|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		Implementation of the Transmission Control Protocol(TCP). | 
|  | * | 
|  | * Version:	$Id: tcp_minisocks.c,v 1.15 2002/02/01 22:01:04 davem Exp $ | 
|  | * | 
|  | * Authors:	Ross Biro, <bir7@leland.Stanford.Edu> | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
|  | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
|  | *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
|  | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
|  | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | *		Jorge Cwik, <jorge@laser.satlink.net> | 
|  | */ | 
|  |  | 
|  | #include <linux/config.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <net/tcp.h> | 
|  | #include <net/inet_common.h> | 
|  | #include <net/xfrm.h> | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | #define SYNC_INIT 0 /* let the user enable it */ | 
|  | #else | 
|  | #define SYNC_INIT 1 | 
|  | #endif | 
|  |  | 
|  | int sysctl_tcp_tw_recycle; | 
|  | int sysctl_tcp_max_tw_buckets = NR_FILE*2; | 
|  |  | 
|  | int sysctl_tcp_syncookies = SYNC_INIT; | 
|  | int sysctl_tcp_abort_on_overflow; | 
|  |  | 
|  | static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo); | 
|  |  | 
|  | static __inline__ int tcp_in_window(u32 seq, u32 end_seq, u32 s_win, u32 e_win) | 
|  | { | 
|  | if (seq == s_win) | 
|  | return 1; | 
|  | if (after(end_seq, s_win) && before(seq, e_win)) | 
|  | return 1; | 
|  | return (seq == e_win && seq == end_seq); | 
|  | } | 
|  |  | 
|  | /* New-style handling of TIME_WAIT sockets. */ | 
|  |  | 
|  | int tcp_tw_count; | 
|  |  | 
|  |  | 
|  | /* Must be called with locally disabled BHs. */ | 
|  | static void tcp_timewait_kill(struct tcp_tw_bucket *tw) | 
|  | { | 
|  | struct tcp_ehash_bucket *ehead; | 
|  | struct tcp_bind_hashbucket *bhead; | 
|  | struct tcp_bind_bucket *tb; | 
|  |  | 
|  | /* Unlink from established hashes. */ | 
|  | ehead = &tcp_ehash[tw->tw_hashent]; | 
|  | write_lock(&ehead->lock); | 
|  | if (hlist_unhashed(&tw->tw_node)) { | 
|  | write_unlock(&ehead->lock); | 
|  | return; | 
|  | } | 
|  | __hlist_del(&tw->tw_node); | 
|  | sk_node_init(&tw->tw_node); | 
|  | write_unlock(&ehead->lock); | 
|  |  | 
|  | /* Disassociate with bind bucket. */ | 
|  | bhead = &tcp_bhash[tcp_bhashfn(tw->tw_num)]; | 
|  | spin_lock(&bhead->lock); | 
|  | tb = tw->tw_tb; | 
|  | __hlist_del(&tw->tw_bind_node); | 
|  | tw->tw_tb = NULL; | 
|  | tcp_bucket_destroy(tb); | 
|  | spin_unlock(&bhead->lock); | 
|  |  | 
|  | #ifdef INET_REFCNT_DEBUG | 
|  | if (atomic_read(&tw->tw_refcnt) != 1) { | 
|  | printk(KERN_DEBUG "tw_bucket %p refcnt=%d\n", tw, | 
|  | atomic_read(&tw->tw_refcnt)); | 
|  | } | 
|  | #endif | 
|  | tcp_tw_put(tw); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * * Main purpose of TIME-WAIT state is to close connection gracefully, | 
|  | *   when one of ends sits in LAST-ACK or CLOSING retransmitting FIN | 
|  | *   (and, probably, tail of data) and one or more our ACKs are lost. | 
|  | * * What is TIME-WAIT timeout? It is associated with maximal packet | 
|  | *   lifetime in the internet, which results in wrong conclusion, that | 
|  | *   it is set to catch "old duplicate segments" wandering out of their path. | 
|  | *   It is not quite correct. This timeout is calculated so that it exceeds | 
|  | *   maximal retransmission timeout enough to allow to lose one (or more) | 
|  | *   segments sent by peer and our ACKs. This time may be calculated from RTO. | 
|  | * * When TIME-WAIT socket receives RST, it means that another end | 
|  | *   finally closed and we are allowed to kill TIME-WAIT too. | 
|  | * * Second purpose of TIME-WAIT is catching old duplicate segments. | 
|  | *   Well, certainly it is pure paranoia, but if we load TIME-WAIT | 
|  | *   with this semantics, we MUST NOT kill TIME-WAIT state with RSTs. | 
|  | * * If we invented some more clever way to catch duplicates | 
|  | *   (f.e. based on PAWS), we could truncate TIME-WAIT to several RTOs. | 
|  | * | 
|  | * The algorithm below is based on FORMAL INTERPRETATION of RFCs. | 
|  | * When you compare it to RFCs, please, read section SEGMENT ARRIVES | 
|  | * from the very beginning. | 
|  | * | 
|  | * NOTE. With recycling (and later with fin-wait-2) TW bucket | 
|  | * is _not_ stateless. It means, that strictly speaking we must | 
|  | * spinlock it. I do not want! Well, probability of misbehaviour | 
|  | * is ridiculously low and, seems, we could use some mb() tricks | 
|  | * to avoid misread sequence numbers, states etc.  --ANK | 
|  | */ | 
|  | enum tcp_tw_status | 
|  | tcp_timewait_state_process(struct tcp_tw_bucket *tw, struct sk_buff *skb, | 
|  | struct tcphdr *th, unsigned len) | 
|  | { | 
|  | struct tcp_options_received tmp_opt; | 
|  | int paws_reject = 0; | 
|  |  | 
|  | tmp_opt.saw_tstamp = 0; | 
|  | if (th->doff > (sizeof(struct tcphdr) >> 2) && tw->tw_ts_recent_stamp) { | 
|  | tcp_parse_options(skb, &tmp_opt, 0); | 
|  |  | 
|  | if (tmp_opt.saw_tstamp) { | 
|  | tmp_opt.ts_recent	   = tw->tw_ts_recent; | 
|  | tmp_opt.ts_recent_stamp = tw->tw_ts_recent_stamp; | 
|  | paws_reject = tcp_paws_check(&tmp_opt, th->rst); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (tw->tw_substate == TCP_FIN_WAIT2) { | 
|  | /* Just repeat all the checks of tcp_rcv_state_process() */ | 
|  |  | 
|  | /* Out of window, send ACK */ | 
|  | if (paws_reject || | 
|  | !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 
|  | tw->tw_rcv_nxt, | 
|  | tw->tw_rcv_nxt + tw->tw_rcv_wnd)) | 
|  | return TCP_TW_ACK; | 
|  |  | 
|  | if (th->rst) | 
|  | goto kill; | 
|  |  | 
|  | if (th->syn && !before(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt)) | 
|  | goto kill_with_rst; | 
|  |  | 
|  | /* Dup ACK? */ | 
|  | if (!after(TCP_SKB_CB(skb)->end_seq, tw->tw_rcv_nxt) || | 
|  | TCP_SKB_CB(skb)->end_seq == TCP_SKB_CB(skb)->seq) { | 
|  | tcp_tw_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* New data or FIN. If new data arrive after half-duplex close, | 
|  | * reset. | 
|  | */ | 
|  | if (!th->fin || | 
|  | TCP_SKB_CB(skb)->end_seq != tw->tw_rcv_nxt + 1) { | 
|  | kill_with_rst: | 
|  | tcp_tw_deschedule(tw); | 
|  | tcp_tw_put(tw); | 
|  | return TCP_TW_RST; | 
|  | } | 
|  |  | 
|  | /* FIN arrived, enter true time-wait state. */ | 
|  | tw->tw_substate	= TCP_TIME_WAIT; | 
|  | tw->tw_rcv_nxt	= TCP_SKB_CB(skb)->end_seq; | 
|  | if (tmp_opt.saw_tstamp) { | 
|  | tw->tw_ts_recent_stamp	= xtime.tv_sec; | 
|  | tw->tw_ts_recent	= tmp_opt.rcv_tsval; | 
|  | } | 
|  |  | 
|  | /* I am shamed, but failed to make it more elegant. | 
|  | * Yes, it is direct reference to IP, which is impossible | 
|  | * to generalize to IPv6. Taking into account that IPv6 | 
|  | * do not undertsnad recycling in any case, it not | 
|  | * a big problem in practice. --ANK */ | 
|  | if (tw->tw_family == AF_INET && | 
|  | sysctl_tcp_tw_recycle && tw->tw_ts_recent_stamp && | 
|  | tcp_v4_tw_remember_stamp(tw)) | 
|  | tcp_tw_schedule(tw, tw->tw_timeout); | 
|  | else | 
|  | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | 
|  | return TCP_TW_ACK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Now real TIME-WAIT state. | 
|  | * | 
|  | *	RFC 1122: | 
|  | *	"When a connection is [...] on TIME-WAIT state [...] | 
|  | *	[a TCP] MAY accept a new SYN from the remote TCP to | 
|  | *	reopen the connection directly, if it: | 
|  | * | 
|  | *	(1)  assigns its initial sequence number for the new | 
|  | *	connection to be larger than the largest sequence | 
|  | *	number it used on the previous connection incarnation, | 
|  | *	and | 
|  | * | 
|  | *	(2)  returns to TIME-WAIT state if the SYN turns out | 
|  | *	to be an old duplicate". | 
|  | */ | 
|  |  | 
|  | if (!paws_reject && | 
|  | (TCP_SKB_CB(skb)->seq == tw->tw_rcv_nxt && | 
|  | (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq || th->rst))) { | 
|  | /* In window segment, it may be only reset or bare ack. */ | 
|  |  | 
|  | if (th->rst) { | 
|  | /* This is TIME_WAIT assasination, in two flavors. | 
|  | * Oh well... nobody has a sufficient solution to this | 
|  | * protocol bug yet. | 
|  | */ | 
|  | if (sysctl_tcp_rfc1337 == 0) { | 
|  | kill: | 
|  | tcp_tw_deschedule(tw); | 
|  | tcp_tw_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  | } | 
|  | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | 
|  |  | 
|  | if (tmp_opt.saw_tstamp) { | 
|  | tw->tw_ts_recent	= tmp_opt.rcv_tsval; | 
|  | tw->tw_ts_recent_stamp	= xtime.tv_sec; | 
|  | } | 
|  |  | 
|  | tcp_tw_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Out of window segment. | 
|  |  | 
|  | All the segments are ACKed immediately. | 
|  |  | 
|  | The only exception is new SYN. We accept it, if it is | 
|  | not old duplicate and we are not in danger to be killed | 
|  | by delayed old duplicates. RFC check is that it has | 
|  | newer sequence number works at rates <40Mbit/sec. | 
|  | However, if paws works, it is reliable AND even more, | 
|  | we even may relax silly seq space cutoff. | 
|  |  | 
|  | RED-PEN: we violate main RFC requirement, if this SYN will appear | 
|  | old duplicate (i.e. we receive RST in reply to SYN-ACK), | 
|  | we must return socket to time-wait state. It is not good, | 
|  | but not fatal yet. | 
|  | */ | 
|  |  | 
|  | if (th->syn && !th->rst && !th->ack && !paws_reject && | 
|  | (after(TCP_SKB_CB(skb)->seq, tw->tw_rcv_nxt) || | 
|  | (tmp_opt.saw_tstamp && (s32)(tw->tw_ts_recent - tmp_opt.rcv_tsval) < 0))) { | 
|  | u32 isn = tw->tw_snd_nxt + 65535 + 2; | 
|  | if (isn == 0) | 
|  | isn++; | 
|  | TCP_SKB_CB(skb)->when = isn; | 
|  | return TCP_TW_SYN; | 
|  | } | 
|  |  | 
|  | if (paws_reject) | 
|  | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | 
|  |  | 
|  | if(!th->rst) { | 
|  | /* In this case we must reset the TIMEWAIT timer. | 
|  | * | 
|  | * If it is ACKless SYN it may be both old duplicate | 
|  | * and new good SYN with random sequence number <rcv_nxt. | 
|  | * Do not reschedule in the last case. | 
|  | */ | 
|  | if (paws_reject || th->ack) | 
|  | tcp_tw_schedule(tw, TCP_TIMEWAIT_LEN); | 
|  |  | 
|  | /* Send ACK. Note, we do not put the bucket, | 
|  | * it will be released by caller. | 
|  | */ | 
|  | return TCP_TW_ACK; | 
|  | } | 
|  | tcp_tw_put(tw); | 
|  | return TCP_TW_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Enter the time wait state.  This is called with locally disabled BH. | 
|  | * Essentially we whip up a timewait bucket, copy the | 
|  | * relevant info into it from the SK, and mess with hash chains | 
|  | * and list linkage. | 
|  | */ | 
|  | static void __tcp_tw_hashdance(struct sock *sk, struct tcp_tw_bucket *tw) | 
|  | { | 
|  | struct tcp_ehash_bucket *ehead = &tcp_ehash[sk->sk_hashent]; | 
|  | struct tcp_bind_hashbucket *bhead; | 
|  |  | 
|  | /* Step 1: Put TW into bind hash. Original socket stays there too. | 
|  | Note, that any socket with inet_sk(sk)->num != 0 MUST be bound in | 
|  | binding cache, even if it is closed. | 
|  | */ | 
|  | bhead = &tcp_bhash[tcp_bhashfn(inet_sk(sk)->num)]; | 
|  | spin_lock(&bhead->lock); | 
|  | tw->tw_tb = tcp_sk(sk)->bind_hash; | 
|  | BUG_TRAP(tcp_sk(sk)->bind_hash); | 
|  | tw_add_bind_node(tw, &tw->tw_tb->owners); | 
|  | spin_unlock(&bhead->lock); | 
|  |  | 
|  | write_lock(&ehead->lock); | 
|  |  | 
|  | /* Step 2: Remove SK from established hash. */ | 
|  | if (__sk_del_node_init(sk)) | 
|  | sock_prot_dec_use(sk->sk_prot); | 
|  |  | 
|  | /* Step 3: Hash TW into TIMEWAIT half of established hash table. */ | 
|  | tw_add_node(tw, &(ehead + tcp_ehash_size)->chain); | 
|  | atomic_inc(&tw->tw_refcnt); | 
|  |  | 
|  | write_unlock(&ehead->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move a socket to time-wait or dead fin-wait-2 state. | 
|  | */ | 
|  | void tcp_time_wait(struct sock *sk, int state, int timeo) | 
|  | { | 
|  | struct tcp_tw_bucket *tw = NULL; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int recycle_ok = 0; | 
|  |  | 
|  | if (sysctl_tcp_tw_recycle && tp->rx_opt.ts_recent_stamp) | 
|  | recycle_ok = tp->af_specific->remember_stamp(sk); | 
|  |  | 
|  | if (tcp_tw_count < sysctl_tcp_max_tw_buckets) | 
|  | tw = kmem_cache_alloc(tcp_timewait_cachep, SLAB_ATOMIC); | 
|  |  | 
|  | if(tw != NULL) { | 
|  | struct inet_sock *inet = inet_sk(sk); | 
|  | int rto = (tp->rto<<2) - (tp->rto>>1); | 
|  |  | 
|  | /* Give us an identity. */ | 
|  | tw->tw_daddr		= inet->daddr; | 
|  | tw->tw_rcv_saddr	= inet->rcv_saddr; | 
|  | tw->tw_bound_dev_if	= sk->sk_bound_dev_if; | 
|  | tw->tw_num		= inet->num; | 
|  | tw->tw_state		= TCP_TIME_WAIT; | 
|  | tw->tw_substate		= state; | 
|  | tw->tw_sport		= inet->sport; | 
|  | tw->tw_dport		= inet->dport; | 
|  | tw->tw_family		= sk->sk_family; | 
|  | tw->tw_reuse		= sk->sk_reuse; | 
|  | tw->tw_rcv_wscale	= tp->rx_opt.rcv_wscale; | 
|  | atomic_set(&tw->tw_refcnt, 1); | 
|  |  | 
|  | tw->tw_hashent		= sk->sk_hashent; | 
|  | tw->tw_rcv_nxt		= tp->rcv_nxt; | 
|  | tw->tw_snd_nxt		= tp->snd_nxt; | 
|  | tw->tw_rcv_wnd		= tcp_receive_window(tp); | 
|  | tw->tw_ts_recent	= tp->rx_opt.ts_recent; | 
|  | tw->tw_ts_recent_stamp	= tp->rx_opt.ts_recent_stamp; | 
|  | tw_dead_node_init(tw); | 
|  |  | 
|  | #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) | 
|  | if (tw->tw_family == PF_INET6) { | 
|  | struct ipv6_pinfo *np = inet6_sk(sk); | 
|  |  | 
|  | ipv6_addr_copy(&tw->tw_v6_daddr, &np->daddr); | 
|  | ipv6_addr_copy(&tw->tw_v6_rcv_saddr, &np->rcv_saddr); | 
|  | tw->tw_v6_ipv6only = np->ipv6only; | 
|  | } else { | 
|  | memset(&tw->tw_v6_daddr, 0, sizeof(tw->tw_v6_daddr)); | 
|  | memset(&tw->tw_v6_rcv_saddr, 0, sizeof(tw->tw_v6_rcv_saddr)); | 
|  | tw->tw_v6_ipv6only = 0; | 
|  | } | 
|  | #endif | 
|  | /* Linkage updates. */ | 
|  | __tcp_tw_hashdance(sk, tw); | 
|  |  | 
|  | /* Get the TIME_WAIT timeout firing. */ | 
|  | if (timeo < rto) | 
|  | timeo = rto; | 
|  |  | 
|  | if (recycle_ok) { | 
|  | tw->tw_timeout = rto; | 
|  | } else { | 
|  | tw->tw_timeout = TCP_TIMEWAIT_LEN; | 
|  | if (state == TCP_TIME_WAIT) | 
|  | timeo = TCP_TIMEWAIT_LEN; | 
|  | } | 
|  |  | 
|  | tcp_tw_schedule(tw, timeo); | 
|  | tcp_tw_put(tw); | 
|  | } else { | 
|  | /* Sorry, if we're out of memory, just CLOSE this | 
|  | * socket up.  We've got bigger problems than | 
|  | * non-graceful socket closings. | 
|  | */ | 
|  | if (net_ratelimit()) | 
|  | printk(KERN_INFO "TCP: time wait bucket table overflow\n"); | 
|  | } | 
|  |  | 
|  | tcp_update_metrics(sk); | 
|  | tcp_done(sk); | 
|  | } | 
|  |  | 
|  | /* Kill off TIME_WAIT sockets once their lifetime has expired. */ | 
|  | static int tcp_tw_death_row_slot; | 
|  |  | 
|  | static void tcp_twkill(unsigned long); | 
|  |  | 
|  | /* TIME_WAIT reaping mechanism. */ | 
|  | #define TCP_TWKILL_SLOTS	8	/* Please keep this a power of 2. */ | 
|  | #define TCP_TWKILL_PERIOD	(TCP_TIMEWAIT_LEN/TCP_TWKILL_SLOTS) | 
|  |  | 
|  | #define TCP_TWKILL_QUOTA	100 | 
|  |  | 
|  | static struct hlist_head tcp_tw_death_row[TCP_TWKILL_SLOTS]; | 
|  | static DEFINE_SPINLOCK(tw_death_lock); | 
|  | static struct timer_list tcp_tw_timer = TIMER_INITIALIZER(tcp_twkill, 0, 0); | 
|  | static void twkill_work(void *); | 
|  | static DECLARE_WORK(tcp_twkill_work, twkill_work, NULL); | 
|  | static u32 twkill_thread_slots; | 
|  |  | 
|  | /* Returns non-zero if quota exceeded.  */ | 
|  | static int tcp_do_twkill_work(int slot, unsigned int quota) | 
|  | { | 
|  | struct tcp_tw_bucket *tw; | 
|  | struct hlist_node *node; | 
|  | unsigned int killed; | 
|  | int ret; | 
|  |  | 
|  | /* NOTE: compare this to previous version where lock | 
|  | * was released after detaching chain. It was racy, | 
|  | * because tw buckets are scheduled in not serialized context | 
|  | * in 2.3 (with netfilter), and with softnet it is common, because | 
|  | * soft irqs are not sequenced. | 
|  | */ | 
|  | killed = 0; | 
|  | ret = 0; | 
|  | rescan: | 
|  | tw_for_each_inmate(tw, node, &tcp_tw_death_row[slot]) { | 
|  | __tw_del_dead_node(tw); | 
|  | spin_unlock(&tw_death_lock); | 
|  | tcp_timewait_kill(tw); | 
|  | tcp_tw_put(tw); | 
|  | killed++; | 
|  | spin_lock(&tw_death_lock); | 
|  | if (killed > quota) { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* While we dropped tw_death_lock, another cpu may have | 
|  | * killed off the next TW bucket in the list, therefore | 
|  | * do a fresh re-read of the hlist head node with the | 
|  | * lock reacquired.  We still use the hlist traversal | 
|  | * macro in order to get the prefetches. | 
|  | */ | 
|  | goto rescan; | 
|  | } | 
|  |  | 
|  | tcp_tw_count -= killed; | 
|  | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITED, killed); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void tcp_twkill(unsigned long dummy) | 
|  | { | 
|  | int need_timer, ret; | 
|  |  | 
|  | spin_lock(&tw_death_lock); | 
|  |  | 
|  | if (tcp_tw_count == 0) | 
|  | goto out; | 
|  |  | 
|  | need_timer = 0; | 
|  | ret = tcp_do_twkill_work(tcp_tw_death_row_slot, TCP_TWKILL_QUOTA); | 
|  | if (ret) { | 
|  | twkill_thread_slots |= (1 << tcp_tw_death_row_slot); | 
|  | mb(); | 
|  | schedule_work(&tcp_twkill_work); | 
|  | need_timer = 1; | 
|  | } else { | 
|  | /* We purged the entire slot, anything left?  */ | 
|  | if (tcp_tw_count) | 
|  | need_timer = 1; | 
|  | } | 
|  | tcp_tw_death_row_slot = | 
|  | ((tcp_tw_death_row_slot + 1) & (TCP_TWKILL_SLOTS - 1)); | 
|  | if (need_timer) | 
|  | mod_timer(&tcp_tw_timer, jiffies + TCP_TWKILL_PERIOD); | 
|  | out: | 
|  | spin_unlock(&tw_death_lock); | 
|  | } | 
|  |  | 
|  | extern void twkill_slots_invalid(void); | 
|  |  | 
|  | static void twkill_work(void *dummy) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if ((TCP_TWKILL_SLOTS - 1) > (sizeof(twkill_thread_slots) * 8)) | 
|  | twkill_slots_invalid(); | 
|  |  | 
|  | while (twkill_thread_slots) { | 
|  | spin_lock_bh(&tw_death_lock); | 
|  | for (i = 0; i < TCP_TWKILL_SLOTS; i++) { | 
|  | if (!(twkill_thread_slots & (1 << i))) | 
|  | continue; | 
|  |  | 
|  | while (tcp_do_twkill_work(i, TCP_TWKILL_QUOTA) != 0) { | 
|  | if (need_resched()) { | 
|  | spin_unlock_bh(&tw_death_lock); | 
|  | schedule(); | 
|  | spin_lock_bh(&tw_death_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | twkill_thread_slots &= ~(1 << i); | 
|  | } | 
|  | spin_unlock_bh(&tw_death_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* These are always called from BH context.  See callers in | 
|  | * tcp_input.c to verify this. | 
|  | */ | 
|  |  | 
|  | /* This is for handling early-kills of TIME_WAIT sockets. */ | 
|  | void tcp_tw_deschedule(struct tcp_tw_bucket *tw) | 
|  | { | 
|  | spin_lock(&tw_death_lock); | 
|  | if (tw_del_dead_node(tw)) { | 
|  | tcp_tw_put(tw); | 
|  | if (--tcp_tw_count == 0) | 
|  | del_timer(&tcp_tw_timer); | 
|  | } | 
|  | spin_unlock(&tw_death_lock); | 
|  | tcp_timewait_kill(tw); | 
|  | } | 
|  |  | 
|  | /* Short-time timewait calendar */ | 
|  |  | 
|  | static int tcp_twcal_hand = -1; | 
|  | static int tcp_twcal_jiffie; | 
|  | static void tcp_twcal_tick(unsigned long); | 
|  | static struct timer_list tcp_twcal_timer = | 
|  | TIMER_INITIALIZER(tcp_twcal_tick, 0, 0); | 
|  | static struct hlist_head tcp_twcal_row[TCP_TW_RECYCLE_SLOTS]; | 
|  |  | 
|  | static void tcp_tw_schedule(struct tcp_tw_bucket *tw, int timeo) | 
|  | { | 
|  | struct hlist_head *list; | 
|  | int slot; | 
|  |  | 
|  | /* timeout := RTO * 3.5 | 
|  | * | 
|  | * 3.5 = 1+2+0.5 to wait for two retransmits. | 
|  | * | 
|  | * RATIONALE: if FIN arrived and we entered TIME-WAIT state, | 
|  | * our ACK acking that FIN can be lost. If N subsequent retransmitted | 
|  | * FINs (or previous seqments) are lost (probability of such event | 
|  | * is p^(N+1), where p is probability to lose single packet and | 
|  | * time to detect the loss is about RTO*(2^N - 1) with exponential | 
|  | * backoff). Normal timewait length is calculated so, that we | 
|  | * waited at least for one retransmitted FIN (maximal RTO is 120sec). | 
|  | * [ BTW Linux. following BSD, violates this requirement waiting | 
|  | *   only for 60sec, we should wait at least for 240 secs. | 
|  | *   Well, 240 consumes too much of resources 8) | 
|  | * ] | 
|  | * This interval is not reduced to catch old duplicate and | 
|  | * responces to our wandering segments living for two MSLs. | 
|  | * However, if we use PAWS to detect | 
|  | * old duplicates, we can reduce the interval to bounds required | 
|  | * by RTO, rather than MSL. So, if peer understands PAWS, we | 
|  | * kill tw bucket after 3.5*RTO (it is important that this number | 
|  | * is greater than TS tick!) and detect old duplicates with help | 
|  | * of PAWS. | 
|  | */ | 
|  | slot = (timeo + (1<<TCP_TW_RECYCLE_TICK) - 1) >> TCP_TW_RECYCLE_TICK; | 
|  |  | 
|  | spin_lock(&tw_death_lock); | 
|  |  | 
|  | /* Unlink it, if it was scheduled */ | 
|  | if (tw_del_dead_node(tw)) | 
|  | tcp_tw_count--; | 
|  | else | 
|  | atomic_inc(&tw->tw_refcnt); | 
|  |  | 
|  | if (slot >= TCP_TW_RECYCLE_SLOTS) { | 
|  | /* Schedule to slow timer */ | 
|  | if (timeo >= TCP_TIMEWAIT_LEN) { | 
|  | slot = TCP_TWKILL_SLOTS-1; | 
|  | } else { | 
|  | slot = (timeo + TCP_TWKILL_PERIOD-1) / TCP_TWKILL_PERIOD; | 
|  | if (slot >= TCP_TWKILL_SLOTS) | 
|  | slot = TCP_TWKILL_SLOTS-1; | 
|  | } | 
|  | tw->tw_ttd = jiffies + timeo; | 
|  | slot = (tcp_tw_death_row_slot + slot) & (TCP_TWKILL_SLOTS - 1); | 
|  | list = &tcp_tw_death_row[slot]; | 
|  | } else { | 
|  | tw->tw_ttd = jiffies + (slot << TCP_TW_RECYCLE_TICK); | 
|  |  | 
|  | if (tcp_twcal_hand < 0) { | 
|  | tcp_twcal_hand = 0; | 
|  | tcp_twcal_jiffie = jiffies; | 
|  | tcp_twcal_timer.expires = tcp_twcal_jiffie + (slot<<TCP_TW_RECYCLE_TICK); | 
|  | add_timer(&tcp_twcal_timer); | 
|  | } else { | 
|  | if (time_after(tcp_twcal_timer.expires, jiffies + (slot<<TCP_TW_RECYCLE_TICK))) | 
|  | mod_timer(&tcp_twcal_timer, jiffies + (slot<<TCP_TW_RECYCLE_TICK)); | 
|  | slot = (tcp_twcal_hand + slot)&(TCP_TW_RECYCLE_SLOTS-1); | 
|  | } | 
|  | list = &tcp_twcal_row[slot]; | 
|  | } | 
|  |  | 
|  | hlist_add_head(&tw->tw_death_node, list); | 
|  |  | 
|  | if (tcp_tw_count++ == 0) | 
|  | mod_timer(&tcp_tw_timer, jiffies+TCP_TWKILL_PERIOD); | 
|  | spin_unlock(&tw_death_lock); | 
|  | } | 
|  |  | 
|  | void tcp_twcal_tick(unsigned long dummy) | 
|  | { | 
|  | int n, slot; | 
|  | unsigned long j; | 
|  | unsigned long now = jiffies; | 
|  | int killed = 0; | 
|  | int adv = 0; | 
|  |  | 
|  | spin_lock(&tw_death_lock); | 
|  | if (tcp_twcal_hand < 0) | 
|  | goto out; | 
|  |  | 
|  | slot = tcp_twcal_hand; | 
|  | j = tcp_twcal_jiffie; | 
|  |  | 
|  | for (n=0; n<TCP_TW_RECYCLE_SLOTS; n++) { | 
|  | if (time_before_eq(j, now)) { | 
|  | struct hlist_node *node, *safe; | 
|  | struct tcp_tw_bucket *tw; | 
|  |  | 
|  | tw_for_each_inmate_safe(tw, node, safe, | 
|  | &tcp_twcal_row[slot]) { | 
|  | __tw_del_dead_node(tw); | 
|  | tcp_timewait_kill(tw); | 
|  | tcp_tw_put(tw); | 
|  | killed++; | 
|  | } | 
|  | } else { | 
|  | if (!adv) { | 
|  | adv = 1; | 
|  | tcp_twcal_jiffie = j; | 
|  | tcp_twcal_hand = slot; | 
|  | } | 
|  |  | 
|  | if (!hlist_empty(&tcp_twcal_row[slot])) { | 
|  | mod_timer(&tcp_twcal_timer, j); | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | j += (1<<TCP_TW_RECYCLE_TICK); | 
|  | slot = (slot+1)&(TCP_TW_RECYCLE_SLOTS-1); | 
|  | } | 
|  | tcp_twcal_hand = -1; | 
|  |  | 
|  | out: | 
|  | if ((tcp_tw_count -= killed) == 0) | 
|  | del_timer(&tcp_tw_timer); | 
|  | NET_ADD_STATS_BH(LINUX_MIB_TIMEWAITKILLED, killed); | 
|  | spin_unlock(&tw_death_lock); | 
|  | } | 
|  |  | 
|  | /* This is not only more efficient than what we used to do, it eliminates | 
|  | * a lot of code duplication between IPv4/IPv6 SYN recv processing. -DaveM | 
|  | * | 
|  | * Actually, we could lots of memory writes here. tp of listening | 
|  | * socket contains all necessary default parameters. | 
|  | */ | 
|  | struct sock *tcp_create_openreq_child(struct sock *sk, struct open_request *req, struct sk_buff *skb) | 
|  | { | 
|  | /* allocate the newsk from the same slab of the master sock, | 
|  | * if not, at sk_free time we'll try to free it from the wrong | 
|  | * slabcache (i.e. is it TCPv4 or v6?), this is handled thru sk->sk_prot -acme */ | 
|  | struct sock *newsk = sk_alloc(PF_INET, GFP_ATOMIC, sk->sk_prot, 0); | 
|  |  | 
|  | if(newsk != NULL) { | 
|  | struct tcp_sock *newtp; | 
|  | struct sk_filter *filter; | 
|  |  | 
|  | memcpy(newsk, sk, sizeof(struct tcp_sock)); | 
|  | newsk->sk_state = TCP_SYN_RECV; | 
|  |  | 
|  | /* SANITY */ | 
|  | sk_node_init(&newsk->sk_node); | 
|  | tcp_sk(newsk)->bind_hash = NULL; | 
|  |  | 
|  | /* Clone the TCP header template */ | 
|  | inet_sk(newsk)->dport = req->rmt_port; | 
|  |  | 
|  | sock_lock_init(newsk); | 
|  | bh_lock_sock(newsk); | 
|  |  | 
|  | rwlock_init(&newsk->sk_dst_lock); | 
|  | atomic_set(&newsk->sk_rmem_alloc, 0); | 
|  | skb_queue_head_init(&newsk->sk_receive_queue); | 
|  | atomic_set(&newsk->sk_wmem_alloc, 0); | 
|  | skb_queue_head_init(&newsk->sk_write_queue); | 
|  | atomic_set(&newsk->sk_omem_alloc, 0); | 
|  | newsk->sk_wmem_queued = 0; | 
|  | newsk->sk_forward_alloc = 0; | 
|  |  | 
|  | sock_reset_flag(newsk, SOCK_DONE); | 
|  | newsk->sk_userlocks = sk->sk_userlocks & ~SOCK_BINDPORT_LOCK; | 
|  | newsk->sk_backlog.head = newsk->sk_backlog.tail = NULL; | 
|  | newsk->sk_send_head = NULL; | 
|  | rwlock_init(&newsk->sk_callback_lock); | 
|  | skb_queue_head_init(&newsk->sk_error_queue); | 
|  | newsk->sk_write_space = sk_stream_write_space; | 
|  |  | 
|  | if ((filter = newsk->sk_filter) != NULL) | 
|  | sk_filter_charge(newsk, filter); | 
|  |  | 
|  | if (unlikely(xfrm_sk_clone_policy(newsk))) { | 
|  | /* It is still raw copy of parent, so invalidate | 
|  | * destructor and make plain sk_free() */ | 
|  | newsk->sk_destruct = NULL; | 
|  | sk_free(newsk); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Now setup tcp_sock */ | 
|  | newtp = tcp_sk(newsk); | 
|  | newtp->pred_flags = 0; | 
|  | newtp->rcv_nxt = req->rcv_isn + 1; | 
|  | newtp->snd_nxt = req->snt_isn + 1; | 
|  | newtp->snd_una = req->snt_isn + 1; | 
|  | newtp->snd_sml = req->snt_isn + 1; | 
|  |  | 
|  | tcp_prequeue_init(newtp); | 
|  |  | 
|  | tcp_init_wl(newtp, req->snt_isn, req->rcv_isn); | 
|  |  | 
|  | newtp->retransmits = 0; | 
|  | newtp->backoff = 0; | 
|  | newtp->srtt = 0; | 
|  | newtp->mdev = TCP_TIMEOUT_INIT; | 
|  | newtp->rto = TCP_TIMEOUT_INIT; | 
|  |  | 
|  | newtp->packets_out = 0; | 
|  | newtp->left_out = 0; | 
|  | newtp->retrans_out = 0; | 
|  | newtp->sacked_out = 0; | 
|  | newtp->fackets_out = 0; | 
|  | newtp->snd_ssthresh = 0x7fffffff; | 
|  |  | 
|  | /* So many TCP implementations out there (incorrectly) count the | 
|  | * initial SYN frame in their delayed-ACK and congestion control | 
|  | * algorithms that we must have the following bandaid to talk | 
|  | * efficiently to them.  -DaveM | 
|  | */ | 
|  | newtp->snd_cwnd = 2; | 
|  | newtp->snd_cwnd_cnt = 0; | 
|  |  | 
|  | newtp->frto_counter = 0; | 
|  | newtp->frto_highmark = 0; | 
|  |  | 
|  | tcp_set_ca_state(newtp, TCP_CA_Open); | 
|  | tcp_init_xmit_timers(newsk); | 
|  | skb_queue_head_init(&newtp->out_of_order_queue); | 
|  | newtp->rcv_wup = req->rcv_isn + 1; | 
|  | newtp->write_seq = req->snt_isn + 1; | 
|  | newtp->pushed_seq = newtp->write_seq; | 
|  | newtp->copied_seq = req->rcv_isn + 1; | 
|  |  | 
|  | newtp->rx_opt.saw_tstamp = 0; | 
|  |  | 
|  | newtp->rx_opt.dsack = 0; | 
|  | newtp->rx_opt.eff_sacks = 0; | 
|  |  | 
|  | newtp->probes_out = 0; | 
|  | newtp->rx_opt.num_sacks = 0; | 
|  | newtp->urg_data = 0; | 
|  | newtp->listen_opt = NULL; | 
|  | newtp->accept_queue = newtp->accept_queue_tail = NULL; | 
|  | /* Deinitialize syn_wait_lock to trap illegal accesses. */ | 
|  | memset(&newtp->syn_wait_lock, 0, sizeof(newtp->syn_wait_lock)); | 
|  |  | 
|  | /* Back to base struct sock members. */ | 
|  | newsk->sk_err = 0; | 
|  | newsk->sk_priority = 0; | 
|  | atomic_set(&newsk->sk_refcnt, 2); | 
|  | #ifdef INET_REFCNT_DEBUG | 
|  | atomic_inc(&inet_sock_nr); | 
|  | #endif | 
|  | atomic_inc(&tcp_sockets_allocated); | 
|  |  | 
|  | if (sock_flag(newsk, SOCK_KEEPOPEN)) | 
|  | tcp_reset_keepalive_timer(newsk, | 
|  | keepalive_time_when(newtp)); | 
|  | newsk->sk_socket = NULL; | 
|  | newsk->sk_sleep = NULL; | 
|  |  | 
|  | newtp->rx_opt.tstamp_ok = req->tstamp_ok; | 
|  | if((newtp->rx_opt.sack_ok = req->sack_ok) != 0) { | 
|  | if (sysctl_tcp_fack) | 
|  | newtp->rx_opt.sack_ok |= 2; | 
|  | } | 
|  | newtp->window_clamp = req->window_clamp; | 
|  | newtp->rcv_ssthresh = req->rcv_wnd; | 
|  | newtp->rcv_wnd = req->rcv_wnd; | 
|  | newtp->rx_opt.wscale_ok = req->wscale_ok; | 
|  | if (newtp->rx_opt.wscale_ok) { | 
|  | newtp->rx_opt.snd_wscale = req->snd_wscale; | 
|  | newtp->rx_opt.rcv_wscale = req->rcv_wscale; | 
|  | } else { | 
|  | newtp->rx_opt.snd_wscale = newtp->rx_opt.rcv_wscale = 0; | 
|  | newtp->window_clamp = min(newtp->window_clamp, 65535U); | 
|  | } | 
|  | newtp->snd_wnd = ntohs(skb->h.th->window) << newtp->rx_opt.snd_wscale; | 
|  | newtp->max_window = newtp->snd_wnd; | 
|  |  | 
|  | if (newtp->rx_opt.tstamp_ok) { | 
|  | newtp->rx_opt.ts_recent = req->ts_recent; | 
|  | newtp->rx_opt.ts_recent_stamp = xtime.tv_sec; | 
|  | newtp->tcp_header_len = sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED; | 
|  | } else { | 
|  | newtp->rx_opt.ts_recent_stamp = 0; | 
|  | newtp->tcp_header_len = sizeof(struct tcphdr); | 
|  | } | 
|  | if (skb->len >= TCP_MIN_RCVMSS+newtp->tcp_header_len) | 
|  | newtp->ack.last_seg_size = skb->len-newtp->tcp_header_len; | 
|  | newtp->rx_opt.mss_clamp = req->mss; | 
|  | TCP_ECN_openreq_child(newtp, req); | 
|  | if (newtp->ecn_flags&TCP_ECN_OK) | 
|  | sock_set_flag(newsk, SOCK_NO_LARGESEND); | 
|  |  | 
|  | tcp_ca_init(newtp); | 
|  |  | 
|  | TCP_INC_STATS_BH(TCP_MIB_PASSIVEOPENS); | 
|  | } | 
|  | return newsk; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Process an incoming packet for SYN_RECV sockets represented | 
|  | *	as an open_request. | 
|  | */ | 
|  |  | 
|  | struct sock *tcp_check_req(struct sock *sk,struct sk_buff *skb, | 
|  | struct open_request *req, | 
|  | struct open_request **prev) | 
|  | { | 
|  | struct tcphdr *th = skb->h.th; | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 flg = tcp_flag_word(th) & (TCP_FLAG_RST|TCP_FLAG_SYN|TCP_FLAG_ACK); | 
|  | int paws_reject = 0; | 
|  | struct tcp_options_received tmp_opt; | 
|  | struct sock *child; | 
|  |  | 
|  | tmp_opt.saw_tstamp = 0; | 
|  | if (th->doff > (sizeof(struct tcphdr)>>2)) { | 
|  | tcp_parse_options(skb, &tmp_opt, 0); | 
|  |  | 
|  | if (tmp_opt.saw_tstamp) { | 
|  | tmp_opt.ts_recent = req->ts_recent; | 
|  | /* We do not store true stamp, but it is not required, | 
|  | * it can be estimated (approximately) | 
|  | * from another data. | 
|  | */ | 
|  | tmp_opt.ts_recent_stamp = xtime.tv_sec - ((TCP_TIMEOUT_INIT/HZ)<<req->retrans); | 
|  | paws_reject = tcp_paws_check(&tmp_opt, th->rst); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for pure retransmitted SYN. */ | 
|  | if (TCP_SKB_CB(skb)->seq == req->rcv_isn && | 
|  | flg == TCP_FLAG_SYN && | 
|  | !paws_reject) { | 
|  | /* | 
|  | * RFC793 draws (Incorrectly! It was fixed in RFC1122) | 
|  | * this case on figure 6 and figure 8, but formal | 
|  | * protocol description says NOTHING. | 
|  | * To be more exact, it says that we should send ACK, | 
|  | * because this segment (at least, if it has no data) | 
|  | * is out of window. | 
|  | * | 
|  | *  CONCLUSION: RFC793 (even with RFC1122) DOES NOT | 
|  | *  describe SYN-RECV state. All the description | 
|  | *  is wrong, we cannot believe to it and should | 
|  | *  rely only on common sense and implementation | 
|  | *  experience. | 
|  | * | 
|  | * Enforce "SYN-ACK" according to figure 8, figure 6 | 
|  | * of RFC793, fixed by RFC1122. | 
|  | */ | 
|  | req->class->rtx_syn_ack(sk, req, NULL); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Further reproduces section "SEGMENT ARRIVES" | 
|  | for state SYN-RECEIVED of RFC793. | 
|  | It is broken, however, it does not work only | 
|  | when SYNs are crossed. | 
|  |  | 
|  | You would think that SYN crossing is impossible here, since | 
|  | we should have a SYN_SENT socket (from connect()) on our end, | 
|  | but this is not true if the crossed SYNs were sent to both | 
|  | ends by a malicious third party.  We must defend against this, | 
|  | and to do that we first verify the ACK (as per RFC793, page | 
|  | 36) and reset if it is invalid.  Is this a true full defense? | 
|  | To convince ourselves, let us consider a way in which the ACK | 
|  | test can still pass in this 'malicious crossed SYNs' case. | 
|  | Malicious sender sends identical SYNs (and thus identical sequence | 
|  | numbers) to both A and B: | 
|  |  | 
|  | A: gets SYN, seq=7 | 
|  | B: gets SYN, seq=7 | 
|  |  | 
|  | By our good fortune, both A and B select the same initial | 
|  | send sequence number of seven :-) | 
|  |  | 
|  | A: sends SYN|ACK, seq=7, ack_seq=8 | 
|  | B: sends SYN|ACK, seq=7, ack_seq=8 | 
|  |  | 
|  | So we are now A eating this SYN|ACK, ACK test passes.  So | 
|  | does sequence test, SYN is truncated, and thus we consider | 
|  | it a bare ACK. | 
|  |  | 
|  | If tp->defer_accept, we silently drop this bare ACK.  Otherwise, | 
|  | we create an established connection.  Both ends (listening sockets) | 
|  | accept the new incoming connection and try to talk to each other. 8-) | 
|  |  | 
|  | Note: This case is both harmless, and rare.  Possibility is about the | 
|  | same as us discovering intelligent life on another plant tomorrow. | 
|  |  | 
|  | But generally, we should (RFC lies!) to accept ACK | 
|  | from SYNACK both here and in tcp_rcv_state_process(). | 
|  | tcp_rcv_state_process() does not, hence, we do not too. | 
|  |  | 
|  | Note that the case is absolutely generic: | 
|  | we cannot optimize anything here without | 
|  | violating protocol. All the checks must be made | 
|  | before attempt to create socket. | 
|  | */ | 
|  |  | 
|  | /* RFC793 page 36: "If the connection is in any non-synchronized state ... | 
|  | *                  and the incoming segment acknowledges something not yet | 
|  | *                  sent (the segment carries an unaccaptable ACK) ... | 
|  | *                  a reset is sent." | 
|  | * | 
|  | * Invalid ACK: reset will be sent by listening socket | 
|  | */ | 
|  | if ((flg & TCP_FLAG_ACK) && | 
|  | (TCP_SKB_CB(skb)->ack_seq != req->snt_isn+1)) | 
|  | return sk; | 
|  |  | 
|  | /* Also, it would be not so bad idea to check rcv_tsecr, which | 
|  | * is essentially ACK extension and too early or too late values | 
|  | * should cause reset in unsynchronized states. | 
|  | */ | 
|  |  | 
|  | /* RFC793: "first check sequence number". */ | 
|  |  | 
|  | if (paws_reject || !tcp_in_window(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq, | 
|  | req->rcv_isn+1, req->rcv_isn+1+req->rcv_wnd)) { | 
|  | /* Out of window: send ACK and drop. */ | 
|  | if (!(flg & TCP_FLAG_RST)) | 
|  | req->class->send_ack(skb, req); | 
|  | if (paws_reject) | 
|  | NET_INC_STATS_BH(LINUX_MIB_PAWSESTABREJECTED); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* In sequence, PAWS is OK. */ | 
|  |  | 
|  | if (tmp_opt.saw_tstamp && !after(TCP_SKB_CB(skb)->seq, req->rcv_isn+1)) | 
|  | req->ts_recent = tmp_opt.rcv_tsval; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->seq == req->rcv_isn) { | 
|  | /* Truncate SYN, it is out of window starting | 
|  | at req->rcv_isn+1. */ | 
|  | flg &= ~TCP_FLAG_SYN; | 
|  | } | 
|  |  | 
|  | /* RFC793: "second check the RST bit" and | 
|  | *	   "fourth, check the SYN bit" | 
|  | */ | 
|  | if (flg & (TCP_FLAG_RST|TCP_FLAG_SYN)) | 
|  | goto embryonic_reset; | 
|  |  | 
|  | /* ACK sequence verified above, just make sure ACK is | 
|  | * set.  If ACK not set, just silently drop the packet. | 
|  | */ | 
|  | if (!(flg & TCP_FLAG_ACK)) | 
|  | return NULL; | 
|  |  | 
|  | /* If TCP_DEFER_ACCEPT is set, drop bare ACK. */ | 
|  | if (tp->defer_accept && TCP_SKB_CB(skb)->end_seq == req->rcv_isn+1) { | 
|  | req->acked = 1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* OK, ACK is valid, create big socket and | 
|  | * feed this segment to it. It will repeat all | 
|  | * the tests. THIS SEGMENT MUST MOVE SOCKET TO | 
|  | * ESTABLISHED STATE. If it will be dropped after | 
|  | * socket is created, wait for troubles. | 
|  | */ | 
|  | child = tp->af_specific->syn_recv_sock(sk, skb, req, NULL); | 
|  | if (child == NULL) | 
|  | goto listen_overflow; | 
|  |  | 
|  | tcp_synq_unlink(tp, req, prev); | 
|  | tcp_synq_removed(sk, req); | 
|  |  | 
|  | tcp_acceptq_queue(sk, req, child); | 
|  | return child; | 
|  |  | 
|  | listen_overflow: | 
|  | if (!sysctl_tcp_abort_on_overflow) { | 
|  | req->acked = 1; | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | embryonic_reset: | 
|  | NET_INC_STATS_BH(LINUX_MIB_EMBRYONICRSTS); | 
|  | if (!(flg & TCP_FLAG_RST)) | 
|  | req->class->send_reset(skb); | 
|  |  | 
|  | tcp_synq_drop(sk, req, prev); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue segment on the new socket if the new socket is active, | 
|  | * otherwise we just shortcircuit this and continue with | 
|  | * the new socket. | 
|  | */ | 
|  |  | 
|  | int tcp_child_process(struct sock *parent, struct sock *child, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | int ret = 0; | 
|  | int state = child->sk_state; | 
|  |  | 
|  | if (!sock_owned_by_user(child)) { | 
|  | ret = tcp_rcv_state_process(child, skb, skb->h.th, skb->len); | 
|  |  | 
|  | /* Wakeup parent, send SIGIO */ | 
|  | if (state == TCP_SYN_RECV && child->sk_state != state) | 
|  | parent->sk_data_ready(parent, 0); | 
|  | } else { | 
|  | /* Alas, it is possible again, because we do lookup | 
|  | * in main socket hash table and lock on listening | 
|  | * socket does not protect us more. | 
|  | */ | 
|  | sk_add_backlog(child, skb); | 
|  | } | 
|  |  | 
|  | bh_unlock_sock(child); | 
|  | sock_put(child); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(tcp_check_req); | 
|  | EXPORT_SYMBOL(tcp_child_process); | 
|  | EXPORT_SYMBOL(tcp_create_openreq_child); | 
|  | EXPORT_SYMBOL(tcp_timewait_state_process); | 
|  | EXPORT_SYMBOL(tcp_tw_deschedule); |