_addr)) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_NR_MMU_PAGES: | 
 | 		r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | 
 | 		break; | 
 | 	case KVM_GET_NR_MMU_PAGES: | 
 | 		r = kvm_vm_ioctl_get_nr_mmu_pages(kvm); | 
 | 		break; | 
 | 	case KVM_CREATE_IRQCHIP: { | 
 | 		struct kvm_pic *vpic; | 
 |  | 
 | 		mutex_lock(&kvm->lock); | 
 | 		r = -EEXIST; | 
 | 		if (kvm->arch.vpic) | 
 | 			goto create_irqchip_unlock; | 
 | 		r = -EINVAL; | 
 | 		if (atomic_read(&kvm->online_vcpus)) | 
 | 			goto create_irqchip_unlock; | 
 | 		r = -ENOMEM; | 
 | 		vpic = kvm_create_pic(kvm); | 
 | 		if (vpic) { | 
 | 			r = kvm_ioapic_init(kvm); | 
 | 			if (r) { | 
 | 				mutex_lock(&kvm->slots_lock); | 
 | 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | 
 | 							  &vpic->dev_master); | 
 | 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | 
 | 							  &vpic->dev_slave); | 
 | 				kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS, | 
 | 							  &vpic->dev_eclr); | 
 | 				mutex_unlock(&kvm->slots_lock); | 
 | 				kfree(vpic); | 
 | 				goto create_irqchip_unlock; | 
 | 			} | 
 | 		} else | 
 | 			goto create_irqchip_unlock; | 
 | 		smp_wmb(); | 
 | 		kvm->arch.vpic = vpic; | 
 | 		smp_wmb(); | 
 | 		r = kvm_setup_default_irq_routing(kvm); | 
 | 		if (r) { | 
 | 			mutex_lock(&kvm->slots_lock); | 
 | 			mutex_lock(&kvm->irq_lock); | 
 | 			kvm_ioapic_destroy(kvm); | 
 | 			kvm_destroy_pic(kvm); | 
 | 			mutex_unlock(&kvm->irq_lock); | 
 | 			mutex_unlock(&kvm->slots_lock); | 
 | 		} | 
 | 	create_irqchip_unlock: | 
 | 		mutex_unlock(&kvm->lock); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_CREATE_PIT: | 
 | 		u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; | 
 | 		goto create_pit; | 
 | 	case KVM_CREATE_PIT2: | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&u.pit_config, argp, | 
 | 				   sizeof(struct kvm_pit_config))) | 
 | 			goto out; | 
 | 	create_pit: | 
 | 		mutex_lock(&kvm->slots_lock); | 
 | 		r = -EEXIST; | 
 | 		if (kvm->arch.vpit) | 
 | 			goto create_pit_unlock; | 
 | 		r = -ENOMEM; | 
 | 		kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); | 
 | 		if (kvm->arch.vpit) | 
 | 			r = 0; | 
 | 	create_pit_unlock: | 
 | 		mutex_unlock(&kvm->slots_lock); | 
 | 		break; | 
 | 	case KVM_GET_IRQCHIP: { | 
 | 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 
 | 		struct kvm_irqchip *chip; | 
 |  | 
 | 		chip = memdup_user(argp, sizeof(*chip)); | 
 | 		if (IS_ERR(chip)) { | 
 | 			r = PTR_ERR(chip); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		r = -ENXIO; | 
 | 		if (!irqchip_in_kernel(kvm)) | 
 | 			goto get_irqchip_out; | 
 | 		r = kvm_vm_ioctl_get_irqchip(kvm, chip); | 
 | 		if (r) | 
 | 			goto get_irqchip_out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, chip, sizeof *chip)) | 
 | 			goto get_irqchip_out; | 
 | 		r = 0; | 
 | 	get_irqchip_out: | 
 | 		kfree(chip); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_IRQCHIP: { | 
 | 		/* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | 
 | 		struct kvm_irqchip *chip; | 
 |  | 
 | 		chip = memdup_user(argp, sizeof(*chip)); | 
 | 		if (IS_ERR(chip)) { | 
 | 			r = PTR_ERR(chip); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		r = -ENXIO; | 
 | 		if (!irqchip_in_kernel(kvm)) | 
 | 			goto set_irqchip_out; | 
 | 		r = kvm_vm_ioctl_set_irqchip(kvm, chip); | 
 | 		if (r) | 
 | 			goto set_irqchip_out; | 
 | 		r = 0; | 
 | 	set_irqchip_out: | 
 | 		kfree(chip); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_PIT: { | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_get_pit(kvm, &u.ps); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_PIT: { | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&u.ps, argp, sizeof u.ps)) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_set_pit(kvm, &u.ps); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_PIT2: { | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | 
 | 		if (r) | 
 | 			goto out; | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_PIT2: { | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | 
 | 			goto out; | 
 | 		r = -ENXIO; | 
 | 		if (!kvm->arch.vpit) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_REINJECT_CONTROL: { | 
 | 		struct kvm_reinject_control control; | 
 | 		r =  -EFAULT; | 
 | 		if (copy_from_user(&control, argp, sizeof(control))) | 
 | 			goto out; | 
 | 		r = kvm_vm_ioctl_reinject(kvm, &control); | 
 | 		break; | 
 | 	} | 
 | 	case KVM_XEN_HVM_CONFIG: { | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&kvm->arch.xen_hvm_config, argp, | 
 | 				   sizeof(struct kvm_xen_hvm_config))) | 
 | 			goto out; | 
 | 		r = -EINVAL; | 
 | 		if (kvm->arch.xen_hvm_config.flags) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_SET_CLOCK: { | 
 | 		struct kvm_clock_data user_ns; | 
 | 		u64 now_ns; | 
 | 		s64 delta; | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_from_user(&user_ns, argp, sizeof(user_ns))) | 
 | 			goto out; | 
 |  | 
 | 		r = -EINVAL; | 
 | 		if (user_ns.flags) | 
 | 			goto out; | 
 |  | 
 | 		r = 0; | 
 | 		local_irq_disable(); | 
 | 		now_ns = get_kernel_ns(); | 
 | 		delta = user_ns.clock - now_ns; | 
 | 		local_irq_enable(); | 
 | 		kvm->arch.kvmclock_offset = delta; | 
 | 		break; | 
 | 	} | 
 | 	case KVM_GET_CLOCK: { | 
 | 		struct kvm_clock_data user_ns; | 
 | 		u64 now_ns; | 
 |  | 
 | 		local_irq_disable(); | 
 | 		now_ns = get_kernel_ns(); | 
 | 		user_ns.clock = kvm->arch.kvmclock_offset + now_ns; | 
 | 		local_irq_enable(); | 
 | 		user_ns.flags = 0; | 
 | 		memset(&user_ns.pad, 0, sizeof(user_ns.pad)); | 
 |  | 
 | 		r = -EFAULT; | 
 | 		if (copy_to_user(argp, &user_ns, sizeof(user_ns))) | 
 | 			goto out; | 
 | 		r = 0; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	default: | 
 | 		; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static void kvm_init_msr_list(void) | 
 | { | 
 | 	u32 dummy[2]; | 
 | 	unsigned i, j; | 
 |  | 
 | 	/* skip the first msrs in the list. KVM-specific */ | 
 | 	for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) { | 
 | 		if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0) | 
 | 			continue; | 
 | 		if (j < i) | 
 | 			msrs_to_save[j] = msrs_to_save[i]; | 
 | 		j++; | 
 | 	} | 
 | 	num_msrs_to_save = j; | 
 | } | 
 |  | 
 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, | 
 | 			   const void *v) | 
 | { | 
 | 	int handled = 0; | 
 | 	int n; | 
 |  | 
 | 	do { | 
 | 		n = min(len, 8); | 
 | 		if (!(vcpu->arch.apic && | 
 | 		      !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v)) | 
 | 		    && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) | 
 | 			break; | 
 | 		handled += n; | 
 | 		addr += n; | 
 | 		len -= n; | 
 | 		v += n; | 
 | 	} while (len); | 
 |  | 
 | 	return handled; | 
 | } | 
 |  | 
 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) | 
 | { | 
 | 	int handled = 0; | 
 | 	int n; | 
 |  | 
 | 	do { | 
 | 		n = min(len, 8); | 
 | 		if (!(vcpu->arch.apic && | 
 | 		      !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v)) | 
 | 		    && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v)) | 
 | 			break; | 
 | 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v); | 
 | 		handled += n; | 
 | 		addr += n; | 
 | 		len -= n; | 
 | 		v += n; | 
 | 	} while (len); | 
 |  | 
 | 	return handled; | 
 | } | 
 |  | 
 | static void kvm_set_segment(struct kvm_vcpu *vcpu, | 
 | 			struct kvm_segment *var, int seg) | 
 | { | 
 | 	kvm_x86_ops->set_segment(vcpu, var, seg); | 
 | } | 
 |  | 
 | void kvm_get_segment(struct kvm_vcpu *vcpu, | 
 | 		     struct kvm_segment *var, int seg) | 
 | { | 
 | 	kvm_x86_ops->get_segment(vcpu, var, seg); | 
 | } | 
 |  | 
 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access) | 
 | { | 
 | 	gpa_t t_gpa; | 
 | 	struct x86_exception exception; | 
 |  | 
 | 	BUG_ON(!mmu_is_nested(vcpu)); | 
 |  | 
 | 	/* NPT walks are always user-walks */ | 
 | 	access |= PFERR_USER_MASK; | 
 | 	t_gpa  = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception); | 
 |  | 
 | 	return t_gpa; | 
 | } | 
 |  | 
 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 			      struct x86_exception *exception) | 
 | { | 
 | 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 | 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); | 
 | } | 
 |  | 
 |  gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 				struct x86_exception *exception) | 
 | { | 
 | 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 | 	access |= PFERR_FETCH_MASK; | 
 | 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); | 
 | } | 
 |  | 
 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 			       struct x86_exception *exception) | 
 | { | 
 | 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 | 	access |= PFERR_WRITE_MASK; | 
 | 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); | 
 | } | 
 |  | 
 | /* uses this to access any guest's mapped memory without checking CPL */ | 
 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 				struct x86_exception *exception) | 
 | { | 
 | 	return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception); | 
 | } | 
 |  | 
 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | 
 | 				      struct kvm_vcpu *vcpu, u32 access, | 
 | 				      struct x86_exception *exception) | 
 | { | 
 | 	void *data = val; | 
 | 	int r = X86EMUL_CONTINUE; | 
 |  | 
 | 	while (bytes) { | 
 | 		gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access, | 
 | 							    exception); | 
 | 		unsigned offset = addr & (PAGE_SIZE-1); | 
 | 		unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); | 
 | 		int ret; | 
 |  | 
 | 		if (gpa == UNMAPPED_GVA) | 
 | 			return X86EMUL_PROPAGATE_FAULT; | 
 | 		ret = kvm_read_guest(vcpu->kvm, gpa, data, toread); | 
 | 		if (ret < 0) { | 
 | 			r = X86EMUL_IO_NEEDED; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		bytes -= toread; | 
 | 		data += toread; | 
 | 		addr += toread; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | /* used for instruction fetching */ | 
 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, | 
 | 				gva_t addr, void *val, unsigned int bytes, | 
 | 				struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 |  | 
 | 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, | 
 | 					  access | PFERR_FETCH_MASK, | 
 | 					  exception); | 
 | } | 
 |  | 
 | int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt, | 
 | 			       gva_t addr, void *val, unsigned int bytes, | 
 | 			       struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0; | 
 |  | 
 | 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, | 
 | 					  exception); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); | 
 |  | 
 | static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt, | 
 | 				      gva_t addr, void *val, unsigned int bytes, | 
 | 				      struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception); | 
 | } | 
 |  | 
 | int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt, | 
 | 				       gva_t addr, void *val, | 
 | 				       unsigned int bytes, | 
 | 				       struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	void *data = val; | 
 | 	int r = X86EMUL_CONTINUE; | 
 |  | 
 | 	while (bytes) { | 
 | 		gpa_t gpa =  vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, | 
 | 							     PFERR_WRITE_MASK, | 
 | 							     exception); | 
 | 		unsigned offset = addr & (PAGE_SIZE-1); | 
 | 		unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | 
 | 		int ret; | 
 |  | 
 | 		if (gpa == UNMAPPED_GVA) | 
 | 			return X86EMUL_PROPAGATE_FAULT; | 
 | 		ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite); | 
 | 		if (ret < 0) { | 
 | 			r = X86EMUL_IO_NEEDED; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		bytes -= towrite; | 
 | 		data += towrite; | 
 | 		addr += towrite; | 
 | 	} | 
 | out: | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); | 
 |  | 
 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, | 
 | 				gpa_t *gpa, struct x86_exception *exception, | 
 | 				bool write) | 
 | { | 
 | 	u32 access = ((kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0) | 
 | 		| (write ? PFERR_WRITE_MASK : 0); | 
 |  | 
 | 	if (vcpu_match_mmio_gva(vcpu, gva) | 
 | 	    && !permission_fault(vcpu->arch.walk_mmu, vcpu->arch.access, access)) { | 
 | 		*gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | | 
 | 					(gva & (PAGE_SIZE - 1)); | 
 | 		trace_vcpu_match_mmio(gva, *gpa, write, false); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	*gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception); | 
 |  | 
 | 	if (*gpa == UNMAPPED_GVA) | 
 | 		return -1; | 
 |  | 
 | 	/* For APIC access vmexit */ | 
 | 	if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
 | 		return 1; | 
 |  | 
 | 	if (vcpu_match_mmio_gpa(vcpu, *gpa)) { | 
 | 		trace_vcpu_match_mmio(gva, *gpa, write, true); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			const void *val, int bytes) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes); | 
 | 	if (ret < 0) | 
 | 		return 0; | 
 | 	kvm_mmu_pte_write(vcpu, gpa, val, bytes); | 
 | 	return 1; | 
 | } | 
 |  | 
 | struct read_write_emulator_ops { | 
 | 	int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | 
 | 				  int bytes); | 
 | 	int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 				  void *val, int bytes); | 
 | 	int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			       int bytes, void *val); | 
 | 	int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 				    void *val, int bytes); | 
 | 	bool write; | 
 | }; | 
 |  | 
 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | 
 | { | 
 | 	if (vcpu->mmio_read_completed) { | 
 | 		trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, | 
 | 			       vcpu->mmio_fragments[0].gpa, *(u64 *)val); | 
 | 		vcpu->mmio_read_completed = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			void *val, int bytes) | 
 | { | 
 | 	return !kvm_read_guest(vcpu->kvm, gpa, val, bytes); | 
 | } | 
 |  | 
 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			 void *val, int bytes) | 
 | { | 
 | 	return emulator_write_phys(vcpu, gpa, val, bytes); | 
 | } | 
 |  | 
 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | 
 | { | 
 | 	trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val); | 
 | 	return vcpu_mmio_write(vcpu, gpa, bytes, val); | 
 | } | 
 |  | 
 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			  void *val, int bytes) | 
 | { | 
 | 	trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0); | 
 | 	return X86EMUL_IO_NEEDED; | 
 | } | 
 |  | 
 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | 
 | 			   void *val, int bytes) | 
 | { | 
 | 	struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; | 
 |  | 
 | 	memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | static const struct read_write_emulator_ops read_emultor = { | 
 | 	.read_write_prepare = read_prepare, | 
 | 	.read_write_emulate = read_emulate, | 
 | 	.read_write_mmio = vcpu_mmio_read, | 
 | 	.read_write_exit_mmio = read_exit_mmio, | 
 | }; | 
 |  | 
 | static const struct read_write_emulator_ops write_emultor = { | 
 | 	.read_write_emulate = write_emulate, | 
 | 	.read_write_mmio = write_mmio, | 
 | 	.read_write_exit_mmio = write_exit_mmio, | 
 | 	.write = true, | 
 | }; | 
 |  | 
 | static int emulator_read_write_onepage(unsigned long addr, void *val, | 
 | 				       unsigned int bytes, | 
 | 				       struct x86_exception *exception, | 
 | 				       struct kvm_vcpu *vcpu, | 
 | 				       const struct read_write_emulator_ops *ops) | 
 | { | 
 | 	gpa_t gpa; | 
 | 	int handled, ret; | 
 | 	bool write = ops->write; | 
 | 	struct kvm_mmio_fragment *frag; | 
 |  | 
 | 	ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); | 
 |  | 
 | 	if (ret < 0) | 
 | 		return X86EMUL_PROPAGATE_FAULT; | 
 |  | 
 | 	/* For APIC access vmexit */ | 
 | 	if (ret) | 
 | 		goto mmio; | 
 |  | 
 | 	if (ops->read_write_emulate(vcpu, gpa, val, bytes)) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | mmio: | 
 | 	/* | 
 | 	 * Is this MMIO handled locally? | 
 | 	 */ | 
 | 	handled = ops->read_write_mmio(vcpu, gpa, bytes, val); | 
 | 	if (handled == bytes) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | 	gpa += handled; | 
 | 	bytes -= handled; | 
 | 	val += handled; | 
 |  | 
 | 	WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); | 
 | 	frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | 
 | 	frag->gpa = gpa; | 
 | 	frag->data = val; | 
 | 	frag->len = bytes; | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 |  | 
 | int emulator_read_write(struct x86_emulate_ctxt *ctxt, unsigned long addr, | 
 | 			void *val, unsigned int bytes, | 
 | 			struct x86_exception *exception, | 
 | 			const struct read_write_emulator_ops *ops) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	gpa_t gpa; | 
 | 	int rc; | 
 |  | 
 | 	if (ops->read_write_prepare && | 
 | 		  ops->read_write_prepare(vcpu, val, bytes)) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | 	vcpu->mmio_nr_fragments = 0; | 
 |  | 
 | 	/* Crossing a page boundary? */ | 
 | 	if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | 
 | 		int now; | 
 |  | 
 | 		now = -addr & ~PAGE_MASK; | 
 | 		rc = emulator_read_write_onepage(addr, val, now, exception, | 
 | 						 vcpu, ops); | 
 |  | 
 | 		if (rc != X86EMUL_CONTINUE) | 
 | 			return rc; | 
 | 		addr += now; | 
 | 		val += now; | 
 | 		bytes -= now; | 
 | 	} | 
 |  | 
 | 	rc = emulator_read_write_onepage(addr, val, bytes, exception, | 
 | 					 vcpu, ops); | 
 | 	if (rc != X86EMUL_CONTINUE) | 
 | 		return rc; | 
 |  | 
 | 	if (!vcpu->mmio_nr_fragments) | 
 | 		return rc; | 
 |  | 
 | 	gpa = vcpu->mmio_fragments[0].gpa; | 
 |  | 
 | 	vcpu->mmio_needed = 1; | 
 | 	vcpu->mmio_cur_fragment = 0; | 
 |  | 
 | 	vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); | 
 | 	vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; | 
 | 	vcpu->run->exit_reason = KVM_EXIT_MMIO; | 
 | 	vcpu->run->mmio.phys_addr = gpa; | 
 |  | 
 | 	return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | 
 | } | 
 |  | 
 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 				  unsigned long addr, | 
 | 				  void *val, | 
 | 				  unsigned int bytes, | 
 | 				  struct x86_exception *exception) | 
 | { | 
 | 	return emulator_read_write(ctxt, addr, val, bytes, | 
 | 				   exception, &read_emultor); | 
 | } | 
 |  | 
 | int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 			    unsigned long addr, | 
 | 			    const void *val, | 
 | 			    unsigned int bytes, | 
 | 			    struct x86_exception *exception) | 
 | { | 
 | 	return emulator_read_write(ctxt, addr, (void *)val, bytes, | 
 | 				   exception, &write_emultor); | 
 | } | 
 |  | 
 | #define CMPXCHG_TYPE(t, ptr, old, new) \ | 
 | 	(cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old)) | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | #  define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new) | 
 | #else | 
 | #  define CMPXCHG64(ptr, old, new) \ | 
 | 	(cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old)) | 
 | #endif | 
 |  | 
 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 				     unsigned long addr, | 
 | 				     const void *old, | 
 | 				     const void *new, | 
 | 				     unsigned int bytes, | 
 | 				     struct x86_exception *exception) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	gpa_t gpa; | 
 | 	struct page *page; | 
 | 	char *kaddr; | 
 | 	bool exchanged; | 
 |  | 
 | 	/* guests cmpxchg8b have to be emulated atomically */ | 
 | 	if (bytes > 8 || (bytes & (bytes - 1))) | 
 | 		goto emul_write; | 
 |  | 
 | 	gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); | 
 |  | 
 | 	if (gpa == UNMAPPED_GVA || | 
 | 	    (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | 
 | 		goto emul_write; | 
 |  | 
 | 	if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK)) | 
 | 		goto emul_write; | 
 |  | 
 | 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
 | 	if (is_error_page(page)) | 
 | 		goto emul_write; | 
 |  | 
 | 	kaddr = kmap_atomic(page); | 
 | 	kaddr += offset_in_page(gpa); | 
 | 	switch (bytes) { | 
 | 	case 1: | 
 | 		exchanged = CMPXCHG_TYPE(u8, kaddr, old, new); | 
 | 		break; | 
 | 	case 2: | 
 | 		exchanged = CMPXCHG_TYPE(u16, kaddr, old, new); | 
 | 		break; | 
 | 	case 4: | 
 | 		exchanged = CMPXCHG_TYPE(u32, kaddr, old, new); | 
 | 		break; | 
 | 	case 8: | 
 | 		exchanged = CMPXCHG64(kaddr, old, new); | 
 | 		break; | 
 | 	default: | 
 | 		BUG(); | 
 | 	} | 
 | 	kunmap_atomic(kaddr); | 
 | 	kvm_release_page_dirty(page); | 
 |  | 
 | 	if (!exchanged) | 
 | 		return X86EMUL_CMPXCHG_FAILED; | 
 |  | 
 | 	kvm_mmu_pte_write(vcpu, gpa, new, bytes); | 
 |  | 
 | 	return X86EMUL_CONTINUE; | 
 |  | 
 | emul_write: | 
 | 	printk_once(KERN_WARNING "kvm: emulating exchange as write\n"); | 
 |  | 
 | 	return emulator_write_emulated(ctxt, addr, new, bytes, exception); | 
 | } | 
 |  | 
 | static int kernel_pio(struct kvm_vcpu *vcpu, void *pd) | 
 | { | 
 | 	/* TODO: String I/O for in kernel device */ | 
 | 	int r; | 
 |  | 
 | 	if (vcpu->arch.pio.in) | 
 | 		r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port, | 
 | 				    vcpu->arch.pio.size, pd); | 
 | 	else | 
 | 		r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS, | 
 | 				     vcpu->arch.pio.port, vcpu->arch.pio.size, | 
 | 				     pd); | 
 | 	return r; | 
 | } | 
 |  | 
 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, | 
 | 			       unsigned short port, void *val, | 
 | 			       unsigned int count, bool in) | 
 | { | 
 | 	trace_kvm_pio(!in, port, size, count); | 
 |  | 
 | 	vcpu->arch.pio.port = port; | 
 | 	vcpu->arch.pio.in = in; | 
 | 	vcpu->arch.pio.count  = count; | 
 | 	vcpu->arch.pio.size = size; | 
 |  | 
 | 	if (!kernel_pio(vcpu, vcpu->arch.pio_data)) { | 
 | 		vcpu->arch.pio.count = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	vcpu->run->exit_reason = KVM_EXIT_IO; | 
 | 	vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; | 
 | 	vcpu->run->io.size = size; | 
 | 	vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | 
 | 	vcpu->run->io.count = count; | 
 | 	vcpu->run->io.port = port; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 				    int size, unsigned short port, void *val, | 
 | 				    unsigned int count) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	int ret; | 
 |  | 
 | 	if (vcpu->arch.pio.count) | 
 | 		goto data_avail; | 
 |  | 
 | 	ret = emulator_pio_in_out(vcpu, size, port, val, count, true); | 
 | 	if (ret) { | 
 | data_avail: | 
 | 		memcpy(val, vcpu->arch.pio_data, size * count); | 
 | 		vcpu->arch.pio.count = 0; | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, | 
 | 				     int size, unsigned short port, | 
 | 				     const void *val, unsigned int count) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 |  | 
 | 	memcpy(vcpu->arch.pio_data, val, size * count); | 
 | 	return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); | 
 | } | 
 |  | 
 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) | 
 | { | 
 | 	return kvm_x86_ops->get_segment_base(vcpu, seg); | 
 | } | 
 |  | 
 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) | 
 | { | 
 | 	kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); | 
 | } | 
 |  | 
 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!need_emulate_wbinvd(vcpu)) | 
 | 		return X86EMUL_CONTINUE; | 
 |  | 
 | 	if (kvm_x86_ops->has_wbinvd_exit()) { | 
 | 		int cpu = get_cpu(); | 
 |  | 
 | 		cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | 
 | 		smp_call_function_many(vcpu->arch.wbinvd_dirty_mask, | 
 | 				wbinvd_ipi, NULL, 1); | 
 | 		put_cpu(); | 
 | 		cpumask_clear(vcpu->arch.wbinvd_dirty_mask); | 
 | 	} else | 
 | 		wbinvd(); | 
 | 	return X86EMUL_CONTINUE; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); | 
 |  | 
 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	kvm_emulate_wbinvd(emul_to_vcpu(ctxt)); | 
 | } | 
 |  | 
 | int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest) | 
 | { | 
 | 	return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest); | 
 | } | 
 |  | 
 | int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value) | 
 | { | 
 |  | 
 | 	return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value); | 
 | } | 
 |  | 
 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) | 
 | { | 
 | 	return (curr_cr & ~((1ULL << 32) - 1)) | new_val; | 
 | } | 
 |  | 
 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	unsigned long value; | 
 |  | 
 | 	switch (cr) { | 
 | 	case 0: | 
 | 		value = kvm_read_cr0(vcpu); | 
 | 		break; | 
 | 	case 2: | 
 | 		value = vcpu->arch.cr2; | 
 | 		break; | 
 | 	case 3: | 
 | 		value = kvm_read_cr3(vcpu); | 
 | 		break; | 
 | 	case 4: | 
 | 		value = kvm_read_cr4(vcpu); | 
 | 		break; | 
 | 	case 8: | 
 | 		value = kvm_get_cr8(vcpu); | 
 | 		break; | 
 | 	default: | 
 | 		kvm_err("%s: unexpected cr %u\n", __func__, cr); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	return value; | 
 | } | 
 |  | 
 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	int res = 0; | 
 |  | 
 | 	switch (cr) { | 
 | 	case 0: | 
 | 		res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); | 
 | 		break; | 
 | 	case 2: | 
 | 		vcpu->arch.cr2 = val; | 
 | 		break; | 
 | 	case 3: | 
 | 		res = kvm_set_cr3(vcpu, val); | 
 | 		break; | 
 | 	case 4: | 
 | 		res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); | 
 | 		break; | 
 | 	case 8: | 
 | 		res = kvm_set_cr8(vcpu, val); | 
 | 		break; | 
 | 	default: | 
 | 		kvm_err("%s: unexpected cr %u\n", __func__, cr); | 
 | 		res = -1; | 
 | 	} | 
 |  | 
 | 	return res; | 
 | } | 
 |  | 
 | static void emulator_set_rflags(struct x86_emulate_ctxt *ctxt, ulong val) | 
 | { | 
 | 	kvm_set_rflags(emul_to_vcpu(ctxt), val); | 
 | } | 
 |  | 
 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt)); | 
 | } | 
 |  | 
 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 
 | { | 
 | 	kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt); | 
 | } | 
 |  | 
 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 
 | { | 
 | 	kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt); | 
 | } | 
 |  | 
 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 
 | { | 
 | 	kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt); | 
 | } | 
 |  | 
 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | 
 | { | 
 | 	kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt); | 
 | } | 
 |  | 
 | static unsigned long emulator_get_cached_segment_base( | 
 | 	struct x86_emulate_ctxt *ctxt, int seg) | 
 | { | 
 | 	return get_segment_base(emul_to_vcpu(ctxt), seg); | 
 | } | 
 |  | 
 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, | 
 | 				 struct desc_struct *desc, u32 *base3, | 
 | 				 int seg) | 
 | { | 
 | 	struct kvm_segment var; | 
 |  | 
 | 	kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); | 
 | 	*selector = var.selector; | 
 |  | 
 | 	if (var.unusable) { | 
 | 		memset(desc, 0, sizeof(*desc)); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if (var.g) | 
 | 		var.limit >>= 12; | 
 | 	set_desc_limit(desc, var.limit); | 
 | 	set_desc_base(desc, (unsigned long)var.base); | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (base3) | 
 | 		*base3 = var.base >> 32; | 
 | #endif | 
 | 	desc->type = var.type; | 
 | 	desc->s = var.s; | 
 | 	desc->dpl = var.dpl; | 
 | 	desc->p = var.present; | 
 | 	desc->avl = var.avl; | 
 | 	desc->l = var.l; | 
 | 	desc->d = var.db; | 
 | 	desc->g = var.g; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, | 
 | 				 struct desc_struct *desc, u32 base3, | 
 | 				 int seg) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	struct kvm_segment var; | 
 |  | 
 | 	var.selector = selector; | 
 | 	var.base = get_desc_base(desc); | 
 | #ifdef CONFIG_X86_64 | 
 | 	var.base |= ((u64)base3) << 32; | 
 | #endif | 
 | 	var.limit = get_desc_limit(desc); | 
 | 	if (desc->g) | 
 | 		var.limit = (var.limit << 12) | 0xfff; | 
 | 	var.type = desc->type; | 
 | 	var.present = desc->p; | 
 | 	var.dpl = desc->dpl; | 
 | 	var.db = desc->d; | 
 | 	var.s = desc->s; | 
 | 	var.l = desc->l; | 
 | 	var.g = desc->g; | 
 | 	var.avl = desc->avl; | 
 | 	var.present = desc->p; | 
 | 	var.unusable = !var.present; | 
 | 	var.padding = 0; | 
 |  | 
 | 	kvm_set_segment(vcpu, &var, seg); | 
 | 	return; | 
 | } | 
 |  | 
 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, | 
 | 			    u32 msr_index, u64 *pdata) | 
 | { | 
 | 	return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); | 
 | } | 
 |  | 
 | static int emulator_set_msr(struct x86_emulate_ctxt *ctxt, | 
 | 			    u32 msr_index, u64 data) | 
 | { | 
 | 	struct msr_data msr; | 
 |  | 
 | 	msr.data = data; | 
 | 	msr.index = msr_index; | 
 | 	msr.host_initiated = false; | 
 | 	return kvm_set_msr(emul_to_vcpu(ctxt), &msr); | 
 | } | 
 |  | 
 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, | 
 | 			     u32 pmc, u64 *pdata) | 
 | { | 
 | 	return kvm_pmu_read_pmc(emul_to_vcpu(ctxt), pmc, pdata); | 
 | } | 
 |  | 
 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	emul_to_vcpu(ctxt)->arch.halt_request = 1; | 
 | } | 
 |  | 
 | static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	preempt_disable(); | 
 | 	kvm_load_guest_fpu(emul_to_vcpu(ctxt)); | 
 | 	/* | 
 | 	 * CR0.TS may reference the host fpu state, not the guest fpu state, | 
 | 	 * so it may be clear at this point. | 
 | 	 */ | 
 | 	clts(); | 
 | } | 
 |  | 
 | static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	preempt_enable(); | 
 | } | 
 |  | 
 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, | 
 | 			      struct x86_instruction_info *info, | 
 | 			      enum x86_intercept_stage stage) | 
 | { | 
 | 	return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage); | 
 | } | 
 |  | 
 | static void emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, | 
 | 			       u32 *eax, u32 *ebx, u32 *ecx, u32 *edx) | 
 | { | 
 | 	kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx); | 
 | } | 
 |  | 
 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) | 
 | { | 
 | 	return kvm_register_read(emul_to_vcpu(ctxt), reg); | 
 | } | 
 |  | 
 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | 
 | { | 
 | 	kvm_register_write(emul_to_vcpu(ctxt), reg, val); | 
 | } | 
 |  | 
 | static const struct x86_emulate_ops emulate_ops = { | 
 | 	.read_gpr            = emulator_read_gpr, | 
 | 	.write_gpr           = emulator_write_gpr, | 
 | 	.read_std            = kvm_read_guest_virt_system, | 
 | 	.write_std           = kvm_write_guest_virt_system, | 
 | 	.fetch               = kvm_fetch_guest_virt, | 
 | 	.read_emulated       = emulator_read_emulated, | 
 | 	.write_emulated      = emulator_write_emulated, | 
 | 	.cmpxchg_emulated    = emulator_cmpxchg_emulated, | 
 | 	.invlpg              = emulator_invlpg, | 
 | 	.pio_in_emulated     = emulator_pio_in_emulated, | 
 | 	.pio_out_emulated    = emulator_pio_out_emulated, | 
 | 	.get_segment         = emulator_get_segment, | 
 | 	.set_segment         = emulator_set_segment, | 
 | 	.get_cached_segment_base = emulator_get_cached_segment_base, | 
 | 	.get_gdt             = emulator_get_gdt, | 
 | 	.get_idt	     = emulator_get_idt, | 
 | 	.set_gdt             = emulator_set_gdt, | 
 | 	.set_idt	     = emulator_set_idt, | 
 | 	.get_cr              = emulator_get_cr, | 
 | 	.set_cr              = emulator_set_cr, | 
 | 	.set_rflags          = emulator_set_rflags, | 
 | 	.cpl                 = emulator_get_cpl, | 
 | 	.get_dr              = emulator_get_dr, | 
 | 	.set_dr              = emulator_set_dr, | 
 | 	.set_msr             = emulator_set_msr, | 
 | 	.get_msr             = emulator_get_msr, | 
 | 	.read_pmc            = emulator_read_pmc, | 
 | 	.halt                = emulator_halt, | 
 | 	.wbinvd              = emulator_wbinvd, | 
 | 	.fix_hypercall       = emulator_fix_hypercall, | 
 | 	.get_fpu             = emulator_get_fpu, | 
 | 	.put_fpu             = emulator_put_fpu, | 
 | 	.intercept           = emulator_intercept, | 
 | 	.get_cpuid           = emulator_get_cpuid, | 
 | }; | 
 |  | 
 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) | 
 | { | 
 | 	u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask); | 
 | 	/* | 
 | 	 * an sti; sti; sequence only disable interrupts for the first | 
 | 	 * instruction. So, if the last instruction, be it emulated or | 
 | 	 * not, left the system with the INT_STI flag enabled, it | 
 | 	 * means that the last instruction is an sti. We should not | 
 | 	 * leave the flag on in this case. The same goes for mov ss | 
 | 	 */ | 
 | 	if (!(int_shadow & mask)) | 
 | 		kvm_x86_ops->set_interrupt_shadow(vcpu, mask); | 
 | } | 
 |  | 
 | static void inject_emulated_exception(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 
 | 	if (ctxt->exception.vector == PF_VECTOR) | 
 | 		kvm_propagate_fault(vcpu, &ctxt->exception); | 
 | 	else if (ctxt->exception.error_code_valid) | 
 | 		kvm_queue_exception_e(vcpu, ctxt->exception.vector, | 
 | 				      ctxt->exception.error_code); | 
 | 	else | 
 | 		kvm_queue_exception(vcpu, ctxt->exception.vector); | 
 | } | 
 |  | 
 | static void init_decode_cache(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	memset(&ctxt->twobyte, 0, | 
 | 	       (void *)&ctxt->_regs - (void *)&ctxt->twobyte); | 
 |  | 
 | 	ctxt->fetch.start = 0; | 
 | 	ctxt->fetch.end = 0; | 
 | 	ctxt->io_read.pos = 0; | 
 | 	ctxt->io_read.end = 0; | 
 | 	ctxt->mem_read.pos = 0; | 
 | 	ctxt->mem_read.end = 0; | 
 | } | 
 |  | 
 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 
 | 	int cs_db, cs_l; | 
 |  | 
 | 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 
 |  | 
 | 	ctxt->eflags = kvm_get_rflags(vcpu); | 
 | 	ctxt->eip = kvm_rip_read(vcpu); | 
 | 	ctxt->mode = (!is_protmode(vcpu))		? X86EMUL_MODE_REAL : | 
 | 		     (ctxt->eflags & X86_EFLAGS_VM)	? X86EMUL_MODE_VM86 : | 
 | 		     cs_l				? X86EMUL_MODE_PROT64 : | 
 | 		     cs_db				? X86EMUL_MODE_PROT32 : | 
 | 							  X86EMUL_MODE_PROT16; | 
 | 	ctxt->guest_mode = is_guest_mode(vcpu); | 
 |  | 
 | 	init_decode_cache(ctxt); | 
 | 	vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | 
 | } | 
 |  | 
 | int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 
 | 	int ret; | 
 |  | 
 | 	init_emulate_ctxt(vcpu); | 
 |  | 
 | 	ctxt->op_bytes = 2; | 
 | 	ctxt->ad_bytes = 2; | 
 | 	ctxt->_eip = ctxt->eip + inc_eip; | 
 | 	ret = emulate_int_real(ctxt, irq); | 
 |  | 
 | 	if (ret != X86EMUL_CONTINUE) | 
 | 		return EMULATE_FAIL; | 
 |  | 
 | 	ctxt->eip = ctxt->_eip; | 
 | 	kvm_rip_write(vcpu, ctxt->eip); | 
 | 	kvm_set_rflags(vcpu, ctxt->eflags); | 
 |  | 
 | 	if (irq == NMI_VECTOR) | 
 | 		vcpu->arch.nmi_pending = 0; | 
 | 	else | 
 | 		vcpu->arch.interrupt.pending = false; | 
 |  | 
 | 	return EMULATE_DONE; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | 
 |  | 
 | static int handle_emulation_failure(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r = EMULATE_DONE; | 
 |  | 
 | 	++vcpu->stat.insn_emulation_fail; | 
 | 	trace_kvm_emulate_insn_failed(vcpu); | 
 | 	if (!is_guest_mode(vcpu)) { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | 
 | 		vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | 
 | 		vcpu->run->internal.ndata = 0; | 
 | 		r = EMULATE_FAIL; | 
 | 	} | 
 | 	kvm_queue_exception(vcpu, UD_VECTOR); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t cr2, | 
 | 				  bool write_fault_to_shadow_pgtable, | 
 | 				  int emulation_type) | 
 | { | 
 | 	gpa_t gpa = cr2; | 
 | 	pfn_t pfn; | 
 |  | 
 | 	if (emulation_type & EMULTYPE_NO_REEXECUTE) | 
 | 		return false; | 
 |  | 
 | 	if (!vcpu->arch.mmu.direct_map) { | 
 | 		/* | 
 | 		 * Write permission should be allowed since only | 
 | 		 * write access need to be emulated. | 
 | 		 */ | 
 | 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | 
 |  | 
 | 		/* | 
 | 		 * If the mapping is invalid in guest, let cpu retry | 
 | 		 * it to generate fault. | 
 | 		 */ | 
 | 		if (gpa == UNMAPPED_GVA) | 
 | 			return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Do not retry the unhandleable instruction if it faults on the | 
 | 	 * readonly host memory, otherwise it will goto a infinite loop: | 
 | 	 * retry instruction -> write #PF -> emulation fail -> retry | 
 | 	 * instruction -> ... | 
 | 	 */ | 
 | 	pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa)); | 
 |  | 
 | 	/* | 
 | 	 * If the instruction failed on the error pfn, it can not be fixed, | 
 | 	 * report the error to userspace. | 
 | 	 */ | 
 | 	if (is_error_noslot_pfn(pfn)) | 
 | 		return false; | 
 |  | 
 | 	kvm_release_pfn_clean(pfn); | 
 |  | 
 | 	/* The instructions are well-emulated on direct mmu. */ | 
 | 	if (vcpu->arch.mmu.direct_map) { | 
 | 		unsigned int indirect_shadow_pages; | 
 |  | 
 | 		spin_lock(&vcpu->kvm->mmu_lock); | 
 | 		indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages; | 
 | 		spin_unlock(&vcpu->kvm->mmu_lock); | 
 |  | 
 | 		if (indirect_shadow_pages) | 
 | 			kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | 
 |  | 
 | 		return true; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * if emulation was due to access to shadowed page table | 
 | 	 * and it failed try to unshadow page and re-enter the | 
 | 	 * guest to let CPU execute the instruction. | 
 | 	 */ | 
 | 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | 
 |  | 
 | 	/* | 
 | 	 * If the access faults on its page table, it can not | 
 | 	 * be fixed by unprotecting shadow page and it should | 
 | 	 * be reported to userspace. | 
 | 	 */ | 
 | 	return !write_fault_to_shadow_pgtable; | 
 | } | 
 |  | 
 | static bool retry_instruction(struct x86_emulate_ctxt *ctxt, | 
 | 			      unsigned long cr2,  int emulation_type) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	unsigned long last_retry_eip, last_retry_addr, gpa = cr2; | 
 |  | 
 | 	last_retry_eip = vcpu->arch.last_retry_eip; | 
 | 	last_retry_addr = vcpu->arch.last_retry_addr; | 
 |  | 
 | 	/* | 
 | 	 * If the emulation is caused by #PF and it is non-page_table | 
 | 	 * writing instruction, it means the VM-EXIT is caused by shadow | 
 | 	 * page protected, we can zap the shadow page and retry this | 
 | 	 * instruction directly. | 
 | 	 * | 
 | 	 * Note: if the guest uses a non-page-table modifying instruction | 
 | 	 * on the PDE that points to the instruction, then we will unmap | 
 | 	 * the instruction and go to an infinite loop. So, we cache the | 
 | 	 * last retried eip and the last fault address, if we meet the eip | 
 | 	 * and the address again, we can break out of the potential infinite | 
 | 	 * loop. | 
 | 	 */ | 
 | 	vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0; | 
 |  | 
 | 	if (!(emulation_type & EMULTYPE_RETRY)) | 
 | 		return false; | 
 |  | 
 | 	if (x86_page_table_writing_insn(ctxt)) | 
 | 		return false; | 
 |  | 
 | 	if (ctxt->eip == last_retry_eip && last_retry_addr == cr2) | 
 | 		return false; | 
 |  | 
 | 	vcpu->arch.last_retry_eip = ctxt->eip; | 
 | 	vcpu->arch.last_retry_addr = cr2; | 
 |  | 
 | 	if (!vcpu->arch.mmu.direct_map) | 
 | 		gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2, NULL); | 
 |  | 
 | 	kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa)); | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); | 
 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | 
 |  | 
 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, | 
 | 			    unsigned long cr2, | 
 | 			    int emulation_type, | 
 | 			    void *insn, | 
 | 			    int insn_len) | 
 | { | 
 | 	int r; | 
 | 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 
 | 	bool writeback = true; | 
 | 	bool write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable; | 
 |  | 
 | 	/* | 
 | 	 * Clear write_fault_to_shadow_pgtable here to ensure it is | 
 | 	 * never reused. | 
 | 	 */ | 
 | 	vcpu->arch.write_fault_to_shadow_pgtable = false; | 
 | 	kvm_clear_exception_queue(vcpu); | 
 |  | 
 | 	if (!(emulation_type & EMULTYPE_NO_DECODE)) { | 
 | 		init_emulate_ctxt(vcpu); | 
 | 		ctxt->interruptibility = 0; | 
 | 		ctxt->have_exception = false; | 
 | 		ctxt->perm_ok = false; | 
 |  | 
 | 		ctxt->only_vendor_specific_insn | 
 | 			= emulation_type & EMULTYPE_TRAP_UD; | 
 |  | 
 | 		r = x86_decode_insn(ctxt, insn, insn_len); | 
 |  | 
 | 		trace_kvm_emulate_insn_start(vcpu); | 
 | 		++vcpu->stat.insn_emulation; | 
 | 		if (r != EMULATION_OK)  { | 
 | 			if (emulation_type & EMULTYPE_TRAP_UD) | 
 | 				return EMULATE_FAIL; | 
 | 			if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, | 
 | 						emulation_type)) | 
 | 				return EMULATE_DONE; | 
 | 			if (emulation_type & EMULTYPE_SKIP) | 
 | 				return EMULATE_FAIL; | 
 | 			return handle_emulation_failure(vcpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (emulation_type & EMULTYPE_SKIP) { | 
 | 		kvm_rip_write(vcpu, ctxt->_eip); | 
 | 		return EMULATE_DONE; | 
 | 	} | 
 |  | 
 | 	if (retry_instruction(ctxt, cr2, emulation_type)) | 
 | 		return EMULATE_DONE; | 
 |  | 
 | 	/* this is needed for vmware backdoor interface to work since it | 
 | 	   changes registers values  during IO operation */ | 
 | 	if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { | 
 | 		vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | 
 | 		emulator_invalidate_register_cache(ctxt); | 
 | 	} | 
 |  | 
 | restart: | 
 | 	r = x86_emulate_insn(ctxt); | 
 |  | 
 | 	if (r == EMULATION_INTERCEPTED) | 
 | 		return EMULATE_DONE; | 
 |  | 
 | 	if (r == EMULATION_FAILED) { | 
 | 		if (reexecute_instruction(vcpu, cr2, write_fault_to_spt, | 
 | 					emulation_type)) | 
 | 			return EMULATE_DONE; | 
 |  | 
 | 		return handle_emulation_failure(vcpu); | 
 | 	} | 
 |  | 
 | 	if (ctxt->have_exception) { | 
 | 		inject_emulated_exception(vcpu); | 
 | 		r = EMULATE_DONE; | 
 | 	} else if (vcpu->arch.pio.count) { | 
 | 		if (!vcpu->arch.pio.in) | 
 | 			vcpu->arch.pio.count = 0; | 
 | 		else { | 
 | 			writeback = false; | 
 | 			vcpu->arch.complete_userspace_io = complete_emulated_pio; | 
 | 		} | 
 | 		r = EMULATE_DO_MMIO; | 
 | 	} else if (vcpu->mmio_needed) { | 
 | 		if (!vcpu->mmio_is_write) | 
 | 			writeback = false; | 
 | 		r = EMULATE_DO_MMIO; | 
 | 		vcpu->arch.complete_userspace_io = complete_emulated_mmio; | 
 | 	} else if (r == EMULATION_RESTART) | 
 | 		goto restart; | 
 | 	else | 
 | 		r = EMULATE_DONE; | 
 |  | 
 | 	if (writeback) { | 
 | 		toggle_interruptibility(vcpu, ctxt->interruptibility); | 
 | 		kvm_set_rflags(vcpu, ctxt->eflags); | 
 | 		kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 
 | 		kvm_rip_write(vcpu, ctxt->eip); | 
 | 	} else | 
 | 		vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | 
 |  | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(x86_emulate_instruction); | 
 |  | 
 | int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port) | 
 | { | 
 | 	unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
 | 	int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt, | 
 | 					    size, port, &val, 1); | 
 | 	/* do not return to emulator after return from userspace */ | 
 | 	vcpu->arch.pio.count = 0; | 
 | 	return ret; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_fast_pio_out); | 
 |  | 
 | static void tsc_bad(void *info) | 
 | { | 
 | 	__this_cpu_write(cpu_tsc_khz, 0); | 
 | } | 
 |  | 
 | static void tsc_khz_changed(void *data) | 
 | { | 
 | 	struct cpufreq_freqs *freq = data; | 
 | 	unsigned long khz = 0; | 
 |  | 
 | 	if (data) | 
 | 		khz = freq->new; | 
 | 	else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
 | 		khz = cpufreq_quick_get(raw_smp_processor_id()); | 
 | 	if (!khz) | 
 | 		khz = tsc_khz; | 
 | 	__this_cpu_write(cpu_tsc_khz, khz); | 
 | } | 
 |  | 
 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | 
 | 				     void *data) | 
 | { | 
 | 	struct cpufreq_freqs *freq = data; | 
 | 	struct kvm *kvm; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	int i, send_ipi = 0; | 
 |  | 
 | 	/* | 
 | 	 * We allow guests to temporarily run on slowing clocks, | 
 | 	 * provided we notify them after, or to run on accelerating | 
 | 	 * clocks, provided we notify them before.  Thus time never | 
 | 	 * goes backwards. | 
 | 	 * | 
 | 	 * However, we have a problem.  We can't atomically update | 
 | 	 * the frequency of a given CPU from this function; it is | 
 | 	 * merely a notifier, which can be called from any CPU. | 
 | 	 * Changing the TSC frequency at arbitrary points in time | 
 | 	 * requires a recomputation of local variables related to | 
 | 	 * the TSC for each VCPU.  We must flag these local variables | 
 | 	 * to be updated and be sure the update takes place with the | 
 | 	 * new frequency before any guests proceed. | 
 | 	 * | 
 | 	 * Unfortunately, the combination of hotplug CPU and frequency | 
 | 	 * change creates an intractable locking scenario; the order | 
 | 	 * of when these callouts happen is undefined with respect to | 
 | 	 * CPU hotplug, and they can race with each other.  As such, | 
 | 	 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | 
 | 	 * undefined; you can actually have a CPU frequency change take | 
 | 	 * place in between the computation of X and the setting of the | 
 | 	 * variable.  To protect against this problem, all updates of | 
 | 	 * the per_cpu tsc_khz variable are done in an interrupt | 
 | 	 * protected IPI, and all callers wishing to update the value | 
 | 	 * must wait for a synchronous IPI to complete (which is trivial | 
 | 	 * if the caller is on the CPU already).  This establishes the | 
 | 	 * necessary total order on variable updates. | 
 | 	 * | 
 | 	 * Note that because a guest time update may take place | 
 | 	 * anytime after the setting of the VCPU's request bit, the | 
 | 	 * correct TSC value must be set before the request.  However, | 
 | 	 * to ensure the update actually makes it to any guest which | 
 | 	 * starts running in hardware virtualization between the set | 
 | 	 * and the acquisition of the spinlock, we must also ping the | 
 | 	 * CPU after setting the request bit. | 
 | 	 * | 
 | 	 */ | 
 |  | 
 | 	if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) | 
 | 		return 0; | 
 | 	if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | 
 | 		return 0; | 
 |  | 
 | 	smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | 
 |  | 
 | 	raw_spin_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 			if (vcpu->cpu != freq->cpu) | 
 | 				continue; | 
 | 			kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 | 			if (vcpu->cpu != smp_processor_id()) | 
 | 				send_ipi = 1; | 
 | 		} | 
 | 	} | 
 | 	raw_spin_unlock(&kvm_lock); | 
 |  | 
 | 	if (freq->old < freq->new && send_ipi) { | 
 | 		/* | 
 | 		 * We upscale the frequency.  Must make the guest | 
 | 		 * doesn't see old kvmclock values while running with | 
 | 		 * the new frequency, otherwise we risk the guest sees | 
 | 		 * time go backwards. | 
 | 		 * | 
 | 		 * In case we update the frequency for another cpu | 
 | 		 * (which might be in guest context) send an interrupt | 
 | 		 * to kick the cpu out of guest context.  Next time | 
 | 		 * guest context is entered kvmclock will be updated, | 
 | 		 * so the guest will not see stale values. | 
 | 		 */ | 
 | 		smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | 
 | 	.notifier_call  = kvmclock_cpufreq_notifier | 
 | }; | 
 |  | 
 | static int kvmclock_cpu_notifier(struct notifier_block *nfb, | 
 | 					unsigned long action, void *hcpu) | 
 | { | 
 | 	unsigned int cpu = (unsigned long)hcpu; | 
 |  | 
 | 	switch (action) { | 
 | 		case CPU_ONLINE: | 
 | 		case CPU_DOWN_FAILED: | 
 | 			smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | 
 | 			break; | 
 | 		case CPU_DOWN_PREPARE: | 
 | 			smp_call_function_single(cpu, tsc_bad, NULL, 1); | 
 | 			break; | 
 | 	} | 
 | 	return NOTIFY_OK; | 
 | } | 
 |  | 
 | static struct notifier_block kvmclock_cpu_notifier_block = { | 
 | 	.notifier_call  = kvmclock_cpu_notifier, | 
 | 	.priority = -INT_MAX | 
 | }; | 
 |  | 
 | static void kvm_timer_init(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	max_tsc_khz = tsc_khz; | 
 | 	register_hotcpu_notifier(&kvmclock_cpu_notifier_block); | 
 | 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { | 
 | #ifdef CONFIG_CPU_FREQ | 
 | 		struct cpufreq_policy policy; | 
 | 		memset(&policy, 0, sizeof(policy)); | 
 | 		cpu = get_cpu(); | 
 | 		cpufreq_get_policy(&policy, cpu); | 
 | 		if (policy.cpuinfo.max_freq) | 
 | 			max_tsc_khz = policy.cpuinfo.max_freq; | 
 | 		put_cpu(); | 
 | #endif | 
 | 		cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, | 
 | 					  CPUFREQ_TRANSITION_NOTIFIER); | 
 | 	} | 
 | 	pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz); | 
 | 	for_each_online_cpu(cpu) | 
 | 		smp_call_function_single(cpu, tsc_khz_changed, NULL, 1); | 
 | } | 
 |  | 
 | static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu); | 
 |  | 
 | int kvm_is_in_guest(void) | 
 | { | 
 | 	return __this_cpu_read(current_vcpu) != NULL; | 
 | } | 
 |  | 
 | static int kvm_is_user_mode(void) | 
 | { | 
 | 	int user_mode = 3; | 
 |  | 
 | 	if (__this_cpu_read(current_vcpu)) | 
 | 		user_mode = kvm_x86_ops->get_cpl(__this_cpu_read(current_vcpu)); | 
 |  | 
 | 	return user_mode != 0; | 
 | } | 
 |  | 
 | static unsigned long kvm_get_guest_ip(void) | 
 | { | 
 | 	unsigned long ip = 0; | 
 |  | 
 | 	if (__this_cpu_read(current_vcpu)) | 
 | 		ip = kvm_rip_read(__this_cpu_read(current_vcpu)); | 
 |  | 
 | 	return ip; | 
 | } | 
 |  | 
 | static struct perf_guest_info_callbacks kvm_guest_cbs = { | 
 | 	.is_in_guest		= kvm_is_in_guest, | 
 | 	.is_user_mode		= kvm_is_user_mode, | 
 | 	.get_guest_ip		= kvm_get_guest_ip, | 
 | }; | 
 |  | 
 | void kvm_before_handle_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	__this_cpu_write(current_vcpu, vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_before_handle_nmi); | 
 |  | 
 | void kvm_after_handle_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	__this_cpu_write(current_vcpu, NULL); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_after_handle_nmi); | 
 |  | 
 | static void kvm_set_mmio_spte_mask(void) | 
 | { | 
 | 	u64 mask; | 
 | 	int maxphyaddr = boot_cpu_data.x86_phys_bits; | 
 |  | 
 | 	/* | 
 | 	 * Set the reserved bits and the present bit of an paging-structure | 
 | 	 * entry to generate page fault with PFER.RSV = 1. | 
 | 	 */ | 
 | 	mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr; | 
 | 	mask |= 1ull; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	/* | 
 | 	 * If reserved bit is not supported, clear the present bit to disable | 
 | 	 * mmio page fault. | 
 | 	 */ | 
 | 	if (maxphyaddr == 52) | 
 | 		mask &= ~1ull; | 
 | #endif | 
 |  | 
 | 	kvm_mmu_set_mmio_spte_mask(mask); | 
 | } | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | static void pvclock_gtod_update_fn(struct work_struct *work) | 
 | { | 
 | 	struct kvm *kvm; | 
 |  | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	int i; | 
 |  | 
 | 	raw_spin_lock(&kvm_lock); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) | 
 | 		kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 			set_bit(KVM_REQ_MASTERCLOCK_UPDATE, &vcpu->requests); | 
 | 	atomic_set(&kvm_guest_has_master_clock, 0); | 
 | 	raw_spin_unlock(&kvm_lock); | 
 | } | 
 |  | 
 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | 
 |  | 
 | /* | 
 |  * Notification about pvclock gtod data update. | 
 |  */ | 
 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | 
 | 			       void *priv) | 
 | { | 
 | 	struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | 
 | 	struct timekeeper *tk = priv; | 
 |  | 
 | 	update_pvclock_gtod(tk); | 
 |  | 
 | 	/* disable master clock if host does not trust, or does not | 
 | 	 * use, TSC clocksource | 
 | 	 */ | 
 | 	if (gtod->clock.vclock_mode != VCLOCK_TSC && | 
 | 	    atomic_read(&kvm_guest_has_master_clock) != 0) | 
 | 		queue_work(system_long_wq, &pvclock_gtod_work); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct notifier_block pvclock_gtod_notifier = { | 
 | 	.notifier_call = pvclock_gtod_notify, | 
 | }; | 
 | #endif | 
 |  | 
 | int kvm_arch_init(void *opaque) | 
 | { | 
 | 	int r; | 
 | 	struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque; | 
 |  | 
 | 	if (kvm_x86_ops) { | 
 | 		printk(KERN_ERR "kvm: already loaded the other module\n"); | 
 | 		r = -EEXIST; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!ops->cpu_has_kvm_support()) { | 
 | 		printk(KERN_ERR "kvm: no hardware support\n"); | 
 | 		r = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 | 	if (ops->disabled_by_bios()) { | 
 | 		printk(KERN_ERR "kvm: disabled by bios\n"); | 
 | 		r = -EOPNOTSUPP; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	r = -ENOMEM; | 
 | 	shared_msrs = alloc_percpu(struct kvm_shared_msrs); | 
 | 	if (!shared_msrs) { | 
 | 		printk(KERN_ERR "kvm: failed to allocate percpu kvm_shared_msrs\n"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	r = kvm_mmu_module_init(); | 
 | 	if (r) | 
 | 		goto out_free_percpu; | 
 |  | 
 | 	kvm_set_mmio_spte_mask(); | 
 | 	kvm_init_msr_list(); | 
 |  | 
 | 	kvm_x86_ops = ops; | 
 | 	kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK, | 
 | 			PT_DIRTY_MASK, PT64_NX_MASK, 0); | 
 |  | 
 | 	kvm_timer_init(); | 
 |  | 
 | 	perf_register_guest_info_callbacks(&kvm_guest_cbs); | 
 |  | 
 | 	if (cpu_has_xsave) | 
 | 		host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); | 
 |  | 
 | 	kvm_lapic_init(); | 
 | #ifdef CONFIG_X86_64 | 
 | 	pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free_percpu: | 
 | 	free_percpu(shared_msrs); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | void kvm_arch_exit(void) | 
 | { | 
 | 	perf_unregister_guest_info_callbacks(&kvm_guest_cbs); | 
 |  | 
 | 	if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) | 
 | 		cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, | 
 | 					    CPUFREQ_TRANSITION_NOTIFIER); | 
 | 	unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block); | 
 | #ifdef CONFIG_X86_64 | 
 | 	pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | 
 | #endif | 
 | 	kvm_x86_ops = NULL; | 
 | 	kvm_mmu_module_exit(); | 
 | 	free_percpu(shared_msrs); | 
 | } | 
 |  | 
 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	++vcpu->stat.halt_exits; | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) { | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_HALTED; | 
 | 		return 1; | 
 | 	} else { | 
 | 		vcpu->run->exit_reason = KVM_EXIT_HLT; | 
 | 		return 0; | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); | 
 |  | 
 | int kvm_hv_hypercall(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 param, ingpa, outgpa, ret; | 
 | 	uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0; | 
 | 	bool fast, longmode; | 
 | 	int cs_db, cs_l; | 
 |  | 
 | 	/* | 
 | 	 * hypercall generates UD from non zero cpl and real mode | 
 | 	 * per HYPER-V spec | 
 | 	 */ | 
 | 	if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) { | 
 | 		kvm_queue_exception(vcpu, UD_VECTOR); | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l); | 
 | 	longmode = is_long_mode(vcpu) && cs_l == 1; | 
 |  | 
 | 	if (!longmode) { | 
 | 		param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) | | 
 | 			(kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff); | 
 | 		ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) | | 
 | 			(kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff); | 
 | 		outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) | | 
 | 			(kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff); | 
 | 	} | 
 | #ifdef CONFIG_X86_64 | 
 | 	else { | 
 | 		param = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
 | 		ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX); | 
 | 		outgpa = kvm_register_read(vcpu, VCPU_REGS_R8); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	code = param & 0xffff; | 
 | 	fast = (param >> 16) & 0x1; | 
 | 	rep_cnt = (param >> 32) & 0xfff; | 
 | 	rep_idx = (param >> 48) & 0xfff; | 
 |  | 
 | 	trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa); | 
 |  | 
 | 	switch (code) { | 
 | 	case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT: | 
 | 		kvm_vcpu_on_spin(vcpu); | 
 | 		break; | 
 | 	default: | 
 | 		res = HV_STATUS_INVALID_HYPERCALL_CODE; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	ret = res | (((u64)rep_done & 0xfff) << 32); | 
 | 	if (longmode) { | 
 | 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret); | 
 | 	} else { | 
 | 		kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32); | 
 | 		kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff); | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long nr, a0, a1, a2, a3, ret; | 
 | 	int r = 1; | 
 |  | 
 | 	if (kvm_hv_hypercall_enabled(vcpu->kvm)) | 
 | 		return kvm_hv_hypercall(vcpu); | 
 |  | 
 | 	nr = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
 | 	a0 = kvm_register_read(vcpu, VCPU_REGS_RBX); | 
 | 	a1 = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
 | 	a2 = kvm_register_read(vcpu, VCPU_REGS_RDX); | 
 | 	a3 = kvm_register_read(vcpu, VCPU_REGS_RSI); | 
 |  | 
 | 	trace_kvm_hypercall(nr, a0, a1, a2, a3); | 
 |  | 
 | 	if (!is_long_mode(vcpu)) { | 
 | 		nr &= 0xFFFFFFFF; | 
 | 		a0 &= 0xFFFFFFFF; | 
 | 		a1 &= 0xFFFFFFFF; | 
 | 		a2 &= 0xFFFFFFFF; | 
 | 		a3 &= 0xFFFFFFFF; | 
 | 	} | 
 |  | 
 | 	if (kvm_x86_ops->get_cpl(vcpu) != 0) { | 
 | 		ret = -KVM_EPERM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	switch (nr) { | 
 | 	case KVM_HC_VAPIC_POLL_IRQ: | 
 | 		ret = 0; | 
 | 		break; | 
 | 	default: | 
 | 		ret = -KVM_ENOSYS; | 
 | 		break; | 
 | 	} | 
 | out: | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RAX, ret); | 
 | 	++vcpu->stat.hypercalls; | 
 | 	return r; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | 
 |  | 
 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) | 
 | { | 
 | 	struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | 
 | 	char instruction[3]; | 
 | 	unsigned long rip = kvm_rip_read(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * Blow out the MMU to ensure that no other VCPU has an active mapping | 
 | 	 * to ensure that the updated hypercall appears atomically across all | 
 | 	 * VCPUs. | 
 | 	 */ | 
 | 	kvm_mmu_zap_all(vcpu->kvm); | 
 |  | 
 | 	kvm_x86_ops->patch_hypercall(vcpu, instruction); | 
 |  | 
 | 	return emulator_write_emulated(ctxt, rip, instruction, 3, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Check if userspace requested an interrupt window, and that the | 
 |  * interrupt window is open. | 
 |  * | 
 |  * No need to exit to userspace if we already have an interrupt queued. | 
 |  */ | 
 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) && | 
 | 		vcpu->run->request_interrupt_window && | 
 | 		kvm_arch_interrupt_allowed(vcpu)); | 
 | } | 
 |  | 
 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *kvm_run = vcpu->run; | 
 |  | 
 | 	kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0; | 
 | 	kvm_run->cr8 = kvm_get_cr8(vcpu); | 
 | 	kvm_run->apic_base = kvm_get_apic_base(vcpu); | 
 | 	if (irqchip_in_kernel(vcpu->kvm)) | 
 | 		kvm_run->ready_for_interrupt_injection = 1; | 
 | 	else | 
 | 		kvm_run->ready_for_interrupt_injection = | 
 | 			kvm_arch_interrupt_allowed(vcpu) && | 
 | 			!kvm_cpu_has_interrupt(vcpu) && | 
 | 			!kvm_event_needs_reinjection(vcpu); | 
 | } | 
 |  | 
 | static int vapic_enter(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_lapic *apic = vcpu->arch.apic; | 
 | 	struct page *page; | 
 |  | 
 | 	if (!apic || !apic->vapic_addr) | 
 | 		return 0; | 
 |  | 
 | 	page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | 
 | 	if (is_error_page(page)) | 
 | 		return -EFAULT; | 
 |  | 
 | 	vcpu->arch.apic->vapic_page = page; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void vapic_exit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_lapic *apic = vcpu->arch.apic; | 
 | 	int idx; | 
 |  | 
 | 	if (!apic || !apic->vapic_addr) | 
 | 		return; | 
 |  | 
 | 	idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 	kvm_release_page_dirty(apic->vapic_page); | 
 | 	mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT); | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | } | 
 |  | 
 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int max_irr, tpr; | 
 |  | 
 | 	if (!kvm_x86_ops->update_cr8_intercept) | 
 | 		return; | 
 |  | 
 | 	if (!vcpu->arch.apic) | 
 | 		return; | 
 |  | 
 | 	if (!vcpu->arch.apic->vapic_addr) | 
 | 		max_irr = kvm_lapic_find_highest_irr(vcpu); | 
 | 	else | 
 | 		max_irr = -1; | 
 |  | 
 | 	if (max_irr != -1) | 
 | 		max_irr >>= 4; | 
 |  | 
 | 	tpr = kvm_lapic_get_cr8(vcpu); | 
 |  | 
 | 	kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr); | 
 | } | 
 |  | 
 | static void inject_pending_event(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	/* try to reinject previous events if any */ | 
 | 	if (vcpu->arch.exception.pending) { | 
 | 		trace_kvm_inj_exception(vcpu->arch.exception.nr, | 
 | 					vcpu->arch.exception.has_error_code, | 
 | 					vcpu->arch.exception.error_code); | 
 | 		kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr, | 
 | 					  vcpu->arch.exception.has_error_code, | 
 | 					  vcpu->arch.exception.error_code, | 
 | 					  vcpu->arch.exception.reinject); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (vcpu->arch.nmi_injected) { | 
 | 		kvm_x86_ops->set_nmi(vcpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (vcpu->arch.interrupt.pending) { | 
 | 		kvm_x86_ops->set_irq(vcpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* try to inject new event if pending */ | 
 | 	if (vcpu->arch.nmi_pending) { | 
 | 		if (kvm_x86_ops->nmi_allowed(vcpu)) { | 
 | 			--vcpu->arch.nmi_pending; | 
 | 			vcpu->arch.nmi_injected = true; | 
 | 			kvm_x86_ops->set_nmi(vcpu); | 
 | 		} | 
 | 	} else if (kvm_cpu_has_injectable_intr(vcpu)) { | 
 | 		if (kvm_x86_ops->interrupt_allowed(vcpu)) { | 
 | 			kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), | 
 | 					    false); | 
 | 			kvm_x86_ops->set_irq(vcpu); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void process_nmi(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned limit = 2; | 
 |  | 
 | 	/* | 
 | 	 * x86 is limited to one NMI running, and one NMI pending after it. | 
 | 	 * If an NMI is already in progress, limit further NMIs to just one. | 
 | 	 * Otherwise, allow two (and we'll inject the first one immediately). | 
 | 	 */ | 
 | 	if (kvm_x86_ops->get_nmi_mask(vcpu) || vcpu->arch.nmi_injected) | 
 | 		limit = 1; | 
 |  | 
 | 	vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | 
 | 	vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | } | 
 |  | 
 | static void kvm_gen_update_masterclock(struct kvm *kvm) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	int i; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	struct kvm_arch *ka = &kvm->arch; | 
 |  | 
 | 	spin_lock(&ka->pvclock_gtod_sync_lock); | 
 | 	kvm_make_mclock_inprogress_request(kvm); | 
 | 	/* no guest entries from this point */ | 
 | 	pvclock_update_vm_gtod_copy(kvm); | 
 |  | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | 
 |  | 
 | 	/* guest entries allowed */ | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		clear_bit(KVM_REQ_MCLOCK_INPROGRESS, &vcpu->requests); | 
 |  | 
 | 	spin_unlock(&ka->pvclock_gtod_sync_lock); | 
 | #endif | 
 | } | 
 |  | 
 | static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	u64 eoi_exit_bitmap[4]; | 
 | 	u32 tmr[8]; | 
 |  | 
 | 	if (!kvm_apic_hw_enabled(vcpu->arch.apic)) | 
 | 		return; | 
 |  | 
 | 	memset(eoi_exit_bitmap, 0, 32); | 
 | 	memset(tmr, 0, 32); | 
 |  | 
 | 	kvm_ioapic_scan_entry(vcpu, eoi_exit_bitmap, tmr); | 
 | 	kvm_x86_ops->load_eoi_exitmap(vcpu, eoi_exit_bitmap); | 
 | 	kvm_apic_update_tmr(vcpu, tmr); | 
 | } | 
 |  | 
 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 | 	bool req_int_win = !irqchip_in_kernel(vcpu->kvm) && | 
 | 		vcpu->run->request_interrupt_window; | 
 | 	bool req_immediate_exit = false; | 
 |  | 
 | 	if (vcpu->requests) { | 
 | 		if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) | 
 | 			kvm_mmu_unload(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) | 
 | 			__kvm_migrate_timers(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) | 
 | 			kvm_gen_update_masterclock(vcpu->kvm); | 
 | 		if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { | 
 | 			r = kvm_guest_time_update(vcpu); | 
 | 			if (unlikely(r)) | 
 | 				goto out; | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) | 
 | 			kvm_mmu_sync_roots(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) | 
 | 			kvm_x86_ops->tlb_flush(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { | 
 | 			vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { | 
 | 			vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; | 
 | 			r = 0; | 
 | 			goto out; | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) { | 
 | 			vcpu->fpu_active = 0; | 
 | 			kvm_x86_ops->fpu_deactivate(vcpu); | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { | 
 | 			/* Page is swapped out. Do synthetic halt */ | 
 | 			vcpu->arch.apf.halted = true; | 
 | 			r = 1; | 
 | 			goto out; | 
 | 		} | 
 | 		if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) | 
 | 			record_steal_time(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_NMI, vcpu)) | 
 | 			process_nmi(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_PMU, vcpu)) | 
 | 			kvm_handle_pmu_event(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_PMI, vcpu)) | 
 | 			kvm_deliver_pmi(vcpu); | 
 | 		if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) | 
 | 			vcpu_scan_ioapic(vcpu); | 
 | 	} | 
 |  | 
 | 	if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) { | 
 | 		kvm_apic_accept_events(vcpu); | 
 | 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { | 
 | 			r = 1; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		inject_pending_event(vcpu); | 
 |  | 
 | 		/* enable NMI/IRQ window open exits if needed */ | 
 | 		if (vcpu->arch.nmi_pending) | 
 | 			req_immediate_exit = | 
 | 				kvm_x86_ops->enable_nmi_window(vcpu) != 0; | 
 | 		else if (kvm_cpu_has_injectable_intr(vcpu) || req_int_win) | 
 | 			req_immediate_exit = | 
 | 				kvm_x86_ops->enable_irq_window(vcpu) != 0; | 
 |  | 
 | 		if (kvm_lapic_enabled(vcpu)) { | 
 | 			/* | 
 | 			 * Update architecture specific hints for APIC | 
 | 			 * virtual interrupt delivery. | 
 | 			 */ | 
 | 			if (kvm_x86_ops->hwapic_irr_update) | 
 | 				kvm_x86_ops->hwapic_irr_update(vcpu, | 
 | 					kvm_lapic_find_highest_irr(vcpu)); | 
 | 			update_cr8_intercept(vcpu); | 
 | 			kvm_lapic_sync_to_vapic(vcpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	r = kvm_mmu_reload(vcpu); | 
 | 	if (unlikely(r)) { | 
 | 		goto cancel_injection; | 
 | 	} | 
 |  | 
 | 	preempt_disable(); | 
 |  | 
 | 	kvm_x86_ops->prepare_guest_switch(vcpu); | 
 | 	if (vcpu->fpu_active) | 
 | 		kvm_load_guest_fpu(vcpu); | 
 | 	kvm_load_guest_xcr0(vcpu); | 
 |  | 
 | 	vcpu->mode = IN_GUEST_MODE; | 
 |  | 
 | 	/* We should set ->mode before check ->requests, | 
 | 	 * see the comment in make_all_cpus_request. | 
 | 	 */ | 
 | 	smp_mb(); | 
 |  | 
 | 	local_irq_disable(); | 
 |  | 
 | 	if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests | 
 | 	    || need_resched() || signal_pending(current)) { | 
 | 		vcpu->mode = OUTSIDE_GUEST_MODE; | 
 | 		smp_wmb(); | 
 | 		local_irq_enable(); | 
 | 		preempt_enable(); | 
 | 		r = 1; | 
 | 		goto cancel_injection; | 
 | 	} | 
 |  | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | 
 |  | 
 | 	if (req_immediate_exit) | 
 | 		smp_send_reschedule(vcpu->cpu); | 
 |  | 
 | 	kvm_guest_enter(); | 
 |  | 
 | 	if (unlikely(vcpu->arch.switch_db_regs)) { | 
 | 		set_debugreg(0, 7); | 
 | 		set_debugreg(vcpu->arch.eff_db[0], 0); | 
 | 		set_debugreg(vcpu->arch.eff_db[1], 1); | 
 | 		set_debugreg(vcpu->arch.eff_db[2], 2); | 
 | 		set_debugreg(vcpu->arch.eff_db[3], 3); | 
 | 	} | 
 |  | 
 | 	trace_kvm_entry(vcpu->vcpu_id); | 
 | 	kvm_x86_ops->run(vcpu); | 
 |  | 
 | 	/* | 
 | 	 * If the guest has used debug registers, at least dr7 | 
 | 	 * will be disabled while returning to the host. | 
 | 	 * If we don't have active breakpoints in the host, we don't | 
 | 	 * care about the messed up debug address registers. But if | 
 | 	 * we have some of them active, restore the old state. | 
 | 	 */ | 
 | 	if (hw_breakpoint_active()) | 
 | 		hw_breakpoint_restore(); | 
 |  | 
 | 	vcpu->arch.last_guest_tsc = kvm_x86_ops->read_l1_tsc(vcpu, | 
 | 							   native_read_tsc()); | 
 |  | 
 | 	vcpu->mode = OUTSIDE_GUEST_MODE; | 
 | 	smp_wmb(); | 
 |  | 
 | 	/* Interrupt is enabled by handle_external_intr() */ | 
 | 	kvm_x86_ops->handle_external_intr(vcpu); | 
 |  | 
 | 	++vcpu->stat.exits; | 
 |  | 
 | 	/* | 
 | 	 * We must have an instruction between local_irq_enable() and | 
 | 	 * kvm_guest_exit(), so the timer interrupt isn't delayed by | 
 | 	 * the interrupt shadow.  The stat.exits increment will do nicely. | 
 | 	 * But we need to prevent reordering, hence this barrier(): | 
 | 	 */ | 
 | 	barrier(); | 
 |  | 
 | 	kvm_guest_exit(); | 
 |  | 
 | 	preempt_enable(); | 
 |  | 
 | 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 |  | 
 | 	/* | 
 | 	 * Profile KVM exit RIPs: | 
 | 	 */ | 
 | 	if (unlikely(prof_on == KVM_PROFILING)) { | 
 | 		unsigned long rip = kvm_rip_read(vcpu); | 
 | 		profile_hit(KVM_PROFILING, (void *)rip); | 
 | 	} | 
 |  | 
 | 	if (unlikely(vcpu->arch.tsc_always_catchup)) | 
 | 		kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | 
 |  | 
 | 	if (vcpu->arch.apic_attention) | 
 | 		kvm_lapic_sync_from_vapic(vcpu); | 
 |  | 
 | 	r = kvm_x86_ops->handle_exit(vcpu); | 
 | 	return r; | 
 |  | 
 | cancel_injection: | 
 | 	kvm_x86_ops->cancel_injection(vcpu); | 
 | 	if (unlikely(vcpu->arch.apic_attention)) | 
 | 		kvm_lapic_sync_from_vapic(vcpu); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 |  | 
 | static int __vcpu_run(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 |  | 
 | 	vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | 
 | 	r = vapic_enter(vcpu); | 
 | 	if (r) { | 
 | 		srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 
 | 		return r; | 
 | 	} | 
 |  | 
 | 	r = 1; | 
 | 	while (r > 0) { | 
 | 		if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && | 
 | 		    !vcpu->arch.apf.halted) | 
 | 			r = vcpu_enter_guest(vcpu); | 
 | 		else { | 
 | 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 
 | 			kvm_vcpu_block(vcpu); | 
 | 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | 
 | 			if (kvm_check_request(KVM_REQ_UNHALT, vcpu)) { | 
 | 				kvm_apic_accept_events(vcpu); | 
 | 				switch(vcpu->arch.mp_state) { | 
 | 				case KVM_MP_STATE_HALTED: | 
 | 					vcpu->arch.mp_state = | 
 | 						KVM_MP_STATE_RUNNABLE; | 
 | 				case KVM_MP_STATE_RUNNABLE: | 
 | 					vcpu->arch.apf.halted = false; | 
 | 					break; | 
 | 				case KVM_MP_STATE_INIT_RECEIVED: | 
 | 					break; | 
 | 				default: | 
 | 					r = -EINTR; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (r <= 0) | 
 | 			break; | 
 |  | 
 | 		clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests); | 
 | 		if (kvm_cpu_has_pending_timer(vcpu)) | 
 | 			kvm_inject_pending_timer_irqs(vcpu); | 
 |  | 
 | 		if (dm_request_for_irq_injection(vcpu)) { | 
 | 			r = -EINTR; | 
 | 			vcpu->run->exit_reason = KVM_EXIT_INTR; | 
 | 			++vcpu->stat.request_irq_exits; | 
 | 		} | 
 |  | 
 | 		kvm_check_async_pf_completion(vcpu); | 
 |  | 
 | 		if (signal_pending(current)) { | 
 | 			r = -EINTR; | 
 | 			vcpu->run->exit_reason = KVM_EXIT_INTR; | 
 | 			++vcpu->stat.signal_exits; | 
 | 		} | 
 | 		if (need_resched()) { | 
 | 			srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 
 | 			kvm_resched(vcpu); | 
 | 			vcpu->srcu_idx = srcu_read_lock(&kvm->srcu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx); | 
 |  | 
 | 	vapic_exit(vcpu); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 | 	vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 	r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE); | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx); | 
 | 	if (r != EMULATE_DONE) | 
 | 		return 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	BUG_ON(!vcpu->arch.pio.count); | 
 |  | 
 | 	return complete_emulated_io(vcpu); | 
 | } | 
 |  | 
 | /* | 
 |  * Implements the following, as a state machine: | 
 |  * | 
 |  * read: | 
 |  *   for each fragment | 
 |  *     for each mmio piece in the fragment | 
 |  *       write gpa, len | 
 |  *       exit | 
 |  *       copy data | 
 |  *   execute insn | 
 |  * | 
 |  * write: | 
 |  *   for each fragment | 
 |  *     for each mmio piece in the fragment | 
 |  *       write gpa, len | 
 |  *       copy data | 
 |  *       exit | 
 |  */ | 
 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_run *run = vcpu->run; | 
 | 	struct kvm_mmio_fragment *frag; | 
 | 	unsigned len; | 
 |  | 
 | 	BUG_ON(!vcpu->mmio_needed); | 
 |  | 
 | 	/* Complete previous fragment */ | 
 | 	frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; | 
 | 	len = min(8u, frag->len); | 
 | 	if (!vcpu->mmio_is_write) | 
 | 		memcpy(frag->data, run->mmio.data, len); | 
 |  | 
 | 	if (frag->len <= 8) { | 
 | 		/* Switch to the next fragment. */ | 
 | 		frag++; | 
 | 		vcpu->mmio_cur_fragment++; | 
 | 	} else { | 
 | 		/* Go forward to the next mmio piece. */ | 
 | 		frag->data += len; | 
 | 		frag->gpa += len; | 
 | 		frag->len -= len; | 
 | 	} | 
 |  | 
 | 	if (vcpu->mmio_cur_fragment == vcpu->mmio_nr_fragments) { | 
 | 		vcpu->mmio_needed = 0; | 
 | 		if (vcpu->mmio_is_write) | 
 | 			return 1; | 
 | 		vcpu->mmio_read_completed = 1; | 
 | 		return complete_emulated_io(vcpu); | 
 | 	} | 
 |  | 
 | 	run->exit_reason = KVM_EXIT_MMIO; | 
 | 	run->mmio.phys_addr = frag->gpa; | 
 | 	if (vcpu->mmio_is_write) | 
 | 		memcpy(run->mmio.data, frag->data, min(8u, frag->len)); | 
 | 	run->mmio.len = min(8u, frag->len); | 
 | 	run->mmio.is_write = vcpu->mmio_is_write; | 
 | 	vcpu->arch.complete_userspace_io = complete_emulated_mmio; | 
 | 	return 0; | 
 | } | 
 |  | 
 |  | 
 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run) | 
 | { | 
 | 	int r; | 
 | 	sigset_t sigsaved; | 
 |  | 
 | 	if (!tsk_used_math(current) && init_fpu(current)) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	if (vcpu->sigset_active) | 
 | 		sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved); | 
 |  | 
 | 	if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { | 
 | 		kvm_vcpu_block(vcpu); | 
 | 		kvm_apic_accept_events(vcpu); | 
 | 		clear_bit(KVM_REQ_UNHALT, &vcpu->requests); | 
 | 		r = -EAGAIN; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* re-sync apic's tpr */ | 
 | 	if (!irqchip_in_kernel(vcpu->kvm)) { | 
 | 		if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { | 
 | 			r = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (unlikely(vcpu->arch.complete_userspace_io)) { | 
 | 		int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | 
 | 		vcpu->arch.complete_userspace_io = NULL; | 
 | 		r = cui(vcpu); | 
 | 		if (r <= 0) | 
 | 			goto out; | 
 | 	} else | 
 | 		WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed); | 
 |  | 
 | 	r = __vcpu_run(vcpu); | 
 |  | 
 | out: | 
 | 	post_kvm_run_save(vcpu); | 
 | 	if (vcpu->sigset_active) | 
 | 		sigprocmask(SIG_SETMASK, &sigsaved, NULL); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { | 
 | 		/* | 
 | 		 * We are here if userspace calls get_regs() in the middle of | 
 | 		 * instruction emulation. Registers state needs to be copied | 
 | 		 * back from emulation context to vcpu. Userspace shouldn't do | 
 | 		 * that usually, but some bad designed PV devices (vmware | 
 | 		 * backdoor interface) need this to work | 
 | 		 */ | 
 | 		emulator_writeback_register_cache(&vcpu->arch.emulate_ctxt); | 
 | 		vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 
 | 	} | 
 | 	regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX); | 
 | 	regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX); | 
 | 	regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX); | 
 | 	regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX); | 
 | 	regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI); | 
 | 	regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI); | 
 | 	regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP); | 
 | 	regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP); | 
 | #ifdef CONFIG_X86_64 | 
 | 	regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8); | 
 | 	regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9); | 
 | 	regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10); | 
 | 	regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11); | 
 | 	regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12); | 
 | 	regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13); | 
 | 	regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14); | 
 | 	regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15); | 
 | #endif | 
 |  | 
 | 	regs->rip = kvm_rip_read(vcpu); | 
 | 	regs->rflags = kvm_get_rflags(vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) | 
 | { | 
 | 	vcpu->arch.emulate_regs_need_sync_from_vcpu = true; | 
 | 	vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | 
 |  | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp); | 
 | #ifdef CONFIG_X86_64 | 
 | 	kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14); | 
 | 	kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15); | 
 | #endif | 
 |  | 
 | 	kvm_rip_write(vcpu, regs->rip); | 
 | 	kvm_set_rflags(vcpu, regs->rflags); | 
 |  | 
 | 	vcpu->arch.exception.pending = false; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l) | 
 | { | 
 | 	struct kvm_segment cs; | 
 |  | 
 | 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	*db = cs.db; | 
 | 	*l = cs.l; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits); | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_sregs *sregs) | 
 | { | 
 | 	struct desc_ptr dt; | 
 |  | 
 | 	kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 
 | 	kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 
 | 	kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 
 | 	kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 
 | 	kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 
 | 	kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 
 |  | 
 | 	kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 
 | 	kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 
 |  | 
 | 	kvm_x86_ops->get_idt(vcpu, &dt); | 
 | 	sregs->idt.limit = dt.size; | 
 | 	sregs->idt.base = dt.address; | 
 | 	kvm_x86_ops->get_gdt(vcpu, &dt); | 
 | 	sregs->gdt.limit = dt.size; | 
 | 	sregs->gdt.base = dt.address; | 
 |  | 
 | 	sregs->cr0 = kvm_read_cr0(vcpu); | 
 | 	sregs->cr2 = vcpu->arch.cr2; | 
 | 	sregs->cr3 = kvm_read_cr3(vcpu); | 
 | 	sregs->cr4 = kvm_read_cr4(vcpu); | 
 | 	sregs->cr8 = kvm_get_cr8(vcpu); | 
 | 	sregs->efer = vcpu->arch.efer; | 
 | 	sregs->apic_base = kvm_get_apic_base(vcpu); | 
 |  | 
 | 	memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap); | 
 |  | 
 | 	if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft) | 
 | 		set_bit(vcpu->arch.interrupt.nr, | 
 | 			(unsigned long *)sregs->interrupt_bitmap); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mp_state *mp_state) | 
 | { | 
 | 	kvm_apic_accept_events(vcpu); | 
 | 	mp_state->mp_state = vcpu->arch.mp_state; | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mp_state *mp_state) | 
 | { | 
 | 	if (!kvm_vcpu_has_lapic(vcpu) && | 
 | 	    mp_state->mp_state != KVM_MP_STATE_RUNNABLE) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED; | 
 | 		set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); | 
 | 	} else | 
 | 		vcpu->arch.mp_state = mp_state->mp_state; | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, | 
 | 		    int reason, bool has_error_code, u32 error_code) | 
 | { | 
 | 	struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt; | 
 | 	int ret; | 
 |  | 
 | 	init_emulate_ctxt(vcpu); | 
 |  | 
 | 	ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, | 
 | 				   has_error_code, error_code); | 
 |  | 
 | 	if (ret) | 
 | 		return EMULATE_FAIL; | 
 |  | 
 | 	kvm_rip_write(vcpu, ctxt->eip); | 
 | 	kvm_set_rflags(vcpu, ctxt->eflags); | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	return EMULATE_DONE; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_task_switch); | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_sregs *sregs) | 
 | { | 
 | 	int mmu_reset_needed = 0; | 
 | 	int pending_vec, max_bits, idx; | 
 | 	struct desc_ptr dt; | 
 |  | 
 | 	if (!guest_cpuid_has_xsave(vcpu) && (sregs->cr4 & X86_CR4_OSXSAVE)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	dt.size = sregs->idt.limit; | 
 | 	dt.address = sregs->idt.base; | 
 | 	kvm_x86_ops->set_idt(vcpu, &dt); | 
 | 	dt.size = sregs->gdt.limit; | 
 | 	dt.address = sregs->gdt.base; | 
 | 	kvm_x86_ops->set_gdt(vcpu, &dt); | 
 |  | 
 | 	vcpu->arch.cr2 = sregs->cr2; | 
 | 	mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; | 
 | 	vcpu->arch.cr3 = sregs->cr3; | 
 | 	__set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail); | 
 |  | 
 | 	kvm_set_cr8(vcpu, sregs->cr8); | 
 |  | 
 | 	mmu_reset_needed |= vcpu->arch.efer != sregs->efer; | 
 | 	kvm_x86_ops->set_efer(vcpu, sregs->efer); | 
 | 	kvm_set_apic_base(vcpu, sregs->apic_base); | 
 |  | 
 | 	mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; | 
 | 	kvm_x86_ops->set_cr0(vcpu, sregs->cr0); | 
 | 	vcpu->arch.cr0 = sregs->cr0; | 
 |  | 
 | 	mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; | 
 | 	kvm_x86_ops->set_cr4(vcpu, sregs->cr4); | 
 | 	if (sregs->cr4 & X86_CR4_OSXSAVE) | 
 | 		kvm_update_cpuid(vcpu); | 
 |  | 
 | 	idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 	if (!is_long_mode(vcpu) && is_pae(vcpu)) { | 
 | 		load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)); | 
 | 		mmu_reset_needed = 1; | 
 | 	} | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 |  | 
 | 	if (mmu_reset_needed) | 
 | 		kvm_mmu_reset_context(vcpu); | 
 |  | 
 | 	max_bits = KVM_NR_INTERRUPTS; | 
 | 	pending_vec = find_first_bit( | 
 | 		(const unsigned long *)sregs->interrupt_bitmap, max_bits); | 
 | 	if (pending_vec < max_bits) { | 
 | 		kvm_queue_interrupt(vcpu, pending_vec, false); | 
 | 		pr_debug("Set back pending irq %d\n", pending_vec); | 
 | 	} | 
 |  | 
 | 	kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); | 
 | 	kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | 
 | 	kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | 
 | 	kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | 
 | 	kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | 
 | 	kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | 
 |  | 
 | 	kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); | 
 | 	kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | 
 |  | 
 | 	update_cr8_intercept(vcpu); | 
 |  | 
 | 	/* Older userspace won't unhalt the vcpu on reset. */ | 
 | 	if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && | 
 | 	    sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && | 
 | 	    !is_protmode(vcpu)) | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, | 
 | 					struct kvm_guest_debug *dbg) | 
 | { | 
 | 	unsigned long rflags; | 
 | 	int i, r; | 
 |  | 
 | 	if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { | 
 | 		r = -EBUSY; | 
 | 		if (vcpu->arch.exception.pending) | 
 | 			goto out; | 
 | 		if (dbg->control & KVM_GUESTDBG_INJECT_DB) | 
 | 			kvm_queue_exception(vcpu, DB_VECTOR); | 
 | 		else | 
 | 			kvm_queue_exception(vcpu, BP_VECTOR); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Read rflags as long as potentially injected trace flags are still | 
 | 	 * filtered out. | 
 | 	 */ | 
 | 	rflags = kvm_get_rflags(vcpu); | 
 |  | 
 | 	vcpu->guest_debug = dbg->control; | 
 | 	if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | 
 | 		vcpu->guest_debug = 0; | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | 
 | 		for (i = 0; i < KVM_NR_DB_REGS; ++i) | 
 | 			vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | 
 | 		vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; | 
 | 	} else { | 
 | 		for (i = 0; i < KVM_NR_DB_REGS; i++) | 
 | 			vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | 
 | 	} | 
 | 	kvm_update_dr7(vcpu); | 
 |  | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 
 | 		vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) + | 
 | 			get_segment_base(vcpu, VCPU_SREG_CS); | 
 |  | 
 | 	/* | 
 | 	 * Trigger an rflags update that will inject or remove the trace | 
 | 	 * flags. | 
 | 	 */ | 
 | 	kvm_set_rflags(vcpu, rflags); | 
 |  | 
 | 	kvm_x86_ops->update_db_bp_intercept(vcpu); | 
 |  | 
 | 	r = 0; | 
 |  | 
 | out: | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | /* | 
 |  * Translate a guest virtual address to a guest physical address. | 
 |  */ | 
 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_translation *tr) | 
 | { | 
 | 	unsigned long vaddr = tr->linear_address; | 
 | 	gpa_t gpa; | 
 | 	int idx; | 
 |  | 
 | 	idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 	gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 	tr->physical_address = gpa; | 
 | 	tr->valid = gpa != UNMAPPED_GVA; | 
 | 	tr->writeable = 1; | 
 | 	tr->usermode = 0; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
 | { | 
 | 	struct i387_fxsave_struct *fxsave = | 
 | 			&vcpu->arch.guest_fpu.state->fxsave; | 
 |  | 
 | 	memcpy(fpu->fpr, fxsave->st_space, 128); | 
 | 	fpu->fcw = fxsave->cwd; | 
 | 	fpu->fsw = fxsave->swd; | 
 | 	fpu->ftwx = fxsave->twd; | 
 | 	fpu->last_opcode = fxsave->fop; | 
 | 	fpu->last_ip = fxsave->rip; | 
 | 	fpu->last_dp = fxsave->rdp; | 
 | 	memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | 
 | { | 
 | 	struct i387_fxsave_struct *fxsave = | 
 | 			&vcpu->arch.guest_fpu.state->fxsave; | 
 |  | 
 | 	memcpy(fxsave->st_space, fpu->fpr, 128); | 
 | 	fxsave->cwd = fpu->fcw; | 
 | 	fxsave->swd = fpu->fsw; | 
 | 	fxsave->twd = fpu->ftwx; | 
 | 	fxsave->fop = fpu->last_opcode; | 
 | 	fxsave->rip = fpu->last_ip; | 
 | 	fxsave->rdp = fpu->last_dp; | 
 | 	memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int fx_init(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int err; | 
 |  | 
 | 	err = fpu_alloc(&vcpu->arch.guest_fpu); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	fpu_finit(&vcpu->arch.guest_fpu); | 
 |  | 
 | 	/* | 
 | 	 * Ensure guest xcr0 is valid for loading | 
 | 	 */ | 
 | 	vcpu->arch.xcr0 = XSTATE_FP; | 
 |  | 
 | 	vcpu->arch.cr0 |= X86_CR0_ET; | 
 |  | 
 | 	return 0; | 
 | } | 
 | EXPORT_SYMBOL_GPL(fx_init); | 
 |  | 
 | static void fx_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	fpu_free(&vcpu->arch.guest_fpu); | 
 | } | 
 |  | 
 | void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (vcpu->guest_fpu_loaded) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * Restore all possible states in the guest, | 
 | 	 * and assume host would use all available bits. | 
 | 	 * Guest xcr0 would be loaded later. | 
 | 	 */ | 
 | 	kvm_put_guest_xcr0(vcpu); | 
 | 	vcpu->guest_fpu_loaded = 1; | 
 | 	__kernel_fpu_begin(); | 
 | 	fpu_restore_checking(&vcpu->arch.guest_fpu); | 
 | 	trace_kvm_fpu(1); | 
 | } | 
 |  | 
 | void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvm_put_guest_xcr0(vcpu); | 
 |  | 
 | 	if (!vcpu->guest_fpu_loaded) | 
 | 		return; | 
 |  | 
 | 	vcpu->guest_fpu_loaded = 0; | 
 | 	fpu_save_init(&vcpu->arch.guest_fpu); | 
 | 	__kernel_fpu_end(); | 
 | 	++vcpu->stat.fpu_reload; | 
 | 	kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu); | 
 | 	trace_kvm_fpu(0); | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	kvmclock_reset(vcpu); | 
 |  | 
 | 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | 
 | 	fx_free(vcpu); | 
 | 	kvm_x86_ops->vcpu_free(vcpu); | 
 | } | 
 |  | 
 | struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, | 
 | 						unsigned int id) | 
 | { | 
 | 	if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0) | 
 | 		printk_once(KERN_WARNING | 
 | 		"kvm: SMP vm created on host with unstable TSC; " | 
 | 		"guest TSC will not be reliable\n"); | 
 | 	return kvm_x86_ops->vcpu_create(kvm, id); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	vcpu->arch.mtrr_state.have_fixed = 1; | 
 | 	r = vcpu_load(vcpu); | 
 | 	if (r) | 
 | 		return r; | 
 | 	kvm_vcpu_reset(vcpu); | 
 | 	r = kvm_mmu_setup(vcpu); | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 | 	struct msr_data msr; | 
 |  | 
 | 	r = vcpu_load(vcpu); | 
 | 	if (r) | 
 | 		return r; | 
 | 	msr.data = 0x0; | 
 | 	msr.index = MSR_IA32_TSC; | 
 | 	msr.host_initiated = true; | 
 | 	kvm_write_tsc(vcpu, &msr); | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	return r; | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 | 	vcpu->arch.apf.msr_val = 0; | 
 |  | 
 | 	r = vcpu_load(vcpu); | 
 | 	BUG_ON(r); | 
 | 	kvm_mmu_unload(vcpu); | 
 | 	vcpu_put(vcpu); | 
 |  | 
 | 	fx_free(vcpu); | 
 | 	kvm_x86_ops->vcpu_free(vcpu); | 
 | } | 
 |  | 
 | void kvm_vcpu_reset(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	atomic_set(&vcpu->arch.nmi_queued, 0); | 
 | 	vcpu->arch.nmi_pending = 0; | 
 | 	vcpu->arch.nmi_injected = false; | 
 |  | 
 | 	memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); | 
 | 	vcpu->arch.dr6 = DR6_FIXED_1; | 
 | 	vcpu->arch.dr7 = DR7_FIXED_1; | 
 | 	kvm_update_dr7(vcpu); | 
 |  | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | 	vcpu->arch.apf.msr_val = 0; | 
 | 	vcpu->arch.st.msr_val = 0; | 
 |  | 
 | 	kvmclock_reset(vcpu); | 
 |  | 
 | 	kvm_clear_async_pf_completion_queue(vcpu); | 
 | 	kvm_async_pf_hash_reset(vcpu); | 
 | 	vcpu->arch.apf.halted = false; | 
 |  | 
 | 	kvm_pmu_reset(vcpu); | 
 |  | 
 | 	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); | 
 | 	vcpu->arch.regs_avail = ~0; | 
 | 	vcpu->arch.regs_dirty = ~0; | 
 |  | 
 | 	kvm_x86_ops->vcpu_reset(vcpu); | 
 | } | 
 |  | 
 | void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, unsigned int vector) | 
 | { | 
 | 	struct kvm_segment cs; | 
 |  | 
 | 	kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	cs.selector = vector << 8; | 
 | 	cs.base = vector << 12; | 
 | 	kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | 
 | 	kvm_rip_write(vcpu, 0); | 
 | } | 
 |  | 
 | int kvm_arch_hardware_enable(void *garbage) | 
 | { | 
 | 	struct kvm *kvm; | 
 | 	struct kvm_vcpu *vcpu; | 
 | 	int i; | 
 | 	int ret; | 
 | 	u64 local_tsc; | 
 | 	u64 max_tsc = 0; | 
 | 	bool stable, backwards_tsc = false; | 
 |  | 
 | 	kvm_shared_msr_cpu_online(); | 
 | 	ret = kvm_x86_ops->hardware_enable(garbage); | 
 | 	if (ret != 0) | 
 | 		return ret; | 
 |  | 
 | 	local_tsc = native_read_tsc(); | 
 | 	stable = !check_tsc_unstable(); | 
 | 	list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 		kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 			if (!stable && vcpu->cpu == smp_processor_id()) | 
 | 				set_bit(KVM_REQ_CLOCK_UPDATE, &vcpu->requests); | 
 | 			if (stable && vcpu->arch.last_host_tsc > local_tsc) { | 
 | 				backwards_tsc = true; | 
 | 				if (vcpu->arch.last_host_tsc > max_tsc) | 
 | 					max_tsc = vcpu->arch.last_host_tsc; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Sometimes, even reliable TSCs go backwards.  This happens on | 
 | 	 * platforms that reset TSC during suspend or hibernate actions, but | 
 | 	 * maintain synchronization.  We must compensate.  Fortunately, we can | 
 | 	 * detect that condition here, which happens early in CPU bringup, | 
 | 	 * before any KVM threads can be running.  Unfortunately, we can't | 
 | 	 * bring the TSCs fully up to date with real time, as we aren't yet far | 
 | 	 * enough into CPU bringup that we know how much real time has actually | 
 | 	 * elapsed; our helper function, get_kernel_ns() will be using boot | 
 | 	 * variables that haven't been updated yet. | 
 | 	 * | 
 | 	 * So we simply find the maximum observed TSC above, then record the | 
 | 	 * adjustment to TSC in each VCPU.  When the VCPU later gets loaded, | 
 | 	 * the adjustment will be applied.  Note that we accumulate | 
 | 	 * adjustments, in case multiple suspend cycles happen before some VCPU | 
 | 	 * gets a chance to run again.  In the event that no KVM threads get a | 
 | 	 * chance to run, we will miss the entire elapsed period, as we'll have | 
 | 	 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | 
 | 	 * loose cycle time.  This isn't too big a deal, since the loss will be | 
 | 	 * uniform across all VCPUs (not to mention the scenario is extremely | 
 | 	 * unlikely). It is possible that a second hibernate recovery happens | 
 | 	 * much faster than a first, causing the observed TSC here to be | 
 | 	 * smaller; this would require additional padding adjustment, which is | 
 | 	 * why we set last_host_tsc to the local tsc observed here. | 
 | 	 * | 
 | 	 * N.B. - this code below runs only on platforms with reliable TSC, | 
 | 	 * as that is the only way backwards_tsc is set above.  Also note | 
 | 	 * that this runs for ALL vcpus, which is not a bug; all VCPUs should | 
 | 	 * have the same delta_cyc adjustment applied if backwards_tsc | 
 | 	 * is detected.  Note further, this adjustment is only done once, | 
 | 	 * as we reset last_host_tsc on all VCPUs to stop this from being | 
 | 	 * called multiple times (one for each physical CPU bringup). | 
 | 	 * | 
 | 	 * Platforms with unreliable TSCs don't have to deal with this, they | 
 | 	 * will be compensated by the logic in vcpu_load, which sets the TSC to | 
 | 	 * catchup mode.  This will catchup all VCPUs to real time, but cannot | 
 | 	 * guarantee that they stay in perfect synchronization. | 
 | 	 */ | 
 | 	if (backwards_tsc) { | 
 | 		u64 delta_cyc = max_tsc - local_tsc; | 
 | 		list_for_each_entry(kvm, &vm_list, vm_list) { | 
 | 			kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 				vcpu->arch.tsc_offset_adjustment += delta_cyc; | 
 | 				vcpu->arch.last_host_tsc = local_tsc; | 
 | 				set_bit(KVM_REQ_MASTERCLOCK_UPDATE, | 
 | 					&vcpu->requests); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * We have to disable TSC offset matching.. if you were | 
 | 			 * booting a VM while issuing an S4 host suspend.... | 
 | 			 * you may have some problem.  Solving this issue is | 
 | 			 * left as an exercise to the reader. | 
 | 			 */ | 
 | 			kvm->arch.last_tsc_nsec = 0; | 
 | 			kvm->arch.last_tsc_write = 0; | 
 | 		} | 
 |  | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_arch_hardware_disable(void *garbage) | 
 | { | 
 | 	kvm_x86_ops->hardware_disable(garbage); | 
 | 	drop_user_return_notifiers(garbage); | 
 | } | 
 |  | 
 | int kvm_arch_hardware_setup(void) | 
 | { | 
 | 	return kvm_x86_ops->hardware_setup(); | 
 | } | 
 |  | 
 | void kvm_arch_hardware_unsetup(void) | 
 | { | 
 | 	kvm_x86_ops->hardware_unsetup(); | 
 | } | 
 |  | 
 | void kvm_arch_check_processor_compat(void *rtn) | 
 | { | 
 | 	kvm_x86_ops->check_processor_compatibility(rtn); | 
 | } | 
 |  | 
 | bool kvm_vcpu_compatible(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return irqchip_in_kernel(vcpu->kvm) == (vcpu->arch.apic != NULL); | 
 | } | 
 |  | 
 | struct static_key kvm_no_apic_vcpu __read_mostly; | 
 |  | 
 | int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kvm *kvm; | 
 | 	int r; | 
 |  | 
 | 	BUG_ON(vcpu->kvm == NULL); | 
 | 	kvm = vcpu->kvm; | 
 |  | 
 | 	vcpu->arch.emulate_ctxt.ops = &emulate_ops; | 
 | 	if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu)) | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 
 | 	else | 
 | 		vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED; | 
 |  | 
 | 	page = alloc_page(GFP_KERNEL | __GFP_ZERO); | 
 | 	if (!page) { | 
 | 		r = -ENOMEM; | 
 | 		goto fail; | 
 | 	} | 
 | 	vcpu->arch.pio_data = page_address(page); | 
 |  | 
 | 	kvm_set_tsc_khz(vcpu, max_tsc_khz); | 
 |  | 
 | 	r = kvm_mmu_create(vcpu); | 
 | 	if (r < 0) | 
 | 		goto fail_free_pio_data; | 
 |  | 
 | 	if (irqchip_in_kernel(kvm)) { | 
 | 		r = kvm_create_lapic(vcpu); | 
 | 		if (r < 0) | 
 | 			goto fail_mmu_destroy; | 
 | 	} else | 
 | 		static_key_slow_inc(&kvm_no_apic_vcpu); | 
 |  | 
 | 	vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4, | 
 | 				       GFP_KERNEL); | 
 | 	if (!vcpu->arch.mce_banks) { | 
 | 		r = -ENOMEM; | 
 | 		goto fail_free_lapic; | 
 | 	} | 
 | 	vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; | 
 |  | 
 | 	if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL)) { | 
 | 		r = -ENOMEM; | 
 | 		goto fail_free_mce_banks; | 
 | 	} | 
 |  | 
 | 	r = fx_init(vcpu); | 
 | 	if (r) | 
 | 		goto fail_free_wbinvd_dirty_mask; | 
 |  | 
 | 	vcpu->arch.ia32_tsc_adjust_msr = 0x0; | 
 | 	vcpu->arch.pv_time_enabled = false; | 
 | 	kvm_async_pf_hash_reset(vcpu); | 
 | 	kvm_pmu_init(vcpu); | 
 |  | 
 | 	return 0; | 
 | fail_free_wbinvd_dirty_mask: | 
 | 	free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | 
 | fail_free_mce_banks: | 
 | 	kfree(vcpu->arch.mce_banks); | 
 | fail_free_lapic: | 
 | 	kvm_free_lapic(vcpu); | 
 | fail_mmu_destroy: | 
 | 	kvm_mmu_destroy(vcpu); | 
 | fail_free_pio_data: | 
 | 	free_page((unsigned long)vcpu->arch.pio_data); | 
 | fail: | 
 | 	return r; | 
 | } | 
 |  | 
 | void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int idx; | 
 |  | 
 | 	kvm_pmu_destroy(vcpu); | 
 | 	kfree(vcpu->arch.mce_banks); | 
 | 	kvm_free_lapic(vcpu); | 
 | 	idx = srcu_read_lock(&vcpu->kvm->srcu); | 
 | 	kvm_mmu_destroy(vcpu); | 
 | 	srcu_read_unlock(&vcpu->kvm->srcu, idx); | 
 | 	free_page((unsigned long)vcpu->arch.pio_data); | 
 | 	if (!irqchip_in_kernel(vcpu->kvm)) | 
 | 		static_key_slow_dec(&kvm_no_apic_vcpu); | 
 | } | 
 |  | 
 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) | 
 | { | 
 | 	if (type) | 
 | 		return -EINVAL; | 
 |  | 
 | 	INIT_LIST_HEAD(&kvm->arch.active_mmu_pages); | 
 | 	INIT_LIST_HEAD(&kvm->arch.assigned_dev_head); | 
 |  | 
 | 	/* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ | 
 | 	set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | 
 | 	/* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ | 
 | 	set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, | 
 | 		&kvm->arch.irq_sources_bitmap); | 
 |  | 
 | 	raw_spin_lock_init(&kvm->arch.tsc_write_lock); | 
 | 	mutex_init(&kvm->arch.apic_map_lock); | 
 | 	spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock); | 
 |  | 
 | 	pvclock_update_vm_gtod_copy(kvm); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 | 	r = vcpu_load(vcpu); | 
 | 	BUG_ON(r); | 
 | 	kvm_mmu_unload(vcpu); | 
 | 	vcpu_put(vcpu); | 
 | } | 
 |  | 
 | static void kvm_free_vcpus(struct kvm *kvm) | 
 | { | 
 | 	unsigned int i; | 
 | 	struct kvm_vcpu *vcpu; | 
 |  | 
 | 	/* | 
 | 	 * Unpin any mmu pages first. | 
 | 	 */ | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) { | 
 | 		kvm_clear_async_pf_completion_queue(vcpu); | 
 | 		kvm_unload_vcpu_mmu(vcpu); | 
 | 	} | 
 | 	kvm_for_each_vcpu(i, vcpu, kvm) | 
 | 		kvm_arch_vcpu_free(vcpu); | 
 |  | 
 | 	mutex_lock(&kvm->lock); | 
 | 	for (i = 0; i < atomic_read(&kvm->online_vcpus); i++) | 
 | 		kvm->vcpus[i] = NULL; | 
 |  | 
 | 	atomic_set(&kvm->online_vcpus, 0); | 
 | 	mutex_unlock(&kvm->lock); | 
 | } | 
 |  | 
 | void kvm_arch_sync_events(struct kvm *kvm) | 
 | { | 
 | 	kvm_free_all_assigned_devices(kvm); | 
 | 	kvm_free_pit(kvm); | 
 | } | 
 |  | 
 | void kvm_arch_destroy_vm(struct kvm *kvm) | 
 | { | 
 | 	if (current->mm == kvm->mm) { | 
 | 		/* | 
 | 		 * Free memory regions allocated on behalf of userspace, | 
 | 		 * unless the the memory map has changed due to process exit | 
 | 		 * or fd copying. | 
 | 		 */ | 
 | 		struct kvm_userspace_memory_region mem; | 
 | 		memset(&mem, 0, sizeof(mem)); | 
 | 		mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT; | 
 | 		kvm_set_memory_region(kvm, &mem); | 
 |  | 
 | 		mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT; | 
 | 		kvm_set_memory_region(kvm, &mem); | 
 |  | 
 | 		mem.slot = TSS_PRIVATE_MEMSLOT; | 
 | 		kvm_set_memory_region(kvm, &mem); | 
 | 	} | 
 | 	kvm_iommu_unmap_guest(kvm); | 
 | 	kfree(kvm->arch.vpic); | 
 | 	kfree(kvm->arch.vioapic); | 
 | 	kvm_free_vcpus(kvm); | 
 | 	if (kvm->arch.apic_access_page) | 
 | 		put_page(kvm->arch.apic_access_page); | 
 | 	if (kvm->arch.ept_identity_pagetable) | 
 | 		put_page(kvm->arch.ept_identity_pagetable); | 
 | 	kfree(rcu_dereference_check(kvm->arch.apic_map, 1)); | 
 | } | 
 |  | 
 | void kvm_arch_free_memslot(struct kvm_memory_slot *free, | 
 | 			   struct kvm_memory_slot *dont) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | 
 | 		if (!dont || free->arch.rmap[i] != dont->arch.rmap[i]) { | 
 | 			kvm_kvfree(free->arch.rmap[i]); | 
 | 			free->arch.rmap[i] = NULL; | 
 | 		} | 
 | 		if (i == 0) | 
 | 			continue; | 
 |  | 
 | 		if (!dont || free->arch.lpage_info[i - 1] != | 
 | 			     dont->arch.lpage_info[i - 1]) { | 
 | 			kvm_kvfree(free->arch.lpage_info[i - 1]); | 
 | 			free->arch.lpage_info[i - 1] = NULL; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | 
 | 		unsigned long ugfn; | 
 | 		int lpages; | 
 | 		int level = i + 1; | 
 |  | 
 | 		lpages = gfn_to_index(slot->base_gfn + npages - 1, | 
 | 				      slot->base_gfn, level) + 1; | 
 |  | 
 | 		slot->arch.rmap[i] = | 
 | 			kvm_kvzalloc(lpages * sizeof(*slot->arch.rmap[i])); | 
 | 		if (!slot->arch.rmap[i]) | 
 | 			goto out_free; | 
 | 		if (i == 0) | 
 | 			continue; | 
 |  | 
 | 		slot->arch.lpage_info[i - 1] = kvm_kvzalloc(lpages * | 
 | 					sizeof(*slot->arch.lpage_info[i - 1])); | 
 | 		if (!slot->arch.lpage_info[i - 1]) | 
 | 			goto out_free; | 
 |  | 
 | 		if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) | 
 | 			slot->arch.lpage_info[i - 1][0].write_count = 1; | 
 | 		if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) | 
 | 			slot->arch.lpage_info[i - 1][lpages - 1].write_count = 1; | 
 | 		ugfn = slot->userspace_addr >> PAGE_SHIFT; | 
 | 		/* | 
 | 		 * If the gfn and userspace address are not aligned wrt each | 
 | 		 * other, or if explicitly asked to, disable large page | 
 | 		 * support for this slot | 
 | 		 */ | 
 | 		if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1) || | 
 | 		    !kvm_largepages_enabled()) { | 
 | 			unsigned long j; | 
 |  | 
 | 			for (j = 0; j < lpages; ++j) | 
 | 				slot->arch.lpage_info[i - 1][j].write_count = 1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | out_free: | 
 | 	for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | 
 | 		kvm_kvfree(slot->arch.rmap[i]); | 
 | 		slot->arch.rmap[i] = NULL; | 
 | 		if (i == 0) | 
 | 			continue; | 
 |  | 
 | 		kvm_kvfree(slot->arch.lpage_info[i - 1]); | 
 | 		slot->arch.lpage_info[i - 1] = NULL; | 
 | 	} | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | int kvm_arch_prepare_memory_region(struct kvm *kvm, | 
 | 				struct kvm_memory_slot *memslot, | 
 | 				struct kvm_userspace_memory_region *mem, | 
 | 				enum kvm_mr_change change) | 
 | { | 
 | 	/* | 
 | 	 * Only private memory slots need to be mapped here since | 
 | 	 * KVM_SET_MEMORY_REGION ioctl is no longer supported. | 
 | 	 */ | 
 | 	if ((memslot->id >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_CREATE)) { | 
 | 		unsigned long userspace_addr; | 
 |  | 
 | 		/* | 
 | 		 * MAP_SHARED to prevent internal slot pages from being moved | 
 | 		 * by fork()/COW. | 
 | 		 */ | 
 | 		userspace_addr = vm_mmap(NULL, 0, memslot->npages * PAGE_SIZE, | 
 | 					 PROT_READ | PROT_WRITE, | 
 | 					 MAP_SHARED | MAP_ANONYMOUS, 0); | 
 |  | 
 | 		if (IS_ERR((void *)userspace_addr)) | 
 | 			return PTR_ERR((void *)userspace_addr); | 
 |  | 
 | 		memslot->userspace_addr = userspace_addr; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void kvm_arch_commit_memory_region(struct kvm *kvm, | 
 | 				struct kvm_userspace_memory_region *mem, | 
 | 				const struct kvm_memory_slot *old, | 
 | 				enum kvm_mr_change change) | 
 | { | 
 |  | 
 | 	int nr_mmu_pages = 0; | 
 |  | 
 | 	if ((mem->slot >= KVM_USER_MEM_SLOTS) && (change == KVM_MR_DELETE)) { | 
 | 		int ret; | 
 |  | 
 | 		ret = vm_munmap(old->userspace_addr, | 
 | 				old->npages * PAGE_SIZE); | 
 | 		if (ret < 0) | 
 | 			printk(KERN_WARNING | 
 | 			       "kvm_vm_ioctl_set_memory_region: " | 
 | 			       "failed to munmap memory\n"); | 
 | 	} | 
 |  | 
 | 	if (!kvm->arch.n_requested_mmu_pages) | 
 | 		nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm); | 
 |  | 
 | 	if (nr_mmu_pages) | 
 | 		kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); | 
 | 	/* | 
 | 	 * Write protect all pages for dirty logging. | 
 | 	 * Existing largepage mappings are destroyed here and new ones will | 
 | 	 * not be created until the end of the logging. | 
 | 	 */ | 
 | 	if ((change != KVM_MR_DELETE) && (mem->flags & KVM_MEM_LOG_DIRTY_PAGES)) | 
 | 		kvm_mmu_slot_remove_write_access(kvm, mem->slot); | 
 | 	/* | 
 | 	 * If memory slot is created, or moved, we need to clear all | 
 | 	 * mmio sptes. | 
 | 	 */ | 
 | 	if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) { | 
 | 		kvm_mmu_zap_mmio_sptes(kvm); | 
 | 		kvm_reload_remote_mmus(kvm); | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_arch_flush_shadow_all(struct kvm *kvm) | 
 | { | 
 | 	kvm_mmu_zap_all(kvm); | 
 | 	kvm_reload_remote_mmus(kvm); | 
 | } | 
 |  | 
 | void kvm_arch_flush_shadow_memslot(struct kvm *kvm, | 
 | 				   struct kvm_memory_slot *slot) | 
 | { | 
 | 	kvm_arch_flush_shadow_all(kvm); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && | 
 | 		!vcpu->arch.apf.halted) | 
 | 		|| !list_empty_careful(&vcpu->async_pf.done) | 
 | 		|| kvm_apic_has_events(vcpu) | 
 | 		|| atomic_read(&vcpu->arch.nmi_queued) || | 
 | 		(kvm_arch_interrupt_allowed(vcpu) && | 
 | 		 kvm_cpu_has_interrupt(vcpu)); | 
 | } | 
 |  | 
 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; | 
 | } | 
 |  | 
 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return kvm_x86_ops->interrupt_allowed(vcpu); | 
 | } | 
 |  | 
 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) | 
 | { | 
 | 	unsigned long current_rip = kvm_rip_read(vcpu) + | 
 | 		get_segment_base(vcpu, VCPU_SREG_CS); | 
 |  | 
 | 	return current_rip == linear_rip; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | 
 |  | 
 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned long rflags; | 
 |  | 
 | 	rflags = kvm_x86_ops->get_rflags(vcpu); | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) | 
 | 		rflags &= ~X86_EFLAGS_TF; | 
 | 	return rflags; | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | 
 |  | 
 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | 
 | { | 
 | 	if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | 
 | 	    kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) | 
 | 		rflags |= X86_EFLAGS_TF; | 
 | 	kvm_x86_ops->set_rflags(vcpu, rflags); | 
 | 	kvm_make_request(KVM_REQ_EVENT, vcpu); | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | 
 |  | 
 | void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) || | 
 | 	      is_error_page(work->page)) | 
 | 		return; | 
 |  | 
 | 	r = kvm_mmu_reload(vcpu); | 
 | 	if (unlikely(r)) | 
 | 		return; | 
 |  | 
 | 	if (!vcpu->arch.mmu.direct_map && | 
 | 	      work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu)) | 
 | 		return; | 
 |  | 
 | 	vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true); | 
 | } | 
 |  | 
 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) | 
 | { | 
 | 	return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); | 
 | } | 
 |  | 
 | static inline u32 kvm_async_pf_next_probe(u32 key) | 
 | { | 
 | 	return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1); | 
 | } | 
 |  | 
 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	u32 key = kvm_async_pf_hash_fn(gfn); | 
 |  | 
 | 	while (vcpu->arch.apf.gfns[key] != ~0) | 
 | 		key = kvm_async_pf_next_probe(key); | 
 |  | 
 | 	vcpu->arch.apf.gfns[key] = gfn; | 
 | } | 
 |  | 
 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	int i; | 
 | 	u32 key = kvm_async_pf_hash_fn(gfn); | 
 |  | 
 | 	for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) && | 
 | 		     (vcpu->arch.apf.gfns[key] != gfn && | 
 | 		      vcpu->arch.apf.gfns[key] != ~0); i++) | 
 | 		key = kvm_async_pf_next_probe(key); | 
 |  | 
 | 	return key; | 
 | } | 
 |  | 
 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | 
 | } | 
 |  | 
 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	u32 i, j, k; | 
 |  | 
 | 	i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | 
 | 	while (true) { | 
 | 		vcpu->arch.apf.gfns[i] = ~0; | 
 | 		do { | 
 | 			j = kvm_async_pf_next_probe(j); | 
 | 			if (vcpu->arch.apf.gfns[j] == ~0) | 
 | 				return; | 
 | 			k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | 
 | 			/* | 
 | 			 * k lies cyclically in ]i,j] | 
 | 			 * |    i.k.j | | 
 | 			 * |....j i.k.| or  |.k..j i...| | 
 | 			 */ | 
 | 		} while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | 
 | 		vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | 
 | 		i = j; | 
 | 	} | 
 | } | 
 |  | 
 | static int apf_put_user(struct kvm_vcpu *vcpu, u32 val) | 
 | { | 
 |  | 
 | 	return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val, | 
 | 				      sizeof(val)); | 
 | } | 
 |  | 
 | void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, | 
 | 				     struct kvm_async_pf *work) | 
 | { | 
 | 	struct x86_exception fault; | 
 |  | 
 | 	trace_kvm_async_pf_not_present(work->arch.token, work->gva); | 
 | 	kvm_add_async_pf_gfn(vcpu, work->arch.gfn); | 
 |  | 
 | 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) || | 
 | 	    (vcpu->arch.apf.send_user_only && | 
 | 	     kvm_x86_ops->get_cpl(vcpu) == 0)) | 
 | 		kvm_make_request(KVM_REQ_APF_HALT, vcpu); | 
 | 	else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) { | 
 | 		fault.vector = PF_VECTOR; | 
 | 		fault.error_code_valid = true; | 
 | 		fault.error_code = 0; | 
 | 		fault.nested_page_fault = false; | 
 | 		fault.address = work->arch.token; | 
 | 		kvm_inject_page_fault(vcpu, &fault); | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | 
 | 				 struct kvm_async_pf *work) | 
 | { | 
 | 	struct x86_exception fault; | 
 |  | 
 | 	trace_kvm_async_pf_ready(work->arch.token, work->gva); | 
 | 	if (is_error_page(work->page)) | 
 | 		work->arch.token = ~0; /* broadcast wakeup */ | 
 | 	else | 
 | 		kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | 
 |  | 
 | 	if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) && | 
 | 	    !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) { | 
 | 		fault.vector = PF_VECTOR; | 
 | 		fault.error_code_valid = true; | 
 | 		fault.error_code = 0; | 
 | 		fault.nested_page_fault = false; | 
 | 		fault.address = work->arch.token; | 
 | 		kvm_inject_page_fault(vcpu, &fault); | 
 | 	} | 
 | 	vcpu->arch.apf.halted = false; | 
 | 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE; | 
 | } | 
 |  | 
 | bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED)) | 
 | 		return true; | 
 | 	else | 
 | 		return !kvm_event_needs_reinjection(vcpu) && | 
 | 			kvm_x86_ops->interrupt_allowed(vcpu); | 
 | } | 
 |  | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); | 
 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |