|  | /* | 
|  | * linux/fs/binfmt_elf.c | 
|  | * | 
|  | * These are the functions used to load ELF format executables as used | 
|  | * on SVr4 machines.  Information on the format may be found in the book | 
|  | * "UNIX SYSTEM V RELEASE 4 Programmers Guide: Ansi C and Programming Support | 
|  | * Tools". | 
|  | * | 
|  | * Copyright 1993, 1994: Eric Youngdale (ericy@cais.com). | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/time.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/a.out.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/shm.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/elfcore.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/highuid.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/random.h> | 
|  | #include <linux/elf.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/param.h> | 
|  | #include <asm/page.h> | 
|  |  | 
|  | static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs); | 
|  | static int load_elf_library(struct file *); | 
|  | static unsigned long elf_map (struct file *, unsigned long, struct elf_phdr *, int, int, unsigned long); | 
|  |  | 
|  | /* | 
|  | * If we don't support core dumping, then supply a NULL so we | 
|  | * don't even try. | 
|  | */ | 
|  | #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) | 
|  | static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file); | 
|  | #else | 
|  | #define elf_core_dump	NULL | 
|  | #endif | 
|  |  | 
|  | #if ELF_EXEC_PAGESIZE > PAGE_SIZE | 
|  | #define ELF_MIN_ALIGN	ELF_EXEC_PAGESIZE | 
|  | #else | 
|  | #define ELF_MIN_ALIGN	PAGE_SIZE | 
|  | #endif | 
|  |  | 
|  | #ifndef ELF_CORE_EFLAGS | 
|  | #define ELF_CORE_EFLAGS	0 | 
|  | #endif | 
|  |  | 
|  | #define ELF_PAGESTART(_v) ((_v) & ~(unsigned long)(ELF_MIN_ALIGN-1)) | 
|  | #define ELF_PAGEOFFSET(_v) ((_v) & (ELF_MIN_ALIGN-1)) | 
|  | #define ELF_PAGEALIGN(_v) (((_v) + ELF_MIN_ALIGN - 1) & ~(ELF_MIN_ALIGN - 1)) | 
|  |  | 
|  | static struct linux_binfmt elf_format = { | 
|  | .module		= THIS_MODULE, | 
|  | .load_binary	= load_elf_binary, | 
|  | .load_shlib	= load_elf_library, | 
|  | .core_dump	= elf_core_dump, | 
|  | .min_coredump	= ELF_EXEC_PAGESIZE, | 
|  | .hasvdso	= 1 | 
|  | }; | 
|  |  | 
|  | #define BAD_ADDR(x) IS_ERR_VALUE(x) | 
|  |  | 
|  | static int set_brk(unsigned long start, unsigned long end) | 
|  | { | 
|  | start = ELF_PAGEALIGN(start); | 
|  | end = ELF_PAGEALIGN(end); | 
|  | if (end > start) { | 
|  | unsigned long addr; | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | addr = do_brk(start, end - start); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (BAD_ADDR(addr)) | 
|  | return addr; | 
|  | } | 
|  | current->mm->start_brk = current->mm->brk = end; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We need to explicitly zero any fractional pages | 
|  | after the data section (i.e. bss).  This would | 
|  | contain the junk from the file that should not | 
|  | be in memory | 
|  | */ | 
|  | static int padzero(unsigned long elf_bss) | 
|  | { | 
|  | unsigned long nbyte; | 
|  |  | 
|  | nbyte = ELF_PAGEOFFSET(elf_bss); | 
|  | if (nbyte) { | 
|  | nbyte = ELF_MIN_ALIGN - nbyte; | 
|  | if (clear_user((void __user *) elf_bss, nbyte)) | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Let's use some macros to make this stack manipulation a litle clearer */ | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) + (items)) | 
|  | #define STACK_ROUND(sp, items) \ | 
|  | ((15 + (unsigned long) ((sp) + (items))) &~ 15UL) | 
|  | #define STACK_ALLOC(sp, len) ({ \ | 
|  | elf_addr_t __user *old_sp = (elf_addr_t __user *)sp; sp += len; \ | 
|  | old_sp; }) | 
|  | #else | 
|  | #define STACK_ADD(sp, items) ((elf_addr_t __user *)(sp) - (items)) | 
|  | #define STACK_ROUND(sp, items) \ | 
|  | (((unsigned long) (sp - items)) &~ 15UL) | 
|  | #define STACK_ALLOC(sp, len) ({ sp -= len ; sp; }) | 
|  | #endif | 
|  |  | 
|  | static int | 
|  | create_elf_tables(struct linux_binprm *bprm, struct elfhdr *exec, | 
|  | int interp_aout, unsigned long load_addr, | 
|  | unsigned long interp_load_addr) | 
|  | { | 
|  | unsigned long p = bprm->p; | 
|  | int argc = bprm->argc; | 
|  | int envc = bprm->envc; | 
|  | elf_addr_t __user *argv; | 
|  | elf_addr_t __user *envp; | 
|  | elf_addr_t __user *sp; | 
|  | elf_addr_t __user *u_platform; | 
|  | const char *k_platform = ELF_PLATFORM; | 
|  | int items; | 
|  | elf_addr_t *elf_info; | 
|  | int ei_index = 0; | 
|  | struct task_struct *tsk = current; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | /* | 
|  | * If this architecture has a platform capability string, copy it | 
|  | * to userspace.  In some cases (Sparc), this info is impossible | 
|  | * for userspace to get any other way, in others (i386) it is | 
|  | * merely difficult. | 
|  | */ | 
|  | u_platform = NULL; | 
|  | if (k_platform) { | 
|  | size_t len = strlen(k_platform) + 1; | 
|  |  | 
|  | /* | 
|  | * In some cases (e.g. Hyper-Threading), we want to avoid L1 | 
|  | * evictions by the processes running on the same package. One | 
|  | * thing we can do is to shuffle the initial stack for them. | 
|  | */ | 
|  |  | 
|  | p = arch_align_stack(p); | 
|  |  | 
|  | u_platform = (elf_addr_t __user *)STACK_ALLOC(p, len); | 
|  | if (__copy_to_user(u_platform, k_platform, len)) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | /* Create the ELF interpreter info */ | 
|  | elf_info = (elf_addr_t *)current->mm->saved_auxv; | 
|  | #define NEW_AUX_ENT(id, val) \ | 
|  | do { \ | 
|  | elf_info[ei_index++] = id; \ | 
|  | elf_info[ei_index++] = val; \ | 
|  | } while (0) | 
|  |  | 
|  | #ifdef ARCH_DLINFO | 
|  | /* | 
|  | * ARCH_DLINFO must come first so PPC can do its special alignment of | 
|  | * AUXV. | 
|  | */ | 
|  | ARCH_DLINFO; | 
|  | #endif | 
|  | NEW_AUX_ENT(AT_HWCAP, ELF_HWCAP); | 
|  | NEW_AUX_ENT(AT_PAGESZ, ELF_EXEC_PAGESIZE); | 
|  | NEW_AUX_ENT(AT_CLKTCK, CLOCKS_PER_SEC); | 
|  | NEW_AUX_ENT(AT_PHDR, load_addr + exec->e_phoff); | 
|  | NEW_AUX_ENT(AT_PHENT, sizeof(struct elf_phdr)); | 
|  | NEW_AUX_ENT(AT_PHNUM, exec->e_phnum); | 
|  | NEW_AUX_ENT(AT_BASE, interp_load_addr); | 
|  | NEW_AUX_ENT(AT_FLAGS, 0); | 
|  | NEW_AUX_ENT(AT_ENTRY, exec->e_entry); | 
|  | NEW_AUX_ENT(AT_UID, tsk->uid); | 
|  | NEW_AUX_ENT(AT_EUID, tsk->euid); | 
|  | NEW_AUX_ENT(AT_GID, tsk->gid); | 
|  | NEW_AUX_ENT(AT_EGID, tsk->egid); | 
|  | NEW_AUX_ENT(AT_SECURE, security_bprm_secureexec(bprm)); | 
|  | if (k_platform) { | 
|  | NEW_AUX_ENT(AT_PLATFORM, | 
|  | (elf_addr_t)(unsigned long)u_platform); | 
|  | } | 
|  | if (bprm->interp_flags & BINPRM_FLAGS_EXECFD) { | 
|  | NEW_AUX_ENT(AT_EXECFD, bprm->interp_data); | 
|  | } | 
|  | #undef NEW_AUX_ENT | 
|  | /* AT_NULL is zero; clear the rest too */ | 
|  | memset(&elf_info[ei_index], 0, | 
|  | sizeof current->mm->saved_auxv - ei_index * sizeof elf_info[0]); | 
|  |  | 
|  | /* And advance past the AT_NULL entry.  */ | 
|  | ei_index += 2; | 
|  |  | 
|  | sp = STACK_ADD(p, ei_index); | 
|  |  | 
|  | items = (argc + 1) + (envc + 1); | 
|  | if (interp_aout) { | 
|  | items += 3; /* a.out interpreters require argv & envp too */ | 
|  | } else { | 
|  | items += 1; /* ELF interpreters only put argc on the stack */ | 
|  | } | 
|  | bprm->p = STACK_ROUND(sp, items); | 
|  |  | 
|  | /* Point sp at the lowest address on the stack */ | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | sp = (elf_addr_t __user *)bprm->p - items - ei_index; | 
|  | bprm->exec = (unsigned long)sp; /* XXX: PARISC HACK */ | 
|  | #else | 
|  | sp = (elf_addr_t __user *)bprm->p; | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Grow the stack manually; some architectures have a limit on how | 
|  | * far ahead a user-space access may be in order to grow the stack. | 
|  | */ | 
|  | vma = find_extend_vma(current->mm, bprm->p); | 
|  | if (!vma) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* Now, let's put argc (and argv, envp if appropriate) on the stack */ | 
|  | if (__put_user(argc, sp++)) | 
|  | return -EFAULT; | 
|  | if (interp_aout) { | 
|  | argv = sp + 2; | 
|  | envp = argv + argc + 1; | 
|  | if (__put_user((elf_addr_t)(unsigned long)argv, sp++) || | 
|  | __put_user((elf_addr_t)(unsigned long)envp, sp++)) | 
|  | return -EFAULT; | 
|  | } else { | 
|  | argv = sp; | 
|  | envp = argv + argc + 1; | 
|  | } | 
|  |  | 
|  | /* Populate argv and envp */ | 
|  | p = current->mm->arg_end = current->mm->arg_start; | 
|  | while (argc-- > 0) { | 
|  | size_t len; | 
|  | if (__put_user((elf_addr_t)p, argv++)) | 
|  | return -EFAULT; | 
|  | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
|  | if (!len || len > MAX_ARG_STRLEN) | 
|  | return 0; | 
|  | p += len; | 
|  | } | 
|  | if (__put_user(0, argv)) | 
|  | return -EFAULT; | 
|  | current->mm->arg_end = current->mm->env_start = p; | 
|  | while (envc-- > 0) { | 
|  | size_t len; | 
|  | if (__put_user((elf_addr_t)p, envp++)) | 
|  | return -EFAULT; | 
|  | len = strnlen_user((void __user *)p, MAX_ARG_STRLEN); | 
|  | if (!len || len > MAX_ARG_STRLEN) | 
|  | return 0; | 
|  | p += len; | 
|  | } | 
|  | if (__put_user(0, envp)) | 
|  | return -EFAULT; | 
|  | current->mm->env_end = p; | 
|  |  | 
|  | /* Put the elf_info on the stack in the right place.  */ | 
|  | sp = (elf_addr_t __user *)envp + 1; | 
|  | if (copy_to_user(sp, elf_info, ei_index * sizeof(elf_addr_t))) | 
|  | return -EFAULT; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef elf_map | 
|  |  | 
|  | static unsigned long elf_map(struct file *filep, unsigned long addr, | 
|  | struct elf_phdr *eppnt, int prot, int type, | 
|  | unsigned long total_size) | 
|  | { | 
|  | unsigned long map_addr; | 
|  | unsigned long size = eppnt->p_filesz + ELF_PAGEOFFSET(eppnt->p_vaddr); | 
|  | unsigned long off = eppnt->p_offset - ELF_PAGEOFFSET(eppnt->p_vaddr); | 
|  | addr = ELF_PAGESTART(addr); | 
|  | size = ELF_PAGEALIGN(size); | 
|  |  | 
|  | /* mmap() will return -EINVAL if given a zero size, but a | 
|  | * segment with zero filesize is perfectly valid */ | 
|  | if (!size) | 
|  | return addr; | 
|  |  | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | /* | 
|  | * total_size is the size of the ELF (interpreter) image. | 
|  | * The _first_ mmap needs to know the full size, otherwise | 
|  | * randomization might put this image into an overlapping | 
|  | * position with the ELF binary image. (since size < total_size) | 
|  | * So we first map the 'big' image - and unmap the remainder at | 
|  | * the end. (which unmap is needed for ELF images with holes.) | 
|  | */ | 
|  | if (total_size) { | 
|  | total_size = ELF_PAGEALIGN(total_size); | 
|  | map_addr = do_mmap(filep, addr, total_size, prot, type, off); | 
|  | if (!BAD_ADDR(map_addr)) | 
|  | do_munmap(current->mm, map_addr+size, total_size-size); | 
|  | } else | 
|  | map_addr = do_mmap(filep, addr, size, prot, type, off); | 
|  |  | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | return(map_addr); | 
|  | } | 
|  |  | 
|  | #endif /* !elf_map */ | 
|  |  | 
|  | static unsigned long total_mapping_size(struct elf_phdr *cmds, int nr) | 
|  | { | 
|  | int i, first_idx = -1, last_idx = -1; | 
|  |  | 
|  | for (i = 0; i < nr; i++) { | 
|  | if (cmds[i].p_type == PT_LOAD) { | 
|  | last_idx = i; | 
|  | if (first_idx == -1) | 
|  | first_idx = i; | 
|  | } | 
|  | } | 
|  | if (first_idx == -1) | 
|  | return 0; | 
|  |  | 
|  | return cmds[last_idx].p_vaddr + cmds[last_idx].p_memsz - | 
|  | ELF_PAGESTART(cmds[first_idx].p_vaddr); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This is much more generalized than the library routine read function, | 
|  | so we keep this separate.  Technically the library read function | 
|  | is only provided so that we can read a.out libraries that have | 
|  | an ELF header */ | 
|  |  | 
|  | static unsigned long load_elf_interp(struct elfhdr *interp_elf_ex, | 
|  | struct file *interpreter, unsigned long *interp_map_addr, | 
|  | unsigned long no_base) | 
|  | { | 
|  | struct elf_phdr *elf_phdata; | 
|  | struct elf_phdr *eppnt; | 
|  | unsigned long load_addr = 0; | 
|  | int load_addr_set = 0; | 
|  | unsigned long last_bss = 0, elf_bss = 0; | 
|  | unsigned long error = ~0UL; | 
|  | unsigned long total_size; | 
|  | int retval, i, size; | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (interp_elf_ex->e_type != ET_EXEC && | 
|  | interp_elf_ex->e_type != ET_DYN) | 
|  | goto out; | 
|  | if (!elf_check_arch(interp_elf_ex)) | 
|  | goto out; | 
|  | if (!interpreter->f_op || !interpreter->f_op->mmap) | 
|  | goto out; | 
|  |  | 
|  | /* | 
|  | * If the size of this structure has changed, then punt, since | 
|  | * we will be doing the wrong thing. | 
|  | */ | 
|  | if (interp_elf_ex->e_phentsize != sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  | if (interp_elf_ex->e_phnum < 1 || | 
|  | interp_elf_ex->e_phnum > 65536U / sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  | size = sizeof(struct elf_phdr) * interp_elf_ex->e_phnum; | 
|  | if (size > ELF_MIN_ALIGN) | 
|  | goto out; | 
|  | elf_phdata = kmalloc(size, GFP_KERNEL); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | retval = kernel_read(interpreter, interp_elf_ex->e_phoff, | 
|  | (char *)elf_phdata,size); | 
|  | error = -EIO; | 
|  | if (retval != size) { | 
|  | if (retval < 0) | 
|  | error = retval; | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | total_size = total_mapping_size(elf_phdata, interp_elf_ex->e_phnum); | 
|  | if (!total_size) { | 
|  | error = -EINVAL; | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | eppnt = elf_phdata; | 
|  | for (i = 0; i < interp_elf_ex->e_phnum; i++, eppnt++) { | 
|  | if (eppnt->p_type == PT_LOAD) { | 
|  | int elf_type = MAP_PRIVATE | MAP_DENYWRITE; | 
|  | int elf_prot = 0; | 
|  | unsigned long vaddr = 0; | 
|  | unsigned long k, map_addr; | 
|  |  | 
|  | if (eppnt->p_flags & PF_R) | 
|  | elf_prot = PROT_READ; | 
|  | if (eppnt->p_flags & PF_W) | 
|  | elf_prot |= PROT_WRITE; | 
|  | if (eppnt->p_flags & PF_X) | 
|  | elf_prot |= PROT_EXEC; | 
|  | vaddr = eppnt->p_vaddr; | 
|  | if (interp_elf_ex->e_type == ET_EXEC || load_addr_set) | 
|  | elf_type |= MAP_FIXED; | 
|  | else if (no_base && interp_elf_ex->e_type == ET_DYN) | 
|  | load_addr = -vaddr; | 
|  |  | 
|  | map_addr = elf_map(interpreter, load_addr + vaddr, | 
|  | eppnt, elf_prot, elf_type, total_size); | 
|  | total_size = 0; | 
|  | if (!*interp_map_addr) | 
|  | *interp_map_addr = map_addr; | 
|  | error = map_addr; | 
|  | if (BAD_ADDR(map_addr)) | 
|  | goto out_close; | 
|  |  | 
|  | if (!load_addr_set && | 
|  | interp_elf_ex->e_type == ET_DYN) { | 
|  | load_addr = map_addr - ELF_PAGESTART(vaddr); | 
|  | load_addr_set = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if the section's size will overflow the | 
|  | * allowed task size. Note that p_filesz must always be | 
|  | * <= p_memsize so it's only necessary to check p_memsz. | 
|  | */ | 
|  | k = load_addr + eppnt->p_vaddr; | 
|  | if (BAD_ADDR(k) || | 
|  | eppnt->p_filesz > eppnt->p_memsz || | 
|  | eppnt->p_memsz > TASK_SIZE || | 
|  | TASK_SIZE - eppnt->p_memsz < k) { | 
|  | error = -ENOMEM; | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the end of the file mapping for this phdr, and | 
|  | * keep track of the largest address we see for this. | 
|  | */ | 
|  | k = load_addr + eppnt->p_vaddr + eppnt->p_filesz; | 
|  | if (k > elf_bss) | 
|  | elf_bss = k; | 
|  |  | 
|  | /* | 
|  | * Do the same thing for the memory mapping - between | 
|  | * elf_bss and last_bss is the bss section. | 
|  | */ | 
|  | k = load_addr + eppnt->p_memsz + eppnt->p_vaddr; | 
|  | if (k > last_bss) | 
|  | last_bss = k; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now fill out the bss section.  First pad the last page up | 
|  | * to the page boundary, and then perform a mmap to make sure | 
|  | * that there are zero-mapped pages up to and including the | 
|  | * last bss page. | 
|  | */ | 
|  | if (padzero(elf_bss)) { | 
|  | error = -EFAULT; | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | /* What we have mapped so far */ | 
|  | elf_bss = ELF_PAGESTART(elf_bss + ELF_MIN_ALIGN - 1); | 
|  |  | 
|  | /* Map the last of the bss segment */ | 
|  | if (last_bss > elf_bss) { | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | error = do_brk(elf_bss, last_bss - elf_bss); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (BAD_ADDR(error)) | 
|  | goto out_close; | 
|  | } | 
|  |  | 
|  | error = load_addr; | 
|  |  | 
|  | out_close: | 
|  | kfree(elf_phdata); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static unsigned long load_aout_interp(struct exec *interp_ex, | 
|  | struct file *interpreter) | 
|  | { | 
|  | unsigned long text_data, elf_entry = ~0UL; | 
|  | char __user * addr; | 
|  | loff_t offset; | 
|  |  | 
|  | current->mm->end_code = interp_ex->a_text; | 
|  | text_data = interp_ex->a_text + interp_ex->a_data; | 
|  | current->mm->end_data = text_data; | 
|  | current->mm->brk = interp_ex->a_bss + text_data; | 
|  |  | 
|  | switch (N_MAGIC(*interp_ex)) { | 
|  | case OMAGIC: | 
|  | offset = 32; | 
|  | addr = (char __user *)0; | 
|  | break; | 
|  | case ZMAGIC: | 
|  | case QMAGIC: | 
|  | offset = N_TXTOFF(*interp_ex); | 
|  | addr = (char __user *)N_TXTADDR(*interp_ex); | 
|  | break; | 
|  | default: | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | do_brk(0, text_data); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (!interpreter->f_op || !interpreter->f_op->read) | 
|  | goto out; | 
|  | if (interpreter->f_op->read(interpreter, addr, text_data, &offset) < 0) | 
|  | goto out; | 
|  | flush_icache_range((unsigned long)addr, | 
|  | (unsigned long)addr + text_data); | 
|  |  | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | do_brk(ELF_PAGESTART(text_data + ELF_MIN_ALIGN - 1), | 
|  | interp_ex->a_bss); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | elf_entry = interp_ex->a_entry; | 
|  |  | 
|  | out: | 
|  | return elf_entry; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These are the functions used to load ELF style executables and shared | 
|  | * libraries.  There is no binary dependent code anywhere else. | 
|  | */ | 
|  |  | 
|  | #define INTERPRETER_NONE 0 | 
|  | #define INTERPRETER_AOUT 1 | 
|  | #define INTERPRETER_ELF 2 | 
|  |  | 
|  | #ifndef STACK_RND_MASK | 
|  | #define STACK_RND_MASK (0x7ff >> (PAGE_SHIFT - 12))	/* 8MB of VA */ | 
|  | #endif | 
|  |  | 
|  | static unsigned long randomize_stack_top(unsigned long stack_top) | 
|  | { | 
|  | unsigned int random_variable = 0; | 
|  |  | 
|  | if ((current->flags & PF_RANDOMIZE) && | 
|  | !(current->personality & ADDR_NO_RANDOMIZE)) { | 
|  | random_variable = get_random_int() & STACK_RND_MASK; | 
|  | random_variable <<= PAGE_SHIFT; | 
|  | } | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | return PAGE_ALIGN(stack_top) + random_variable; | 
|  | #else | 
|  | return PAGE_ALIGN(stack_top) - random_variable; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static int load_elf_binary(struct linux_binprm *bprm, struct pt_regs *regs) | 
|  | { | 
|  | struct file *interpreter = NULL; /* to shut gcc up */ | 
|  | unsigned long load_addr = 0, load_bias = 0; | 
|  | int load_addr_set = 0; | 
|  | char * elf_interpreter = NULL; | 
|  | unsigned int interpreter_type = INTERPRETER_NONE; | 
|  | unsigned char ibcs2_interpreter = 0; | 
|  | unsigned long error; | 
|  | struct elf_phdr *elf_ppnt, *elf_phdata; | 
|  | unsigned long elf_bss, elf_brk; | 
|  | int elf_exec_fileno; | 
|  | int retval, i; | 
|  | unsigned int size; | 
|  | unsigned long elf_entry; | 
|  | unsigned long interp_load_addr = 0; | 
|  | unsigned long start_code, end_code, start_data, end_data; | 
|  | unsigned long reloc_func_desc = 0; | 
|  | char passed_fileno[6]; | 
|  | struct files_struct *files; | 
|  | int executable_stack = EXSTACK_DEFAULT; | 
|  | unsigned long def_flags = 0; | 
|  | struct { | 
|  | struct elfhdr elf_ex; | 
|  | struct elfhdr interp_elf_ex; | 
|  | struct exec interp_ex; | 
|  | } *loc; | 
|  |  | 
|  | loc = kmalloc(sizeof(*loc), GFP_KERNEL); | 
|  | if (!loc) { | 
|  | retval = -ENOMEM; | 
|  | goto out_ret; | 
|  | } | 
|  |  | 
|  | /* Get the exec-header */ | 
|  | loc->elf_ex = *((struct elfhdr *)bprm->buf); | 
|  |  | 
|  | retval = -ENOEXEC; | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (memcmp(loc->elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
|  | goto out; | 
|  |  | 
|  | if (loc->elf_ex.e_type != ET_EXEC && loc->elf_ex.e_type != ET_DYN) | 
|  | goto out; | 
|  | if (!elf_check_arch(&loc->elf_ex)) | 
|  | goto out; | 
|  | if (!bprm->file->f_op||!bprm->file->f_op->mmap) | 
|  | goto out; | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  | if (loc->elf_ex.e_phentsize != sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  | if (loc->elf_ex.e_phnum < 1 || | 
|  | loc->elf_ex.e_phnum > 65536U / sizeof(struct elf_phdr)) | 
|  | goto out; | 
|  | size = loc->elf_ex.e_phnum * sizeof(struct elf_phdr); | 
|  | retval = -ENOMEM; | 
|  | elf_phdata = kmalloc(size, GFP_KERNEL); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | retval = kernel_read(bprm->file, loc->elf_ex.e_phoff, | 
|  | (char *)elf_phdata, size); | 
|  | if (retval != size) { | 
|  | if (retval >= 0) | 
|  | retval = -EIO; | 
|  | goto out_free_ph; | 
|  | } | 
|  |  | 
|  | files = current->files;	/* Refcounted so ok */ | 
|  | retval = unshare_files(); | 
|  | if (retval < 0) | 
|  | goto out_free_ph; | 
|  | if (files == current->files) { | 
|  | put_files_struct(files); | 
|  | files = NULL; | 
|  | } | 
|  |  | 
|  | /* exec will make our files private anyway, but for the a.out | 
|  | loader stuff we need to do it earlier */ | 
|  | retval = get_unused_fd(); | 
|  | if (retval < 0) | 
|  | goto out_free_fh; | 
|  | get_file(bprm->file); | 
|  | fd_install(elf_exec_fileno = retval, bprm->file); | 
|  |  | 
|  | elf_ppnt = elf_phdata; | 
|  | elf_bss = 0; | 
|  | elf_brk = 0; | 
|  |  | 
|  | start_code = ~0UL; | 
|  | end_code = 0; | 
|  | start_data = 0; | 
|  | end_data = 0; | 
|  |  | 
|  | for (i = 0; i < loc->elf_ex.e_phnum; i++) { | 
|  | if (elf_ppnt->p_type == PT_INTERP) { | 
|  | /* This is the program interpreter used for | 
|  | * shared libraries - for now assume that this | 
|  | * is an a.out format binary | 
|  | */ | 
|  | retval = -ENOEXEC; | 
|  | if (elf_ppnt->p_filesz > PATH_MAX || | 
|  | elf_ppnt->p_filesz < 2) | 
|  | goto out_free_file; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | elf_interpreter = kmalloc(elf_ppnt->p_filesz, | 
|  | GFP_KERNEL); | 
|  | if (!elf_interpreter) | 
|  | goto out_free_file; | 
|  |  | 
|  | retval = kernel_read(bprm->file, elf_ppnt->p_offset, | 
|  | elf_interpreter, | 
|  | elf_ppnt->p_filesz); | 
|  | if (retval != elf_ppnt->p_filesz) { | 
|  | if (retval >= 0) | 
|  | retval = -EIO; | 
|  | goto out_free_interp; | 
|  | } | 
|  | /* make sure path is NULL terminated */ | 
|  | retval = -ENOEXEC; | 
|  | if (elf_interpreter[elf_ppnt->p_filesz - 1] != '\0') | 
|  | goto out_free_interp; | 
|  |  | 
|  | /* If the program interpreter is one of these two, | 
|  | * then assume an iBCS2 image. Otherwise assume | 
|  | * a native linux image. | 
|  | */ | 
|  | if (strcmp(elf_interpreter,"/usr/lib/libc.so.1") == 0 || | 
|  | strcmp(elf_interpreter,"/usr/lib/ld.so.1") == 0) | 
|  | ibcs2_interpreter = 1; | 
|  |  | 
|  | /* | 
|  | * The early SET_PERSONALITY here is so that the lookup | 
|  | * for the interpreter happens in the namespace of the | 
|  | * to-be-execed image.  SET_PERSONALITY can select an | 
|  | * alternate root. | 
|  | * | 
|  | * However, SET_PERSONALITY is NOT allowed to switch | 
|  | * this task into the new images's memory mapping | 
|  | * policy - that is, TASK_SIZE must still evaluate to | 
|  | * that which is appropriate to the execing application. | 
|  | * This is because exit_mmap() needs to have TASK_SIZE | 
|  | * evaluate to the size of the old image. | 
|  | * | 
|  | * So if (say) a 64-bit application is execing a 32-bit | 
|  | * application it is the architecture's responsibility | 
|  | * to defer changing the value of TASK_SIZE until the | 
|  | * switch really is going to happen - do this in | 
|  | * flush_thread().	- akpm | 
|  | */ | 
|  | SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); | 
|  |  | 
|  | interpreter = open_exec(elf_interpreter); | 
|  | retval = PTR_ERR(interpreter); | 
|  | if (IS_ERR(interpreter)) | 
|  | goto out_free_interp; | 
|  |  | 
|  | /* | 
|  | * If the binary is not readable then enforce | 
|  | * mm->dumpable = 0 regardless of the interpreter's | 
|  | * permissions. | 
|  | */ | 
|  | if (file_permission(interpreter, MAY_READ) < 0) | 
|  | bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; | 
|  |  | 
|  | retval = kernel_read(interpreter, 0, bprm->buf, | 
|  | BINPRM_BUF_SIZE); | 
|  | if (retval != BINPRM_BUF_SIZE) { | 
|  | if (retval >= 0) | 
|  | retval = -EIO; | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | /* Get the exec headers */ | 
|  | loc->interp_ex = *((struct exec *)bprm->buf); | 
|  | loc->interp_elf_ex = *((struct elfhdr *)bprm->buf); | 
|  | break; | 
|  | } | 
|  | elf_ppnt++; | 
|  | } | 
|  |  | 
|  | elf_ppnt = elf_phdata; | 
|  | for (i = 0; i < loc->elf_ex.e_phnum; i++, elf_ppnt++) | 
|  | if (elf_ppnt->p_type == PT_GNU_STACK) { | 
|  | if (elf_ppnt->p_flags & PF_X) | 
|  | executable_stack = EXSTACK_ENABLE_X; | 
|  | else | 
|  | executable_stack = EXSTACK_DISABLE_X; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Some simple consistency checks for the interpreter */ | 
|  | if (elf_interpreter) { | 
|  | interpreter_type = INTERPRETER_ELF | INTERPRETER_AOUT; | 
|  |  | 
|  | /* Now figure out which format our binary is */ | 
|  | if ((N_MAGIC(loc->interp_ex) != OMAGIC) && | 
|  | (N_MAGIC(loc->interp_ex) != ZMAGIC) && | 
|  | (N_MAGIC(loc->interp_ex) != QMAGIC)) | 
|  | interpreter_type = INTERPRETER_ELF; | 
|  |  | 
|  | if (memcmp(loc->interp_elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
|  | interpreter_type &= ~INTERPRETER_ELF; | 
|  |  | 
|  | retval = -ELIBBAD; | 
|  | if (!interpreter_type) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* Make sure only one type was selected */ | 
|  | if ((interpreter_type & INTERPRETER_ELF) && | 
|  | interpreter_type != INTERPRETER_ELF) { | 
|  | // FIXME - ratelimit this before re-enabling | 
|  | // printk(KERN_WARNING "ELF: Ambiguous type, using ELF\n"); | 
|  | interpreter_type = INTERPRETER_ELF; | 
|  | } | 
|  | /* Verify the interpreter has a valid arch */ | 
|  | if ((interpreter_type == INTERPRETER_ELF) && | 
|  | !elf_check_arch(&loc->interp_elf_ex)) | 
|  | goto out_free_dentry; | 
|  | } else { | 
|  | /* Executables without an interpreter also need a personality  */ | 
|  | SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); | 
|  | } | 
|  |  | 
|  | /* OK, we are done with that, now set up the arg stuff, | 
|  | and then start this sucker up */ | 
|  | if ((!bprm->sh_bang) && (interpreter_type == INTERPRETER_AOUT)) { | 
|  | char *passed_p = passed_fileno; | 
|  | sprintf(passed_fileno, "%d", elf_exec_fileno); | 
|  |  | 
|  | if (elf_interpreter) { | 
|  | retval = copy_strings_kernel(1, &passed_p, bprm); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  | bprm->argc++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Flush all traces of the currently running executable */ | 
|  | retval = flush_old_exec(bprm); | 
|  | if (retval) | 
|  | goto out_free_dentry; | 
|  |  | 
|  | /* Discard our unneeded old files struct */ | 
|  | if (files) { | 
|  | put_files_struct(files); | 
|  | files = NULL; | 
|  | } | 
|  |  | 
|  | /* OK, This is the point of no return */ | 
|  | current->flags &= ~PF_FORKNOEXEC; | 
|  | current->mm->def_flags = def_flags; | 
|  |  | 
|  | /* Do this immediately, since STACK_TOP as used in setup_arg_pages | 
|  | may depend on the personality.  */ | 
|  | SET_PERSONALITY(loc->elf_ex, ibcs2_interpreter); | 
|  | if (elf_read_implies_exec(loc->elf_ex, executable_stack)) | 
|  | current->personality |= READ_IMPLIES_EXEC; | 
|  |  | 
|  | if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space) | 
|  | current->flags |= PF_RANDOMIZE; | 
|  | arch_pick_mmap_layout(current->mm); | 
|  |  | 
|  | /* Do this so that we can load the interpreter, if need be.  We will | 
|  | change some of these later */ | 
|  | current->mm->free_area_cache = current->mm->mmap_base; | 
|  | current->mm->cached_hole_size = 0; | 
|  | retval = setup_arg_pages(bprm, randomize_stack_top(STACK_TOP), | 
|  | executable_stack); | 
|  | if (retval < 0) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | current->mm->start_stack = bprm->p; | 
|  |  | 
|  | /* Now we do a little grungy work by mmaping the ELF image into | 
|  | the correct location in memory. */ | 
|  | for(i = 0, elf_ppnt = elf_phdata; | 
|  | i < loc->elf_ex.e_phnum; i++, elf_ppnt++) { | 
|  | int elf_prot = 0, elf_flags; | 
|  | unsigned long k, vaddr; | 
|  |  | 
|  | if (elf_ppnt->p_type != PT_LOAD) | 
|  | continue; | 
|  |  | 
|  | if (unlikely (elf_brk > elf_bss)) { | 
|  | unsigned long nbyte; | 
|  |  | 
|  | /* There was a PT_LOAD segment with p_memsz > p_filesz | 
|  | before this one. Map anonymous pages, if needed, | 
|  | and clear the area.  */ | 
|  | retval = set_brk (elf_bss + load_bias, | 
|  | elf_brk + load_bias); | 
|  | if (retval) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out_free_dentry; | 
|  | } | 
|  | nbyte = ELF_PAGEOFFSET(elf_bss); | 
|  | if (nbyte) { | 
|  | nbyte = ELF_MIN_ALIGN - nbyte; | 
|  | if (nbyte > elf_brk - elf_bss) | 
|  | nbyte = elf_brk - elf_bss; | 
|  | if (clear_user((void __user *)elf_bss + | 
|  | load_bias, nbyte)) { | 
|  | /* | 
|  | * This bss-zeroing can fail if the ELF | 
|  | * file specifies odd protections. So | 
|  | * we don't check the return value | 
|  | */ | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (elf_ppnt->p_flags & PF_R) | 
|  | elf_prot |= PROT_READ; | 
|  | if (elf_ppnt->p_flags & PF_W) | 
|  | elf_prot |= PROT_WRITE; | 
|  | if (elf_ppnt->p_flags & PF_X) | 
|  | elf_prot |= PROT_EXEC; | 
|  |  | 
|  | elf_flags = MAP_PRIVATE | MAP_DENYWRITE | MAP_EXECUTABLE; | 
|  |  | 
|  | vaddr = elf_ppnt->p_vaddr; | 
|  | if (loc->elf_ex.e_type == ET_EXEC || load_addr_set) { | 
|  | elf_flags |= MAP_FIXED; | 
|  | } else if (loc->elf_ex.e_type == ET_DYN) { | 
|  | /* Try and get dynamic programs out of the way of the | 
|  | * default mmap base, as well as whatever program they | 
|  | * might try to exec.  This is because the brk will | 
|  | * follow the loader, and is not movable.  */ | 
|  | #ifdef CONFIG_X86 | 
|  | load_bias = 0; | 
|  | #else | 
|  | load_bias = ELF_PAGESTART(ELF_ET_DYN_BASE - vaddr); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | error = elf_map(bprm->file, load_bias + vaddr, elf_ppnt, | 
|  | elf_prot, elf_flags,0); | 
|  | if (BAD_ADDR(error)) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | retval = IS_ERR((void *)error) ? | 
|  | PTR_ERR((void*)error) : -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | if (!load_addr_set) { | 
|  | load_addr_set = 1; | 
|  | load_addr = (elf_ppnt->p_vaddr - elf_ppnt->p_offset); | 
|  | if (loc->elf_ex.e_type == ET_DYN) { | 
|  | load_bias += error - | 
|  | ELF_PAGESTART(load_bias + vaddr); | 
|  | load_addr += load_bias; | 
|  | reloc_func_desc = load_bias; | 
|  | } | 
|  | } | 
|  | k = elf_ppnt->p_vaddr; | 
|  | if (k < start_code) | 
|  | start_code = k; | 
|  | if (start_data < k) | 
|  | start_data = k; | 
|  |  | 
|  | /* | 
|  | * Check to see if the section's size will overflow the | 
|  | * allowed task size. Note that p_filesz must always be | 
|  | * <= p_memsz so it is only necessary to check p_memsz. | 
|  | */ | 
|  | if (BAD_ADDR(k) || elf_ppnt->p_filesz > elf_ppnt->p_memsz || | 
|  | elf_ppnt->p_memsz > TASK_SIZE || | 
|  | TASK_SIZE - elf_ppnt->p_memsz < k) { | 
|  | /* set_brk can never work. Avoid overflows. */ | 
|  | send_sig(SIGKILL, current, 0); | 
|  | retval = -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | k = elf_ppnt->p_vaddr + elf_ppnt->p_filesz; | 
|  |  | 
|  | if (k > elf_bss) | 
|  | elf_bss = k; | 
|  | if ((elf_ppnt->p_flags & PF_X) && end_code < k) | 
|  | end_code = k; | 
|  | if (end_data < k) | 
|  | end_data = k; | 
|  | k = elf_ppnt->p_vaddr + elf_ppnt->p_memsz; | 
|  | if (k > elf_brk) | 
|  | elf_brk = k; | 
|  | } | 
|  |  | 
|  | loc->elf_ex.e_entry += load_bias; | 
|  | elf_bss += load_bias; | 
|  | elf_brk += load_bias; | 
|  | start_code += load_bias; | 
|  | end_code += load_bias; | 
|  | start_data += load_bias; | 
|  | end_data += load_bias; | 
|  |  | 
|  | /* Calling set_brk effectively mmaps the pages that we need | 
|  | * for the bss and break sections.  We must do this before | 
|  | * mapping in the interpreter, to make sure it doesn't wind | 
|  | * up getting placed where the bss needs to go. | 
|  | */ | 
|  | retval = set_brk(elf_bss, elf_brk); | 
|  | if (retval) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out_free_dentry; | 
|  | } | 
|  | if (likely(elf_bss != elf_brk) && unlikely(padzero(elf_bss))) { | 
|  | send_sig(SIGSEGV, current, 0); | 
|  | retval = -EFAULT; /* Nobody gets to see this, but.. */ | 
|  | goto out_free_dentry; | 
|  | } | 
|  |  | 
|  | if (elf_interpreter) { | 
|  | if (interpreter_type == INTERPRETER_AOUT) { | 
|  | elf_entry = load_aout_interp(&loc->interp_ex, | 
|  | interpreter); | 
|  | } else { | 
|  | unsigned long uninitialized_var(interp_map_addr); | 
|  |  | 
|  | elf_entry = load_elf_interp(&loc->interp_elf_ex, | 
|  | interpreter, | 
|  | &interp_map_addr, | 
|  | load_bias); | 
|  | if (!BAD_ADDR(elf_entry)) { | 
|  | /* | 
|  | * load_elf_interp() returns relocation | 
|  | * adjustment | 
|  | */ | 
|  | interp_load_addr = elf_entry; | 
|  | elf_entry += loc->interp_elf_ex.e_entry; | 
|  | } | 
|  | } | 
|  | if (BAD_ADDR(elf_entry)) { | 
|  | force_sig(SIGSEGV, current); | 
|  | retval = IS_ERR((void *)elf_entry) ? | 
|  | (int)elf_entry : -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  | reloc_func_desc = interp_load_addr; | 
|  |  | 
|  | allow_write_access(interpreter); | 
|  | fput(interpreter); | 
|  | kfree(elf_interpreter); | 
|  | } else { | 
|  | elf_entry = loc->elf_ex.e_entry; | 
|  | if (BAD_ADDR(elf_entry)) { | 
|  | force_sig(SIGSEGV, current); | 
|  | retval = -EINVAL; | 
|  | goto out_free_dentry; | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(elf_phdata); | 
|  |  | 
|  | if (interpreter_type != INTERPRETER_AOUT) | 
|  | sys_close(elf_exec_fileno); | 
|  |  | 
|  | set_binfmt(&elf_format); | 
|  |  | 
|  | #ifdef ARCH_HAS_SETUP_ADDITIONAL_PAGES | 
|  | retval = arch_setup_additional_pages(bprm, executable_stack); | 
|  | if (retval < 0) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out; | 
|  | } | 
|  | #endif /* ARCH_HAS_SETUP_ADDITIONAL_PAGES */ | 
|  |  | 
|  | compute_creds(bprm); | 
|  | current->flags &= ~PF_FORKNOEXEC; | 
|  | retval = create_elf_tables(bprm, &loc->elf_ex, | 
|  | (interpreter_type == INTERPRETER_AOUT), | 
|  | load_addr, interp_load_addr); | 
|  | if (retval < 0) { | 
|  | send_sig(SIGKILL, current, 0); | 
|  | goto out; | 
|  | } | 
|  | /* N.B. passed_fileno might not be initialized? */ | 
|  | if (interpreter_type == INTERPRETER_AOUT) | 
|  | current->mm->arg_start += strlen(passed_fileno) + 1; | 
|  | current->mm->end_code = end_code; | 
|  | current->mm->start_code = start_code; | 
|  | current->mm->start_data = start_data; | 
|  | current->mm->end_data = end_data; | 
|  | current->mm->start_stack = bprm->p; | 
|  |  | 
|  | if (current->personality & MMAP_PAGE_ZERO) { | 
|  | /* Why this, you ask???  Well SVr4 maps page 0 as read-only, | 
|  | and some applications "depend" upon this behavior. | 
|  | Since we do not have the power to recompile these, we | 
|  | emulate the SVr4 behavior. Sigh. */ | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | error = do_mmap(NULL, 0, PAGE_SIZE, PROT_READ | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE, 0); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | #ifdef ELF_PLAT_INIT | 
|  | /* | 
|  | * The ABI may specify that certain registers be set up in special | 
|  | * ways (on i386 %edx is the address of a DT_FINI function, for | 
|  | * example.  In addition, it may also specify (eg, PowerPC64 ELF) | 
|  | * that the e_entry field is the address of the function descriptor | 
|  | * for the startup routine, rather than the address of the startup | 
|  | * routine itself.  This macro performs whatever initialization to | 
|  | * the regs structure is required as well as any relocations to the | 
|  | * function descriptor entries when executing dynamically links apps. | 
|  | */ | 
|  | ELF_PLAT_INIT(regs, reloc_func_desc); | 
|  | #endif | 
|  |  | 
|  | start_thread(regs, elf_entry, bprm->p); | 
|  | if (unlikely(current->ptrace & PT_PTRACED)) { | 
|  | if (current->ptrace & PT_TRACE_EXEC) | 
|  | ptrace_notify ((PTRACE_EVENT_EXEC << 8) | SIGTRAP); | 
|  | else | 
|  | send_sig(SIGTRAP, current, 0); | 
|  | } | 
|  | retval = 0; | 
|  | out: | 
|  | kfree(loc); | 
|  | out_ret: | 
|  | return retval; | 
|  |  | 
|  | /* error cleanup */ | 
|  | out_free_dentry: | 
|  | allow_write_access(interpreter); | 
|  | if (interpreter) | 
|  | fput(interpreter); | 
|  | out_free_interp: | 
|  | kfree(elf_interpreter); | 
|  | out_free_file: | 
|  | sys_close(elf_exec_fileno); | 
|  | out_free_fh: | 
|  | if (files) | 
|  | reset_files_struct(current, files); | 
|  | out_free_ph: | 
|  | kfree(elf_phdata); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* This is really simpleminded and specialized - we are loading an | 
|  | a.out library that is given an ELF header. */ | 
|  | static int load_elf_library(struct file *file) | 
|  | { | 
|  | struct elf_phdr *elf_phdata; | 
|  | struct elf_phdr *eppnt; | 
|  | unsigned long elf_bss, bss, len; | 
|  | int retval, error, i, j; | 
|  | struct elfhdr elf_ex; | 
|  |  | 
|  | error = -ENOEXEC; | 
|  | retval = kernel_read(file, 0, (char *)&elf_ex, sizeof(elf_ex)); | 
|  | if (retval != sizeof(elf_ex)) | 
|  | goto out; | 
|  |  | 
|  | if (memcmp(elf_ex.e_ident, ELFMAG, SELFMAG) != 0) | 
|  | goto out; | 
|  |  | 
|  | /* First of all, some simple consistency checks */ | 
|  | if (elf_ex.e_type != ET_EXEC || elf_ex.e_phnum > 2 || | 
|  | !elf_check_arch(&elf_ex) || !file->f_op || !file->f_op->mmap) | 
|  | goto out; | 
|  |  | 
|  | /* Now read in all of the header information */ | 
|  |  | 
|  | j = sizeof(struct elf_phdr) * elf_ex.e_phnum; | 
|  | /* j < ELF_MIN_ALIGN because elf_ex.e_phnum <= 2 */ | 
|  |  | 
|  | error = -ENOMEM; | 
|  | elf_phdata = kmalloc(j, GFP_KERNEL); | 
|  | if (!elf_phdata) | 
|  | goto out; | 
|  |  | 
|  | eppnt = elf_phdata; | 
|  | error = -ENOEXEC; | 
|  | retval = kernel_read(file, elf_ex.e_phoff, (char *)eppnt, j); | 
|  | if (retval != j) | 
|  | goto out_free_ph; | 
|  |  | 
|  | for (j = 0, i = 0; i<elf_ex.e_phnum; i++) | 
|  | if ((eppnt + i)->p_type == PT_LOAD) | 
|  | j++; | 
|  | if (j != 1) | 
|  | goto out_free_ph; | 
|  |  | 
|  | while (eppnt->p_type != PT_LOAD) | 
|  | eppnt++; | 
|  |  | 
|  | /* Now use mmap to map the library into memory. */ | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | error = do_mmap(file, | 
|  | ELF_PAGESTART(eppnt->p_vaddr), | 
|  | (eppnt->p_filesz + | 
|  | ELF_PAGEOFFSET(eppnt->p_vaddr)), | 
|  | PROT_READ | PROT_WRITE | PROT_EXEC, | 
|  | MAP_FIXED | MAP_PRIVATE | MAP_DENYWRITE, | 
|  | (eppnt->p_offset - | 
|  | ELF_PAGEOFFSET(eppnt->p_vaddr))); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | if (error != ELF_PAGESTART(eppnt->p_vaddr)) | 
|  | goto out_free_ph; | 
|  |  | 
|  | elf_bss = eppnt->p_vaddr + eppnt->p_filesz; | 
|  | if (padzero(elf_bss)) { | 
|  | error = -EFAULT; | 
|  | goto out_free_ph; | 
|  | } | 
|  |  | 
|  | len = ELF_PAGESTART(eppnt->p_filesz + eppnt->p_vaddr + | 
|  | ELF_MIN_ALIGN - 1); | 
|  | bss = eppnt->p_memsz + eppnt->p_vaddr; | 
|  | if (bss > len) { | 
|  | down_write(¤t->mm->mmap_sem); | 
|  | do_brk(len, bss - len); | 
|  | up_write(¤t->mm->mmap_sem); | 
|  | } | 
|  | error = 0; | 
|  |  | 
|  | out_free_ph: | 
|  | kfree(elf_phdata); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that some platforms still use traditional core dumps and not | 
|  | * the ELF core dump.  Each platform can select it as appropriate. | 
|  | */ | 
|  | #if defined(USE_ELF_CORE_DUMP) && defined(CONFIG_ELF_CORE) | 
|  |  | 
|  | /* | 
|  | * ELF core dumper | 
|  | * | 
|  | * Modelled on fs/exec.c:aout_core_dump() | 
|  | * Jeremy Fitzhardinge <jeremy@sw.oz.au> | 
|  | */ | 
|  | /* | 
|  | * These are the only things you should do on a core-file: use only these | 
|  | * functions to write out all the necessary info. | 
|  | */ | 
|  | static int dump_write(struct file *file, const void *addr, int nr) | 
|  | { | 
|  | return file->f_op->write(file, addr, nr, &file->f_pos) == nr; | 
|  | } | 
|  |  | 
|  | static int dump_seek(struct file *file, loff_t off) | 
|  | { | 
|  | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { | 
|  | if (file->f_op->llseek(file, off, SEEK_CUR) < 0) | 
|  | return 0; | 
|  | } else { | 
|  | char *buf = (char *)get_zeroed_page(GFP_KERNEL); | 
|  | if (!buf) | 
|  | return 0; | 
|  | while (off > 0) { | 
|  | unsigned long n = off; | 
|  | if (n > PAGE_SIZE) | 
|  | n = PAGE_SIZE; | 
|  | if (!dump_write(file, buf, n)) | 
|  | return 0; | 
|  | off -= n; | 
|  | } | 
|  | free_page((unsigned long)buf); | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Decide whether a segment is worth dumping; default is yes to be | 
|  | * sure (missing info is worse than too much; etc). | 
|  | * Personally I'd include everything, and use the coredump limit... | 
|  | * | 
|  | * I think we should skip something. But I am not sure how. H.J. | 
|  | */ | 
|  | static int maydump(struct vm_area_struct *vma, unsigned long mm_flags) | 
|  | { | 
|  | /* The vma can be set up to tell us the answer directly.  */ | 
|  | if (vma->vm_flags & VM_ALWAYSDUMP) | 
|  | return 1; | 
|  |  | 
|  | /* Do not dump I/O mapped devices or special mappings */ | 
|  | if (vma->vm_flags & (VM_IO | VM_RESERVED)) | 
|  | return 0; | 
|  |  | 
|  | /* By default, dump shared memory if mapped from an anonymous file. */ | 
|  | if (vma->vm_flags & VM_SHARED) { | 
|  | if (vma->vm_file->f_path.dentry->d_inode->i_nlink == 0) | 
|  | return test_bit(MMF_DUMP_ANON_SHARED, &mm_flags); | 
|  | else | 
|  | return test_bit(MMF_DUMP_MAPPED_SHARED, &mm_flags); | 
|  | } | 
|  |  | 
|  | /* By default, if it hasn't been written to, don't write it out. */ | 
|  | if (!vma->anon_vma) | 
|  | return test_bit(MMF_DUMP_MAPPED_PRIVATE, &mm_flags); | 
|  |  | 
|  | return test_bit(MMF_DUMP_ANON_PRIVATE, &mm_flags); | 
|  | } | 
|  |  | 
|  | /* An ELF note in memory */ | 
|  | struct memelfnote | 
|  | { | 
|  | const char *name; | 
|  | int type; | 
|  | unsigned int datasz; | 
|  | void *data; | 
|  | }; | 
|  |  | 
|  | static int notesize(struct memelfnote *en) | 
|  | { | 
|  | int sz; | 
|  |  | 
|  | sz = sizeof(struct elf_note); | 
|  | sz += roundup(strlen(en->name) + 1, 4); | 
|  | sz += roundup(en->datasz, 4); | 
|  |  | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | #define DUMP_WRITE(addr, nr, foffset)	\ | 
|  | do { if (!dump_write(file, (addr), (nr))) return 0; *foffset += (nr); } while(0) | 
|  |  | 
|  | static int alignfile(struct file *file, loff_t *foffset) | 
|  | { | 
|  | static const char buf[4] = { 0, }; | 
|  | DUMP_WRITE(buf, roundup(*foffset, 4) - *foffset, foffset); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int writenote(struct memelfnote *men, struct file *file, | 
|  | loff_t *foffset) | 
|  | { | 
|  | struct elf_note en; | 
|  | en.n_namesz = strlen(men->name) + 1; | 
|  | en.n_descsz = men->datasz; | 
|  | en.n_type = men->type; | 
|  |  | 
|  | DUMP_WRITE(&en, sizeof(en), foffset); | 
|  | DUMP_WRITE(men->name, en.n_namesz, foffset); | 
|  | if (!alignfile(file, foffset)) | 
|  | return 0; | 
|  | DUMP_WRITE(men->data, men->datasz, foffset); | 
|  | if (!alignfile(file, foffset)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #undef DUMP_WRITE | 
|  |  | 
|  | #define DUMP_WRITE(addr, nr)	\ | 
|  | if ((size += (nr)) > limit || !dump_write(file, (addr), (nr))) \ | 
|  | goto end_coredump; | 
|  | #define DUMP_SEEK(off)	\ | 
|  | if (!dump_seek(file, (off))) \ | 
|  | goto end_coredump; | 
|  |  | 
|  | static void fill_elf_header(struct elfhdr *elf, int segs) | 
|  | { | 
|  | memcpy(elf->e_ident, ELFMAG, SELFMAG); | 
|  | elf->e_ident[EI_CLASS] = ELF_CLASS; | 
|  | elf->e_ident[EI_DATA] = ELF_DATA; | 
|  | elf->e_ident[EI_VERSION] = EV_CURRENT; | 
|  | elf->e_ident[EI_OSABI] = ELF_OSABI; | 
|  | memset(elf->e_ident+EI_PAD, 0, EI_NIDENT-EI_PAD); | 
|  |  | 
|  | elf->e_type = ET_CORE; | 
|  | elf->e_machine = ELF_ARCH; | 
|  | elf->e_version = EV_CURRENT; | 
|  | elf->e_entry = 0; | 
|  | elf->e_phoff = sizeof(struct elfhdr); | 
|  | elf->e_shoff = 0; | 
|  | elf->e_flags = ELF_CORE_EFLAGS; | 
|  | elf->e_ehsize = sizeof(struct elfhdr); | 
|  | elf->e_phentsize = sizeof(struct elf_phdr); | 
|  | elf->e_phnum = segs; | 
|  | elf->e_shentsize = 0; | 
|  | elf->e_shnum = 0; | 
|  | elf->e_shstrndx = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void fill_elf_note_phdr(struct elf_phdr *phdr, int sz, loff_t offset) | 
|  | { | 
|  | phdr->p_type = PT_NOTE; | 
|  | phdr->p_offset = offset; | 
|  | phdr->p_vaddr = 0; | 
|  | phdr->p_paddr = 0; | 
|  | phdr->p_filesz = sz; | 
|  | phdr->p_memsz = 0; | 
|  | phdr->p_flags = 0; | 
|  | phdr->p_align = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void fill_note(struct memelfnote *note, const char *name, int type, | 
|  | unsigned int sz, void *data) | 
|  | { | 
|  | note->name = name; | 
|  | note->type = type; | 
|  | note->datasz = sz; | 
|  | note->data = data; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * fill up all the fields in prstatus from the given task struct, except | 
|  | * registers which need to be filled up separately. | 
|  | */ | 
|  | static void fill_prstatus(struct elf_prstatus *prstatus, | 
|  | struct task_struct *p, long signr) | 
|  | { | 
|  | prstatus->pr_info.si_signo = prstatus->pr_cursig = signr; | 
|  | prstatus->pr_sigpend = p->pending.signal.sig[0]; | 
|  | prstatus->pr_sighold = p->blocked.sig[0]; | 
|  | prstatus->pr_pid = p->pid; | 
|  | prstatus->pr_ppid = p->parent->pid; | 
|  | prstatus->pr_pgrp = process_group(p); | 
|  | prstatus->pr_sid = process_session(p); | 
|  | if (thread_group_leader(p)) { | 
|  | /* | 
|  | * This is the record for the group leader.  Add in the | 
|  | * cumulative times of previous dead threads.  This total | 
|  | * won't include the time of each live thread whose state | 
|  | * is included in the core dump.  The final total reported | 
|  | * to our parent process when it calls wait4 will include | 
|  | * those sums as well as the little bit more time it takes | 
|  | * this and each other thread to finish dying after the | 
|  | * core dump synchronization phase. | 
|  | */ | 
|  | cputime_to_timeval(cputime_add(p->utime, p->signal->utime), | 
|  | &prstatus->pr_utime); | 
|  | cputime_to_timeval(cputime_add(p->stime, p->signal->stime), | 
|  | &prstatus->pr_stime); | 
|  | } else { | 
|  | cputime_to_timeval(p->utime, &prstatus->pr_utime); | 
|  | cputime_to_timeval(p->stime, &prstatus->pr_stime); | 
|  | } | 
|  | cputime_to_timeval(p->signal->cutime, &prstatus->pr_cutime); | 
|  | cputime_to_timeval(p->signal->cstime, &prstatus->pr_cstime); | 
|  | } | 
|  |  | 
|  | static int fill_psinfo(struct elf_prpsinfo *psinfo, struct task_struct *p, | 
|  | struct mm_struct *mm) | 
|  | { | 
|  | unsigned int i, len; | 
|  |  | 
|  | /* first copy the parameters from user space */ | 
|  | memset(psinfo, 0, sizeof(struct elf_prpsinfo)); | 
|  |  | 
|  | len = mm->arg_end - mm->arg_start; | 
|  | if (len >= ELF_PRARGSZ) | 
|  | len = ELF_PRARGSZ-1; | 
|  | if (copy_from_user(&psinfo->pr_psargs, | 
|  | (const char __user *)mm->arg_start, len)) | 
|  | return -EFAULT; | 
|  | for(i = 0; i < len; i++) | 
|  | if (psinfo->pr_psargs[i] == 0) | 
|  | psinfo->pr_psargs[i] = ' '; | 
|  | psinfo->pr_psargs[len] = 0; | 
|  |  | 
|  | psinfo->pr_pid = p->pid; | 
|  | psinfo->pr_ppid = p->parent->pid; | 
|  | psinfo->pr_pgrp = process_group(p); | 
|  | psinfo->pr_sid = process_session(p); | 
|  |  | 
|  | i = p->state ? ffz(~p->state) + 1 : 0; | 
|  | psinfo->pr_state = i; | 
|  | psinfo->pr_sname = (i > 5) ? '.' : "RSDTZW"[i]; | 
|  | psinfo->pr_zomb = psinfo->pr_sname == 'Z'; | 
|  | psinfo->pr_nice = task_nice(p); | 
|  | psinfo->pr_flag = p->flags; | 
|  | SET_UID(psinfo->pr_uid, p->uid); | 
|  | SET_GID(psinfo->pr_gid, p->gid); | 
|  | strncpy(psinfo->pr_fname, p->comm, sizeof(psinfo->pr_fname)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Here is the structure in which status of each thread is captured. */ | 
|  | struct elf_thread_status | 
|  | { | 
|  | struct list_head list; | 
|  | struct elf_prstatus prstatus;	/* NT_PRSTATUS */ | 
|  | elf_fpregset_t fpu;		/* NT_PRFPREG */ | 
|  | struct task_struct *thread; | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | elf_fpxregset_t xfpu;		/* NT_PRXFPREG */ | 
|  | #endif | 
|  | struct memelfnote notes[3]; | 
|  | int num_notes; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * In order to add the specific thread information for the elf file format, | 
|  | * we need to keep a linked list of every threads pr_status and then create | 
|  | * a single section for them in the final core file. | 
|  | */ | 
|  | static int elf_dump_thread_status(long signr, struct elf_thread_status *t) | 
|  | { | 
|  | int sz = 0; | 
|  | struct task_struct *p = t->thread; | 
|  | t->num_notes = 0; | 
|  |  | 
|  | fill_prstatus(&t->prstatus, p, signr); | 
|  | elf_core_copy_task_regs(p, &t->prstatus.pr_reg); | 
|  |  | 
|  | fill_note(&t->notes[0], "CORE", NT_PRSTATUS, sizeof(t->prstatus), | 
|  | &(t->prstatus)); | 
|  | t->num_notes++; | 
|  | sz += notesize(&t->notes[0]); | 
|  |  | 
|  | if ((t->prstatus.pr_fpvalid = elf_core_copy_task_fpregs(p, NULL, | 
|  | &t->fpu))) { | 
|  | fill_note(&t->notes[1], "CORE", NT_PRFPREG, sizeof(t->fpu), | 
|  | &(t->fpu)); | 
|  | t->num_notes++; | 
|  | sz += notesize(&t->notes[1]); | 
|  | } | 
|  |  | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | if (elf_core_copy_task_xfpregs(p, &t->xfpu)) { | 
|  | fill_note(&t->notes[2], "LINUX", NT_PRXFPREG, sizeof(t->xfpu), | 
|  | &t->xfpu); | 
|  | t->num_notes++; | 
|  | sz += notesize(&t->notes[2]); | 
|  | } | 
|  | #endif | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | static struct vm_area_struct *first_vma(struct task_struct *tsk, | 
|  | struct vm_area_struct *gate_vma) | 
|  | { | 
|  | struct vm_area_struct *ret = tsk->mm->mmap; | 
|  |  | 
|  | if (ret) | 
|  | return ret; | 
|  | return gate_vma; | 
|  | } | 
|  | /* | 
|  | * Helper function for iterating across a vma list.  It ensures that the caller | 
|  | * will visit `gate_vma' prior to terminating the search. | 
|  | */ | 
|  | static struct vm_area_struct *next_vma(struct vm_area_struct *this_vma, | 
|  | struct vm_area_struct *gate_vma) | 
|  | { | 
|  | struct vm_area_struct *ret; | 
|  |  | 
|  | ret = this_vma->vm_next; | 
|  | if (ret) | 
|  | return ret; | 
|  | if (this_vma == gate_vma) | 
|  | return NULL; | 
|  | return gate_vma; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Actual dumper | 
|  | * | 
|  | * This is a two-pass process; first we find the offsets of the bits, | 
|  | * and then they are actually written out.  If we run out of core limit | 
|  | * we just truncate. | 
|  | */ | 
|  | static int elf_core_dump(long signr, struct pt_regs *regs, struct file *file) | 
|  | { | 
|  | #define	NUM_NOTES	6 | 
|  | int has_dumped = 0; | 
|  | mm_segment_t fs; | 
|  | int segs; | 
|  | size_t size = 0; | 
|  | int i; | 
|  | struct vm_area_struct *vma, *gate_vma; | 
|  | struct elfhdr *elf = NULL; | 
|  | loff_t offset = 0, dataoff, foffset; | 
|  | unsigned long limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; | 
|  | int numnote; | 
|  | struct memelfnote *notes = NULL; | 
|  | struct elf_prstatus *prstatus = NULL;	/* NT_PRSTATUS */ | 
|  | struct elf_prpsinfo *psinfo = NULL;	/* NT_PRPSINFO */ | 
|  | struct task_struct *g, *p; | 
|  | LIST_HEAD(thread_list); | 
|  | struct list_head *t; | 
|  | elf_fpregset_t *fpu = NULL; | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | elf_fpxregset_t *xfpu = NULL; | 
|  | #endif | 
|  | int thread_status_size = 0; | 
|  | elf_addr_t *auxv; | 
|  | unsigned long mm_flags; | 
|  | #ifdef ELF_CORE_WRITE_EXTRA_NOTES | 
|  | int extra_notes_size; | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * We no longer stop all VM operations. | 
|  | * | 
|  | * This is because those proceses that could possibly change map_count | 
|  | * or the mmap / vma pages are now blocked in do_exit on current | 
|  | * finishing this core dump. | 
|  | * | 
|  | * Only ptrace can touch these memory addresses, but it doesn't change | 
|  | * the map_count or the pages allocated. So no possibility of crashing | 
|  | * exists while dumping the mm->vm_next areas to the core file. | 
|  | */ | 
|  |  | 
|  | /* alloc memory for large data structures: too large to be on stack */ | 
|  | elf = kmalloc(sizeof(*elf), GFP_KERNEL); | 
|  | if (!elf) | 
|  | goto cleanup; | 
|  | prstatus = kmalloc(sizeof(*prstatus), GFP_KERNEL); | 
|  | if (!prstatus) | 
|  | goto cleanup; | 
|  | psinfo = kmalloc(sizeof(*psinfo), GFP_KERNEL); | 
|  | if (!psinfo) | 
|  | goto cleanup; | 
|  | notes = kmalloc(NUM_NOTES * sizeof(struct memelfnote), GFP_KERNEL); | 
|  | if (!notes) | 
|  | goto cleanup; | 
|  | fpu = kmalloc(sizeof(*fpu), GFP_KERNEL); | 
|  | if (!fpu) | 
|  | goto cleanup; | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | xfpu = kmalloc(sizeof(*xfpu), GFP_KERNEL); | 
|  | if (!xfpu) | 
|  | goto cleanup; | 
|  | #endif | 
|  |  | 
|  | if (signr) { | 
|  | struct elf_thread_status *tmp; | 
|  | rcu_read_lock(); | 
|  | do_each_thread(g,p) | 
|  | if (current->mm == p->mm && current != p) { | 
|  | tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC); | 
|  | if (!tmp) { | 
|  | rcu_read_unlock(); | 
|  | goto cleanup; | 
|  | } | 
|  | tmp->thread = p; | 
|  | list_add(&tmp->list, &thread_list); | 
|  | } | 
|  | while_each_thread(g,p); | 
|  | rcu_read_unlock(); | 
|  | list_for_each(t, &thread_list) { | 
|  | struct elf_thread_status *tmp; | 
|  | int sz; | 
|  |  | 
|  | tmp = list_entry(t, struct elf_thread_status, list); | 
|  | sz = elf_dump_thread_status(signr, tmp); | 
|  | thread_status_size += sz; | 
|  | } | 
|  | } | 
|  | /* now collect the dump for the current */ | 
|  | memset(prstatus, 0, sizeof(*prstatus)); | 
|  | fill_prstatus(prstatus, current, signr); | 
|  | elf_core_copy_regs(&prstatus->pr_reg, regs); | 
|  |  | 
|  | segs = current->mm->map_count; | 
|  | #ifdef ELF_CORE_EXTRA_PHDRS | 
|  | segs += ELF_CORE_EXTRA_PHDRS; | 
|  | #endif | 
|  |  | 
|  | gate_vma = get_gate_vma(current); | 
|  | if (gate_vma != NULL) | 
|  | segs++; | 
|  |  | 
|  | /* Set up header */ | 
|  | fill_elf_header(elf, segs + 1);	/* including notes section */ | 
|  |  | 
|  | has_dumped = 1; | 
|  | current->flags |= PF_DUMPCORE; | 
|  |  | 
|  | /* | 
|  | * Set up the notes in similar form to SVR4 core dumps made | 
|  | * with info from their /proc. | 
|  | */ | 
|  |  | 
|  | fill_note(notes + 0, "CORE", NT_PRSTATUS, sizeof(*prstatus), prstatus); | 
|  | fill_psinfo(psinfo, current->group_leader, current->mm); | 
|  | fill_note(notes + 1, "CORE", NT_PRPSINFO, sizeof(*psinfo), psinfo); | 
|  |  | 
|  | numnote = 2; | 
|  |  | 
|  | auxv = (elf_addr_t *)current->mm->saved_auxv; | 
|  |  | 
|  | i = 0; | 
|  | do | 
|  | i += 2; | 
|  | while (auxv[i - 2] != AT_NULL); | 
|  | fill_note(¬es[numnote++], "CORE", NT_AUXV, | 
|  | i * sizeof(elf_addr_t), auxv); | 
|  |  | 
|  | /* Try to dump the FPU. */ | 
|  | if ((prstatus->pr_fpvalid = | 
|  | elf_core_copy_task_fpregs(current, regs, fpu))) | 
|  | fill_note(notes + numnote++, | 
|  | "CORE", NT_PRFPREG, sizeof(*fpu), fpu); | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | if (elf_core_copy_task_xfpregs(current, xfpu)) | 
|  | fill_note(notes + numnote++, | 
|  | "LINUX", NT_PRXFPREG, sizeof(*xfpu), xfpu); | 
|  | #endif | 
|  |  | 
|  | fs = get_fs(); | 
|  | set_fs(KERNEL_DS); | 
|  |  | 
|  | DUMP_WRITE(elf, sizeof(*elf)); | 
|  | offset += sizeof(*elf);				/* Elf header */ | 
|  | offset += (segs + 1) * sizeof(struct elf_phdr); /* Program headers */ | 
|  | foffset = offset; | 
|  |  | 
|  | /* Write notes phdr entry */ | 
|  | { | 
|  | struct elf_phdr phdr; | 
|  | int sz = 0; | 
|  |  | 
|  | for (i = 0; i < numnote; i++) | 
|  | sz += notesize(notes + i); | 
|  |  | 
|  | sz += thread_status_size; | 
|  |  | 
|  | #ifdef ELF_CORE_WRITE_EXTRA_NOTES | 
|  | extra_notes_size = ELF_CORE_EXTRA_NOTES_SIZE; | 
|  | sz += extra_notes_size; | 
|  | #endif | 
|  |  | 
|  | fill_elf_note_phdr(&phdr, sz, offset); | 
|  | offset += sz; | 
|  | DUMP_WRITE(&phdr, sizeof(phdr)); | 
|  | } | 
|  |  | 
|  | dataoff = offset = roundup(offset, ELF_EXEC_PAGESIZE); | 
|  |  | 
|  | /* | 
|  | * We must use the same mm->flags while dumping core to avoid | 
|  | * inconsistency between the program headers and bodies, otherwise an | 
|  | * unusable core file can be generated. | 
|  | */ | 
|  | mm_flags = current->mm->flags; | 
|  |  | 
|  | /* Write program headers for segments dump */ | 
|  | for (vma = first_vma(current, gate_vma); vma != NULL; | 
|  | vma = next_vma(vma, gate_vma)) { | 
|  | struct elf_phdr phdr; | 
|  | size_t sz; | 
|  |  | 
|  | sz = vma->vm_end - vma->vm_start; | 
|  |  | 
|  | phdr.p_type = PT_LOAD; | 
|  | phdr.p_offset = offset; | 
|  | phdr.p_vaddr = vma->vm_start; | 
|  | phdr.p_paddr = 0; | 
|  | phdr.p_filesz = maydump(vma, mm_flags) ? sz : 0; | 
|  | phdr.p_memsz = sz; | 
|  | offset += phdr.p_filesz; | 
|  | phdr.p_flags = vma->vm_flags & VM_READ ? PF_R : 0; | 
|  | if (vma->vm_flags & VM_WRITE) | 
|  | phdr.p_flags |= PF_W; | 
|  | if (vma->vm_flags & VM_EXEC) | 
|  | phdr.p_flags |= PF_X; | 
|  | phdr.p_align = ELF_EXEC_PAGESIZE; | 
|  |  | 
|  | DUMP_WRITE(&phdr, sizeof(phdr)); | 
|  | } | 
|  |  | 
|  | #ifdef ELF_CORE_WRITE_EXTRA_PHDRS | 
|  | ELF_CORE_WRITE_EXTRA_PHDRS; | 
|  | #endif | 
|  |  | 
|  | /* write out the notes section */ | 
|  | for (i = 0; i < numnote; i++) | 
|  | if (!writenote(notes + i, file, &foffset)) | 
|  | goto end_coredump; | 
|  |  | 
|  | #ifdef ELF_CORE_WRITE_EXTRA_NOTES | 
|  | ELF_CORE_WRITE_EXTRA_NOTES; | 
|  | foffset += extra_notes_size; | 
|  | #endif | 
|  |  | 
|  | /* write out the thread status notes section */ | 
|  | list_for_each(t, &thread_list) { | 
|  | struct elf_thread_status *tmp = | 
|  | list_entry(t, struct elf_thread_status, list); | 
|  |  | 
|  | for (i = 0; i < tmp->num_notes; i++) | 
|  | if (!writenote(&tmp->notes[i], file, &foffset)) | 
|  | goto end_coredump; | 
|  | } | 
|  |  | 
|  | /* Align to page */ | 
|  | DUMP_SEEK(dataoff - foffset); | 
|  |  | 
|  | for (vma = first_vma(current, gate_vma); vma != NULL; | 
|  | vma = next_vma(vma, gate_vma)) { | 
|  | unsigned long addr; | 
|  |  | 
|  | if (!maydump(vma, mm_flags)) | 
|  | continue; | 
|  |  | 
|  | for (addr = vma->vm_start; | 
|  | addr < vma->vm_end; | 
|  | addr += PAGE_SIZE) { | 
|  | struct page *page; | 
|  | struct vm_area_struct *vma; | 
|  |  | 
|  | if (get_user_pages(current, current->mm, addr, 1, 0, 1, | 
|  | &page, &vma) <= 0) { | 
|  | DUMP_SEEK(PAGE_SIZE); | 
|  | } else { | 
|  | if (page == ZERO_PAGE(addr)) { | 
|  | if (!dump_seek(file, PAGE_SIZE)) { | 
|  | page_cache_release(page); | 
|  | goto end_coredump; | 
|  | } | 
|  | } else { | 
|  | void *kaddr; | 
|  | flush_cache_page(vma, addr, | 
|  | page_to_pfn(page)); | 
|  | kaddr = kmap(page); | 
|  | if ((size += PAGE_SIZE) > limit || | 
|  | !dump_write(file, kaddr, | 
|  | PAGE_SIZE)) { | 
|  | kunmap(page); | 
|  | page_cache_release(page); | 
|  | goto end_coredump; | 
|  | } | 
|  | kunmap(page); | 
|  | } | 
|  | page_cache_release(page); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef ELF_CORE_WRITE_EXTRA_DATA | 
|  | ELF_CORE_WRITE_EXTRA_DATA; | 
|  | #endif | 
|  |  | 
|  | end_coredump: | 
|  | set_fs(fs); | 
|  |  | 
|  | cleanup: | 
|  | while (!list_empty(&thread_list)) { | 
|  | struct list_head *tmp = thread_list.next; | 
|  | list_del(tmp); | 
|  | kfree(list_entry(tmp, struct elf_thread_status, list)); | 
|  | } | 
|  |  | 
|  | kfree(elf); | 
|  | kfree(prstatus); | 
|  | kfree(psinfo); | 
|  | kfree(notes); | 
|  | kfree(fpu); | 
|  | #ifdef ELF_CORE_COPY_XFPREGS | 
|  | kfree(xfpu); | 
|  | #endif | 
|  | return has_dumped; | 
|  | #undef NUM_NOTES | 
|  | } | 
|  |  | 
|  | #endif		/* USE_ELF_CORE_DUMP */ | 
|  |  | 
|  | static int __init init_elf_binfmt(void) | 
|  | { | 
|  | return register_binfmt(&elf_format); | 
|  | } | 
|  |  | 
|  | static void __exit exit_elf_binfmt(void) | 
|  | { | 
|  | /* Remove the COFF and ELF loaders. */ | 
|  | unregister_binfmt(&elf_format); | 
|  | } | 
|  |  | 
|  | core_initcall(init_elf_binfmt); | 
|  | module_exit(exit_elf_binfmt); | 
|  | MODULE_LICENSE("GPL"); |