| /* | 
 |  * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
 |  * | 
 |  *   This program is free software; you can redistribute it and/or | 
 |  *   modify it under the terms of the GNU General Public License | 
 |  *   as published by the Free Software Foundation, version 2. | 
 |  * | 
 |  *   This program is distributed in the hope that it will be useful, but | 
 |  *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
 |  *   NON INFRINGEMENT.  See the GNU General Public License for | 
 |  *   more details. | 
 |  */ | 
 |  | 
 | #include <linux/highmem.h> | 
 | #include <linux/module.h> | 
 | #include <linux/pagemap.h> | 
 | #include <asm/homecache.h> | 
 |  | 
 | #define kmap_get_pte(vaddr) \ | 
 | 	pte_offset_kernel(pmd_offset(pud_offset(pgd_offset_k(vaddr), (vaddr)),\ | 
 | 		(vaddr)), (vaddr)) | 
 |  | 
 |  | 
 | void *kmap(struct page *page) | 
 | { | 
 | 	void *kva; | 
 | 	unsigned long flags; | 
 | 	pte_t *ptep; | 
 |  | 
 | 	might_sleep(); | 
 | 	if (!PageHighMem(page)) | 
 | 		return page_address(page); | 
 | 	kva = kmap_high(page); | 
 |  | 
 | 	/* | 
 | 	 * Rewrite the PTE under the lock.  This ensures that the page | 
 | 	 * is not currently migrating. | 
 | 	 */ | 
 | 	ptep = kmap_get_pte((unsigned long)kva); | 
 | 	flags = homecache_kpte_lock(); | 
 | 	set_pte_at(&init_mm, kva, ptep, mk_pte(page, page_to_kpgprot(page))); | 
 | 	homecache_kpte_unlock(flags); | 
 |  | 
 | 	return kva; | 
 | } | 
 | EXPORT_SYMBOL(kmap); | 
 |  | 
 | void kunmap(struct page *page) | 
 | { | 
 | 	if (in_interrupt()) | 
 | 		BUG(); | 
 | 	if (!PageHighMem(page)) | 
 | 		return; | 
 | 	kunmap_high(page); | 
 | } | 
 | EXPORT_SYMBOL(kunmap); | 
 |  | 
 | static void debug_kmap_atomic_prot(enum km_type type) | 
 | { | 
 | #ifdef CONFIG_DEBUG_HIGHMEM | 
 | 	static unsigned warn_count = 10; | 
 |  | 
 | 	if (unlikely(warn_count == 0)) | 
 | 		return; | 
 |  | 
 | 	if (unlikely(in_interrupt())) { | 
 | 		if (in_irq()) { | 
 | 			if (type != KM_IRQ0 && type != KM_IRQ1 && | 
 | 			    type != KM_BIO_SRC_IRQ && | 
 | 			    /* type != KM_BIO_DST_IRQ && */ | 
 | 			    type != KM_BOUNCE_READ) { | 
 | 				WARN_ON(1); | 
 | 				warn_count--; | 
 | 			} | 
 | 		} else if (!irqs_disabled()) {	/* softirq */ | 
 | 			if (type != KM_IRQ0 && type != KM_IRQ1 && | 
 | 			    type != KM_SOFTIRQ0 && type != KM_SOFTIRQ1 && | 
 | 			    type != KM_SKB_SUNRPC_DATA && | 
 | 			    type != KM_SKB_DATA_SOFTIRQ && | 
 | 			    type != KM_BOUNCE_READ) { | 
 | 				WARN_ON(1); | 
 | 				warn_count--; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (type == KM_IRQ0 || type == KM_IRQ1 || type == KM_BOUNCE_READ || | 
 | 	    type == KM_BIO_SRC_IRQ /* || type == KM_BIO_DST_IRQ */) { | 
 | 		if (!irqs_disabled()) { | 
 | 			WARN_ON(1); | 
 | 			warn_count--; | 
 | 		} | 
 | 	} else if (type == KM_SOFTIRQ0 || type == KM_SOFTIRQ1) { | 
 | 		if (irq_count() == 0 && !irqs_disabled()) { | 
 | 			WARN_ON(1); | 
 | 			warn_count--; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * Describe a single atomic mapping of a page on a given cpu at a | 
 |  * given address, and allow it to be linked into a list. | 
 |  */ | 
 | struct atomic_mapped_page { | 
 | 	struct list_head list; | 
 | 	struct page *page; | 
 | 	int cpu; | 
 | 	unsigned long va; | 
 | }; | 
 |  | 
 | static spinlock_t amp_lock = __SPIN_LOCK_UNLOCKED(&_lock); | 
 | static struct list_head amp_list = LIST_HEAD_INIT(amp_list); | 
 |  | 
 | /* | 
 |  * Combining this structure with a per-cpu declaration lets us give | 
 |  * each cpu an atomic_mapped_page structure per type. | 
 |  */ | 
 | struct kmap_amps { | 
 | 	struct atomic_mapped_page per_type[KM_TYPE_NR]; | 
 | }; | 
 | static DEFINE_PER_CPU(struct kmap_amps, amps); | 
 |  | 
 | /* | 
 |  * Add a page and va, on this cpu, to the list of kmap_atomic pages, | 
 |  * and write the new pte to memory.  Writing the new PTE under the | 
 |  * lock guarantees that it is either on the list before migration starts | 
 |  * (if we won the race), or set_pte() sets the migrating bit in the PTE | 
 |  * (if we lost the race).  And doing it under the lock guarantees | 
 |  * that when kmap_atomic_fix_one_pte() comes along, it finds a valid | 
 |  * PTE in memory, iff the mapping is still on the amp_list. | 
 |  * | 
 |  * Finally, doing it under the lock lets us safely examine the page | 
 |  * to see if it is immutable or not, for the generic kmap_atomic() case. | 
 |  * If we examine it earlier we are exposed to a race where it looks | 
 |  * writable earlier, but becomes immutable before we write the PTE. | 
 |  */ | 
 | static void kmap_atomic_register(struct page *page, enum km_type type, | 
 | 				 unsigned long va, pte_t *ptep, pte_t pteval) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct atomic_mapped_page *amp; | 
 |  | 
 | 	flags = homecache_kpte_lock(); | 
 | 	spin_lock(&_lock); | 
 |  | 
 | 	/* With interrupts disabled, now fill in the per-cpu info. */ | 
 | 	amp = &__get_cpu_var(amps).per_type[type]; | 
 | 	amp->page = page; | 
 | 	amp->cpu = smp_processor_id(); | 
 | 	amp->va = va; | 
 |  | 
 | 	/* For generic kmap_atomic(), choose the PTE writability now. */ | 
 | 	if (!pte_read(pteval)) | 
 | 		pteval = mk_pte(page, page_to_kpgprot(page)); | 
 |  | 
 | 	list_add(&->list, &_list); | 
 | 	set_pte(ptep, pteval); | 
 | 	arch_flush_lazy_mmu_mode(); | 
 |  | 
 | 	spin_unlock(&_lock); | 
 | 	homecache_kpte_unlock(flags); | 
 | } | 
 |  | 
 | /* | 
 |  * Remove a page and va, on this cpu, from the list of kmap_atomic pages. | 
 |  * Linear-time search, but we count on the lists being short. | 
 |  * We don't need to adjust the PTE under the lock (as opposed to the | 
 |  * kmap_atomic_register() case), since we're just unconditionally | 
 |  * zeroing the PTE after it's off the list. | 
 |  */ | 
 | static void kmap_atomic_unregister(struct page *page, unsigned long va) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct atomic_mapped_page *amp; | 
 | 	int cpu = smp_processor_id(); | 
 | 	spin_lock_irqsave(&_lock, flags); | 
 | 	list_for_each_entry(amp, &_list, list) { | 
 | 		if (amp->page == page && amp->cpu == cpu && amp->va == va) | 
 | 			break; | 
 | 	} | 
 | 	BUG_ON(&->list == &_list); | 
 | 	list_del(&->list); | 
 | 	spin_unlock_irqrestore(&_lock, flags); | 
 | } | 
 |  | 
 | /* Helper routine for kmap_atomic_fix_kpte(), below. */ | 
 | static void kmap_atomic_fix_one_kpte(struct atomic_mapped_page *amp, | 
 | 				     int finished) | 
 | { | 
 | 	pte_t *ptep = kmap_get_pte(amp->va); | 
 | 	if (!finished) { | 
 | 		set_pte(ptep, pte_mkmigrate(*ptep)); | 
 | 		flush_remote(0, 0, NULL, amp->va, PAGE_SIZE, PAGE_SIZE, | 
 | 			     cpumask_of(amp->cpu), NULL, 0); | 
 | 	} else { | 
 | 		/* | 
 | 		 * Rewrite a default kernel PTE for this page. | 
 | 		 * We rely on the fact that set_pte() writes the | 
 | 		 * present+migrating bits last. | 
 | 		 */ | 
 | 		pte_t pte = mk_pte(amp->page, page_to_kpgprot(amp->page)); | 
 | 		set_pte(ptep, pte); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * This routine is a helper function for homecache_fix_kpte(); see | 
 |  * its comments for more information on the "finished" argument here. | 
 |  * | 
 |  * Note that we hold the lock while doing the remote flushes, which | 
 |  * will stall any unrelated cpus trying to do kmap_atomic operations. | 
 |  * We could just update the PTEs under the lock, and save away copies | 
 |  * of the structs (or just the va+cpu), then flush them after we | 
 |  * release the lock, but it seems easier just to do it all under the lock. | 
 |  */ | 
 | void kmap_atomic_fix_kpte(struct page *page, int finished) | 
 | { | 
 | 	struct atomic_mapped_page *amp; | 
 | 	unsigned long flags; | 
 | 	spin_lock_irqsave(&_lock, flags); | 
 | 	list_for_each_entry(amp, &_list, list) { | 
 | 		if (amp->page == page) | 
 | 			kmap_atomic_fix_one_kpte(amp, finished); | 
 | 	} | 
 | 	spin_unlock_irqrestore(&_lock, flags); | 
 | } | 
 |  | 
 | /* | 
 |  * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap | 
 |  * because the kmap code must perform a global TLB invalidation when | 
 |  * the kmap pool wraps. | 
 |  * | 
 |  * Note that they may be slower than on x86 (etc.) because unlike on | 
 |  * those platforms, we do have to take a global lock to map and unmap | 
 |  * pages on Tile (see above). | 
 |  * | 
 |  * When holding an atomic kmap is is not legal to sleep, so atomic | 
 |  * kmaps are appropriate for short, tight code paths only. | 
 |  */ | 
 | void *kmap_atomic_prot(struct page *page, enum km_type type, pgprot_t prot) | 
 | { | 
 | 	enum fixed_addresses idx; | 
 | 	unsigned long vaddr; | 
 | 	pte_t *pte; | 
 |  | 
 | 	/* even !CONFIG_PREEMPT needs this, for in_atomic in do_page_fault */ | 
 | 	pagefault_disable(); | 
 |  | 
 | 	/* Avoid icache flushes by disallowing atomic executable mappings. */ | 
 | 	BUG_ON(pte_exec(prot)); | 
 |  | 
 | 	if (!PageHighMem(page)) | 
 | 		return page_address(page); | 
 |  | 
 | 	debug_kmap_atomic_prot(type); | 
 |  | 
 | 	idx = type + KM_TYPE_NR*smp_processor_id(); | 
 | 	vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx); | 
 | 	pte = kmap_get_pte(vaddr); | 
 | 	BUG_ON(!pte_none(*pte)); | 
 |  | 
 | 	/* Register that this page is mapped atomically on this cpu. */ | 
 | 	kmap_atomic_register(page, type, vaddr, pte, mk_pte(page, prot)); | 
 |  | 
 | 	return (void *)vaddr; | 
 | } | 
 | EXPORT_SYMBOL(kmap_atomic_prot); | 
 |  | 
 | void *kmap_atomic(struct page *page, enum km_type type) | 
 | { | 
 | 	/* PAGE_NONE is a magic value that tells us to check immutability. */ | 
 | 	return kmap_atomic_prot(page, type, PAGE_NONE); | 
 | } | 
 | EXPORT_SYMBOL(kmap_atomic); | 
 |  | 
 | void kunmap_atomic(void *kvaddr, enum km_type type) | 
 | { | 
 | 	unsigned long vaddr = (unsigned long) kvaddr & PAGE_MASK; | 
 | 	enum fixed_addresses idx = type + KM_TYPE_NR*smp_processor_id(); | 
 |  | 
 | 	/* | 
 | 	 * Force other mappings to Oops if they try to access this pte without | 
 | 	 * first remapping it.  Keeping stale mappings around is a bad idea. | 
 | 	 */ | 
 | 	if (vaddr == __fix_to_virt(FIX_KMAP_BEGIN+idx)) { | 
 | 		pte_t *pte = kmap_get_pte(vaddr); | 
 | 		pte_t pteval = *pte; | 
 | 		BUG_ON(!pte_present(pteval) && !pte_migrating(pteval)); | 
 | 		kmap_atomic_unregister(pte_page(pteval), vaddr); | 
 | 		kpte_clear_flush(pte, vaddr); | 
 | 	} else { | 
 | 		/* Must be a lowmem page */ | 
 | 		BUG_ON(vaddr < PAGE_OFFSET); | 
 | 		BUG_ON(vaddr >= (unsigned long)high_memory); | 
 | 	} | 
 |  | 
 | 	arch_flush_lazy_mmu_mode(); | 
 | 	pagefault_enable(); | 
 | } | 
 | EXPORT_SYMBOL(kunmap_atomic); | 
 |  | 
 | /* | 
 |  * This API is supposed to allow us to map memory without a "struct page". | 
 |  * Currently we don't support this, though this may change in the future. | 
 |  */ | 
 | void *kmap_atomic_pfn(unsigned long pfn, enum km_type type) | 
 | { | 
 | 	return kmap_atomic(pfn_to_page(pfn), type); | 
 | } | 
 | void *kmap_atomic_prot_pfn(unsigned long pfn, enum km_type type, pgprot_t prot) | 
 | { | 
 | 	return kmap_atomic_prot(pfn_to_page(pfn), type, prot); | 
 | } | 
 |  | 
 | struct page *kmap_atomic_to_page(void *ptr) | 
 | { | 
 | 	pte_t *pte; | 
 | 	unsigned long vaddr = (unsigned long)ptr; | 
 |  | 
 | 	if (vaddr < FIXADDR_START) | 
 | 		return virt_to_page(ptr); | 
 |  | 
 | 	pte = kmap_get_pte(vaddr); | 
 | 	return pte_page(*pte); | 
 | } |