| /* | 
 |  * Copyright (c) 2007-2013 Nicira, Inc. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of version 2 of the GNU General Public | 
 |  * License as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA | 
 |  * 02110-1301, USA | 
 |  */ | 
 |  | 
 | #include "flow.h" | 
 | #include "datapath.h" | 
 | #include <linux/uaccess.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/if_ether.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <net/llc_pdu.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/jhash.h> | 
 | #include <linux/jiffies.h> | 
 | #include <linux/llc.h> | 
 | #include <linux/module.h> | 
 | #include <linux/in.h> | 
 | #include <linux/rcupdate.h> | 
 | #include <linux/if_arp.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/ipv6.h> | 
 | #include <linux/sctp.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/udp.h> | 
 | #include <linux/icmp.h> | 
 | #include <linux/icmpv6.h> | 
 | #include <linux/rculist.h> | 
 | #include <net/ip.h> | 
 | #include <net/ip_tunnels.h> | 
 | #include <net/ipv6.h> | 
 | #include <net/ndisc.h> | 
 |  | 
 | static struct kmem_cache *flow_cache; | 
 |  | 
 | static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask, | 
 | 		struct sw_flow_key_range *range, u8 val); | 
 |  | 
 | static void update_range__(struct sw_flow_match *match, | 
 | 			  size_t offset, size_t size, bool is_mask) | 
 | { | 
 | 	struct sw_flow_key_range *range = NULL; | 
 | 	size_t start = rounddown(offset, sizeof(long)); | 
 | 	size_t end = roundup(offset + size, sizeof(long)); | 
 |  | 
 | 	if (!is_mask) | 
 | 		range = &match->range; | 
 | 	else if (match->mask) | 
 | 		range = &match->mask->range; | 
 |  | 
 | 	if (!range) | 
 | 		return; | 
 |  | 
 | 	if (range->start == range->end) { | 
 | 		range->start = start; | 
 | 		range->end = end; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	if (range->start > start) | 
 | 		range->start = start; | 
 |  | 
 | 	if (range->end < end) | 
 | 		range->end = end; | 
 | } | 
 |  | 
 | #define SW_FLOW_KEY_PUT(match, field, value, is_mask) \ | 
 | 	do { \ | 
 | 		update_range__(match, offsetof(struct sw_flow_key, field),  \ | 
 | 				     sizeof((match)->key->field), is_mask); \ | 
 | 		if (is_mask) {						    \ | 
 | 			if ((match)->mask)				    \ | 
 | 				(match)->mask->key.field = value;	    \ | 
 | 		} else {                                                    \ | 
 | 			(match)->key->field = value;		            \ | 
 | 		}                                                           \ | 
 | 	} while (0) | 
 |  | 
 | #define SW_FLOW_KEY_MEMCPY(match, field, value_p, len, is_mask) \ | 
 | 	do { \ | 
 | 		update_range__(match, offsetof(struct sw_flow_key, field),  \ | 
 | 				len, is_mask);                              \ | 
 | 		if (is_mask) {						    \ | 
 | 			if ((match)->mask)				    \ | 
 | 				memcpy(&(match)->mask->key.field, value_p, len);\ | 
 | 		} else {                                                    \ | 
 | 			memcpy(&(match)->key->field, value_p, len);         \ | 
 | 		}                                                           \ | 
 | 	} while (0) | 
 |  | 
 | static u16 range_n_bytes(const struct sw_flow_key_range *range) | 
 | { | 
 | 	return range->end - range->start; | 
 | } | 
 |  | 
 | void ovs_match_init(struct sw_flow_match *match, | 
 | 		    struct sw_flow_key *key, | 
 | 		    struct sw_flow_mask *mask) | 
 | { | 
 | 	memset(match, 0, sizeof(*match)); | 
 | 	match->key = key; | 
 | 	match->mask = mask; | 
 |  | 
 | 	memset(key, 0, sizeof(*key)); | 
 |  | 
 | 	if (mask) { | 
 | 		memset(&mask->key, 0, sizeof(mask->key)); | 
 | 		mask->range.start = mask->range.end = 0; | 
 | 	} | 
 | } | 
 |  | 
 | static bool ovs_match_validate(const struct sw_flow_match *match, | 
 | 		u64 key_attrs, u64 mask_attrs) | 
 | { | 
 | 	u64 key_expected = 1 << OVS_KEY_ATTR_ETHERNET; | 
 | 	u64 mask_allowed = key_attrs;  /* At most allow all key attributes */ | 
 |  | 
 | 	/* The following mask attributes allowed only if they | 
 | 	 * pass the validation tests. */ | 
 | 	mask_allowed &= ~((1 << OVS_KEY_ATTR_IPV4) | 
 | 			| (1 << OVS_KEY_ATTR_IPV6) | 
 | 			| (1 << OVS_KEY_ATTR_TCP) | 
 | 			| (1 << OVS_KEY_ATTR_UDP) | 
 | 			| (1 << OVS_KEY_ATTR_SCTP) | 
 | 			| (1 << OVS_KEY_ATTR_ICMP) | 
 | 			| (1 << OVS_KEY_ATTR_ICMPV6) | 
 | 			| (1 << OVS_KEY_ATTR_ARP) | 
 | 			| (1 << OVS_KEY_ATTR_ND)); | 
 |  | 
 | 	/* Always allowed mask fields. */ | 
 | 	mask_allowed |= ((1 << OVS_KEY_ATTR_TUNNEL) | 
 | 		       | (1 << OVS_KEY_ATTR_IN_PORT) | 
 | 		       | (1 << OVS_KEY_ATTR_ETHERTYPE)); | 
 |  | 
 | 	/* Check key attributes. */ | 
 | 	if (match->key->eth.type == htons(ETH_P_ARP) | 
 | 			|| match->key->eth.type == htons(ETH_P_RARP)) { | 
 | 		key_expected |= 1 << OVS_KEY_ATTR_ARP; | 
 | 		if (match->mask && (match->mask->key.eth.type == htons(0xffff))) | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_ARP; | 
 | 	} | 
 |  | 
 | 	if (match->key->eth.type == htons(ETH_P_IP)) { | 
 | 		key_expected |= 1 << OVS_KEY_ATTR_IPV4; | 
 | 		if (match->mask && (match->mask->key.eth.type == htons(0xffff))) | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV4; | 
 |  | 
 | 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 | 			if (match->key->ip.proto == IPPROTO_UDP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_UDP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_SCTP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_SCTP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_TCP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_TCP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_ICMP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_ICMP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMP; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (match->key->eth.type == htons(ETH_P_IPV6)) { | 
 | 		key_expected |= 1 << OVS_KEY_ATTR_IPV6; | 
 | 		if (match->mask && (match->mask->key.eth.type == htons(0xffff))) | 
 | 			mask_allowed |= 1 << OVS_KEY_ATTR_IPV6; | 
 |  | 
 | 		if (match->key->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 | 			if (match->key->ip.proto == IPPROTO_UDP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_UDP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_UDP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_SCTP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_SCTP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_SCTP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_TCP) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_TCP; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_TCP; | 
 | 			} | 
 |  | 
 | 			if (match->key->ip.proto == IPPROTO_ICMPV6) { | 
 | 				key_expected |= 1 << OVS_KEY_ATTR_ICMPV6; | 
 | 				if (match->mask && (match->mask->key.ip.proto == 0xff)) | 
 | 					mask_allowed |= 1 << OVS_KEY_ATTR_ICMPV6; | 
 |  | 
 | 				if (match->key->ipv6.tp.src == | 
 | 						htons(NDISC_NEIGHBOUR_SOLICITATION) || | 
 | 				    match->key->ipv6.tp.src == htons(NDISC_NEIGHBOUR_ADVERTISEMENT)) { | 
 | 					key_expected |= 1 << OVS_KEY_ATTR_ND; | 
 | 					if (match->mask && (match->mask->key.ipv6.tp.src == htons(0xffff))) | 
 | 						mask_allowed |= 1 << OVS_KEY_ATTR_ND; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if ((key_attrs & key_expected) != key_expected) { | 
 | 		/* Key attributes check failed. */ | 
 | 		OVS_NLERR("Missing expected key attributes (key_attrs=%llx, expected=%llx).\n", | 
 | 				key_attrs, key_expected); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	if ((mask_attrs & mask_allowed) != mask_attrs) { | 
 | 		/* Mask attributes check failed. */ | 
 | 		OVS_NLERR("Contain more than allowed mask fields (mask_attrs=%llx, mask_allowed=%llx).\n", | 
 | 				mask_attrs, mask_allowed); | 
 | 		return false; | 
 | 	} | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int check_header(struct sk_buff *skb, int len) | 
 | { | 
 | 	if (unlikely(skb->len < len)) | 
 | 		return -EINVAL; | 
 | 	if (unlikely(!pskb_may_pull(skb, len))) | 
 | 		return -ENOMEM; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool arphdr_ok(struct sk_buff *skb) | 
 | { | 
 | 	return pskb_may_pull(skb, skb_network_offset(skb) + | 
 | 				  sizeof(struct arp_eth_header)); | 
 | } | 
 |  | 
 | static int check_iphdr(struct sk_buff *skb) | 
 | { | 
 | 	unsigned int nh_ofs = skb_network_offset(skb); | 
 | 	unsigned int ip_len; | 
 | 	int err; | 
 |  | 
 | 	err = check_header(skb, nh_ofs + sizeof(struct iphdr)); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	ip_len = ip_hdrlen(skb); | 
 | 	if (unlikely(ip_len < sizeof(struct iphdr) || | 
 | 		     skb->len < nh_ofs + ip_len)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	skb_set_transport_header(skb, nh_ofs + ip_len); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static bool tcphdr_ok(struct sk_buff *skb) | 
 | { | 
 | 	int th_ofs = skb_transport_offset(skb); | 
 | 	int tcp_len; | 
 |  | 
 | 	if (unlikely(!pskb_may_pull(skb, th_ofs + sizeof(struct tcphdr)))) | 
 | 		return false; | 
 |  | 
 | 	tcp_len = tcp_hdrlen(skb); | 
 | 	if (unlikely(tcp_len < sizeof(struct tcphdr) || | 
 | 		     skb->len < th_ofs + tcp_len)) | 
 | 		return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static bool udphdr_ok(struct sk_buff *skb) | 
 | { | 
 | 	return pskb_may_pull(skb, skb_transport_offset(skb) + | 
 | 				  sizeof(struct udphdr)); | 
 | } | 
 |  | 
 | static bool sctphdr_ok(struct sk_buff *skb) | 
 | { | 
 | 	return pskb_may_pull(skb, skb_transport_offset(skb) + | 
 | 				  sizeof(struct sctphdr)); | 
 | } | 
 |  | 
 | static bool icmphdr_ok(struct sk_buff *skb) | 
 | { | 
 | 	return pskb_may_pull(skb, skb_transport_offset(skb) + | 
 | 				  sizeof(struct icmphdr)); | 
 | } | 
 |  | 
 | u64 ovs_flow_used_time(unsigned long flow_jiffies) | 
 | { | 
 | 	struct timespec cur_ts; | 
 | 	u64 cur_ms, idle_ms; | 
 |  | 
 | 	ktime_get_ts(&cur_ts); | 
 | 	idle_ms = jiffies_to_msecs(jiffies - flow_jiffies); | 
 | 	cur_ms = (u64)cur_ts.tv_sec * MSEC_PER_SEC + | 
 | 		 cur_ts.tv_nsec / NSEC_PER_MSEC; | 
 |  | 
 | 	return cur_ms - idle_ms; | 
 | } | 
 |  | 
 | static int parse_ipv6hdr(struct sk_buff *skb, struct sw_flow_key *key) | 
 | { | 
 | 	unsigned int nh_ofs = skb_network_offset(skb); | 
 | 	unsigned int nh_len; | 
 | 	int payload_ofs; | 
 | 	struct ipv6hdr *nh; | 
 | 	uint8_t nexthdr; | 
 | 	__be16 frag_off; | 
 | 	int err; | 
 |  | 
 | 	err = check_header(skb, nh_ofs + sizeof(*nh)); | 
 | 	if (unlikely(err)) | 
 | 		return err; | 
 |  | 
 | 	nh = ipv6_hdr(skb); | 
 | 	nexthdr = nh->nexthdr; | 
 | 	payload_ofs = (u8 *)(nh + 1) - skb->data; | 
 |  | 
 | 	key->ip.proto = NEXTHDR_NONE; | 
 | 	key->ip.tos = ipv6_get_dsfield(nh); | 
 | 	key->ip.ttl = nh->hop_limit; | 
 | 	key->ipv6.label = *(__be32 *)nh & htonl(IPV6_FLOWINFO_FLOWLABEL); | 
 | 	key->ipv6.addr.src = nh->saddr; | 
 | 	key->ipv6.addr.dst = nh->daddr; | 
 |  | 
 | 	payload_ofs = ipv6_skip_exthdr(skb, payload_ofs, &nexthdr, &frag_off); | 
 | 	if (unlikely(payload_ofs < 0)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (frag_off) { | 
 | 		if (frag_off & htons(~0x7)) | 
 | 			key->ip.frag = OVS_FRAG_TYPE_LATER; | 
 | 		else | 
 | 			key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
 | 	} | 
 |  | 
 | 	nh_len = payload_ofs - nh_ofs; | 
 | 	skb_set_transport_header(skb, nh_ofs + nh_len); | 
 | 	key->ip.proto = nexthdr; | 
 | 	return nh_len; | 
 | } | 
 |  | 
 | static bool icmp6hdr_ok(struct sk_buff *skb) | 
 | { | 
 | 	return pskb_may_pull(skb, skb_transport_offset(skb) + | 
 | 				  sizeof(struct icmp6hdr)); | 
 | } | 
 |  | 
 | void ovs_flow_key_mask(struct sw_flow_key *dst, const struct sw_flow_key *src, | 
 | 		       const struct sw_flow_mask *mask) | 
 | { | 
 | 	const long *m = (long *)((u8 *)&mask->key + mask->range.start); | 
 | 	const long *s = (long *)((u8 *)src + mask->range.start); | 
 | 	long *d = (long *)((u8 *)dst + mask->range.start); | 
 | 	int i; | 
 |  | 
 | 	/* The memory outside of the 'mask->range' are not set since | 
 | 	 * further operations on 'dst' only uses contents within | 
 | 	 * 'mask->range'. | 
 | 	 */ | 
 | 	for (i = 0; i < range_n_bytes(&mask->range); i += sizeof(long)) | 
 | 		*d++ = *s++ & *m++; | 
 | } | 
 |  | 
 | #define TCP_FLAGS_OFFSET 13 | 
 | #define TCP_FLAG_MASK 0x3f | 
 |  | 
 | void ovs_flow_used(struct sw_flow *flow, struct sk_buff *skb) | 
 | { | 
 | 	u8 tcp_flags = 0; | 
 |  | 
 | 	if ((flow->key.eth.type == htons(ETH_P_IP) || | 
 | 	     flow->key.eth.type == htons(ETH_P_IPV6)) && | 
 | 	    flow->key.ip.proto == IPPROTO_TCP && | 
 | 	    likely(skb->len >= skb_transport_offset(skb) + sizeof(struct tcphdr))) { | 
 | 		u8 *tcp = (u8 *)tcp_hdr(skb); | 
 | 		tcp_flags = *(tcp + TCP_FLAGS_OFFSET) & TCP_FLAG_MASK; | 
 | 	} | 
 |  | 
 | 	spin_lock(&flow->lock); | 
 | 	flow->used = jiffies; | 
 | 	flow->packet_count++; | 
 | 	flow->byte_count += skb->len; | 
 | 	flow->tcp_flags |= tcp_flags; | 
 | 	spin_unlock(&flow->lock); | 
 | } | 
 |  | 
 | struct sw_flow_actions *ovs_flow_actions_alloc(int size) | 
 | { | 
 | 	struct sw_flow_actions *sfa; | 
 |  | 
 | 	if (size > MAX_ACTIONS_BUFSIZE) | 
 | 		return ERR_PTR(-EINVAL); | 
 |  | 
 | 	sfa = kmalloc(sizeof(*sfa) + size, GFP_KERNEL); | 
 | 	if (!sfa) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	sfa->actions_len = 0; | 
 | 	return sfa; | 
 | } | 
 |  | 
 | struct sw_flow *ovs_flow_alloc(void) | 
 | { | 
 | 	struct sw_flow *flow; | 
 |  | 
 | 	flow = kmem_cache_alloc(flow_cache, GFP_KERNEL); | 
 | 	if (!flow) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	spin_lock_init(&flow->lock); | 
 | 	flow->sf_acts = NULL; | 
 | 	flow->mask = NULL; | 
 |  | 
 | 	return flow; | 
 | } | 
 |  | 
 | static struct hlist_head *find_bucket(struct flow_table *table, u32 hash) | 
 | { | 
 | 	hash = jhash_1word(hash, table->hash_seed); | 
 | 	return flex_array_get(table->buckets, | 
 | 				(hash & (table->n_buckets - 1))); | 
 | } | 
 |  | 
 | static struct flex_array *alloc_buckets(unsigned int n_buckets) | 
 | { | 
 | 	struct flex_array *buckets; | 
 | 	int i, err; | 
 |  | 
 | 	buckets = flex_array_alloc(sizeof(struct hlist_head), | 
 | 				   n_buckets, GFP_KERNEL); | 
 | 	if (!buckets) | 
 | 		return NULL; | 
 |  | 
 | 	err = flex_array_prealloc(buckets, 0, n_buckets, GFP_KERNEL); | 
 | 	if (err) { | 
 | 		flex_array_free(buckets); | 
 | 		return NULL; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < n_buckets; i++) | 
 | 		INIT_HLIST_HEAD((struct hlist_head *) | 
 | 					flex_array_get(buckets, i)); | 
 |  | 
 | 	return buckets; | 
 | } | 
 |  | 
 | static void free_buckets(struct flex_array *buckets) | 
 | { | 
 | 	flex_array_free(buckets); | 
 | } | 
 |  | 
 | static struct flow_table *__flow_tbl_alloc(int new_size) | 
 | { | 
 | 	struct flow_table *table = kmalloc(sizeof(*table), GFP_KERNEL); | 
 |  | 
 | 	if (!table) | 
 | 		return NULL; | 
 |  | 
 | 	table->buckets = alloc_buckets(new_size); | 
 |  | 
 | 	if (!table->buckets) { | 
 | 		kfree(table); | 
 | 		return NULL; | 
 | 	} | 
 | 	table->n_buckets = new_size; | 
 | 	table->count = 0; | 
 | 	table->node_ver = 0; | 
 | 	table->keep_flows = false; | 
 | 	get_random_bytes(&table->hash_seed, sizeof(u32)); | 
 | 	table->mask_list = NULL; | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | static void __flow_tbl_destroy(struct flow_table *table) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (table->keep_flows) | 
 | 		goto skip_flows; | 
 |  | 
 | 	for (i = 0; i < table->n_buckets; i++) { | 
 | 		struct sw_flow *flow; | 
 | 		struct hlist_head *head = flex_array_get(table->buckets, i); | 
 | 		struct hlist_node *n; | 
 | 		int ver = table->node_ver; | 
 |  | 
 | 		hlist_for_each_entry_safe(flow, n, head, hash_node[ver]) { | 
 | 			hlist_del(&flow->hash_node[ver]); | 
 | 			ovs_flow_free(flow, false); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	BUG_ON(!list_empty(table->mask_list)); | 
 | 	kfree(table->mask_list); | 
 |  | 
 | skip_flows: | 
 | 	free_buckets(table->buckets); | 
 | 	kfree(table); | 
 | } | 
 |  | 
 | struct flow_table *ovs_flow_tbl_alloc(int new_size) | 
 | { | 
 | 	struct flow_table *table = __flow_tbl_alloc(new_size); | 
 |  | 
 | 	if (!table) | 
 | 		return NULL; | 
 |  | 
 | 	table->mask_list = kmalloc(sizeof(struct list_head), GFP_KERNEL); | 
 | 	if (!table->mask_list) { | 
 | 		table->keep_flows = true; | 
 | 		__flow_tbl_destroy(table); | 
 | 		return NULL; | 
 | 	} | 
 | 	INIT_LIST_HEAD(table->mask_list); | 
 |  | 
 | 	return table; | 
 | } | 
 |  | 
 | static void flow_tbl_destroy_rcu_cb(struct rcu_head *rcu) | 
 | { | 
 | 	struct flow_table *table = container_of(rcu, struct flow_table, rcu); | 
 |  | 
 | 	__flow_tbl_destroy(table); | 
 | } | 
 |  | 
 | void ovs_flow_tbl_destroy(struct flow_table *table, bool deferred) | 
 | { | 
 | 	if (!table) | 
 | 		return; | 
 |  | 
 | 	if (deferred) | 
 | 		call_rcu(&table->rcu, flow_tbl_destroy_rcu_cb); | 
 | 	else | 
 | 		__flow_tbl_destroy(table); | 
 | } | 
 |  | 
 | struct sw_flow *ovs_flow_dump_next(struct flow_table *table, u32 *bucket, u32 *last) | 
 | { | 
 | 	struct sw_flow *flow; | 
 | 	struct hlist_head *head; | 
 | 	int ver; | 
 | 	int i; | 
 |  | 
 | 	ver = table->node_ver; | 
 | 	while (*bucket < table->n_buckets) { | 
 | 		i = 0; | 
 | 		head = flex_array_get(table->buckets, *bucket); | 
 | 		hlist_for_each_entry_rcu(flow, head, hash_node[ver]) { | 
 | 			if (i < *last) { | 
 | 				i++; | 
 | 				continue; | 
 | 			} | 
 | 			*last = i + 1; | 
 | 			return flow; | 
 | 		} | 
 | 		(*bucket)++; | 
 | 		*last = 0; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static void __tbl_insert(struct flow_table *table, struct sw_flow *flow) | 
 | { | 
 | 	struct hlist_head *head; | 
 |  | 
 | 	head = find_bucket(table, flow->hash); | 
 | 	hlist_add_head_rcu(&flow->hash_node[table->node_ver], head); | 
 |  | 
 | 	table->count++; | 
 | } | 
 |  | 
 | static void flow_table_copy_flows(struct flow_table *old, struct flow_table *new) | 
 | { | 
 | 	int old_ver; | 
 | 	int i; | 
 |  | 
 | 	old_ver = old->node_ver; | 
 | 	new->node_ver = !old_ver; | 
 |  | 
 | 	/* Insert in new table. */ | 
 | 	for (i = 0; i < old->n_buckets; i++) { | 
 | 		struct sw_flow *flow; | 
 | 		struct hlist_head *head; | 
 |  | 
 | 		head = flex_array_get(old->buckets, i); | 
 |  | 
 | 		hlist_for_each_entry(flow, head, hash_node[old_ver]) | 
 | 			__tbl_insert(new, flow); | 
 | 	} | 
 |  | 
 | 	new->mask_list = old->mask_list; | 
 | 	old->keep_flows = true; | 
 | } | 
 |  | 
 | static struct flow_table *__flow_tbl_rehash(struct flow_table *table, int n_buckets) | 
 | { | 
 | 	struct flow_table *new_table; | 
 |  | 
 | 	new_table = __flow_tbl_alloc(n_buckets); | 
 | 	if (!new_table) | 
 | 		return ERR_PTR(-ENOMEM); | 
 |  | 
 | 	flow_table_copy_flows(table, new_table); | 
 |  | 
 | 	return new_table; | 
 | } | 
 |  | 
 | struct flow_table *ovs_flow_tbl_rehash(struct flow_table *table) | 
 | { | 
 | 	return __flow_tbl_rehash(table, table->n_buckets); | 
 | } | 
 |  | 
 | struct flow_table *ovs_flow_tbl_expand(struct flow_table *table) | 
 | { | 
 | 	return __flow_tbl_rehash(table, table->n_buckets * 2); | 
 | } | 
 |  | 
 | static void __flow_free(struct sw_flow *flow) | 
 | { | 
 | 	kfree((struct sf_flow_acts __force *)flow->sf_acts); | 
 | 	kmem_cache_free(flow_cache, flow); | 
 | } | 
 |  | 
 | static void rcu_free_flow_callback(struct rcu_head *rcu) | 
 | { | 
 | 	struct sw_flow *flow = container_of(rcu, struct sw_flow, rcu); | 
 |  | 
 | 	__flow_free(flow); | 
 | } | 
 |  | 
 | void ovs_flow_free(struct sw_flow *flow, bool deferred) | 
 | { | 
 | 	if (!flow) | 
 | 		return; | 
 |  | 
 | 	ovs_sw_flow_mask_del_ref(flow->mask, deferred); | 
 |  | 
 | 	if (deferred) | 
 | 		call_rcu(&flow->rcu, rcu_free_flow_callback); | 
 | 	else | 
 | 		__flow_free(flow); | 
 | } | 
 |  | 
 | /* Schedules 'sf_acts' to be freed after the next RCU grace period. | 
 |  * The caller must hold rcu_read_lock for this to be sensible. */ | 
 | void ovs_flow_deferred_free_acts(struct sw_flow_actions *sf_acts) | 
 | { | 
 | 	kfree_rcu(sf_acts, rcu); | 
 | } | 
 |  | 
 | static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) | 
 | { | 
 | 	struct qtag_prefix { | 
 | 		__be16 eth_type; /* ETH_P_8021Q */ | 
 | 		__be16 tci; | 
 | 	}; | 
 | 	struct qtag_prefix *qp; | 
 |  | 
 | 	if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) | 
 | 		return 0; | 
 |  | 
 | 	if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + | 
 | 					 sizeof(__be16)))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	qp = (struct qtag_prefix *) skb->data; | 
 | 	key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); | 
 | 	__skb_pull(skb, sizeof(struct qtag_prefix)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static __be16 parse_ethertype(struct sk_buff *skb) | 
 | { | 
 | 	struct llc_snap_hdr { | 
 | 		u8  dsap;  /* Always 0xAA */ | 
 | 		u8  ssap;  /* Always 0xAA */ | 
 | 		u8  ctrl; | 
 | 		u8  oui[3]; | 
 | 		__be16 ethertype; | 
 | 	}; | 
 | 	struct llc_snap_hdr *llc; | 
 | 	__be16 proto; | 
 |  | 
 | 	proto = *(__be16 *) skb->data; | 
 | 	__skb_pull(skb, sizeof(__be16)); | 
 |  | 
 | 	if (ntohs(proto) >= ETH_P_802_3_MIN) | 
 | 		return proto; | 
 |  | 
 | 	if (skb->len < sizeof(struct llc_snap_hdr)) | 
 | 		return htons(ETH_P_802_2); | 
 |  | 
 | 	if (unlikely(!pskb_may_pull(skb, sizeof(struct llc_snap_hdr)))) | 
 | 		return htons(0); | 
 |  | 
 | 	llc = (struct llc_snap_hdr *) skb->data; | 
 | 	if (llc->dsap != LLC_SAP_SNAP || | 
 | 	    llc->ssap != LLC_SAP_SNAP || | 
 | 	    (llc->oui[0] | llc->oui[1] | llc->oui[2]) != 0) | 
 | 		return htons(ETH_P_802_2); | 
 |  | 
 | 	__skb_pull(skb, sizeof(struct llc_snap_hdr)); | 
 |  | 
 | 	if (ntohs(llc->ethertype) >= ETH_P_802_3_MIN) | 
 | 		return llc->ethertype; | 
 |  | 
 | 	return htons(ETH_P_802_2); | 
 | } | 
 |  | 
 | static int parse_icmpv6(struct sk_buff *skb, struct sw_flow_key *key, | 
 | 			int nh_len) | 
 | { | 
 | 	struct icmp6hdr *icmp = icmp6_hdr(skb); | 
 |  | 
 | 	/* The ICMPv6 type and code fields use the 16-bit transport port | 
 | 	 * fields, so we need to store them in 16-bit network byte order. | 
 | 	 */ | 
 | 	key->ipv6.tp.src = htons(icmp->icmp6_type); | 
 | 	key->ipv6.tp.dst = htons(icmp->icmp6_code); | 
 |  | 
 | 	if (icmp->icmp6_code == 0 && | 
 | 	    (icmp->icmp6_type == NDISC_NEIGHBOUR_SOLICITATION || | 
 | 	     icmp->icmp6_type == NDISC_NEIGHBOUR_ADVERTISEMENT)) { | 
 | 		int icmp_len = skb->len - skb_transport_offset(skb); | 
 | 		struct nd_msg *nd; | 
 | 		int offset; | 
 |  | 
 | 		/* In order to process neighbor discovery options, we need the | 
 | 		 * entire packet. | 
 | 		 */ | 
 | 		if (unlikely(icmp_len < sizeof(*nd))) | 
 | 			return 0; | 
 |  | 
 | 		if (unlikely(skb_linearize(skb))) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		nd = (struct nd_msg *)skb_transport_header(skb); | 
 | 		key->ipv6.nd.target = nd->target; | 
 |  | 
 | 		icmp_len -= sizeof(*nd); | 
 | 		offset = 0; | 
 | 		while (icmp_len >= 8) { | 
 | 			struct nd_opt_hdr *nd_opt = | 
 | 				 (struct nd_opt_hdr *)(nd->opt + offset); | 
 | 			int opt_len = nd_opt->nd_opt_len * 8; | 
 |  | 
 | 			if (unlikely(!opt_len || opt_len > icmp_len)) | 
 | 				return 0; | 
 |  | 
 | 			/* Store the link layer address if the appropriate | 
 | 			 * option is provided.  It is considered an error if | 
 | 			 * the same link layer option is specified twice. | 
 | 			 */ | 
 | 			if (nd_opt->nd_opt_type == ND_OPT_SOURCE_LL_ADDR | 
 | 			    && opt_len == 8) { | 
 | 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.sll))) | 
 | 					goto invalid; | 
 | 				memcpy(key->ipv6.nd.sll, | 
 | 				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); | 
 | 			} else if (nd_opt->nd_opt_type == ND_OPT_TARGET_LL_ADDR | 
 | 				   && opt_len == 8) { | 
 | 				if (unlikely(!is_zero_ether_addr(key->ipv6.nd.tll))) | 
 | 					goto invalid; | 
 | 				memcpy(key->ipv6.nd.tll, | 
 | 				    &nd->opt[offset+sizeof(*nd_opt)], ETH_ALEN); | 
 | 			} | 
 |  | 
 | 			icmp_len -= opt_len; | 
 | 			offset += opt_len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | invalid: | 
 | 	memset(&key->ipv6.nd.target, 0, sizeof(key->ipv6.nd.target)); | 
 | 	memset(key->ipv6.nd.sll, 0, sizeof(key->ipv6.nd.sll)); | 
 | 	memset(key->ipv6.nd.tll, 0, sizeof(key->ipv6.nd.tll)); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ovs_flow_extract - extracts a flow key from an Ethernet frame. | 
 |  * @skb: sk_buff that contains the frame, with skb->data pointing to the | 
 |  * Ethernet header | 
 |  * @in_port: port number on which @skb was received. | 
 |  * @key: output flow key | 
 |  * | 
 |  * The caller must ensure that skb->len >= ETH_HLEN. | 
 |  * | 
 |  * Returns 0 if successful, otherwise a negative errno value. | 
 |  * | 
 |  * Initializes @skb header pointers as follows: | 
 |  * | 
 |  *    - skb->mac_header: the Ethernet header. | 
 |  * | 
 |  *    - skb->network_header: just past the Ethernet header, or just past the | 
 |  *      VLAN header, to the first byte of the Ethernet payload. | 
 |  * | 
 |  *    - skb->transport_header: If key->eth.type is ETH_P_IP or ETH_P_IPV6 | 
 |  *      on output, then just past the IP header, if one is present and | 
 |  *      of a correct length, otherwise the same as skb->network_header. | 
 |  *      For other key->eth.type values it is left untouched. | 
 |  */ | 
 | int ovs_flow_extract(struct sk_buff *skb, u16 in_port, struct sw_flow_key *key) | 
 | { | 
 | 	int error; | 
 | 	struct ethhdr *eth; | 
 |  | 
 | 	memset(key, 0, sizeof(*key)); | 
 |  | 
 | 	key->phy.priority = skb->priority; | 
 | 	if (OVS_CB(skb)->tun_key) | 
 | 		memcpy(&key->tun_key, OVS_CB(skb)->tun_key, sizeof(key->tun_key)); | 
 | 	key->phy.in_port = in_port; | 
 | 	key->phy.skb_mark = skb->mark; | 
 |  | 
 | 	skb_reset_mac_header(skb); | 
 |  | 
 | 	/* Link layer.  We are guaranteed to have at least the 14 byte Ethernet | 
 | 	 * header in the linear data area. | 
 | 	 */ | 
 | 	eth = eth_hdr(skb); | 
 | 	memcpy(key->eth.src, eth->h_source, ETH_ALEN); | 
 | 	memcpy(key->eth.dst, eth->h_dest, ETH_ALEN); | 
 |  | 
 | 	__skb_pull(skb, 2 * ETH_ALEN); | 
 | 	/* We are going to push all headers that we pull, so no need to | 
 | 	 * update skb->csum here. | 
 | 	 */ | 
 |  | 
 | 	if (vlan_tx_tag_present(skb)) | 
 | 		key->eth.tci = htons(skb->vlan_tci); | 
 | 	else if (eth->h_proto == htons(ETH_P_8021Q)) | 
 | 		if (unlikely(parse_vlan(skb, key))) | 
 | 			return -ENOMEM; | 
 |  | 
 | 	key->eth.type = parse_ethertype(skb); | 
 | 	if (unlikely(key->eth.type == htons(0))) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	skb_reset_network_header(skb); | 
 | 	__skb_push(skb, skb->data - skb_mac_header(skb)); | 
 |  | 
 | 	/* Network layer. */ | 
 | 	if (key->eth.type == htons(ETH_P_IP)) { | 
 | 		struct iphdr *nh; | 
 | 		__be16 offset; | 
 |  | 
 | 		error = check_iphdr(skb); | 
 | 		if (unlikely(error)) { | 
 | 			if (error == -EINVAL) { | 
 | 				skb->transport_header = skb->network_header; | 
 | 				error = 0; | 
 | 			} | 
 | 			return error; | 
 | 		} | 
 |  | 
 | 		nh = ip_hdr(skb); | 
 | 		key->ipv4.addr.src = nh->saddr; | 
 | 		key->ipv4.addr.dst = nh->daddr; | 
 |  | 
 | 		key->ip.proto = nh->protocol; | 
 | 		key->ip.tos = nh->tos; | 
 | 		key->ip.ttl = nh->ttl; | 
 |  | 
 | 		offset = nh->frag_off & htons(IP_OFFSET); | 
 | 		if (offset) { | 
 | 			key->ip.frag = OVS_FRAG_TYPE_LATER; | 
 | 			return 0; | 
 | 		} | 
 | 		if (nh->frag_off & htons(IP_MF) || | 
 | 			 skb_shinfo(skb)->gso_type & SKB_GSO_UDP) | 
 | 			key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
 |  | 
 | 		/* Transport layer. */ | 
 | 		if (key->ip.proto == IPPROTO_TCP) { | 
 | 			if (tcphdr_ok(skb)) { | 
 | 				struct tcphdr *tcp = tcp_hdr(skb); | 
 | 				key->ipv4.tp.src = tcp->source; | 
 | 				key->ipv4.tp.dst = tcp->dest; | 
 | 			} | 
 | 		} else if (key->ip.proto == IPPROTO_UDP) { | 
 | 			if (udphdr_ok(skb)) { | 
 | 				struct udphdr *udp = udp_hdr(skb); | 
 | 				key->ipv4.tp.src = udp->source; | 
 | 				key->ipv4.tp.dst = udp->dest; | 
 | 			} | 
 | 		} else if (key->ip.proto == IPPROTO_SCTP) { | 
 | 			if (sctphdr_ok(skb)) { | 
 | 				struct sctphdr *sctp = sctp_hdr(skb); | 
 | 				key->ipv4.tp.src = sctp->source; | 
 | 				key->ipv4.tp.dst = sctp->dest; | 
 | 			} | 
 | 		} else if (key->ip.proto == IPPROTO_ICMP) { | 
 | 			if (icmphdr_ok(skb)) { | 
 | 				struct icmphdr *icmp = icmp_hdr(skb); | 
 | 				/* The ICMP type and code fields use the 16-bit | 
 | 				 * transport port fields, so we need to store | 
 | 				 * them in 16-bit network byte order. */ | 
 | 				key->ipv4.tp.src = htons(icmp->type); | 
 | 				key->ipv4.tp.dst = htons(icmp->code); | 
 | 			} | 
 | 		} | 
 |  | 
 | 	} else if ((key->eth.type == htons(ETH_P_ARP) || | 
 | 		   key->eth.type == htons(ETH_P_RARP)) && arphdr_ok(skb)) { | 
 | 		struct arp_eth_header *arp; | 
 |  | 
 | 		arp = (struct arp_eth_header *)skb_network_header(skb); | 
 |  | 
 | 		if (arp->ar_hrd == htons(ARPHRD_ETHER) | 
 | 				&& arp->ar_pro == htons(ETH_P_IP) | 
 | 				&& arp->ar_hln == ETH_ALEN | 
 | 				&& arp->ar_pln == 4) { | 
 |  | 
 | 			/* We only match on the lower 8 bits of the opcode. */ | 
 | 			if (ntohs(arp->ar_op) <= 0xff) | 
 | 				key->ip.proto = ntohs(arp->ar_op); | 
 | 			memcpy(&key->ipv4.addr.src, arp->ar_sip, sizeof(key->ipv4.addr.src)); | 
 | 			memcpy(&key->ipv4.addr.dst, arp->ar_tip, sizeof(key->ipv4.addr.dst)); | 
 | 			memcpy(key->ipv4.arp.sha, arp->ar_sha, ETH_ALEN); | 
 | 			memcpy(key->ipv4.arp.tha, arp->ar_tha, ETH_ALEN); | 
 | 		} | 
 | 	} else if (key->eth.type == htons(ETH_P_IPV6)) { | 
 | 		int nh_len;             /* IPv6 Header + Extensions */ | 
 |  | 
 | 		nh_len = parse_ipv6hdr(skb, key); | 
 | 		if (unlikely(nh_len < 0)) { | 
 | 			if (nh_len == -EINVAL) { | 
 | 				skb->transport_header = skb->network_header; | 
 | 				error = 0; | 
 | 			} else { | 
 | 				error = nh_len; | 
 | 			} | 
 | 			return error; | 
 | 		} | 
 |  | 
 | 		if (key->ip.frag == OVS_FRAG_TYPE_LATER) | 
 | 			return 0; | 
 | 		if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP) | 
 | 			key->ip.frag = OVS_FRAG_TYPE_FIRST; | 
 |  | 
 | 		/* Transport layer. */ | 
 | 		if (key->ip.proto == NEXTHDR_TCP) { | 
 | 			if (tcphdr_ok(skb)) { | 
 | 				struct tcphdr *tcp = tcp_hdr(skb); | 
 | 				key->ipv6.tp.src = tcp->source; | 
 | 				key->ipv6.tp.dst = tcp->dest; | 
 | 			} | 
 | 		} else if (key->ip.proto == NEXTHDR_UDP) { | 
 | 			if (udphdr_ok(skb)) { | 
 | 				struct udphdr *udp = udp_hdr(skb); | 
 | 				key->ipv6.tp.src = udp->source; | 
 | 				key->ipv6.tp.dst = udp->dest; | 
 | 			} | 
 | 		} else if (key->ip.proto == NEXTHDR_SCTP) { | 
 | 			if (sctphdr_ok(skb)) { | 
 | 				struct sctphdr *sctp = sctp_hdr(skb); | 
 | 				key->ipv6.tp.src = sctp->source; | 
 | 				key->ipv6.tp.dst = sctp->dest; | 
 | 			} | 
 | 		} else if (key->ip.proto == NEXTHDR_ICMP) { | 
 | 			if (icmp6hdr_ok(skb)) { | 
 | 				error = parse_icmpv6(skb, key, nh_len); | 
 | 				if (error) | 
 | 					return error; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static u32 ovs_flow_hash(const struct sw_flow_key *key, int key_start, | 
 | 			 int key_end) | 
 | { | 
 | 	u32 *hash_key = (u32 *)((u8 *)key + key_start); | 
 | 	int hash_u32s = (key_end - key_start) >> 2; | 
 |  | 
 | 	/* Make sure number of hash bytes are multiple of u32. */ | 
 | 	BUILD_BUG_ON(sizeof(long) % sizeof(u32)); | 
 |  | 
 | 	return jhash2(hash_key, hash_u32s, 0); | 
 | } | 
 |  | 
 | static int flow_key_start(const struct sw_flow_key *key) | 
 | { | 
 | 	if (key->tun_key.ipv4_dst) | 
 | 		return 0; | 
 | 	else | 
 | 		return rounddown(offsetof(struct sw_flow_key, phy), | 
 | 					  sizeof(long)); | 
 | } | 
 |  | 
 | static bool __cmp_key(const struct sw_flow_key *key1, | 
 | 		const struct sw_flow_key *key2,  int key_start, int key_end) | 
 | { | 
 | 	const long *cp1 = (long *)((u8 *)key1 + key_start); | 
 | 	const long *cp2 = (long *)((u8 *)key2 + key_start); | 
 | 	long diffs = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = key_start; i < key_end;  i += sizeof(long)) | 
 | 		diffs |= *cp1++ ^ *cp2++; | 
 |  | 
 | 	return diffs == 0; | 
 | } | 
 |  | 
 | static bool __flow_cmp_masked_key(const struct sw_flow *flow, | 
 | 		const struct sw_flow_key *key, int key_start, int key_end) | 
 | { | 
 | 	return __cmp_key(&flow->key, key, key_start, key_end); | 
 | } | 
 |  | 
 | static bool __flow_cmp_unmasked_key(const struct sw_flow *flow, | 
 | 		  const struct sw_flow_key *key, int key_start, int key_end) | 
 | { | 
 | 	return __cmp_key(&flow->unmasked_key, key, key_start, key_end); | 
 | } | 
 |  | 
 | bool ovs_flow_cmp_unmasked_key(const struct sw_flow *flow, | 
 | 		const struct sw_flow_key *key, int key_end) | 
 | { | 
 | 	int key_start; | 
 | 	key_start = flow_key_start(key); | 
 |  | 
 | 	return __flow_cmp_unmasked_key(flow, key, key_start, key_end); | 
 |  | 
 | } | 
 |  | 
 | struct sw_flow *ovs_flow_lookup_unmasked_key(struct flow_table *table, | 
 | 				       struct sw_flow_match *match) | 
 | { | 
 | 	struct sw_flow_key *unmasked = match->key; | 
 | 	int key_end = match->range.end; | 
 | 	struct sw_flow *flow; | 
 |  | 
 | 	flow = ovs_flow_lookup(table, unmasked); | 
 | 	if (flow && (!ovs_flow_cmp_unmasked_key(flow, unmasked, key_end))) | 
 | 		flow = NULL; | 
 |  | 
 | 	return flow; | 
 | } | 
 |  | 
 | static struct sw_flow *ovs_masked_flow_lookup(struct flow_table *table, | 
 | 				    const struct sw_flow_key *unmasked, | 
 | 				    struct sw_flow_mask *mask) | 
 | { | 
 | 	struct sw_flow *flow; | 
 | 	struct hlist_head *head; | 
 | 	int key_start = mask->range.start; | 
 | 	int key_end = mask->range.end; | 
 | 	u32 hash; | 
 | 	struct sw_flow_key masked_key; | 
 |  | 
 | 	ovs_flow_key_mask(&masked_key, unmasked, mask); | 
 | 	hash = ovs_flow_hash(&masked_key, key_start, key_end); | 
 | 	head = find_bucket(table, hash); | 
 | 	hlist_for_each_entry_rcu(flow, head, hash_node[table->node_ver]) { | 
 | 		if (flow->mask == mask && | 
 | 		    __flow_cmp_masked_key(flow, &masked_key, | 
 | 					  key_start, key_end)) | 
 | 			return flow; | 
 | 	} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | struct sw_flow *ovs_flow_lookup(struct flow_table *tbl, | 
 | 				const struct sw_flow_key *key) | 
 | { | 
 | 	struct sw_flow *flow = NULL; | 
 | 	struct sw_flow_mask *mask; | 
 |  | 
 | 	list_for_each_entry_rcu(mask, tbl->mask_list, list) { | 
 | 		flow = ovs_masked_flow_lookup(tbl, key, mask); | 
 | 		if (flow)  /* Found */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	return flow; | 
 | } | 
 |  | 
 |  | 
 | void ovs_flow_insert(struct flow_table *table, struct sw_flow *flow) | 
 | { | 
 | 	flow->hash = ovs_flow_hash(&flow->key, flow->mask->range.start, | 
 | 			flow->mask->range.end); | 
 | 	__tbl_insert(table, flow); | 
 | } | 
 |  | 
 | void ovs_flow_remove(struct flow_table *table, struct sw_flow *flow) | 
 | { | 
 | 	BUG_ON(table->count == 0); | 
 | 	hlist_del_rcu(&flow->hash_node[table->node_ver]); | 
 | 	table->count--; | 
 | } | 
 |  | 
 | /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute.  */ | 
 | const int ovs_key_lens[OVS_KEY_ATTR_MAX + 1] = { | 
 | 	[OVS_KEY_ATTR_ENCAP] = -1, | 
 | 	[OVS_KEY_ATTR_PRIORITY] = sizeof(u32), | 
 | 	[OVS_KEY_ATTR_IN_PORT] = sizeof(u32), | 
 | 	[OVS_KEY_ATTR_SKB_MARK] = sizeof(u32), | 
 | 	[OVS_KEY_ATTR_ETHERNET] = sizeof(struct ovs_key_ethernet), | 
 | 	[OVS_KEY_ATTR_VLAN] = sizeof(__be16), | 
 | 	[OVS_KEY_ATTR_ETHERTYPE] = sizeof(__be16), | 
 | 	[OVS_KEY_ATTR_IPV4] = sizeof(struct ovs_key_ipv4), | 
 | 	[OVS_KEY_ATTR_IPV6] = sizeof(struct ovs_key_ipv6), | 
 | 	[OVS_KEY_ATTR_TCP] = sizeof(struct ovs_key_tcp), | 
 | 	[OVS_KEY_ATTR_UDP] = sizeof(struct ovs_key_udp), | 
 | 	[OVS_KEY_ATTR_SCTP] = sizeof(struct ovs_key_sctp), | 
 | 	[OVS_KEY_ATTR_ICMP] = sizeof(struct ovs_key_icmp), | 
 | 	[OVS_KEY_ATTR_ICMPV6] = sizeof(struct ovs_key_icmpv6), | 
 | 	[OVS_KEY_ATTR_ARP] = sizeof(struct ovs_key_arp), | 
 | 	[OVS_KEY_ATTR_ND] = sizeof(struct ovs_key_nd), | 
 | 	[OVS_KEY_ATTR_TUNNEL] = -1, | 
 | }; | 
 |  | 
 | static bool is_all_zero(const u8 *fp, size_t size) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!fp) | 
 | 		return false; | 
 |  | 
 | 	for (i = 0; i < size; i++) | 
 | 		if (fp[i]) | 
 | 			return false; | 
 |  | 
 | 	return true; | 
 | } | 
 |  | 
 | static int __parse_flow_nlattrs(const struct nlattr *attr, | 
 | 			      const struct nlattr *a[], | 
 | 			      u64 *attrsp, bool nz) | 
 | { | 
 | 	const struct nlattr *nla; | 
 | 	u32 attrs; | 
 | 	int rem; | 
 |  | 
 | 	attrs = *attrsp; | 
 | 	nla_for_each_nested(nla, attr, rem) { | 
 | 		u16 type = nla_type(nla); | 
 | 		int expected_len; | 
 |  | 
 | 		if (type > OVS_KEY_ATTR_MAX) { | 
 | 			OVS_NLERR("Unknown key attribute (type=%d, max=%d).\n", | 
 | 				  type, OVS_KEY_ATTR_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (attrs & (1 << type)) { | 
 | 			OVS_NLERR("Duplicate key attribute (type %d).\n", type); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		expected_len = ovs_key_lens[type]; | 
 | 		if (nla_len(nla) != expected_len && expected_len != -1) { | 
 | 			OVS_NLERR("Key attribute has unexpected length (type=%d" | 
 | 				  ", length=%d, expected=%d).\n", type, | 
 | 				  nla_len(nla), expected_len); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!nz || !is_all_zero(nla_data(nla), expected_len)) { | 
 | 			attrs |= 1 << type; | 
 | 			a[type] = nla; | 
 | 		} | 
 | 	} | 
 | 	if (rem) { | 
 | 		OVS_NLERR("Message has %d unknown bytes.\n", rem); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	*attrsp = attrs; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int parse_flow_mask_nlattrs(const struct nlattr *attr, | 
 | 			      const struct nlattr *a[], u64 *attrsp) | 
 | { | 
 | 	return __parse_flow_nlattrs(attr, a, attrsp, true); | 
 | } | 
 |  | 
 | static int parse_flow_nlattrs(const struct nlattr *attr, | 
 | 			      const struct nlattr *a[], u64 *attrsp) | 
 | { | 
 | 	return __parse_flow_nlattrs(attr, a, attrsp, false); | 
 | } | 
 |  | 
 | int ovs_ipv4_tun_from_nlattr(const struct nlattr *attr, | 
 | 			     struct sw_flow_match *match, bool is_mask) | 
 | { | 
 | 	struct nlattr *a; | 
 | 	int rem; | 
 | 	bool ttl = false; | 
 | 	__be16 tun_flags = 0; | 
 |  | 
 | 	nla_for_each_nested(a, attr, rem) { | 
 | 		int type = nla_type(a); | 
 | 		static const u32 ovs_tunnel_key_lens[OVS_TUNNEL_KEY_ATTR_MAX + 1] = { | 
 | 			[OVS_TUNNEL_KEY_ATTR_ID] = sizeof(u64), | 
 | 			[OVS_TUNNEL_KEY_ATTR_IPV4_SRC] = sizeof(u32), | 
 | 			[OVS_TUNNEL_KEY_ATTR_IPV4_DST] = sizeof(u32), | 
 | 			[OVS_TUNNEL_KEY_ATTR_TOS] = 1, | 
 | 			[OVS_TUNNEL_KEY_ATTR_TTL] = 1, | 
 | 			[OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT] = 0, | 
 | 			[OVS_TUNNEL_KEY_ATTR_CSUM] = 0, | 
 | 		}; | 
 |  | 
 | 		if (type > OVS_TUNNEL_KEY_ATTR_MAX) { | 
 | 			OVS_NLERR("Unknown IPv4 tunnel attribute (type=%d, max=%d).\n", | 
 | 			type, OVS_TUNNEL_KEY_ATTR_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (ovs_tunnel_key_lens[type] != nla_len(a)) { | 
 | 			OVS_NLERR("IPv4 tunnel attribute type has unexpected " | 
 | 				  " length (type=%d, length=%d, expected=%d).\n", | 
 | 				  type, nla_len(a), ovs_tunnel_key_lens[type]); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		switch (type) { | 
 | 		case OVS_TUNNEL_KEY_ATTR_ID: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.tun_id, | 
 | 					nla_get_be64(a), is_mask); | 
 | 			tun_flags |= TUNNEL_KEY; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_IPV4_SRC: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_src, | 
 | 					nla_get_be32(a), is_mask); | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_IPV4_DST: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_dst, | 
 | 					nla_get_be32(a), is_mask); | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_TOS: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_tos, | 
 | 					nla_get_u8(a), is_mask); | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_TTL: | 
 | 			SW_FLOW_KEY_PUT(match, tun_key.ipv4_ttl, | 
 | 					nla_get_u8(a), is_mask); | 
 | 			ttl = true; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT: | 
 | 			tun_flags |= TUNNEL_DONT_FRAGMENT; | 
 | 			break; | 
 | 		case OVS_TUNNEL_KEY_ATTR_CSUM: | 
 | 			tun_flags |= TUNNEL_CSUM; | 
 | 			break; | 
 | 		default: | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	SW_FLOW_KEY_PUT(match, tun_key.tun_flags, tun_flags, is_mask); | 
 |  | 
 | 	if (rem > 0) { | 
 | 		OVS_NLERR("IPv4 tunnel attribute has %d unknown bytes.\n", rem); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (!is_mask) { | 
 | 		if (!match->key->tun_key.ipv4_dst) { | 
 | 			OVS_NLERR("IPv4 tunnel destination address is zero.\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		if (!ttl) { | 
 | 			OVS_NLERR("IPv4 tunnel TTL not specified.\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ovs_ipv4_tun_to_nlattr(struct sk_buff *skb, | 
 | 			   const struct ovs_key_ipv4_tunnel *tun_key, | 
 | 			   const struct ovs_key_ipv4_tunnel *output) | 
 | { | 
 | 	struct nlattr *nla; | 
 |  | 
 | 	nla = nla_nest_start(skb, OVS_KEY_ATTR_TUNNEL); | 
 | 	if (!nla) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	if (output->tun_flags & TUNNEL_KEY && | 
 | 	    nla_put_be64(skb, OVS_TUNNEL_KEY_ATTR_ID, output->tun_id)) | 
 | 		return -EMSGSIZE; | 
 | 	if (output->ipv4_src && | 
 | 		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_SRC, output->ipv4_src)) | 
 | 		return -EMSGSIZE; | 
 | 	if (output->ipv4_dst && | 
 | 		nla_put_be32(skb, OVS_TUNNEL_KEY_ATTR_IPV4_DST, output->ipv4_dst)) | 
 | 		return -EMSGSIZE; | 
 | 	if (output->ipv4_tos && | 
 | 		nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TOS, output->ipv4_tos)) | 
 | 		return -EMSGSIZE; | 
 | 	if (nla_put_u8(skb, OVS_TUNNEL_KEY_ATTR_TTL, output->ipv4_ttl)) | 
 | 		return -EMSGSIZE; | 
 | 	if ((output->tun_flags & TUNNEL_DONT_FRAGMENT) && | 
 | 		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_DONT_FRAGMENT)) | 
 | 		return -EMSGSIZE; | 
 | 	if ((output->tun_flags & TUNNEL_CSUM) && | 
 | 		nla_put_flag(skb, OVS_TUNNEL_KEY_ATTR_CSUM)) | 
 | 		return -EMSGSIZE; | 
 |  | 
 | 	nla_nest_end(skb, nla); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int metadata_from_nlattrs(struct sw_flow_match *match,  u64 *attrs, | 
 | 		const struct nlattr **a, bool is_mask) | 
 | { | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_PRIORITY)) { | 
 | 		SW_FLOW_KEY_PUT(match, phy.priority, | 
 | 			  nla_get_u32(a[OVS_KEY_ATTR_PRIORITY]), is_mask); | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_PRIORITY); | 
 | 	} | 
 |  | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_IN_PORT)) { | 
 | 		u32 in_port = nla_get_u32(a[OVS_KEY_ATTR_IN_PORT]); | 
 |  | 
 | 		if (is_mask) | 
 | 			in_port = 0xffffffff; /* Always exact match in_port. */ | 
 | 		else if (in_port >= DP_MAX_PORTS) | 
 | 			return -EINVAL; | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, phy.in_port, in_port, is_mask); | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_IN_PORT); | 
 | 	} else if (!is_mask) { | 
 | 		SW_FLOW_KEY_PUT(match, phy.in_port, DP_MAX_PORTS, is_mask); | 
 | 	} | 
 |  | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_SKB_MARK)) { | 
 | 		uint32_t mark = nla_get_u32(a[OVS_KEY_ATTR_SKB_MARK]); | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, phy.skb_mark, mark, is_mask); | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_SKB_MARK); | 
 | 	} | 
 | 	if (*attrs & (1 << OVS_KEY_ATTR_TUNNEL)) { | 
 | 		if (ovs_ipv4_tun_from_nlattr(a[OVS_KEY_ATTR_TUNNEL], match, | 
 | 					is_mask)) | 
 | 			return -EINVAL; | 
 | 		*attrs &= ~(1 << OVS_KEY_ATTR_TUNNEL); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int ovs_key_from_nlattrs(struct sw_flow_match *match,  u64 attrs, | 
 | 		const struct nlattr **a, bool is_mask) | 
 | { | 
 | 	int err; | 
 | 	u64 orig_attrs = attrs; | 
 |  | 
 | 	err = metadata_from_nlattrs(match, &attrs, a, is_mask); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ETHERNET)) { | 
 | 		const struct ovs_key_ethernet *eth_key; | 
 |  | 
 | 		eth_key = nla_data(a[OVS_KEY_ATTR_ETHERNET]); | 
 | 		SW_FLOW_KEY_MEMCPY(match, eth.src, | 
 | 				eth_key->eth_src, ETH_ALEN, is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, eth.dst, | 
 | 				eth_key->eth_dst, ETH_ALEN, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERNET); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { | 
 | 		__be16 tci; | 
 |  | 
 | 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
 | 		if (!(tci & htons(VLAN_TAG_PRESENT))) { | 
 | 			if (is_mask) | 
 | 				OVS_NLERR("VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.\n"); | 
 | 			else | 
 | 				OVS_NLERR("VLAN TCI does not have VLAN_TAG_PRESENT bit set.\n"); | 
 |  | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_VLAN); | 
 | 	} else if (!is_mask) | 
 | 		SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { | 
 | 		__be16 eth_type; | 
 |  | 
 | 		eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
 | 		if (is_mask) { | 
 | 			/* Always exact match EtherType. */ | 
 | 			eth_type = htons(0xffff); | 
 | 		} else if (ntohs(eth_type) < ETH_P_802_3_MIN) { | 
 | 			OVS_NLERR("EtherType is less than minimum (type=%x, min=%x).\n", | 
 | 					ntohs(eth_type), ETH_P_802_3_MIN); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, eth.type, eth_type, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
 | 	} else if (!is_mask) { | 
 | 		SW_FLOW_KEY_PUT(match, eth.type, htons(ETH_P_802_2), is_mask); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_IPV4)) { | 
 | 		const struct ovs_key_ipv4 *ipv4_key; | 
 |  | 
 | 		ipv4_key = nla_data(a[OVS_KEY_ATTR_IPV4]); | 
 | 		if (!is_mask && ipv4_key->ipv4_frag > OVS_FRAG_TYPE_MAX) { | 
 | 			OVS_NLERR("Unknown IPv4 fragment type (value=%d, max=%d).\n", | 
 | 				ipv4_key->ipv4_frag, OVS_FRAG_TYPE_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		SW_FLOW_KEY_PUT(match, ip.proto, | 
 | 				ipv4_key->ipv4_proto, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.tos, | 
 | 				ipv4_key->ipv4_tos, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.ttl, | 
 | 				ipv4_key->ipv4_ttl, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.frag, | 
 | 				ipv4_key->ipv4_frag, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.addr.src, | 
 | 				ipv4_key->ipv4_src, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst, | 
 | 				ipv4_key->ipv4_dst, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_IPV4); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_IPV6)) { | 
 | 		const struct ovs_key_ipv6 *ipv6_key; | 
 |  | 
 | 		ipv6_key = nla_data(a[OVS_KEY_ATTR_IPV6]); | 
 | 		if (!is_mask && ipv6_key->ipv6_frag > OVS_FRAG_TYPE_MAX) { | 
 | 			OVS_NLERR("Unknown IPv6 fragment type (value=%d, max=%d).\n", | 
 | 				ipv6_key->ipv6_frag, OVS_FRAG_TYPE_MAX); | 
 | 			return -EINVAL; | 
 | 		} | 
 | 		SW_FLOW_KEY_PUT(match, ipv6.label, | 
 | 				ipv6_key->ipv6_label, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.proto, | 
 | 				ipv6_key->ipv6_proto, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.tos, | 
 | 				ipv6_key->ipv6_tclass, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.ttl, | 
 | 				ipv6_key->ipv6_hlimit, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.frag, | 
 | 				ipv6_key->ipv6_frag, is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.src, | 
 | 				ipv6_key->ipv6_src, | 
 | 				sizeof(match->key->ipv6.addr.src), | 
 | 				is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.addr.dst, | 
 | 				ipv6_key->ipv6_dst, | 
 | 				sizeof(match->key->ipv6.addr.dst), | 
 | 				is_mask); | 
 |  | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_IPV6); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ARP)) { | 
 | 		const struct ovs_key_arp *arp_key; | 
 |  | 
 | 		arp_key = nla_data(a[OVS_KEY_ATTR_ARP]); | 
 | 		if (!is_mask && (arp_key->arp_op & htons(0xff00))) { | 
 | 			OVS_NLERR("Unknown ARP opcode (opcode=%d).\n", | 
 | 				  arp_key->arp_op); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.addr.src, | 
 | 				arp_key->arp_sip, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.addr.dst, | 
 | 			arp_key->arp_tip, is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ip.proto, | 
 | 				ntohs(arp_key->arp_op), is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.sha, | 
 | 				arp_key->arp_sha, ETH_ALEN, is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv4.arp.tha, | 
 | 				arp_key->arp_tha, ETH_ALEN, is_mask); | 
 |  | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ARP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_TCP)) { | 
 | 		const struct ovs_key_tcp *tcp_key; | 
 |  | 
 | 		tcp_key = nla_data(a[OVS_KEY_ATTR_TCP]); | 
 | 		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { | 
 | 			SW_FLOW_KEY_PUT(match, ipv4.tp.src, | 
 | 					tcp_key->tcp_src, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, ipv4.tp.dst, | 
 | 					tcp_key->tcp_dst, is_mask); | 
 | 		} else { | 
 | 			SW_FLOW_KEY_PUT(match, ipv6.tp.src, | 
 | 					tcp_key->tcp_src, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, ipv6.tp.dst, | 
 | 					tcp_key->tcp_dst, is_mask); | 
 | 		} | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_TCP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_UDP)) { | 
 | 		const struct ovs_key_udp *udp_key; | 
 |  | 
 | 		udp_key = nla_data(a[OVS_KEY_ATTR_UDP]); | 
 | 		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { | 
 | 			SW_FLOW_KEY_PUT(match, ipv4.tp.src, | 
 | 					udp_key->udp_src, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, ipv4.tp.dst, | 
 | 					udp_key->udp_dst, is_mask); | 
 | 		} else { | 
 | 			SW_FLOW_KEY_PUT(match, ipv6.tp.src, | 
 | 					udp_key->udp_src, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, ipv6.tp.dst, | 
 | 					udp_key->udp_dst, is_mask); | 
 | 		} | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_UDP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_SCTP)) { | 
 | 		const struct ovs_key_sctp *sctp_key; | 
 |  | 
 | 		sctp_key = nla_data(a[OVS_KEY_ATTR_SCTP]); | 
 | 		if (orig_attrs & (1 << OVS_KEY_ATTR_IPV4)) { | 
 | 			SW_FLOW_KEY_PUT(match, ipv4.tp.src, | 
 | 					sctp_key->sctp_src, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, ipv4.tp.dst, | 
 | 					sctp_key->sctp_dst, is_mask); | 
 | 		} else { | 
 | 			SW_FLOW_KEY_PUT(match, ipv6.tp.src, | 
 | 					sctp_key->sctp_src, is_mask); | 
 | 			SW_FLOW_KEY_PUT(match, ipv6.tp.dst, | 
 | 					sctp_key->sctp_dst, is_mask); | 
 | 		} | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_SCTP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ICMP)) { | 
 | 		const struct ovs_key_icmp *icmp_key; | 
 |  | 
 | 		icmp_key = nla_data(a[OVS_KEY_ATTR_ICMP]); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.tp.src, | 
 | 				htons(icmp_key->icmp_type), is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv4.tp.dst, | 
 | 				htons(icmp_key->icmp_code), is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ICMP); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ICMPV6)) { | 
 | 		const struct ovs_key_icmpv6 *icmpv6_key; | 
 |  | 
 | 		icmpv6_key = nla_data(a[OVS_KEY_ATTR_ICMPV6]); | 
 | 		SW_FLOW_KEY_PUT(match, ipv6.tp.src, | 
 | 				htons(icmpv6_key->icmpv6_type), is_mask); | 
 | 		SW_FLOW_KEY_PUT(match, ipv6.tp.dst, | 
 | 				htons(icmpv6_key->icmpv6_code), is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ICMPV6); | 
 | 	} | 
 |  | 
 | 	if (attrs & (1 << OVS_KEY_ATTR_ND)) { | 
 | 		const struct ovs_key_nd *nd_key; | 
 |  | 
 | 		nd_key = nla_data(a[OVS_KEY_ATTR_ND]); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.target, | 
 | 			nd_key->nd_target, | 
 | 			sizeof(match->key->ipv6.nd.target), | 
 | 			is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.sll, | 
 | 			nd_key->nd_sll, ETH_ALEN, is_mask); | 
 | 		SW_FLOW_KEY_MEMCPY(match, ipv6.nd.tll, | 
 | 				nd_key->nd_tll, ETH_ALEN, is_mask); | 
 | 		attrs &= ~(1 << OVS_KEY_ATTR_ND); | 
 | 	} | 
 |  | 
 | 	if (attrs != 0) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ovs_match_from_nlattrs - parses Netlink attributes into a flow key and | 
 |  * mask. In case the 'mask' is NULL, the flow is treated as exact match | 
 |  * flow. Otherwise, it is treated as a wildcarded flow, except the mask | 
 |  * does not include any don't care bit. | 
 |  * @match: receives the extracted flow match information. | 
 |  * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
 |  * sequence. The fields should of the packet that triggered the creation | 
 |  * of this flow. | 
 |  * @mask: Optional. Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink | 
 |  * attribute specifies the mask field of the wildcarded flow. | 
 |  */ | 
 | int ovs_match_from_nlattrs(struct sw_flow_match *match, | 
 | 			   const struct nlattr *key, | 
 | 			   const struct nlattr *mask) | 
 | { | 
 | 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; | 
 | 	const struct nlattr *encap; | 
 | 	u64 key_attrs = 0; | 
 | 	u64 mask_attrs = 0; | 
 | 	bool encap_valid = false; | 
 | 	int err; | 
 |  | 
 | 	err = parse_flow_nlattrs(key, a, &key_attrs); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && | 
 | 	    (key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) && | 
 | 	    (nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) { | 
 | 		__be16 tci; | 
 |  | 
 | 		if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) && | 
 | 		      (key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) { | 
 | 			OVS_NLERR("Invalid Vlan frame.\n"); | 
 | 			return -EINVAL; | 
 | 		} | 
 |  | 
 | 		key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
 | 		tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
 | 		encap = a[OVS_KEY_ATTR_ENCAP]; | 
 | 		key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); | 
 | 		encap_valid = true; | 
 |  | 
 | 		if (tci & htons(VLAN_TAG_PRESENT)) { | 
 | 			err = parse_flow_nlattrs(encap, a, &key_attrs); | 
 | 			if (err) | 
 | 				return err; | 
 | 		} else if (!tci) { | 
 | 			/* Corner case for truncated 802.1Q header. */ | 
 | 			if (nla_len(encap)) { | 
 | 				OVS_NLERR("Truncated 802.1Q header has non-zero encap attribute.\n"); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} else { | 
 | 			OVS_NLERR("Encap attribute is set for a non-VLAN frame.\n"); | 
 | 			return  -EINVAL; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	err = ovs_key_from_nlattrs(match, key_attrs, a, false); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	if (mask) { | 
 | 		err = parse_flow_mask_nlattrs(mask, a, &mask_attrs); | 
 | 		if (err) | 
 | 			return err; | 
 |  | 
 | 		if (mask_attrs & 1ULL << OVS_KEY_ATTR_ENCAP)  { | 
 | 			__be16 eth_type = 0; | 
 | 			__be16 tci = 0; | 
 |  | 
 | 			if (!encap_valid) { | 
 | 				OVS_NLERR("Encap mask attribute is set for non-VLAN frame.\n"); | 
 | 				return  -EINVAL; | 
 | 			} | 
 |  | 
 | 			mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP); | 
 | 			if (a[OVS_KEY_ATTR_ETHERTYPE]) | 
 | 				eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]); | 
 |  | 
 | 			if (eth_type == htons(0xffff)) { | 
 | 				mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE); | 
 | 				encap = a[OVS_KEY_ATTR_ENCAP]; | 
 | 				err = parse_flow_mask_nlattrs(encap, a, &mask_attrs); | 
 | 			} else { | 
 | 				OVS_NLERR("VLAN frames must have an exact match on the TPID (mask=%x).\n", | 
 | 						ntohs(eth_type)); | 
 | 				return -EINVAL; | 
 | 			} | 
 |  | 
 | 			if (a[OVS_KEY_ATTR_VLAN]) | 
 | 				tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); | 
 |  | 
 | 			if (!(tci & htons(VLAN_TAG_PRESENT))) { | 
 | 				OVS_NLERR("VLAN tag present bit must have an exact match (tci_mask=%x).\n", ntohs(tci)); | 
 | 				return -EINVAL; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		err = ovs_key_from_nlattrs(match, mask_attrs, a, true); | 
 | 		if (err) | 
 | 			return err; | 
 | 	} else { | 
 | 		/* Populate exact match flow's key mask. */ | 
 | 		if (match->mask) | 
 | 			ovs_sw_flow_mask_set(match->mask, &match->range, 0xff); | 
 | 	} | 
 |  | 
 | 	if (!ovs_match_validate(match, key_attrs, mask_attrs)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key. | 
 |  * @flow: Receives extracted in_port, priority, tun_key and skb_mark. | 
 |  * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute | 
 |  * sequence. | 
 |  * | 
 |  * This parses a series of Netlink attributes that form a flow key, which must | 
 |  * take the same form accepted by flow_from_nlattrs(), but only enough of it to | 
 |  * get the metadata, that is, the parts of the flow key that cannot be | 
 |  * extracted from the packet itself. | 
 |  */ | 
 |  | 
 | int ovs_flow_metadata_from_nlattrs(struct sw_flow *flow, | 
 | 		const struct nlattr *attr) | 
 | { | 
 | 	struct ovs_key_ipv4_tunnel *tun_key = &flow->key.tun_key; | 
 | 	const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; | 
 | 	u64 attrs = 0; | 
 | 	int err; | 
 | 	struct sw_flow_match match; | 
 |  | 
 | 	flow->key.phy.in_port = DP_MAX_PORTS; | 
 | 	flow->key.phy.priority = 0; | 
 | 	flow->key.phy.skb_mark = 0; | 
 | 	memset(tun_key, 0, sizeof(flow->key.tun_key)); | 
 |  | 
 | 	err = parse_flow_nlattrs(attr, a, &attrs); | 
 | 	if (err) | 
 | 		return -EINVAL; | 
 |  | 
 | 	memset(&match, 0, sizeof(match)); | 
 | 	match.key = &flow->key; | 
 |  | 
 | 	err = metadata_from_nlattrs(&match, &attrs, a, false); | 
 | 	if (err) | 
 | 		return err; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int ovs_flow_to_nlattrs(const struct sw_flow_key *swkey, | 
 | 		const struct sw_flow_key *output, struct sk_buff *skb) | 
 | { | 
 | 	struct ovs_key_ethernet *eth_key; | 
 | 	struct nlattr *nla, *encap; | 
 | 	bool is_mask = (swkey != output); | 
 |  | 
 | 	if (nla_put_u32(skb, OVS_KEY_ATTR_PRIORITY, output->phy.priority)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if ((swkey->tun_key.ipv4_dst || is_mask) && | 
 | 	    ovs_ipv4_tun_to_nlattr(skb, &swkey->tun_key, &output->tun_key)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (swkey->phy.in_port == DP_MAX_PORTS) { | 
 | 		if (is_mask && (output->phy.in_port == 0xffff)) | 
 | 			if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, 0xffffffff)) | 
 | 				goto nla_put_failure; | 
 | 	} else { | 
 | 		u16 upper_u16; | 
 | 		upper_u16 = !is_mask ? 0 : 0xffff; | 
 |  | 
 | 		if (nla_put_u32(skb, OVS_KEY_ATTR_IN_PORT, | 
 | 				(upper_u16 << 16) | output->phy.in_port)) | 
 | 			goto nla_put_failure; | 
 | 	} | 
 |  | 
 | 	if (nla_put_u32(skb, OVS_KEY_ATTR_SKB_MARK, output->phy.skb_mark)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	nla = nla_reserve(skb, OVS_KEY_ATTR_ETHERNET, sizeof(*eth_key)); | 
 | 	if (!nla) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	eth_key = nla_data(nla); | 
 | 	memcpy(eth_key->eth_src, output->eth.src, ETH_ALEN); | 
 | 	memcpy(eth_key->eth_dst, output->eth.dst, ETH_ALEN); | 
 |  | 
 | 	if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { | 
 | 		__be16 eth_type; | 
 | 		eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff); | 
 | 		if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) || | 
 | 		    nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci)) | 
 | 			goto nla_put_failure; | 
 | 		encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); | 
 | 		if (!swkey->eth.tci) | 
 | 			goto unencap; | 
 | 	} else | 
 | 		encap = NULL; | 
 |  | 
 | 	if (swkey->eth.type == htons(ETH_P_802_2)) { | 
 | 		/* | 
 | 		 * Ethertype 802.2 is represented in the netlink with omitted | 
 | 		 * OVS_KEY_ATTR_ETHERTYPE in the flow key attribute, and | 
 | 		 * 0xffff in the mask attribute.  Ethertype can also | 
 | 		 * be wildcarded. | 
 | 		 */ | 
 | 		if (is_mask && output->eth.type) | 
 | 			if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, | 
 | 						output->eth.type)) | 
 | 				goto nla_put_failure; | 
 | 		goto unencap; | 
 | 	} | 
 |  | 
 | 	if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) | 
 | 		goto nla_put_failure; | 
 |  | 
 | 	if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 		struct ovs_key_ipv4 *ipv4_key; | 
 |  | 
 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV4, sizeof(*ipv4_key)); | 
 | 		if (!nla) | 
 | 			goto nla_put_failure; | 
 | 		ipv4_key = nla_data(nla); | 
 | 		ipv4_key->ipv4_src = output->ipv4.addr.src; | 
 | 		ipv4_key->ipv4_dst = output->ipv4.addr.dst; | 
 | 		ipv4_key->ipv4_proto = output->ip.proto; | 
 | 		ipv4_key->ipv4_tos = output->ip.tos; | 
 | 		ipv4_key->ipv4_ttl = output->ip.ttl; | 
 | 		ipv4_key->ipv4_frag = output->ip.frag; | 
 | 	} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 		struct ovs_key_ipv6 *ipv6_key; | 
 |  | 
 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_IPV6, sizeof(*ipv6_key)); | 
 | 		if (!nla) | 
 | 			goto nla_put_failure; | 
 | 		ipv6_key = nla_data(nla); | 
 | 		memcpy(ipv6_key->ipv6_src, &output->ipv6.addr.src, | 
 | 				sizeof(ipv6_key->ipv6_src)); | 
 | 		memcpy(ipv6_key->ipv6_dst, &output->ipv6.addr.dst, | 
 | 				sizeof(ipv6_key->ipv6_dst)); | 
 | 		ipv6_key->ipv6_label = output->ipv6.label; | 
 | 		ipv6_key->ipv6_proto = output->ip.proto; | 
 | 		ipv6_key->ipv6_tclass = output->ip.tos; | 
 | 		ipv6_key->ipv6_hlimit = output->ip.ttl; | 
 | 		ipv6_key->ipv6_frag = output->ip.frag; | 
 | 	} else if (swkey->eth.type == htons(ETH_P_ARP) || | 
 | 		   swkey->eth.type == htons(ETH_P_RARP)) { | 
 | 		struct ovs_key_arp *arp_key; | 
 |  | 
 | 		nla = nla_reserve(skb, OVS_KEY_ATTR_ARP, sizeof(*arp_key)); | 
 | 		if (!nla) | 
 | 			goto nla_put_failure; | 
 | 		arp_key = nla_data(nla); | 
 | 		memset(arp_key, 0, sizeof(struct ovs_key_arp)); | 
 | 		arp_key->arp_sip = output->ipv4.addr.src; | 
 | 		arp_key->arp_tip = output->ipv4.addr.dst; | 
 | 		arp_key->arp_op = htons(output->ip.proto); | 
 | 		memcpy(arp_key->arp_sha, output->ipv4.arp.sha, ETH_ALEN); | 
 | 		memcpy(arp_key->arp_tha, output->ipv4.arp.tha, ETH_ALEN); | 
 | 	} | 
 |  | 
 | 	if ((swkey->eth.type == htons(ETH_P_IP) || | 
 | 	     swkey->eth.type == htons(ETH_P_IPV6)) && | 
 | 	     swkey->ip.frag != OVS_FRAG_TYPE_LATER) { | 
 |  | 
 | 		if (swkey->ip.proto == IPPROTO_TCP) { | 
 | 			struct ovs_key_tcp *tcp_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_TCP, sizeof(*tcp_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			tcp_key = nla_data(nla); | 
 | 			if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 				tcp_key->tcp_src = output->ipv4.tp.src; | 
 | 				tcp_key->tcp_dst = output->ipv4.tp.dst; | 
 | 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 				tcp_key->tcp_src = output->ipv6.tp.src; | 
 | 				tcp_key->tcp_dst = output->ipv6.tp.dst; | 
 | 			} | 
 | 		} else if (swkey->ip.proto == IPPROTO_UDP) { | 
 | 			struct ovs_key_udp *udp_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_UDP, sizeof(*udp_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			udp_key = nla_data(nla); | 
 | 			if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 				udp_key->udp_src = output->ipv4.tp.src; | 
 | 				udp_key->udp_dst = output->ipv4.tp.dst; | 
 | 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 				udp_key->udp_src = output->ipv6.tp.src; | 
 | 				udp_key->udp_dst = output->ipv6.tp.dst; | 
 | 			} | 
 | 		} else if (swkey->ip.proto == IPPROTO_SCTP) { | 
 | 			struct ovs_key_sctp *sctp_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_SCTP, sizeof(*sctp_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			sctp_key = nla_data(nla); | 
 | 			if (swkey->eth.type == htons(ETH_P_IP)) { | 
 | 				sctp_key->sctp_src = swkey->ipv4.tp.src; | 
 | 				sctp_key->sctp_dst = swkey->ipv4.tp.dst; | 
 | 			} else if (swkey->eth.type == htons(ETH_P_IPV6)) { | 
 | 				sctp_key->sctp_src = swkey->ipv6.tp.src; | 
 | 				sctp_key->sctp_dst = swkey->ipv6.tp.dst; | 
 | 			} | 
 | 		} else if (swkey->eth.type == htons(ETH_P_IP) && | 
 | 			   swkey->ip.proto == IPPROTO_ICMP) { | 
 | 			struct ovs_key_icmp *icmp_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMP, sizeof(*icmp_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			icmp_key = nla_data(nla); | 
 | 			icmp_key->icmp_type = ntohs(output->ipv4.tp.src); | 
 | 			icmp_key->icmp_code = ntohs(output->ipv4.tp.dst); | 
 | 		} else if (swkey->eth.type == htons(ETH_P_IPV6) && | 
 | 			   swkey->ip.proto == IPPROTO_ICMPV6) { | 
 | 			struct ovs_key_icmpv6 *icmpv6_key; | 
 |  | 
 | 			nla = nla_reserve(skb, OVS_KEY_ATTR_ICMPV6, | 
 | 						sizeof(*icmpv6_key)); | 
 | 			if (!nla) | 
 | 				goto nla_put_failure; | 
 | 			icmpv6_key = nla_data(nla); | 
 | 			icmpv6_key->icmpv6_type = ntohs(output->ipv6.tp.src); | 
 | 			icmpv6_key->icmpv6_code = ntohs(output->ipv6.tp.dst); | 
 |  | 
 | 			if (icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_SOLICITATION || | 
 | 			    icmpv6_key->icmpv6_type == NDISC_NEIGHBOUR_ADVERTISEMENT) { | 
 | 				struct ovs_key_nd *nd_key; | 
 |  | 
 | 				nla = nla_reserve(skb, OVS_KEY_ATTR_ND, sizeof(*nd_key)); | 
 | 				if (!nla) | 
 | 					goto nla_put_failure; | 
 | 				nd_key = nla_data(nla); | 
 | 				memcpy(nd_key->nd_target, &output->ipv6.nd.target, | 
 | 							sizeof(nd_key->nd_target)); | 
 | 				memcpy(nd_key->nd_sll, output->ipv6.nd.sll, ETH_ALEN); | 
 | 				memcpy(nd_key->nd_tll, output->ipv6.nd.tll, ETH_ALEN); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | unencap: | 
 | 	if (encap) | 
 | 		nla_nest_end(skb, encap); | 
 |  | 
 | 	return 0; | 
 |  | 
 | nla_put_failure: | 
 | 	return -EMSGSIZE; | 
 | } | 
 |  | 
 | /* Initializes the flow module. | 
 |  * Returns zero if successful or a negative error code. */ | 
 | int ovs_flow_init(void) | 
 | { | 
 | 	BUILD_BUG_ON(__alignof__(struct sw_flow_key) % __alignof__(long)); | 
 | 	BUILD_BUG_ON(sizeof(struct sw_flow_key) % sizeof(long)); | 
 |  | 
 | 	flow_cache = kmem_cache_create("sw_flow", sizeof(struct sw_flow), 0, | 
 | 					0, NULL); | 
 | 	if (flow_cache == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* Uninitializes the flow module. */ | 
 | void ovs_flow_exit(void) | 
 | { | 
 | 	kmem_cache_destroy(flow_cache); | 
 | } | 
 |  | 
 | struct sw_flow_mask *ovs_sw_flow_mask_alloc(void) | 
 | { | 
 | 	struct sw_flow_mask *mask; | 
 |  | 
 | 	mask = kmalloc(sizeof(*mask), GFP_KERNEL); | 
 | 	if (mask) | 
 | 		mask->ref_count = 0; | 
 |  | 
 | 	return mask; | 
 | } | 
 |  | 
 | void ovs_sw_flow_mask_add_ref(struct sw_flow_mask *mask) | 
 | { | 
 | 	mask->ref_count++; | 
 | } | 
 |  | 
 | void ovs_sw_flow_mask_del_ref(struct sw_flow_mask *mask, bool deferred) | 
 | { | 
 | 	if (!mask) | 
 | 		return; | 
 |  | 
 | 	BUG_ON(!mask->ref_count); | 
 | 	mask->ref_count--; | 
 |  | 
 | 	if (!mask->ref_count) { | 
 | 		list_del_rcu(&mask->list); | 
 | 		if (deferred) | 
 | 			kfree_rcu(mask, rcu); | 
 | 		else | 
 | 			kfree(mask); | 
 | 	} | 
 | } | 
 |  | 
 | static bool ovs_sw_flow_mask_equal(const struct sw_flow_mask *a, | 
 | 		const struct sw_flow_mask *b) | 
 | { | 
 | 	u8 *a_ = (u8 *)&a->key + a->range.start; | 
 | 	u8 *b_ = (u8 *)&b->key + b->range.start; | 
 |  | 
 | 	return  (a->range.end == b->range.end) | 
 | 		&& (a->range.start == b->range.start) | 
 | 		&& (memcmp(a_, b_, range_n_bytes(&a->range)) == 0); | 
 | } | 
 |  | 
 | struct sw_flow_mask *ovs_sw_flow_mask_find(const struct flow_table *tbl, | 
 |                                            const struct sw_flow_mask *mask) | 
 | { | 
 | 	struct list_head *ml; | 
 |  | 
 | 	list_for_each(ml, tbl->mask_list) { | 
 | 		struct sw_flow_mask *m; | 
 | 		m = container_of(ml, struct sw_flow_mask, list); | 
 | 		if (ovs_sw_flow_mask_equal(mask, m)) | 
 | 			return m; | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /** | 
 |  * add a new mask into the mask list. | 
 |  * The caller needs to make sure that 'mask' is not the same | 
 |  * as any masks that are already on the list. | 
 |  */ | 
 | void ovs_sw_flow_mask_insert(struct flow_table *tbl, struct sw_flow_mask *mask) | 
 | { | 
 | 	list_add_rcu(&mask->list, tbl->mask_list); | 
 | } | 
 |  | 
 | /** | 
 |  * Set 'range' fields in the mask to the value of 'val'. | 
 |  */ | 
 | static void ovs_sw_flow_mask_set(struct sw_flow_mask *mask, | 
 | 		struct sw_flow_key_range *range, u8 val) | 
 | { | 
 | 	u8 *m = (u8 *)&mask->key + range->start; | 
 |  | 
 | 	mask->range = *range; | 
 | 	memset(m, val, range_n_bytes(range)); | 
 | } |