|  | /* | 
|  | Copyright (C) 2004 - 2007 rt2x00 SourceForge Project | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt2x00lib | 
|  | Abstract: rt2x00 generic device routines. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #include "rt2x00lib.h" | 
|  | #include "rt2x00dump.h" | 
|  |  | 
|  | /* | 
|  | * Ring handler. | 
|  | */ | 
|  | struct data_ring *rt2x00lib_get_ring(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int queue) | 
|  | { | 
|  | int beacon = test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Check if we are requesting a reqular TX ring, | 
|  | * or if we are requesting a Beacon or Atim ring. | 
|  | * For Atim rings, we should check if it is supported. | 
|  | */ | 
|  | if (queue < rt2x00dev->hw->queues && rt2x00dev->tx) | 
|  | return &rt2x00dev->tx[queue]; | 
|  |  | 
|  | if (!rt2x00dev->bcn || !beacon) | 
|  | return NULL; | 
|  |  | 
|  | if (queue == IEEE80211_TX_QUEUE_BEACON) | 
|  | return &rt2x00dev->bcn[0]; | 
|  | else if (queue == IEEE80211_TX_QUEUE_AFTER_BEACON) | 
|  | return &rt2x00dev->bcn[1]; | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_get_ring); | 
|  |  | 
|  | /* | 
|  | * Link tuning handlers | 
|  | */ | 
|  | void rt2x00lib_reset_link_tuner(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Reset link information. | 
|  | * Both the currently active vgc level as well as | 
|  | * the link tuner counter should be reset. Resetting | 
|  | * the counter is important for devices where the | 
|  | * device should only perform link tuning during the | 
|  | * first minute after being enabled. | 
|  | */ | 
|  | rt2x00dev->link.count = 0; | 
|  | rt2x00dev->link.vgc_level = 0; | 
|  |  | 
|  | /* | 
|  | * Reset the link tuner. | 
|  | */ | 
|  | rt2x00dev->ops->lib->reset_tuner(rt2x00dev); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_start_link_tuner(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* | 
|  | * Clear all (possibly) pre-existing quality statistics. | 
|  | */ | 
|  | memset(&rt2x00dev->link.qual, 0, sizeof(rt2x00dev->link.qual)); | 
|  |  | 
|  | /* | 
|  | * The RX and TX percentage should start at 50% | 
|  | * this will assure we will get at least get some | 
|  | * decent value when the link tuner starts. | 
|  | * The value will be dropped and overwritten with | 
|  | * the correct (measured )value anyway during the | 
|  | * first run of the link tuner. | 
|  | */ | 
|  | rt2x00dev->link.qual.rx_percentage = 50; | 
|  | rt2x00dev->link.qual.tx_percentage = 50; | 
|  |  | 
|  | rt2x00lib_reset_link_tuner(rt2x00dev); | 
|  |  | 
|  | queue_delayed_work(rt2x00dev->hw->workqueue, | 
|  | &rt2x00dev->link.work, LINK_TUNE_INTERVAL); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_stop_link_tuner(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | cancel_delayed_work_sync(&rt2x00dev->link.work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ring initialization | 
|  | */ | 
|  | static void rt2x00lib_init_rxrings(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_ring *ring = rt2x00dev->rx; | 
|  | unsigned int i; | 
|  |  | 
|  | if (!rt2x00dev->ops->lib->init_rxentry) | 
|  | return; | 
|  |  | 
|  | if (ring->data_addr) | 
|  | memset(ring->data_addr, 0, rt2x00_get_ring_size(ring)); | 
|  |  | 
|  | for (i = 0; i < ring->stats.limit; i++) | 
|  | rt2x00dev->ops->lib->init_rxentry(rt2x00dev, &ring->entry[i]); | 
|  |  | 
|  | rt2x00_ring_index_clear(ring); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_init_txrings(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_ring *ring; | 
|  | unsigned int i; | 
|  |  | 
|  | if (!rt2x00dev->ops->lib->init_txentry) | 
|  | return; | 
|  |  | 
|  | txringall_for_each(rt2x00dev, ring) { | 
|  | if (ring->data_addr) | 
|  | memset(ring->data_addr, 0, rt2x00_get_ring_size(ring)); | 
|  |  | 
|  | for (i = 0; i < ring->stats.limit; i++) | 
|  | rt2x00dev->ops->lib->init_txentry(rt2x00dev, | 
|  | &ring->entry[i]); | 
|  |  | 
|  | rt2x00_ring_index_clear(ring); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Radio control handlers. | 
|  | */ | 
|  | int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | /* | 
|  | * Don't enable the radio twice. | 
|  | * And check if the hardware button has been disabled. | 
|  | */ | 
|  | if (test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags) || | 
|  | test_bit(DEVICE_DISABLED_RADIO_HW, &rt2x00dev->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Initialize all data rings. | 
|  | */ | 
|  | rt2x00lib_init_rxrings(rt2x00dev); | 
|  | rt2x00lib_init_txrings(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Enable radio. | 
|  | */ | 
|  | status = rt2x00dev->ops->lib->set_device_state(rt2x00dev, | 
|  | STATE_RADIO_ON); | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | __set_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Enable RX. | 
|  | */ | 
|  | rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_ON); | 
|  |  | 
|  | /* | 
|  | * Start the TX queues. | 
|  | */ | 
|  | ieee80211_start_queues(rt2x00dev->hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (!__test_and_clear_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Stop all scheduled work. | 
|  | */ | 
|  | if (work_pending(&rt2x00dev->beacon_work)) | 
|  | cancel_work_sync(&rt2x00dev->beacon_work); | 
|  | if (work_pending(&rt2x00dev->filter_work)) | 
|  | cancel_work_sync(&rt2x00dev->filter_work); | 
|  | if (work_pending(&rt2x00dev->config_work)) | 
|  | cancel_work_sync(&rt2x00dev->config_work); | 
|  |  | 
|  | /* | 
|  | * Stop the TX queues. | 
|  | */ | 
|  | ieee80211_stop_queues(rt2x00dev->hw); | 
|  |  | 
|  | /* | 
|  | * Disable RX. | 
|  | */ | 
|  | rt2x00lib_toggle_rx(rt2x00dev, STATE_RADIO_RX_OFF); | 
|  |  | 
|  | /* | 
|  | * Disable radio. | 
|  | */ | 
|  | rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF); | 
|  | } | 
|  |  | 
|  | void rt2x00lib_toggle_rx(struct rt2x00_dev *rt2x00dev, enum dev_state state) | 
|  | { | 
|  | /* | 
|  | * When we are disabling the RX, we should also stop the link tuner. | 
|  | */ | 
|  | if (state == STATE_RADIO_RX_OFF) | 
|  | rt2x00lib_stop_link_tuner(rt2x00dev); | 
|  |  | 
|  | rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); | 
|  |  | 
|  | /* | 
|  | * When we are enabling the RX, we should also start the link tuner. | 
|  | */ | 
|  | if (state == STATE_RADIO_RX_ON && | 
|  | is_interface_present(&rt2x00dev->interface)) | 
|  | rt2x00lib_start_link_tuner(rt2x00dev); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_evaluate_antenna_sample(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | enum antenna rx = rt2x00dev->link.ant.active.rx; | 
|  | enum antenna tx = rt2x00dev->link.ant.active.tx; | 
|  | int sample_a = | 
|  | rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_A); | 
|  | int sample_b = | 
|  | rt2x00_get_link_ant_rssi_history(&rt2x00dev->link, ANTENNA_B); | 
|  |  | 
|  | /* | 
|  | * We are done sampling. Now we should evaluate the results. | 
|  | */ | 
|  | rt2x00dev->link.ant.flags &= ~ANTENNA_MODE_SAMPLE; | 
|  |  | 
|  | /* | 
|  | * During the last period we have sampled the RSSI | 
|  | * from both antenna's. It now is time to determine | 
|  | * which antenna demonstrated the best performance. | 
|  | * When we are already on the antenna with the best | 
|  | * performance, then there really is nothing for us | 
|  | * left to do. | 
|  | */ | 
|  | if (sample_a == sample_b) | 
|  | return; | 
|  |  | 
|  | if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) | 
|  | rx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B; | 
|  |  | 
|  | if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) | 
|  | tx = (sample_a > sample_b) ? ANTENNA_A : ANTENNA_B; | 
|  |  | 
|  | rt2x00lib_config_antenna(rt2x00dev, rx, tx); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_evaluate_antenna_eval(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | enum antenna rx = rt2x00dev->link.ant.active.rx; | 
|  | enum antenna tx = rt2x00dev->link.ant.active.tx; | 
|  | int rssi_curr = rt2x00_get_link_ant_rssi(&rt2x00dev->link); | 
|  | int rssi_old = rt2x00_update_ant_rssi(&rt2x00dev->link, rssi_curr); | 
|  |  | 
|  | /* | 
|  | * Legacy driver indicates that we should swap antenna's | 
|  | * when the difference in RSSI is greater that 5. This | 
|  | * also should be done when the RSSI was actually better | 
|  | * then the previous sample. | 
|  | * When the difference exceeds the threshold we should | 
|  | * sample the rssi from the other antenna to make a valid | 
|  | * comparison between the 2 antennas. | 
|  | */ | 
|  | if (abs(rssi_curr - rssi_old) < 5) | 
|  | return; | 
|  |  | 
|  | rt2x00dev->link.ant.flags |= ANTENNA_MODE_SAMPLE; | 
|  |  | 
|  | if (rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) | 
|  | rx = (rx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A; | 
|  |  | 
|  | if (rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY) | 
|  | tx = (tx == ANTENNA_A) ? ANTENNA_B : ANTENNA_A; | 
|  |  | 
|  | rt2x00lib_config_antenna(rt2x00dev, rx, tx); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_evaluate_antenna(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* | 
|  | * Determine if software diversity is enabled for | 
|  | * either the TX or RX antenna (or both). | 
|  | * Always perform this check since within the link | 
|  | * tuner interval the configuration might have changed. | 
|  | */ | 
|  | rt2x00dev->link.ant.flags &= ~ANTENNA_RX_DIVERSITY; | 
|  | rt2x00dev->link.ant.flags &= ~ANTENNA_TX_DIVERSITY; | 
|  |  | 
|  | if (rt2x00dev->hw->conf.antenna_sel_rx == 0 && | 
|  | rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) | 
|  | rt2x00dev->link.ant.flags |= ANTENNA_RX_DIVERSITY; | 
|  | if (rt2x00dev->hw->conf.antenna_sel_tx == 0 && | 
|  | rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) | 
|  | rt2x00dev->link.ant.flags |= ANTENNA_TX_DIVERSITY; | 
|  |  | 
|  | if (!(rt2x00dev->link.ant.flags & ANTENNA_RX_DIVERSITY) && | 
|  | !(rt2x00dev->link.ant.flags & ANTENNA_TX_DIVERSITY)) { | 
|  | rt2x00dev->link.ant.flags = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we have only sampled the data over the last period | 
|  | * we should now harvest the data. Otherwise just evaluate | 
|  | * the data. The latter should only be performed once | 
|  | * every 2 seconds. | 
|  | */ | 
|  | if (rt2x00dev->link.ant.flags & ANTENNA_MODE_SAMPLE) | 
|  | rt2x00lib_evaluate_antenna_sample(rt2x00dev); | 
|  | else if (rt2x00dev->link.count & 1) | 
|  | rt2x00lib_evaluate_antenna_eval(rt2x00dev); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_update_link_stats(struct link *link, int rssi) | 
|  | { | 
|  | int avg_rssi = rssi; | 
|  |  | 
|  | /* | 
|  | * Update global RSSI | 
|  | */ | 
|  | if (link->qual.avg_rssi) | 
|  | avg_rssi = MOVING_AVERAGE(link->qual.avg_rssi, rssi, 8); | 
|  | link->qual.avg_rssi = avg_rssi; | 
|  |  | 
|  | /* | 
|  | * Update antenna RSSI | 
|  | */ | 
|  | if (link->ant.rssi_ant) | 
|  | rssi = MOVING_AVERAGE(link->ant.rssi_ant, rssi, 8); | 
|  | link->ant.rssi_ant = rssi; | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_precalculate_link_signal(struct link_qual *qual) | 
|  | { | 
|  | if (qual->rx_failed || qual->rx_success) | 
|  | qual->rx_percentage = | 
|  | (qual->rx_success * 100) / | 
|  | (qual->rx_failed + qual->rx_success); | 
|  | else | 
|  | qual->rx_percentage = 50; | 
|  |  | 
|  | if (qual->tx_failed || qual->tx_success) | 
|  | qual->tx_percentage = | 
|  | (qual->tx_success * 100) / | 
|  | (qual->tx_failed + qual->tx_success); | 
|  | else | 
|  | qual->tx_percentage = 50; | 
|  |  | 
|  | qual->rx_success = 0; | 
|  | qual->rx_failed = 0; | 
|  | qual->tx_success = 0; | 
|  | qual->tx_failed = 0; | 
|  | } | 
|  |  | 
|  | static int rt2x00lib_calculate_link_signal(struct rt2x00_dev *rt2x00dev, | 
|  | int rssi) | 
|  | { | 
|  | int rssi_percentage = 0; | 
|  | int signal; | 
|  |  | 
|  | /* | 
|  | * We need a positive value for the RSSI. | 
|  | */ | 
|  | if (rssi < 0) | 
|  | rssi += rt2x00dev->rssi_offset; | 
|  |  | 
|  | /* | 
|  | * Calculate the different percentages, | 
|  | * which will be used for the signal. | 
|  | */ | 
|  | if (rt2x00dev->rssi_offset) | 
|  | rssi_percentage = (rssi * 100) / rt2x00dev->rssi_offset; | 
|  |  | 
|  | /* | 
|  | * Add the individual percentages and use the WEIGHT | 
|  | * defines to calculate the current link signal. | 
|  | */ | 
|  | signal = ((WEIGHT_RSSI * rssi_percentage) + | 
|  | (WEIGHT_TX * rt2x00dev->link.qual.tx_percentage) + | 
|  | (WEIGHT_RX * rt2x00dev->link.qual.rx_percentage)) / 100; | 
|  |  | 
|  | return (signal > 100) ? 100 : signal; | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_link_tuner(struct work_struct *work) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = | 
|  | container_of(work, struct rt2x00_dev, link.work.work); | 
|  |  | 
|  | /* | 
|  | * When the radio is shutting down we should | 
|  | * immediately cease all link tuning. | 
|  | */ | 
|  | if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Update statistics. | 
|  | */ | 
|  | rt2x00dev->ops->lib->link_stats(rt2x00dev, &rt2x00dev->link.qual); | 
|  | rt2x00dev->low_level_stats.dot11FCSErrorCount += | 
|  | rt2x00dev->link.qual.rx_failed; | 
|  |  | 
|  | /* | 
|  | * Only perform the link tuning when Link tuning | 
|  | * has been enabled (This could have been disabled from the EEPROM). | 
|  | */ | 
|  | if (!test_bit(CONFIG_DISABLE_LINK_TUNING, &rt2x00dev->flags)) | 
|  | rt2x00dev->ops->lib->link_tuner(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Precalculate a portion of the link signal which is | 
|  | * in based on the tx/rx success/failure counters. | 
|  | */ | 
|  | rt2x00lib_precalculate_link_signal(&rt2x00dev->link.qual); | 
|  |  | 
|  | /* | 
|  | * Evaluate antenna setup, make this the last step since this could | 
|  | * possibly reset some statistics. | 
|  | */ | 
|  | rt2x00lib_evaluate_antenna(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Increase tuner counter, and reschedule the next link tuner run. | 
|  | */ | 
|  | rt2x00dev->link.count++; | 
|  | queue_delayed_work(rt2x00dev->hw->workqueue, &rt2x00dev->link.work, | 
|  | LINK_TUNE_INTERVAL); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_packetfilter_scheduled(struct work_struct *work) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = | 
|  | container_of(work, struct rt2x00_dev, filter_work); | 
|  | unsigned int filter = rt2x00dev->packet_filter; | 
|  |  | 
|  | /* | 
|  | * Since we had stored the filter inside interface.filter, | 
|  | * we should now clear that field. Otherwise the driver will | 
|  | * assume nothing has changed (*total_flags will be compared | 
|  | * to interface.filter to determine if any action is required). | 
|  | */ | 
|  | rt2x00dev->packet_filter = 0; | 
|  |  | 
|  | rt2x00dev->ops->hw->configure_filter(rt2x00dev->hw, | 
|  | filter, &filter, 0, NULL); | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_configuration_scheduled(struct work_struct *work) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = | 
|  | container_of(work, struct rt2x00_dev, config_work); | 
|  | struct ieee80211_bss_conf bss_conf; | 
|  |  | 
|  | bss_conf.use_short_preamble = | 
|  | test_bit(CONFIG_SHORT_PREAMBLE, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * FIXME: shouldn't invoke it this way because all other contents | 
|  | *	  of bss_conf is invalid. | 
|  | */ | 
|  | rt2x00mac_bss_info_changed(rt2x00dev->hw, rt2x00dev->interface.id, | 
|  | &bss_conf, BSS_CHANGED_ERP_PREAMBLE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt context handlers. | 
|  | */ | 
|  | static void rt2x00lib_beacondone_scheduled(struct work_struct *work) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = | 
|  | container_of(work, struct rt2x00_dev, beacon_work); | 
|  | struct data_ring *ring = | 
|  | rt2x00lib_get_ring(rt2x00dev, IEEE80211_TX_QUEUE_BEACON); | 
|  | struct data_entry *entry = rt2x00_get_data_entry(ring); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | skb = ieee80211_beacon_get(rt2x00dev->hw, | 
|  | rt2x00dev->interface.id, | 
|  | &entry->tx_status.control); | 
|  | if (!skb) | 
|  | return; | 
|  |  | 
|  | rt2x00dev->ops->hw->beacon_update(rt2x00dev->hw, skb, | 
|  | &entry->tx_status.control); | 
|  |  | 
|  | dev_kfree_skb(skb); | 
|  | } | 
|  |  | 
|  | void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (!test_bit(DEVICE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | return; | 
|  |  | 
|  | queue_work(rt2x00dev->hw->workqueue, &rt2x00dev->beacon_work); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_beacondone); | 
|  |  | 
|  | void rt2x00lib_txdone(struct data_entry *entry, | 
|  | const int status, const int retry) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev; | 
|  | struct ieee80211_tx_status *tx_status = &entry->tx_status; | 
|  | struct ieee80211_low_level_stats *stats = &rt2x00dev->low_level_stats; | 
|  | int success = !!(status == TX_SUCCESS || status == TX_SUCCESS_RETRY); | 
|  | int fail = !!(status == TX_FAIL_RETRY || status == TX_FAIL_INVALID || | 
|  | status == TX_FAIL_OTHER); | 
|  |  | 
|  | /* | 
|  | * Update TX statistics. | 
|  | */ | 
|  | tx_status->flags = 0; | 
|  | tx_status->ack_signal = 0; | 
|  | tx_status->excessive_retries = (status == TX_FAIL_RETRY); | 
|  | tx_status->retry_count = retry; | 
|  | rt2x00dev->link.qual.tx_success += success; | 
|  | rt2x00dev->link.qual.tx_failed += retry + fail; | 
|  |  | 
|  | if (!(tx_status->control.flags & IEEE80211_TXCTL_NO_ACK)) { | 
|  | if (success) | 
|  | tx_status->flags |= IEEE80211_TX_STATUS_ACK; | 
|  | else | 
|  | stats->dot11ACKFailureCount++; | 
|  | } | 
|  |  | 
|  | tx_status->queue_length = entry->ring->stats.limit; | 
|  | tx_status->queue_number = tx_status->control.queue; | 
|  |  | 
|  | if (tx_status->control.flags & IEEE80211_TXCTL_USE_RTS_CTS) { | 
|  | if (success) | 
|  | stats->dot11RTSSuccessCount++; | 
|  | else | 
|  | stats->dot11RTSFailureCount++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send the tx_status to mac80211 & debugfs. | 
|  | * mac80211 will clean up the skb structure. | 
|  | */ | 
|  | get_skb_desc(entry->skb)->frame_type = DUMP_FRAME_TXDONE; | 
|  | rt2x00debug_dump_frame(rt2x00dev, entry->skb); | 
|  | ieee80211_tx_status_irqsafe(rt2x00dev->hw, entry->skb, tx_status); | 
|  | entry->skb = NULL; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_txdone); | 
|  |  | 
|  | void rt2x00lib_rxdone(struct data_entry *entry, struct sk_buff *skb, | 
|  | struct rxdata_entry_desc *desc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->ring->rt2x00dev; | 
|  | struct ieee80211_rx_status *rx_status = &rt2x00dev->rx_status; | 
|  | struct ieee80211_hw_mode *mode; | 
|  | struct ieee80211_rate *rate; | 
|  | struct ieee80211_hdr *hdr; | 
|  | unsigned int i; | 
|  | int val = 0; | 
|  | u16 fc; | 
|  |  | 
|  | /* | 
|  | * Update RX statistics. | 
|  | */ | 
|  | mode = &rt2x00dev->hwmodes[rt2x00dev->curr_hwmode]; | 
|  | for (i = 0; i < mode->num_rates; i++) { | 
|  | rate = &mode->rates[i]; | 
|  |  | 
|  | /* | 
|  | * When frame was received with an OFDM bitrate, | 
|  | * the signal is the PLCP value. If it was received with | 
|  | * a CCK bitrate the signal is the rate in 0.5kbit/s. | 
|  | */ | 
|  | if (!desc->ofdm) | 
|  | val = DEVICE_GET_RATE_FIELD(rate->val, RATE); | 
|  | else | 
|  | val = DEVICE_GET_RATE_FIELD(rate->val, PLCP); | 
|  |  | 
|  | if (val == desc->signal) { | 
|  | val = rate->val; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only update link status if this is a beacon frame carrying our bssid. | 
|  | */ | 
|  | hdr = (struct ieee80211_hdr*)skb->data; | 
|  | fc = le16_to_cpu(hdr->frame_control); | 
|  | if (is_beacon(fc) && desc->my_bss) | 
|  | rt2x00lib_update_link_stats(&rt2x00dev->link, desc->rssi); | 
|  |  | 
|  | rt2x00dev->link.qual.rx_success++; | 
|  |  | 
|  | rx_status->rate = val; | 
|  | rx_status->signal = | 
|  | rt2x00lib_calculate_link_signal(rt2x00dev, desc->rssi); | 
|  | rx_status->ssi = desc->rssi; | 
|  | rx_status->flag = desc->flags; | 
|  | rx_status->antenna = rt2x00dev->link.ant.active.rx; | 
|  |  | 
|  | /* | 
|  | * Send frame to mac80211 & debugfs | 
|  | */ | 
|  | get_skb_desc(skb)->frame_type = DUMP_FRAME_RXDONE; | 
|  | rt2x00debug_dump_frame(rt2x00dev, skb); | 
|  | ieee80211_rx_irqsafe(rt2x00dev->hw, skb, rx_status); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_rxdone); | 
|  |  | 
|  | /* | 
|  | * TX descriptor initializer | 
|  | */ | 
|  | void rt2x00lib_write_tx_desc(struct rt2x00_dev *rt2x00dev, | 
|  | struct sk_buff *skb, | 
|  | struct ieee80211_tx_control *control) | 
|  | { | 
|  | struct txdata_entry_desc desc; | 
|  | struct skb_desc *skbdesc = get_skb_desc(skb); | 
|  | struct ieee80211_hdr *ieee80211hdr = skbdesc->data; | 
|  | int tx_rate; | 
|  | int bitrate; | 
|  | int length; | 
|  | int duration; | 
|  | int residual; | 
|  | u16 frame_control; | 
|  | u16 seq_ctrl; | 
|  |  | 
|  | memset(&desc, 0, sizeof(desc)); | 
|  |  | 
|  | desc.cw_min = skbdesc->ring->tx_params.cw_min; | 
|  | desc.cw_max = skbdesc->ring->tx_params.cw_max; | 
|  | desc.aifs = skbdesc->ring->tx_params.aifs; | 
|  |  | 
|  | /* | 
|  | * Identify queue | 
|  | */ | 
|  | if (control->queue < rt2x00dev->hw->queues) | 
|  | desc.queue = control->queue; | 
|  | else if (control->queue == IEEE80211_TX_QUEUE_BEACON || | 
|  | control->queue == IEEE80211_TX_QUEUE_AFTER_BEACON) | 
|  | desc.queue = QUEUE_MGMT; | 
|  | else | 
|  | desc.queue = QUEUE_OTHER; | 
|  |  | 
|  | /* | 
|  | * Read required fields from ieee80211 header. | 
|  | */ | 
|  | frame_control = le16_to_cpu(ieee80211hdr->frame_control); | 
|  | seq_ctrl = le16_to_cpu(ieee80211hdr->seq_ctrl); | 
|  |  | 
|  | tx_rate = control->tx_rate; | 
|  |  | 
|  | /* | 
|  | * Check whether this frame is to be acked | 
|  | */ | 
|  | if (!(control->flags & IEEE80211_TXCTL_NO_ACK)) | 
|  | __set_bit(ENTRY_TXD_ACK, &desc.flags); | 
|  |  | 
|  | /* | 
|  | * Check if this is a RTS/CTS frame | 
|  | */ | 
|  | if (is_rts_frame(frame_control) || is_cts_frame(frame_control)) { | 
|  | __set_bit(ENTRY_TXD_BURST, &desc.flags); | 
|  | if (is_rts_frame(frame_control)) { | 
|  | __set_bit(ENTRY_TXD_RTS_FRAME, &desc.flags); | 
|  | __set_bit(ENTRY_TXD_ACK, &desc.flags); | 
|  | } else | 
|  | __clear_bit(ENTRY_TXD_ACK, &desc.flags); | 
|  | if (control->rts_cts_rate) | 
|  | tx_rate = control->rts_cts_rate; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for OFDM | 
|  | */ | 
|  | if (DEVICE_GET_RATE_FIELD(tx_rate, RATEMASK) & DEV_OFDM_RATEMASK) | 
|  | __set_bit(ENTRY_TXD_OFDM_RATE, &desc.flags); | 
|  |  | 
|  | /* | 
|  | * Check if more fragments are pending | 
|  | */ | 
|  | if (ieee80211_get_morefrag(ieee80211hdr)) { | 
|  | __set_bit(ENTRY_TXD_BURST, &desc.flags); | 
|  | __set_bit(ENTRY_TXD_MORE_FRAG, &desc.flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Beacons and probe responses require the tsf timestamp | 
|  | * to be inserted into the frame. | 
|  | */ | 
|  | if (control->queue == IEEE80211_TX_QUEUE_BEACON || | 
|  | is_probe_resp(frame_control)) | 
|  | __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &desc.flags); | 
|  |  | 
|  | /* | 
|  | * Determine with what IFS priority this frame should be send. | 
|  | * Set ifs to IFS_SIFS when the this is not the first fragment, | 
|  | * or this fragment came after RTS/CTS. | 
|  | */ | 
|  | if ((seq_ctrl & IEEE80211_SCTL_FRAG) > 0 || | 
|  | test_bit(ENTRY_TXD_RTS_FRAME, &desc.flags)) | 
|  | desc.ifs = IFS_SIFS; | 
|  | else | 
|  | desc.ifs = IFS_BACKOFF; | 
|  |  | 
|  | /* | 
|  | * PLCP setup | 
|  | * Length calculation depends on OFDM/CCK rate. | 
|  | */ | 
|  | desc.signal = DEVICE_GET_RATE_FIELD(tx_rate, PLCP); | 
|  | desc.service = 0x04; | 
|  |  | 
|  | length = skbdesc->data_len + FCS_LEN; | 
|  | if (test_bit(ENTRY_TXD_OFDM_RATE, &desc.flags)) { | 
|  | desc.length_high = (length >> 6) & 0x3f; | 
|  | desc.length_low = length & 0x3f; | 
|  | } else { | 
|  | bitrate = DEVICE_GET_RATE_FIELD(tx_rate, RATE); | 
|  |  | 
|  | /* | 
|  | * Convert length to microseconds. | 
|  | */ | 
|  | residual = get_duration_res(length, bitrate); | 
|  | duration = get_duration(length, bitrate); | 
|  |  | 
|  | if (residual != 0) { | 
|  | duration++; | 
|  |  | 
|  | /* | 
|  | * Check if we need to set the Length Extension | 
|  | */ | 
|  | if (bitrate == 110 && residual <= 30) | 
|  | desc.service |= 0x80; | 
|  | } | 
|  |  | 
|  | desc.length_high = (duration >> 8) & 0xff; | 
|  | desc.length_low = duration & 0xff; | 
|  |  | 
|  | /* | 
|  | * When preamble is enabled we should set the | 
|  | * preamble bit for the signal. | 
|  | */ | 
|  | if (DEVICE_GET_RATE_FIELD(tx_rate, PREAMBLE)) | 
|  | desc.signal |= 0x08; | 
|  | } | 
|  |  | 
|  | rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, skb, &desc, control); | 
|  |  | 
|  | /* | 
|  | * Update ring entry. | 
|  | */ | 
|  | skbdesc->entry->skb = skb; | 
|  | memcpy(&skbdesc->entry->tx_status.control, control, sizeof(*control)); | 
|  |  | 
|  | /* | 
|  | * The frame has been completely initialized and ready | 
|  | * for sending to the device. The caller will push the | 
|  | * frame to the device, but we are going to push the | 
|  | * frame to debugfs here. | 
|  | */ | 
|  | skbdesc->frame_type = DUMP_FRAME_TX; | 
|  | rt2x00debug_dump_frame(rt2x00dev, skb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_write_tx_desc); | 
|  |  | 
|  | /* | 
|  | * Driver initialization handlers. | 
|  | */ | 
|  | static void rt2x00lib_channel(struct ieee80211_channel *entry, | 
|  | const int channel, const int tx_power, | 
|  | const int value) | 
|  | { | 
|  | entry->chan = channel; | 
|  | if (channel <= 14) | 
|  | entry->freq = 2407 + (5 * channel); | 
|  | else | 
|  | entry->freq = 5000 + (5 * channel); | 
|  | entry->val = value; | 
|  | entry->flag = | 
|  | IEEE80211_CHAN_W_IBSS | | 
|  | IEEE80211_CHAN_W_ACTIVE_SCAN | | 
|  | IEEE80211_CHAN_W_SCAN; | 
|  | entry->power_level = tx_power; | 
|  | entry->antenna_max = 0xff; | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_rate(struct ieee80211_rate *entry, | 
|  | const int rate, const int mask, | 
|  | const int plcp, const int flags) | 
|  | { | 
|  | entry->rate = rate; | 
|  | entry->val = | 
|  | DEVICE_SET_RATE_FIELD(rate, RATE) | | 
|  | DEVICE_SET_RATE_FIELD(mask, RATEMASK) | | 
|  | DEVICE_SET_RATE_FIELD(plcp, PLCP); | 
|  | entry->flags = flags; | 
|  | entry->val2 = entry->val; | 
|  | if (entry->flags & IEEE80211_RATE_PREAMBLE2) | 
|  | entry->val2 |= DEVICE_SET_RATE_FIELD(1, PREAMBLE); | 
|  | entry->min_rssi_ack = 0; | 
|  | entry->min_rssi_ack_delta = 0; | 
|  | } | 
|  |  | 
|  | static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev, | 
|  | struct hw_mode_spec *spec) | 
|  | { | 
|  | struct ieee80211_hw *hw = rt2x00dev->hw; | 
|  | struct ieee80211_hw_mode *hwmodes; | 
|  | struct ieee80211_channel *channels; | 
|  | struct ieee80211_rate *rates; | 
|  | unsigned int i; | 
|  | unsigned char tx_power; | 
|  |  | 
|  | hwmodes = kzalloc(sizeof(*hwmodes) * spec->num_modes, GFP_KERNEL); | 
|  | if (!hwmodes) | 
|  | goto exit; | 
|  |  | 
|  | channels = kzalloc(sizeof(*channels) * spec->num_channels, GFP_KERNEL); | 
|  | if (!channels) | 
|  | goto exit_free_modes; | 
|  |  | 
|  | rates = kzalloc(sizeof(*rates) * spec->num_rates, GFP_KERNEL); | 
|  | if (!rates) | 
|  | goto exit_free_channels; | 
|  |  | 
|  | /* | 
|  | * Initialize Rate list. | 
|  | */ | 
|  | rt2x00lib_rate(&rates[0], 10, DEV_RATEMASK_1MB, | 
|  | 0x00, IEEE80211_RATE_CCK); | 
|  | rt2x00lib_rate(&rates[1], 20, DEV_RATEMASK_2MB, | 
|  | 0x01, IEEE80211_RATE_CCK_2); | 
|  | rt2x00lib_rate(&rates[2], 55, DEV_RATEMASK_5_5MB, | 
|  | 0x02, IEEE80211_RATE_CCK_2); | 
|  | rt2x00lib_rate(&rates[3], 110, DEV_RATEMASK_11MB, | 
|  | 0x03, IEEE80211_RATE_CCK_2); | 
|  |  | 
|  | if (spec->num_rates > 4) { | 
|  | rt2x00lib_rate(&rates[4], 60, DEV_RATEMASK_6MB, | 
|  | 0x0b, IEEE80211_RATE_OFDM); | 
|  | rt2x00lib_rate(&rates[5], 90, DEV_RATEMASK_9MB, | 
|  | 0x0f, IEEE80211_RATE_OFDM); | 
|  | rt2x00lib_rate(&rates[6], 120, DEV_RATEMASK_12MB, | 
|  | 0x0a, IEEE80211_RATE_OFDM); | 
|  | rt2x00lib_rate(&rates[7], 180, DEV_RATEMASK_18MB, | 
|  | 0x0e, IEEE80211_RATE_OFDM); | 
|  | rt2x00lib_rate(&rates[8], 240, DEV_RATEMASK_24MB, | 
|  | 0x09, IEEE80211_RATE_OFDM); | 
|  | rt2x00lib_rate(&rates[9], 360, DEV_RATEMASK_36MB, | 
|  | 0x0d, IEEE80211_RATE_OFDM); | 
|  | rt2x00lib_rate(&rates[10], 480, DEV_RATEMASK_48MB, | 
|  | 0x08, IEEE80211_RATE_OFDM); | 
|  | rt2x00lib_rate(&rates[11], 540, DEV_RATEMASK_54MB, | 
|  | 0x0c, IEEE80211_RATE_OFDM); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize Channel list. | 
|  | */ | 
|  | for (i = 0; i < spec->num_channels; i++) { | 
|  | if (spec->channels[i].channel <= 14) | 
|  | tx_power = spec->tx_power_bg[i]; | 
|  | else if (spec->tx_power_a) | 
|  | tx_power = spec->tx_power_a[i]; | 
|  | else | 
|  | tx_power = spec->tx_power_default; | 
|  |  | 
|  | rt2x00lib_channel(&channels[i], | 
|  | spec->channels[i].channel, tx_power, i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Intitialize 802.11b | 
|  | * Rates: CCK. | 
|  | * Channels: OFDM. | 
|  | */ | 
|  | if (spec->num_modes > HWMODE_B) { | 
|  | hwmodes[HWMODE_B].mode = MODE_IEEE80211B; | 
|  | hwmodes[HWMODE_B].num_channels = 14; | 
|  | hwmodes[HWMODE_B].num_rates = 4; | 
|  | hwmodes[HWMODE_B].channels = channels; | 
|  | hwmodes[HWMODE_B].rates = rates; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Intitialize 802.11g | 
|  | * Rates: CCK, OFDM. | 
|  | * Channels: OFDM. | 
|  | */ | 
|  | if (spec->num_modes > HWMODE_G) { | 
|  | hwmodes[HWMODE_G].mode = MODE_IEEE80211G; | 
|  | hwmodes[HWMODE_G].num_channels = 14; | 
|  | hwmodes[HWMODE_G].num_rates = spec->num_rates; | 
|  | hwmodes[HWMODE_G].channels = channels; | 
|  | hwmodes[HWMODE_G].rates = rates; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Intitialize 802.11a | 
|  | * Rates: OFDM. | 
|  | * Channels: OFDM, UNII, HiperLAN2. | 
|  | */ | 
|  | if (spec->num_modes > HWMODE_A) { | 
|  | hwmodes[HWMODE_A].mode = MODE_IEEE80211A; | 
|  | hwmodes[HWMODE_A].num_channels = spec->num_channels - 14; | 
|  | hwmodes[HWMODE_A].num_rates = spec->num_rates - 4; | 
|  | hwmodes[HWMODE_A].channels = &channels[14]; | 
|  | hwmodes[HWMODE_A].rates = &rates[4]; | 
|  | } | 
|  |  | 
|  | if (spec->num_modes > HWMODE_G && | 
|  | ieee80211_register_hwmode(hw, &hwmodes[HWMODE_G])) | 
|  | goto exit_free_rates; | 
|  |  | 
|  | if (spec->num_modes > HWMODE_B && | 
|  | ieee80211_register_hwmode(hw, &hwmodes[HWMODE_B])) | 
|  | goto exit_free_rates; | 
|  |  | 
|  | if (spec->num_modes > HWMODE_A && | 
|  | ieee80211_register_hwmode(hw, &hwmodes[HWMODE_A])) | 
|  | goto exit_free_rates; | 
|  |  | 
|  | rt2x00dev->hwmodes = hwmodes; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit_free_rates: | 
|  | kfree(rates); | 
|  |  | 
|  | exit_free_channels: | 
|  | kfree(channels); | 
|  |  | 
|  | exit_free_modes: | 
|  | kfree(hwmodes); | 
|  |  | 
|  | exit: | 
|  | ERROR(rt2x00dev, "Allocation ieee80211 modes failed.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (test_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags)) | 
|  | ieee80211_unregister_hw(rt2x00dev->hw); | 
|  |  | 
|  | if (likely(rt2x00dev->hwmodes)) { | 
|  | kfree(rt2x00dev->hwmodes->channels); | 
|  | kfree(rt2x00dev->hwmodes->rates); | 
|  | kfree(rt2x00dev->hwmodes); | 
|  | rt2x00dev->hwmodes = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct hw_mode_spec *spec = &rt2x00dev->spec; | 
|  | int status; | 
|  |  | 
|  | /* | 
|  | * Initialize HW modes. | 
|  | */ | 
|  | status = rt2x00lib_probe_hw_modes(rt2x00dev, spec); | 
|  | if (status) | 
|  | return status; | 
|  |  | 
|  | /* | 
|  | * Register HW. | 
|  | */ | 
|  | status = ieee80211_register_hw(rt2x00dev->hw); | 
|  | if (status) { | 
|  | rt2x00lib_remove_hw(rt2x00dev); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | __set_bit(DEVICE_REGISTERED_HW, &rt2x00dev->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialization/uninitialization handlers. | 
|  | */ | 
|  | static int rt2x00lib_alloc_entries(struct data_ring *ring, | 
|  | const u16 max_entries, const u16 data_size, | 
|  | const u16 desc_size) | 
|  | { | 
|  | struct data_entry *entry; | 
|  | unsigned int i; | 
|  |  | 
|  | ring->stats.limit = max_entries; | 
|  | ring->data_size = data_size; | 
|  | ring->desc_size = desc_size; | 
|  |  | 
|  | /* | 
|  | * Allocate all ring entries. | 
|  | */ | 
|  | entry = kzalloc(ring->stats.limit * sizeof(*entry), GFP_KERNEL); | 
|  | if (!entry) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < ring->stats.limit; i++) { | 
|  | entry[i].flags = 0; | 
|  | entry[i].ring = ring; | 
|  | entry[i].skb = NULL; | 
|  | entry[i].entry_idx = i; | 
|  | } | 
|  |  | 
|  | ring->entry = entry; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2x00lib_alloc_ring_entries(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_ring *ring; | 
|  |  | 
|  | /* | 
|  | * Allocate the RX ring. | 
|  | */ | 
|  | if (rt2x00lib_alloc_entries(rt2x00dev->rx, RX_ENTRIES, DATA_FRAME_SIZE, | 
|  | rt2x00dev->ops->rxd_size)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * First allocate the TX rings. | 
|  | */ | 
|  | txring_for_each(rt2x00dev, ring) { | 
|  | if (rt2x00lib_alloc_entries(ring, TX_ENTRIES, DATA_FRAME_SIZE, | 
|  | rt2x00dev->ops->txd_size)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (!test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Allocate the BEACON ring. | 
|  | */ | 
|  | if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[0], BEACON_ENTRIES, | 
|  | MGMT_FRAME_SIZE, rt2x00dev->ops->txd_size)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Allocate the Atim ring. | 
|  | */ | 
|  | if (rt2x00lib_alloc_entries(&rt2x00dev->bcn[1], ATIM_ENTRIES, | 
|  | DATA_FRAME_SIZE, rt2x00dev->ops->txd_size)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_free_ring_entries(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_ring *ring; | 
|  |  | 
|  | ring_for_each(rt2x00dev, ring) { | 
|  | kfree(ring->entry); | 
|  | ring->entry = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (!__test_and_clear_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Unregister rfkill. | 
|  | */ | 
|  | rt2x00rfkill_unregister(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Allow the HW to uninitialize. | 
|  | */ | 
|  | rt2x00dev->ops->lib->uninitialize(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Free allocated ring entries. | 
|  | */ | 
|  | rt2x00lib_free_ring_entries(rt2x00dev); | 
|  | } | 
|  |  | 
|  | static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int status; | 
|  |  | 
|  | if (test_bit(DEVICE_INITIALIZED, &rt2x00dev->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Allocate all ring entries. | 
|  | */ | 
|  | status = rt2x00lib_alloc_ring_entries(rt2x00dev); | 
|  | if (status) { | 
|  | ERROR(rt2x00dev, "Ring entries allocation failed.\n"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the device. | 
|  | */ | 
|  | status = rt2x00dev->ops->lib->initialize(rt2x00dev); | 
|  | if (status) | 
|  | goto exit; | 
|  |  | 
|  | __set_bit(DEVICE_INITIALIZED, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Register the rfkill handler. | 
|  | */ | 
|  | status = rt2x00rfkill_register(rt2x00dev); | 
|  | if (status) | 
|  | goto exit_unitialize; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit_unitialize: | 
|  | rt2x00lib_uninitialize(rt2x00dev); | 
|  |  | 
|  | exit: | 
|  | rt2x00lib_free_ring_entries(rt2x00dev); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | int rt2x00lib_start(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | if (test_bit(DEVICE_STARTED, &rt2x00dev->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * If this is the first interface which is added, | 
|  | * we should load the firmware now. | 
|  | */ | 
|  | if (test_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags)) { | 
|  | retval = rt2x00lib_load_firmware(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the device. | 
|  | */ | 
|  | retval = rt2x00lib_initialize(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Enable radio. | 
|  | */ | 
|  | retval = rt2x00lib_enable_radio(rt2x00dev); | 
|  | if (retval) { | 
|  | rt2x00lib_uninitialize(rt2x00dev); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | __set_bit(DEVICE_STARTED, &rt2x00dev->flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags)) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Perhaps we can add something smarter here, | 
|  | * but for now just disabling the radio should do. | 
|  | */ | 
|  | rt2x00lib_disable_radio(rt2x00dev); | 
|  |  | 
|  | __clear_bit(DEVICE_STARTED, &rt2x00dev->flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * driver allocation handlers. | 
|  | */ | 
|  | static int rt2x00lib_alloc_rings(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_ring *ring; | 
|  | unsigned int index; | 
|  |  | 
|  | /* | 
|  | * We need the following rings: | 
|  | * RX: 1 | 
|  | * TX: hw->queues | 
|  | * Beacon: 1 (if required) | 
|  | * Atim: 1 (if required) | 
|  | */ | 
|  | rt2x00dev->data_rings = 1 + rt2x00dev->hw->queues + | 
|  | (2 * test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags)); | 
|  |  | 
|  | ring = kzalloc(rt2x00dev->data_rings * sizeof(*ring), GFP_KERNEL); | 
|  | if (!ring) { | 
|  | ERROR(rt2x00dev, "Ring allocation failed.\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize pointers | 
|  | */ | 
|  | rt2x00dev->rx = ring; | 
|  | rt2x00dev->tx = &rt2x00dev->rx[1]; | 
|  | if (test_bit(DRIVER_REQUIRE_BEACON_RING, &rt2x00dev->flags)) | 
|  | rt2x00dev->bcn = &rt2x00dev->tx[rt2x00dev->hw->queues]; | 
|  |  | 
|  | /* | 
|  | * Initialize ring parameters. | 
|  | * RX: queue_idx = 0 | 
|  | * TX: queue_idx = IEEE80211_TX_QUEUE_DATA0 + index | 
|  | * TX: cw_min: 2^5 = 32. | 
|  | * TX: cw_max: 2^10 = 1024. | 
|  | */ | 
|  | rt2x00dev->rx->rt2x00dev = rt2x00dev; | 
|  | rt2x00dev->rx->queue_idx = 0; | 
|  |  | 
|  | index = IEEE80211_TX_QUEUE_DATA0; | 
|  | txring_for_each(rt2x00dev, ring) { | 
|  | ring->rt2x00dev = rt2x00dev; | 
|  | ring->queue_idx = index++; | 
|  | ring->tx_params.aifs = 2; | 
|  | ring->tx_params.cw_min = 5; | 
|  | ring->tx_params.cw_max = 10; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt2x00lib_free_rings(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | kfree(rt2x00dev->rx); | 
|  | rt2x00dev->rx = NULL; | 
|  | rt2x00dev->tx = NULL; | 
|  | rt2x00dev->bcn = NULL; | 
|  | } | 
|  |  | 
|  | int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int retval = -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * Let the driver probe the device to detect the capabilities. | 
|  | */ | 
|  | retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev); | 
|  | if (retval) { | 
|  | ERROR(rt2x00dev, "Failed to allocate device.\n"); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize configuration work. | 
|  | */ | 
|  | INIT_WORK(&rt2x00dev->beacon_work, rt2x00lib_beacondone_scheduled); | 
|  | INIT_WORK(&rt2x00dev->filter_work, rt2x00lib_packetfilter_scheduled); | 
|  | INIT_WORK(&rt2x00dev->config_work, rt2x00lib_configuration_scheduled); | 
|  | INIT_DELAYED_WORK(&rt2x00dev->link.work, rt2x00lib_link_tuner); | 
|  |  | 
|  | /* | 
|  | * Reset current working type. | 
|  | */ | 
|  | rt2x00dev->interface.type = IEEE80211_IF_TYPE_INVALID; | 
|  |  | 
|  | /* | 
|  | * Allocate ring array. | 
|  | */ | 
|  | retval = rt2x00lib_alloc_rings(rt2x00dev); | 
|  | if (retval) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * Initialize ieee80211 structure. | 
|  | */ | 
|  | retval = rt2x00lib_probe_hw(rt2x00dev); | 
|  | if (retval) { | 
|  | ERROR(rt2x00dev, "Failed to initialize hw.\n"); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocatie rfkill. | 
|  | */ | 
|  | retval = rt2x00rfkill_allocate(rt2x00dev); | 
|  | if (retval) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * Open the debugfs entry. | 
|  | */ | 
|  | rt2x00debug_register(rt2x00dev); | 
|  |  | 
|  | __set_bit(DEVICE_PRESENT, &rt2x00dev->flags); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit: | 
|  | rt2x00lib_remove_dev(rt2x00dev); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev); | 
|  |  | 
|  | void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Disable radio. | 
|  | */ | 
|  | rt2x00lib_disable_radio(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Uninitialize device. | 
|  | */ | 
|  | rt2x00lib_uninitialize(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Close debugfs entry. | 
|  | */ | 
|  | rt2x00debug_deregister(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Free rfkill | 
|  | */ | 
|  | rt2x00rfkill_free(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Free ieee80211_hw memory. | 
|  | */ | 
|  | rt2x00lib_remove_hw(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Free firmware image. | 
|  | */ | 
|  | rt2x00lib_free_firmware(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Free ring structures. | 
|  | */ | 
|  | rt2x00lib_free_rings(rt2x00dev); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev); | 
|  |  | 
|  | /* | 
|  | * Device state handlers | 
|  | */ | 
|  | #ifdef CONFIG_PM | 
|  | int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | NOTICE(rt2x00dev, "Going to sleep.\n"); | 
|  | __clear_bit(DEVICE_PRESENT, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Only continue if mac80211 has open interfaces. | 
|  | */ | 
|  | if (!test_bit(DEVICE_STARTED, &rt2x00dev->flags)) | 
|  | goto exit; | 
|  | __set_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * Disable radio and unitialize all items | 
|  | * that must be recreated on resume. | 
|  | */ | 
|  | rt2x00lib_stop(rt2x00dev); | 
|  | rt2x00lib_uninitialize(rt2x00dev); | 
|  | rt2x00debug_deregister(rt2x00dev); | 
|  |  | 
|  | exit: | 
|  | /* | 
|  | * Set device mode to sleep for power management. | 
|  | */ | 
|  | retval = rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_suspend); | 
|  |  | 
|  | int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct interface *intf = &rt2x00dev->interface; | 
|  | int retval; | 
|  |  | 
|  | NOTICE(rt2x00dev, "Waking up.\n"); | 
|  |  | 
|  | /* | 
|  | * Open the debugfs entry. | 
|  | */ | 
|  | rt2x00debug_register(rt2x00dev); | 
|  |  | 
|  | /* | 
|  | * Only continue if mac80211 had open interfaces. | 
|  | */ | 
|  | if (!__test_and_clear_bit(DEVICE_STARTED_SUSPEND, &rt2x00dev->flags)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Reinitialize device and all active interfaces. | 
|  | */ | 
|  | retval = rt2x00lib_start(rt2x00dev); | 
|  | if (retval) | 
|  | goto exit; | 
|  |  | 
|  | /* | 
|  | * Reconfigure device. | 
|  | */ | 
|  | rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf, 1); | 
|  | if (!rt2x00dev->hw->conf.radio_enabled) | 
|  | rt2x00lib_disable_radio(rt2x00dev); | 
|  |  | 
|  | rt2x00lib_config_mac_addr(rt2x00dev, intf->mac); | 
|  | rt2x00lib_config_bssid(rt2x00dev, intf->bssid); | 
|  | rt2x00lib_config_type(rt2x00dev, intf->type); | 
|  |  | 
|  | /* | 
|  | * We are ready again to receive requests from mac80211. | 
|  | */ | 
|  | __set_bit(DEVICE_PRESENT, &rt2x00dev->flags); | 
|  |  | 
|  | /* | 
|  | * It is possible that during that mac80211 has attempted | 
|  | * to send frames while we were suspending or resuming. | 
|  | * In that case we have disabled the TX queue and should | 
|  | * now enable it again | 
|  | */ | 
|  | ieee80211_start_queues(rt2x00dev->hw); | 
|  |  | 
|  | /* | 
|  | * When in Master or Ad-hoc mode, | 
|  | * restart Beacon transmitting by faking a beacondone event. | 
|  | */ | 
|  | if (intf->type == IEEE80211_IF_TYPE_AP || | 
|  | intf->type == IEEE80211_IF_TYPE_IBSS) | 
|  | rt2x00lib_beacondone(rt2x00dev); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | exit: | 
|  | rt2x00lib_disable_radio(rt2x00dev); | 
|  | rt2x00lib_uninitialize(rt2x00dev); | 
|  | rt2x00debug_deregister(rt2x00dev); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(rt2x00lib_resume); | 
|  | #endif /* CONFIG_PM */ | 
|  |  | 
|  | /* | 
|  | * rt2x00lib module information. | 
|  | */ | 
|  | MODULE_AUTHOR(DRV_PROJECT); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_DESCRIPTION("rt2x00 library"); | 
|  | MODULE_LICENSE("GPL"); |