| /* | 
 |  * arch/v850/kernel/setup.c -- Arch-dependent initialization functions | 
 |  * | 
 |  *  Copyright (C) 2001,02,03,05,06  NEC Electronics Corporation | 
 |  *  Copyright (C) 2001,02,03,05,06  Miles Bader <miles@gnu.org> | 
 |  * | 
 |  * This file is subject to the terms and conditions of the GNU General | 
 |  * Public License.  See the file COPYING in the main directory of this | 
 |  * archive for more details. | 
 |  * | 
 |  * Written by Miles Bader <miles@gnu.org> | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/swap.h>		/* we don't have swap, but for nr_free_pages */ | 
 | #include <linux/irq.h> | 
 | #include <linux/reboot.h> | 
 | #include <linux/personality.h> | 
 | #include <linux/major.h> | 
 | #include <linux/root_dev.h> | 
 | #include <linux/mtd/mtd.h> | 
 | #include <linux/init.h> | 
 |  | 
 | #include <asm/irq.h> | 
 | #include <asm/setup.h> | 
 |  | 
 | #include "mach.h" | 
 |  | 
 | /* These symbols are all defined in the linker map to delineate various | 
 |    statically allocated regions of memory.  */ | 
 |  | 
 | extern char _intv_start, _intv_end; | 
 | /* `kram' is only used if the kernel uses part of normal user RAM.  */ | 
 | extern char _kram_start __attribute__ ((__weak__)); | 
 | extern char _kram_end __attribute__ ((__weak__)); | 
 | extern char _init_start, _init_end; | 
 | extern char _bootmap; | 
 | extern char _stext, _etext, _sdata, _edata, _sbss, _ebss; | 
 | /* Many platforms use an embedded root image.  */ | 
 | extern char _root_fs_image_start __attribute__ ((__weak__)); | 
 | extern char _root_fs_image_end __attribute__ ((__weak__)); | 
 |  | 
 |  | 
 | char __initdata command_line[COMMAND_LINE_SIZE]; | 
 |  | 
 | /* Memory not used by the kernel.  */ | 
 | static unsigned long total_ram_pages; | 
 |  | 
 | /* System RAM.  */ | 
 | static unsigned long ram_start = 0, ram_len = 0; | 
 |  | 
 |  | 
 | #define ADDR_TO_PAGE_UP(x)   ((((unsigned long)x) + PAGE_SIZE-1) >> PAGE_SHIFT) | 
 | #define ADDR_TO_PAGE(x)	     (((unsigned long)x) >> PAGE_SHIFT) | 
 | #define PAGE_TO_ADDR(x)	     (((unsigned long)x) << PAGE_SHIFT) | 
 |  | 
 | static void init_mem_alloc (unsigned long ram_start, unsigned long ram_len); | 
 |  | 
 | void set_mem_root (void *addr, size_t len, char *cmd_line); | 
 |  | 
 |  | 
 | void __init setup_arch (char **cmdline) | 
 | { | 
 | 	/* Keep a copy of command line */ | 
 | 	*cmdline = command_line; | 
 | 	memcpy (boot_command_line, command_line, COMMAND_LINE_SIZE); | 
 | 	boot_command_line[COMMAND_LINE_SIZE - 1] = '\0'; | 
 |  | 
 | 	console_verbose (); | 
 |  | 
 | 	init_mm.start_code = (unsigned long) &_stext; | 
 | 	init_mm.end_code = (unsigned long) &_etext; | 
 | 	init_mm.end_data = (unsigned long) &_edata; | 
 | 	init_mm.brk = (unsigned long) &_kram_end; | 
 |  | 
 | 	/* Find out what mem this machine has.  */ | 
 | 	mach_get_physical_ram (&ram_start, &ram_len); | 
 | 	/* ... and tell the kernel about it.  */ | 
 | 	init_mem_alloc (ram_start, ram_len); | 
 |  | 
 | 	printk (KERN_INFO "CPU: %s\nPlatform: %s\n", | 
 | 		CPU_MODEL_LONG, PLATFORM_LONG); | 
 |  | 
 | 	/* do machine-specific setups.  */ | 
 | 	mach_setup (cmdline); | 
 |  | 
 | #ifdef CONFIG_MTD | 
 | 	if (!ROOT_DEV && &_root_fs_image_end > &_root_fs_image_start) | 
 | 		set_mem_root (&_root_fs_image_start, | 
 | 			      &_root_fs_image_end - &_root_fs_image_start, | 
 | 			      *cmdline); | 
 | #endif | 
 | } | 
 |  | 
 | void __init trap_init (void) | 
 | { | 
 | } | 
 |  | 
 | #ifdef CONFIG_MTD | 
 |  | 
 | /* From drivers/mtd/devices/slram.c */ | 
 | #define SLRAM_BLK_SZ 0x4000 | 
 |  | 
 | /* Set the root filesystem to be the given memory region. | 
 |    Some parameter may be appended to CMD_LINE.  */ | 
 | void set_mem_root (void *addr, size_t len, char *cmd_line) | 
 | { | 
 | 	/* Some sort of idiocy in MTD means we must supply a length that's | 
 | 	   a multiple of SLRAM_BLK_SZ.  We just round up the real length, | 
 | 	   as the file system shouldn't attempt to access anything beyond | 
 | 	   the end of the image anyway.  */ | 
 | 	len = (((len - 1) + SLRAM_BLK_SZ) / SLRAM_BLK_SZ) * SLRAM_BLK_SZ; | 
 |  | 
 | 	/* The only way to pass info to the MTD slram driver is via | 
 | 	   the command line.  */ | 
 | 	if (*cmd_line) { | 
 | 		cmd_line += strlen (cmd_line); | 
 | 		*cmd_line++ = ' '; | 
 | 	} | 
 | 	sprintf (cmd_line, "slram=root,0x%x,+0x%x", (u32)addr, (u32)len); | 
 |  | 
 | 	ROOT_DEV = MKDEV (MTD_BLOCK_MAJOR, 0); | 
 | } | 
 | #endif | 
 |  | 
 |  | 
 | static void irq_nop (unsigned irq) { } | 
 | static unsigned irq_zero (unsigned irq) { return 0; } | 
 |  | 
 | static void nmi_end (unsigned irq) | 
 | { | 
 | 	if (irq != IRQ_NMI (0)) { | 
 | 		printk (KERN_CRIT "NMI %d is unrecoverable; restarting...", | 
 | 			irq - IRQ_NMI (0)); | 
 | 		machine_restart (0); | 
 | 	} | 
 | } | 
 |  | 
 | static struct hw_interrupt_type nmi_irq_type = { | 
 | 	.typename = "NMI", | 
 | 	.startup = irq_zero,		/* startup */ | 
 | 	.shutdown = irq_nop,		/* shutdown */ | 
 | 	.enable = irq_nop,		/* enable */ | 
 | 	.disable = irq_nop,		/* disable */ | 
 | 	.ack = irq_nop,		/* ack */ | 
 | 	.end = nmi_end,		/* end */ | 
 | }; | 
 |  | 
 | void __init init_IRQ (void) | 
 | { | 
 | 	init_irq_handlers (0, NUM_MACH_IRQS, 1, 0); | 
 | 	init_irq_handlers (IRQ_NMI (0), NUM_NMIS, 1, &nmi_irq_type); | 
 | 	mach_init_irqs (); | 
 | } | 
 |  | 
 |  | 
 | void __init mem_init (void) | 
 | { | 
 | 	max_mapnr = MAP_NR (ram_start + ram_len); | 
 |  | 
 | 	num_physpages = ADDR_TO_PAGE (ram_len); | 
 |  | 
 | 	total_ram_pages = free_all_bootmem (); | 
 |  | 
 | 	printk (KERN_INFO | 
 | 		"Memory: %luK/%luK available" | 
 | 		" (%luK kernel code, %luK data)\n", | 
 | 		PAGE_TO_ADDR (nr_free_pages()) / 1024, | 
 | 		ram_len / 1024, | 
 | 		((unsigned long)&_etext - (unsigned long)&_stext) / 1024, | 
 | 		((unsigned long)&_ebss - (unsigned long)&_sdata) / 1024); | 
 | } | 
 |  | 
 | void free_initmem (void) | 
 | { | 
 | 	unsigned long ram_end = ram_start + ram_len; | 
 | 	unsigned long start = PAGE_ALIGN ((unsigned long)(&_init_start)); | 
 |  | 
 | 	if (start >= ram_start && start < ram_end) { | 
 | 		unsigned long addr; | 
 | 		unsigned long end = PAGE_ALIGN ((unsigned long)(&_init_end)); | 
 |  | 
 | 		if (end > ram_end) | 
 | 			end = ram_end; | 
 |  | 
 | 		printk("Freeing unused kernel memory: %ldK freed\n", | 
 | 		       (end - start) / 1024); | 
 |  | 
 | 		for (addr = start; addr < end; addr += PAGE_SIZE) { | 
 | 			struct page *page = virt_to_page (addr); | 
 | 			ClearPageReserved (page); | 
 | 			init_page_count (page); | 
 | 			__free_page (page); | 
 | 			total_ram_pages++; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 |  | 
 | /* Initialize the `bootmem allocator'.  RAM_START and RAM_LEN identify | 
 |    what RAM may be used.  */ | 
 | static void __init | 
 | init_bootmem_alloc (unsigned long ram_start, unsigned long ram_len) | 
 | { | 
 | 	/* The part of the kernel that's in the same managed RAM space | 
 | 	   used for general allocation.  */ | 
 | 	unsigned long kram_start = (unsigned long)&_kram_start; | 
 | 	unsigned long kram_end = (unsigned long)&_kram_end; | 
 | 	/* End of the managed RAM space.  */ | 
 | 	unsigned long ram_end = ram_start + ram_len; | 
 | 	/* Address range of the interrupt vector table.  */ | 
 | 	unsigned long intv_start = (unsigned long)&_intv_start; | 
 | 	unsigned long intv_end = (unsigned long)&_intv_end; | 
 | 	/* True if the interrupt vectors are in the managed RAM area.  */ | 
 | 	int intv_in_ram = (intv_end > ram_start && intv_start < ram_end); | 
 | 	/* True if the interrupt vectors are inside the kernel's RAM.  */ | 
 | 	int intv_in_kram = (intv_end > kram_start && intv_start < kram_end); | 
 | 	/* A pointer to an optional function that reserves platform-specific | 
 | 	   memory regions.  We declare the pointer `volatile' to avoid gcc | 
 | 	   turning the call into a static call (the problem is that since | 
 | 	   it's a weak symbol, a static call may end up trying to reference | 
 | 	   the location 0x0, which is not always reachable).  */ | 
 | 	void (*volatile mrb) (void) = mach_reserve_bootmem; | 
 | 	/* The bootmem allocator's allocation bitmap.  */ | 
 | 	unsigned long bootmap = (unsigned long)&_bootmap; | 
 | 	unsigned long bootmap_len; | 
 |  | 
 | 	/* Round bootmap location up to next page.  */ | 
 | 	bootmap = PAGE_TO_ADDR (ADDR_TO_PAGE_UP (bootmap)); | 
 |  | 
 | 	/* Initialize bootmem allocator.  */ | 
 | 	bootmap_len = init_bootmem_node (NODE_DATA (0), | 
 | 					 ADDR_TO_PAGE (bootmap), | 
 | 					 ADDR_TO_PAGE (PAGE_OFFSET), | 
 | 					 ADDR_TO_PAGE (ram_end)); | 
 |  | 
 | 	/* Now make the RAM actually allocatable (it starts out `reserved'). */ | 
 | 	free_bootmem (ram_start, ram_len); | 
 |  | 
 | 	if (kram_end > kram_start) | 
 | 		/* Reserve the RAM part of the kernel's address space, so it | 
 | 		   doesn't get allocated.  */ | 
 | 		reserve_bootmem(kram_start, kram_end - kram_start, | 
 | 				BOOTMEM_DEFAULT); | 
 | 	 | 
 | 	if (intv_in_ram && !intv_in_kram) | 
 | 		/* Reserve the interrupt vector space.  */ | 
 | 		reserve_bootmem(intv_start, intv_end - intv_start, | 
 | 				BOOTMEM_DEFAULT); | 
 |  | 
 | 	if (bootmap >= ram_start && bootmap < ram_end) | 
 | 		/* Reserve the bootmap space.  */ | 
 | 		reserve_bootmem(bootmap, bootmap_len, | 
 | 				BOOTMEM_DEFAULT); | 
 |  | 
 | 	/* Reserve the memory used by the root filesystem image if it's | 
 | 	   in RAM.  */ | 
 | 	if (&_root_fs_image_end > &_root_fs_image_start | 
 | 	    && (unsigned long)&_root_fs_image_start >= ram_start | 
 | 	    && (unsigned long)&_root_fs_image_start < ram_end) | 
 | 		reserve_bootmem ((unsigned long)&_root_fs_image_start, | 
 | 				 &_root_fs_image_end - &_root_fs_image_start, | 
 | 				 BOOTMEM_DEFAULT); | 
 |  | 
 | 	/* Let the platform-dependent code reserve some too.  */ | 
 | 	if (mrb) | 
 | 		(*mrb) (); | 
 | } | 
 |  | 
 | /* Tell the kernel about what RAM it may use for memory allocation.  */ | 
 | static void __init | 
 | init_mem_alloc (unsigned long ram_start, unsigned long ram_len) | 
 | { | 
 | 	unsigned i; | 
 | 	unsigned long zones_size[MAX_NR_ZONES]; | 
 |  | 
 | 	init_bootmem_alloc (ram_start, ram_len); | 
 |  | 
 | 	for (i = 0; i < MAX_NR_ZONES; i++) | 
 | 		zones_size[i] = 0; | 
 |  | 
 | 	/* We stuff all the memory into one area, which includes the | 
 | 	   initial gap from PAGE_OFFSET to ram_start.  */ | 
 | 	zones_size[ZONE_DMA] | 
 | 		= ADDR_TO_PAGE (ram_len + (ram_start - PAGE_OFFSET)); | 
 |  | 
 | 	/* The allocator is very picky about the address of the first | 
 | 	   allocatable page -- it must be at least as aligned as the | 
 | 	   maximum allocation -- so try to detect cases where it will get | 
 | 	   confused and signal them at compile time (this is a common | 
 | 	   problem when porting to a new platform with ).  There is a | 
 | 	   similar runtime check in free_area_init_core.  */ | 
 | #if ((PAGE_OFFSET >> PAGE_SHIFT) & ((1UL << (MAX_ORDER - 1)) - 1)) | 
 | #error MAX_ORDER is too large for given PAGE_OFFSET (use CONFIG_FORCE_MAX_ZONEORDER to change it) | 
 | #endif | 
 | 	NODE_DATA(0)->node_mem_map = NULL; | 
 | 	free_area_init_node (0, NODE_DATA(0), zones_size, | 
 | 			     ADDR_TO_PAGE (PAGE_OFFSET), 0); | 
 | } | 
 |  | 
 |  | 
 |  | 
 | /* Taken from m68knommu */ | 
 | void show_mem(void) | 
 | { | 
 |     unsigned long i; | 
 |     int free = 0, total = 0, reserved = 0, shared = 0; | 
 |     int cached = 0; | 
 |  | 
 |     printk(KERN_INFO "\nMem-info:\n"); | 
 |     show_free_areas(); | 
 |     i = max_mapnr; | 
 |     while (i-- > 0) { | 
 | 	total++; | 
 | 	if (PageReserved(mem_map+i)) | 
 | 	    reserved++; | 
 | 	else if (PageSwapCache(mem_map+i)) | 
 | 	    cached++; | 
 | 	else if (!page_count(mem_map+i)) | 
 | 	    free++; | 
 | 	else | 
 | 	    shared += page_count(mem_map+i) - 1; | 
 |     } | 
 |     printk(KERN_INFO "%d pages of RAM\n",total); | 
 |     printk(KERN_INFO "%d free pages\n",free); | 
 |     printk(KERN_INFO "%d reserved pages\n",reserved); | 
 |     printk(KERN_INFO "%d pages shared\n",shared); | 
 |     printk(KERN_INFO "%d pages swap cached\n",cached); | 
 | } |