|  | /* | 
|  | * several functions that help interpret ARC instructions | 
|  | * used for unaligned accesses, kprobes and kgdb | 
|  | * | 
|  | * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com) | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/slab.h> | 
|  | #include <asm/disasm.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #if defined(CONFIG_KGDB) || defined(CONFIG_ARC_MISALIGN_ACCESS) || \ | 
|  | defined(CONFIG_KPROBES) | 
|  |  | 
|  | /* disasm_instr: Analyses instruction at addr, stores | 
|  | * findings in *state | 
|  | */ | 
|  | void __kprobes disasm_instr(unsigned long addr, struct disasm_state *state, | 
|  | int userspace, struct pt_regs *regs, struct callee_regs *cregs) | 
|  | { | 
|  | int fieldA = 0; | 
|  | int fieldC = 0, fieldCisReg = 0; | 
|  | uint16_t word1 = 0, word0 = 0; | 
|  | int subopcode, is_linked, op_format; | 
|  | uint16_t *ins_ptr; | 
|  | uint16_t ins_buf[4]; | 
|  | int bytes_not_copied = 0; | 
|  |  | 
|  | memset(state, 0, sizeof(struct disasm_state)); | 
|  |  | 
|  | /* This fetches the upper part of the 32 bit instruction | 
|  | * in both the cases of Little Endian or Big Endian configurations. */ | 
|  | if (userspace) { | 
|  | bytes_not_copied = copy_from_user(ins_buf, | 
|  | (const void __user *) addr, 8); | 
|  | if (bytes_not_copied > 6) | 
|  | goto fault; | 
|  | ins_ptr = ins_buf; | 
|  | } else { | 
|  | ins_ptr = (uint16_t *) addr; | 
|  | } | 
|  |  | 
|  | word1 = *((uint16_t *)addr); | 
|  |  | 
|  | state->major_opcode = (word1 >> 11) & 0x1F; | 
|  |  | 
|  | /* Check if the instruction is 32 bit or 16 bit instruction */ | 
|  | if (state->major_opcode < 0x0B) { | 
|  | if (bytes_not_copied > 4) | 
|  | goto fault; | 
|  | state->instr_len = 4; | 
|  | word0 = *((uint16_t *)(addr+2)); | 
|  | state->words[0] = (word1 << 16) | word0; | 
|  | } else { | 
|  | state->instr_len = 2; | 
|  | state->words[0] = word1; | 
|  | } | 
|  |  | 
|  | /* Read the second word in case of limm */ | 
|  | word1 = *((uint16_t *)(addr + state->instr_len)); | 
|  | word0 = *((uint16_t *)(addr + state->instr_len + 2)); | 
|  | state->words[1] = (word1 << 16) | word0; | 
|  |  | 
|  | switch (state->major_opcode) { | 
|  | case op_Bcc: | 
|  | state->is_branch = 1; | 
|  |  | 
|  | /* unconditional branch s25, conditional branch s21 */ | 
|  | fieldA = (IS_BIT(state->words[0], 16)) ? | 
|  | FIELD_s25(state->words[0]) : | 
|  | FIELD_s21(state->words[0]); | 
|  |  | 
|  | state->delay_slot = IS_BIT(state->words[0], 5); | 
|  | state->target = fieldA + (addr & ~0x3); | 
|  | state->flow = direct_jump; | 
|  | break; | 
|  |  | 
|  | case op_BLcc: | 
|  | if (IS_BIT(state->words[0], 16)) { | 
|  | /* Branch and Link*/ | 
|  | /* unconditional branch s25, conditional branch s21 */ | 
|  | fieldA = (IS_BIT(state->words[0], 17)) ? | 
|  | (FIELD_s25(state->words[0]) & ~0x3) : | 
|  | FIELD_s21(state->words[0]); | 
|  |  | 
|  | state->flow = direct_call; | 
|  | } else { | 
|  | /*Branch On Compare */ | 
|  | fieldA = FIELD_s9(state->words[0]) & ~0x3; | 
|  | state->flow = direct_jump; | 
|  | } | 
|  |  | 
|  | state->delay_slot = IS_BIT(state->words[0], 5); | 
|  | state->target = fieldA + (addr & ~0x3); | 
|  | state->is_branch = 1; | 
|  | break; | 
|  |  | 
|  | case op_LD:  /* LD<zz> a,[b,s9] */ | 
|  | state->write = 0; | 
|  | state->di = BITS(state->words[0], 11, 11); | 
|  | if (state->di) | 
|  | break; | 
|  | state->x = BITS(state->words[0], 6, 6); | 
|  | state->zz = BITS(state->words[0], 7, 8); | 
|  | state->aa = BITS(state->words[0], 9, 10); | 
|  | state->wb_reg = FIELD_B(state->words[0]); | 
|  | if (state->wb_reg == REG_LIMM) { | 
|  | state->instr_len += 4; | 
|  | state->aa = 0; | 
|  | state->src1 = state->words[1]; | 
|  | } else { | 
|  | state->src1 = get_reg(state->wb_reg, regs, cregs); | 
|  | } | 
|  | state->src2 = FIELD_s9(state->words[0]); | 
|  | state->dest = FIELD_A(state->words[0]); | 
|  | state->pref = (state->dest == REG_LIMM); | 
|  | break; | 
|  |  | 
|  | case op_ST: | 
|  | state->write = 1; | 
|  | state->di = BITS(state->words[0], 5, 5); | 
|  | if (state->di) | 
|  | break; | 
|  | state->aa = BITS(state->words[0], 3, 4); | 
|  | state->zz = BITS(state->words[0], 1, 2); | 
|  | state->src1 = FIELD_C(state->words[0]); | 
|  | if (state->src1 == REG_LIMM) { | 
|  | state->instr_len += 4; | 
|  | state->src1 = state->words[1]; | 
|  | } else { | 
|  | state->src1 = get_reg(state->src1, regs, cregs); | 
|  | } | 
|  | state->wb_reg = FIELD_B(state->words[0]); | 
|  | if (state->wb_reg == REG_LIMM) { | 
|  | state->aa = 0; | 
|  | state->instr_len += 4; | 
|  | state->src2 = state->words[1]; | 
|  | } else { | 
|  | state->src2 = get_reg(state->wb_reg, regs, cregs); | 
|  | } | 
|  | state->src3 = FIELD_s9(state->words[0]); | 
|  | break; | 
|  |  | 
|  | case op_MAJOR_4: | 
|  | subopcode = MINOR_OPCODE(state->words[0]); | 
|  | switch (subopcode) { | 
|  | case 32:	/* Jcc */ | 
|  | case 33:	/* Jcc.D */ | 
|  | case 34:	/* JLcc */ | 
|  | case 35:	/* JLcc.D */ | 
|  | is_linked = 0; | 
|  |  | 
|  | if (subopcode == 33 || subopcode == 35) | 
|  | state->delay_slot = 1; | 
|  |  | 
|  | if (subopcode == 34 || subopcode == 35) | 
|  | is_linked = 1; | 
|  |  | 
|  | fieldCisReg = 0; | 
|  | op_format = BITS(state->words[0], 22, 23); | 
|  | if (op_format == 0 || ((op_format == 3) && | 
|  | (!IS_BIT(state->words[0], 5)))) { | 
|  | fieldC = FIELD_C(state->words[0]); | 
|  |  | 
|  | if (fieldC == REG_LIMM) { | 
|  | fieldC = state->words[1]; | 
|  | state->instr_len += 4; | 
|  | } else { | 
|  | fieldCisReg = 1; | 
|  | } | 
|  | } else if (op_format == 1 || ((op_format == 3) | 
|  | && (IS_BIT(state->words[0], 5)))) { | 
|  | fieldC = FIELD_C(state->words[0]); | 
|  | } else  { | 
|  | /* op_format == 2 */ | 
|  | fieldC = FIELD_s12(state->words[0]); | 
|  | } | 
|  |  | 
|  | if (!fieldCisReg) { | 
|  | state->target = fieldC; | 
|  | state->flow = is_linked ? | 
|  | direct_call : direct_jump; | 
|  | } else { | 
|  | state->target = get_reg(fieldC, regs, cregs); | 
|  | state->flow = is_linked ? | 
|  | indirect_call : indirect_jump; | 
|  | } | 
|  | state->is_branch = 1; | 
|  | break; | 
|  |  | 
|  | case 40:	/* LPcc */ | 
|  | if (BITS(state->words[0], 22, 23) == 3) { | 
|  | /* Conditional LPcc u7 */ | 
|  | fieldC = FIELD_C(state->words[0]); | 
|  |  | 
|  | fieldC = fieldC << 1; | 
|  | fieldC += (addr & ~0x03); | 
|  | state->is_branch = 1; | 
|  | state->flow = direct_jump; | 
|  | state->target = fieldC; | 
|  | } | 
|  | /* For Unconditional lp, next pc is the fall through | 
|  | * which is updated */ | 
|  | break; | 
|  |  | 
|  | case 48 ... 55:	/* LD a,[b,c] */ | 
|  | state->di = BITS(state->words[0], 15, 15); | 
|  | if (state->di) | 
|  | break; | 
|  | state->x = BITS(state->words[0], 16, 16); | 
|  | state->zz = BITS(state->words[0], 17, 18); | 
|  | state->aa = BITS(state->words[0], 22, 23); | 
|  | state->wb_reg = FIELD_B(state->words[0]); | 
|  | if (state->wb_reg == REG_LIMM) { | 
|  | state->instr_len += 4; | 
|  | state->src1 = state->words[1]; | 
|  | } else { | 
|  | state->src1 = get_reg(state->wb_reg, regs, | 
|  | cregs); | 
|  | } | 
|  | state->src2 = FIELD_C(state->words[0]); | 
|  | if (state->src2 == REG_LIMM) { | 
|  | state->instr_len += 4; | 
|  | state->src2 = state->words[1]; | 
|  | } else { | 
|  | state->src2 = get_reg(state->src2, regs, | 
|  | cregs); | 
|  | } | 
|  | state->dest = FIELD_A(state->words[0]); | 
|  | if (state->dest == REG_LIMM) | 
|  | state->pref = 1; | 
|  | break; | 
|  |  | 
|  | case 10:	/* MOV */ | 
|  | /* still need to check for limm to extract instr len */ | 
|  | /* MOV is special case because it only takes 2 args */ | 
|  | switch (BITS(state->words[0], 22, 23)) { | 
|  | case 0: /* OP a,b,c */ | 
|  | if (FIELD_C(state->words[0]) == REG_LIMM) | 
|  | state->instr_len += 4; | 
|  | break; | 
|  | case 1: /* OP a,b,u6 */ | 
|  | break; | 
|  | case 2: /* OP b,b,s12 */ | 
|  | break; | 
|  | case 3: /* OP.cc b,b,c/u6 */ | 
|  | if ((!IS_BIT(state->words[0], 5)) && | 
|  | (FIELD_C(state->words[0]) == REG_LIMM)) | 
|  | state->instr_len += 4; | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  |  | 
|  | default: | 
|  | /* Not a Load, Jump or Loop instruction */ | 
|  | /* still need to check for limm to extract instr len */ | 
|  | switch (BITS(state->words[0], 22, 23)) { | 
|  | case 0: /* OP a,b,c */ | 
|  | if ((FIELD_B(state->words[0]) == REG_LIMM) || | 
|  | (FIELD_C(state->words[0]) == REG_LIMM)) | 
|  | state->instr_len += 4; | 
|  | break; | 
|  | case 1: /* OP a,b,u6 */ | 
|  | break; | 
|  | case 2: /* OP b,b,s12 */ | 
|  | break; | 
|  | case 3: /* OP.cc b,b,c/u6 */ | 
|  | if ((!IS_BIT(state->words[0], 5)) && | 
|  | ((FIELD_B(state->words[0]) == REG_LIMM) || | 
|  | (FIELD_C(state->words[0]) == REG_LIMM))) | 
|  | state->instr_len += 4; | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | /* 16 Bit Instructions */ | 
|  | case op_LD_ADD: /* LD_S|LDB_S|LDW_S a,[b,c] */ | 
|  | state->zz = BITS(state->words[0], 3, 4); | 
|  | state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); | 
|  | state->src2 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); | 
|  | state->dest = FIELD_S_A(state->words[0]); | 
|  | break; | 
|  |  | 
|  | case op_ADD_MOV_CMP: | 
|  | /* check for limm, ignore mov_s h,b (== mov_s 0,b) */ | 
|  | if ((BITS(state->words[0], 3, 4) < 3) && | 
|  | (FIELD_S_H(state->words[0]) == REG_LIMM)) | 
|  | state->instr_len += 4; | 
|  | break; | 
|  |  | 
|  | case op_S: | 
|  | subopcode = BITS(state->words[0], 5, 7); | 
|  | switch (subopcode) { | 
|  | case 0:	/* j_s */ | 
|  | case 1:	/* j_s.d */ | 
|  | case 2:	/* jl_s */ | 
|  | case 3:	/* jl_s.d */ | 
|  | state->target = get_reg(FIELD_S_B(state->words[0]), | 
|  | regs, cregs); | 
|  | state->delay_slot = subopcode & 1; | 
|  | state->flow = (subopcode >= 2) ? | 
|  | direct_call : indirect_jump; | 
|  | break; | 
|  | case 7: | 
|  | switch (BITS(state->words[0], 8, 10)) { | 
|  | case 4:	/* jeq_s [blink] */ | 
|  | case 5:	/* jne_s [blink] */ | 
|  | case 6:	/* j_s [blink] */ | 
|  | case 7:	/* j_s.d [blink] */ | 
|  | state->delay_slot = (subopcode == 7); | 
|  | state->flow = indirect_jump; | 
|  | state->target = get_reg(31, regs, cregs); | 
|  | default: | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case op_LD_S:	/* LD_S c, [b, u7] */ | 
|  | state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); | 
|  | state->src2 = FIELD_S_u7(state->words[0]); | 
|  | state->dest = FIELD_S_C(state->words[0]); | 
|  | break; | 
|  |  | 
|  | case op_LDB_S: | 
|  | case op_STB_S: | 
|  | /* no further handling required as byte accesses should not | 
|  | * cause an unaligned access exception */ | 
|  | state->zz = 1; | 
|  | break; | 
|  |  | 
|  | case op_LDWX_S:	/* LDWX_S c, [b, u6] */ | 
|  | state->x = 1; | 
|  | /* intentional fall-through */ | 
|  |  | 
|  | case op_LDW_S:	/* LDW_S c, [b, u6] */ | 
|  | state->zz = 2; | 
|  | state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); | 
|  | state->src2 = FIELD_S_u6(state->words[0]); | 
|  | state->dest = FIELD_S_C(state->words[0]); | 
|  | break; | 
|  |  | 
|  | case op_ST_S:	/* ST_S c, [b, u7] */ | 
|  | state->write = 1; | 
|  | state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); | 
|  | state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); | 
|  | state->src3 = FIELD_S_u7(state->words[0]); | 
|  | break; | 
|  |  | 
|  | case op_STW_S:	/* STW_S c,[b,u6] */ | 
|  | state->write = 1; | 
|  | state->zz = 2; | 
|  | state->src1 = get_reg(FIELD_S_C(state->words[0]), regs, cregs); | 
|  | state->src2 = get_reg(FIELD_S_B(state->words[0]), regs, cregs); | 
|  | state->src3 = FIELD_S_u6(state->words[0]); | 
|  | break; | 
|  |  | 
|  | case op_SP:	/* LD_S|LDB_S b,[sp,u7], ST_S|STB_S b,[sp,u7] */ | 
|  | /* note: we are ignoring possibility of: | 
|  | * ADD_S, SUB_S, PUSH_S, POP_S as these should not | 
|  | * cause unaliged exception anyway */ | 
|  | state->write = BITS(state->words[0], 6, 6); | 
|  | state->zz = BITS(state->words[0], 5, 5); | 
|  | if (state->zz) | 
|  | break;	/* byte accesses should not come here */ | 
|  | if (!state->write) { | 
|  | state->src1 = get_reg(28, regs, cregs); | 
|  | state->src2 = FIELD_S_u7(state->words[0]); | 
|  | state->dest = FIELD_S_B(state->words[0]); | 
|  | } else { | 
|  | state->src1 = get_reg(FIELD_S_B(state->words[0]), regs, | 
|  | cregs); | 
|  | state->src2 = get_reg(28, regs, cregs); | 
|  | state->src3 = FIELD_S_u7(state->words[0]); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case op_GP:	/* LD_S|LDB_S|LDW_S r0,[gp,s11/s9/s10] */ | 
|  | /* note: ADD_S r0, gp, s11 is ignored */ | 
|  | state->zz = BITS(state->words[0], 9, 10); | 
|  | state->src1 = get_reg(26, regs, cregs); | 
|  | state->src2 = state->zz ? FIELD_S_s10(state->words[0]) : | 
|  | FIELD_S_s11(state->words[0]); | 
|  | state->dest = 0; | 
|  | break; | 
|  |  | 
|  | case op_Pcl:	/* LD_S b,[pcl,u10] */ | 
|  | state->src1 = regs->ret & ~3; | 
|  | state->src2 = FIELD_S_u10(state->words[0]); | 
|  | state->dest = FIELD_S_B(state->words[0]); | 
|  | break; | 
|  |  | 
|  | case op_BR_S: | 
|  | state->target = FIELD_S_s8(state->words[0]) + (addr & ~0x03); | 
|  | state->flow = direct_jump; | 
|  | state->is_branch = 1; | 
|  | break; | 
|  |  | 
|  | case op_B_S: | 
|  | fieldA = (BITS(state->words[0], 9, 10) == 3) ? | 
|  | FIELD_S_s7(state->words[0]) : | 
|  | FIELD_S_s10(state->words[0]); | 
|  | state->target = fieldA + (addr & ~0x03); | 
|  | state->flow = direct_jump; | 
|  | state->is_branch = 1; | 
|  | break; | 
|  |  | 
|  | case op_BL_S: | 
|  | state->target = FIELD_S_s13(state->words[0]) + (addr & ~0x03); | 
|  | state->flow = direct_call; | 
|  | state->is_branch = 1; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bytes_not_copied <= (8 - state->instr_len)) | 
|  | return; | 
|  |  | 
|  | fault:	state->fault = 1; | 
|  | } | 
|  |  | 
|  | long __kprobes get_reg(int reg, struct pt_regs *regs, | 
|  | struct callee_regs *cregs) | 
|  | { | 
|  | long *p; | 
|  |  | 
|  | if (reg <= 12) { | 
|  | p = ®s->r0; | 
|  | return p[-reg]; | 
|  | } | 
|  |  | 
|  | if (cregs && (reg <= 25)) { | 
|  | p = &cregs->r13; | 
|  | return p[13-reg]; | 
|  | } | 
|  |  | 
|  | if (reg == 26) | 
|  | return regs->r26; | 
|  | if (reg == 27) | 
|  | return regs->fp; | 
|  | if (reg == 28) | 
|  | return regs->sp; | 
|  | if (reg == 31) | 
|  | return regs->blink; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void __kprobes set_reg(int reg, long val, struct pt_regs *regs, | 
|  | struct callee_regs *cregs) | 
|  | { | 
|  | long *p; | 
|  |  | 
|  | switch (reg) { | 
|  | case 0 ... 12: | 
|  | p = ®s->r0; | 
|  | p[-reg] = val; | 
|  | break; | 
|  | case 13 ... 25: | 
|  | if (cregs) { | 
|  | p = &cregs->r13; | 
|  | p[13-reg] = val; | 
|  | } | 
|  | break; | 
|  | case 26: | 
|  | regs->r26 = val; | 
|  | break; | 
|  | case 27: | 
|  | regs->fp = val; | 
|  | break; | 
|  | case 28: | 
|  | regs->sp = val; | 
|  | break; | 
|  | case 31: | 
|  | regs->blink = val; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Disassembles the insn at @pc and sets @next_pc to next PC (which could be | 
|  | * @pc +2/4/6 (ARCompact ISA allows free intermixing of 16/32 bit insns). | 
|  | * | 
|  | * If @pc is a branch | 
|  | *	-@tgt_if_br is set to branch target. | 
|  | *	-If branch has delay slot, @next_pc updated with actual next PC. | 
|  | */ | 
|  | int __kprobes disasm_next_pc(unsigned long pc, struct pt_regs *regs, | 
|  | struct callee_regs *cregs, | 
|  | unsigned long *next_pc, unsigned long *tgt_if_br) | 
|  | { | 
|  | struct disasm_state instr; | 
|  |  | 
|  | memset(&instr, 0, sizeof(struct disasm_state)); | 
|  | disasm_instr(pc, &instr, 0, regs, cregs); | 
|  |  | 
|  | *next_pc = pc + instr.instr_len; | 
|  |  | 
|  | /* Instruction with possible two targets branch, jump and loop */ | 
|  | if (instr.is_branch) | 
|  | *tgt_if_br = instr.target; | 
|  |  | 
|  | /* For the instructions with delay slots, the fall through is the | 
|  | * instruction following the instruction in delay slot. | 
|  | */ | 
|  | if (instr.delay_slot) { | 
|  | struct disasm_state instr_d; | 
|  |  | 
|  | disasm_instr(*next_pc, &instr_d, 0, regs, cregs); | 
|  |  | 
|  | *next_pc += instr_d.instr_len; | 
|  | } | 
|  |  | 
|  | /* Zero Overhead Loop - end of the loop */ | 
|  | if (!(regs->status32 & STATUS32_L) && (*next_pc == regs->lp_end) | 
|  | && (regs->lp_count > 1)) { | 
|  | *next_pc = regs->lp_start; | 
|  | } | 
|  |  | 
|  | return instr.is_branch; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_KGDB || CONFIG_MISALIGN_ACCESS || CONFIG_KPROBES */ |