|  | /* | 
|  | * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public Licens | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111- | 
|  | * | 
|  | */ | 
|  | #include <linux/mm.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mempool.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/blktrace_api.h> | 
|  | #include <scsi/sg.h>		/* for struct sg_iovec */ | 
|  |  | 
|  | #define BIO_POOL_SIZE 2 | 
|  |  | 
|  | static struct kmem_cache *bio_slab __read_mostly; | 
|  |  | 
|  | #define BIOVEC_NR_POOLS 6 | 
|  |  | 
|  | /* | 
|  | * a small number of entries is fine, not going to be performance critical. | 
|  | * basically we just need to survive | 
|  | */ | 
|  | #define BIO_SPLIT_ENTRIES 2 | 
|  | mempool_t *bio_split_pool __read_mostly; | 
|  |  | 
|  | struct biovec_slab { | 
|  | int nr_vecs; | 
|  | char *name; | 
|  | struct kmem_cache *slab; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * if you change this list, also change bvec_alloc or things will | 
|  | * break badly! cannot be bigger than what you can fit into an | 
|  | * unsigned short | 
|  | */ | 
|  |  | 
|  | #define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) } | 
|  | static struct biovec_slab bvec_slabs[BIOVEC_NR_POOLS] __read_mostly = { | 
|  | BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES), | 
|  | }; | 
|  | #undef BV | 
|  |  | 
|  | /* | 
|  | * bio_set is used to allow other portions of the IO system to | 
|  | * allocate their own private memory pools for bio and iovec structures. | 
|  | * These memory pools in turn all allocate from the bio_slab | 
|  | * and the bvec_slabs[]. | 
|  | */ | 
|  | struct bio_set { | 
|  | mempool_t *bio_pool; | 
|  | mempool_t *bvec_pools[BIOVEC_NR_POOLS]; | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * fs_bio_set is the bio_set containing bio and iovec memory pools used by | 
|  | * IO code that does not need private memory pools. | 
|  | */ | 
|  | static struct bio_set *fs_bio_set; | 
|  |  | 
|  | static inline struct bio_vec *bvec_alloc_bs(gfp_t gfp_mask, int nr, unsigned long *idx, struct bio_set *bs) | 
|  | { | 
|  | struct bio_vec *bvl; | 
|  |  | 
|  | /* | 
|  | * see comment near bvec_array define! | 
|  | */ | 
|  | switch (nr) { | 
|  | case   1        : *idx = 0; break; | 
|  | case   2 ...   4: *idx = 1; break; | 
|  | case   5 ...  16: *idx = 2; break; | 
|  | case  17 ...  64: *idx = 3; break; | 
|  | case  65 ... 128: *idx = 4; break; | 
|  | case 129 ... BIO_MAX_PAGES: *idx = 5; break; | 
|  | default: | 
|  | return NULL; | 
|  | } | 
|  | /* | 
|  | * idx now points to the pool we want to allocate from | 
|  | */ | 
|  |  | 
|  | bvl = mempool_alloc(bs->bvec_pools[*idx], gfp_mask); | 
|  | if (bvl) { | 
|  | struct biovec_slab *bp = bvec_slabs + *idx; | 
|  |  | 
|  | memset(bvl, 0, bp->nr_vecs * sizeof(struct bio_vec)); | 
|  | } | 
|  |  | 
|  | return bvl; | 
|  | } | 
|  |  | 
|  | void bio_free(struct bio *bio, struct bio_set *bio_set) | 
|  | { | 
|  | const int pool_idx = BIO_POOL_IDX(bio); | 
|  |  | 
|  | BIO_BUG_ON(pool_idx >= BIOVEC_NR_POOLS); | 
|  |  | 
|  | mempool_free(bio->bi_io_vec, bio_set->bvec_pools[pool_idx]); | 
|  | mempool_free(bio, bio_set->bio_pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * default destructor for a bio allocated with bio_alloc_bioset() | 
|  | */ | 
|  | static void bio_fs_destructor(struct bio *bio) | 
|  | { | 
|  | bio_free(bio, fs_bio_set); | 
|  | } | 
|  |  | 
|  | void bio_init(struct bio *bio) | 
|  | { | 
|  | bio->bi_next = NULL; | 
|  | bio->bi_bdev = NULL; | 
|  | bio->bi_flags = 1 << BIO_UPTODATE; | 
|  | bio->bi_rw = 0; | 
|  | bio->bi_vcnt = 0; | 
|  | bio->bi_idx = 0; | 
|  | bio->bi_phys_segments = 0; | 
|  | bio->bi_hw_segments = 0; | 
|  | bio->bi_hw_front_size = 0; | 
|  | bio->bi_hw_back_size = 0; | 
|  | bio->bi_size = 0; | 
|  | bio->bi_max_vecs = 0; | 
|  | bio->bi_end_io = NULL; | 
|  | atomic_set(&bio->bi_cnt, 1); | 
|  | bio->bi_private = NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bio_alloc_bioset - allocate a bio for I/O | 
|  | * @gfp_mask:   the GFP_ mask given to the slab allocator | 
|  | * @nr_iovecs:	number of iovecs to pre-allocate | 
|  | * @bs:		the bio_set to allocate from | 
|  | * | 
|  | * Description: | 
|  | *   bio_alloc_bioset will first try it's on mempool to satisfy the allocation. | 
|  | *   If %__GFP_WAIT is set then we will block on the internal pool waiting | 
|  | *   for a &struct bio to become free. | 
|  | * | 
|  | *   allocate bio and iovecs from the memory pools specified by the | 
|  | *   bio_set structure. | 
|  | **/ | 
|  | struct bio *bio_alloc_bioset(gfp_t gfp_mask, int nr_iovecs, struct bio_set *bs) | 
|  | { | 
|  | struct bio *bio = mempool_alloc(bs->bio_pool, gfp_mask); | 
|  |  | 
|  | if (likely(bio)) { | 
|  | struct bio_vec *bvl = NULL; | 
|  |  | 
|  | bio_init(bio); | 
|  | if (likely(nr_iovecs)) { | 
|  | unsigned long idx = 0; /* shut up gcc */ | 
|  |  | 
|  | bvl = bvec_alloc_bs(gfp_mask, nr_iovecs, &idx, bs); | 
|  | if (unlikely(!bvl)) { | 
|  | mempool_free(bio, bs->bio_pool); | 
|  | bio = NULL; | 
|  | goto out; | 
|  | } | 
|  | bio->bi_flags |= idx << BIO_POOL_OFFSET; | 
|  | bio->bi_max_vecs = bvec_slabs[idx].nr_vecs; | 
|  | } | 
|  | bio->bi_io_vec = bvl; | 
|  | } | 
|  | out: | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | struct bio *bio_alloc(gfp_t gfp_mask, int nr_iovecs) | 
|  | { | 
|  | struct bio *bio = bio_alloc_bioset(gfp_mask, nr_iovecs, fs_bio_set); | 
|  |  | 
|  | if (bio) | 
|  | bio->bi_destructor = bio_fs_destructor; | 
|  |  | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | void zero_fill_bio(struct bio *bio) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct bio_vec *bv; | 
|  | int i; | 
|  |  | 
|  | bio_for_each_segment(bv, bio, i) { | 
|  | char *data = bvec_kmap_irq(bv, &flags); | 
|  | memset(data, 0, bv->bv_len); | 
|  | flush_dcache_page(bv->bv_page); | 
|  | bvec_kunmap_irq(data, &flags); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(zero_fill_bio); | 
|  |  | 
|  | /** | 
|  | * bio_put - release a reference to a bio | 
|  | * @bio:   bio to release reference to | 
|  | * | 
|  | * Description: | 
|  | *   Put a reference to a &struct bio, either one you have gotten with | 
|  | *   bio_alloc or bio_get. The last put of a bio will free it. | 
|  | **/ | 
|  | void bio_put(struct bio *bio) | 
|  | { | 
|  | BIO_BUG_ON(!atomic_read(&bio->bi_cnt)); | 
|  |  | 
|  | /* | 
|  | * last put frees it | 
|  | */ | 
|  | if (atomic_dec_and_test(&bio->bi_cnt)) { | 
|  | bio->bi_next = NULL; | 
|  | bio->bi_destructor(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | inline int bio_phys_segments(request_queue_t *q, struct bio *bio) | 
|  | { | 
|  | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | 
|  | blk_recount_segments(q, bio); | 
|  |  | 
|  | return bio->bi_phys_segments; | 
|  | } | 
|  |  | 
|  | inline int bio_hw_segments(request_queue_t *q, struct bio *bio) | 
|  | { | 
|  | if (unlikely(!bio_flagged(bio, BIO_SEG_VALID))) | 
|  | blk_recount_segments(q, bio); | 
|  |  | 
|  | return bio->bi_hw_segments; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * 	__bio_clone	-	clone a bio | 
|  | * 	@bio: destination bio | 
|  | * 	@bio_src: bio to clone | 
|  | * | 
|  | *	Clone a &bio. Caller will own the returned bio, but not | 
|  | *	the actual data it points to. Reference count of returned | 
|  | * 	bio will be one. | 
|  | */ | 
|  | void __bio_clone(struct bio *bio, struct bio *bio_src) | 
|  | { | 
|  | request_queue_t *q = bdev_get_queue(bio_src->bi_bdev); | 
|  |  | 
|  | memcpy(bio->bi_io_vec, bio_src->bi_io_vec, | 
|  | bio_src->bi_max_vecs * sizeof(struct bio_vec)); | 
|  |  | 
|  | bio->bi_sector = bio_src->bi_sector; | 
|  | bio->bi_bdev = bio_src->bi_bdev; | 
|  | bio->bi_flags |= 1 << BIO_CLONED; | 
|  | bio->bi_rw = bio_src->bi_rw; | 
|  | bio->bi_vcnt = bio_src->bi_vcnt; | 
|  | bio->bi_size = bio_src->bi_size; | 
|  | bio->bi_idx = bio_src->bi_idx; | 
|  | bio_phys_segments(q, bio); | 
|  | bio_hw_segments(q, bio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_clone	-	clone a bio | 
|  | *	@bio: bio to clone | 
|  | *	@gfp_mask: allocation priority | 
|  | * | 
|  | * 	Like __bio_clone, only also allocates the returned bio | 
|  | */ | 
|  | struct bio *bio_clone(struct bio *bio, gfp_t gfp_mask) | 
|  | { | 
|  | struct bio *b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs, fs_bio_set); | 
|  |  | 
|  | if (b) { | 
|  | b->bi_destructor = bio_fs_destructor; | 
|  | __bio_clone(b, bio); | 
|  | } | 
|  |  | 
|  | return b; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_get_nr_vecs		- return approx number of vecs | 
|  | *	@bdev:  I/O target | 
|  | * | 
|  | *	Return the approximate number of pages we can send to this target. | 
|  | *	There's no guarantee that you will be able to fit this number of pages | 
|  | *	into a bio, it does not account for dynamic restrictions that vary | 
|  | *	on offset. | 
|  | */ | 
|  | int bio_get_nr_vecs(struct block_device *bdev) | 
|  | { | 
|  | request_queue_t *q = bdev_get_queue(bdev); | 
|  | int nr_pages; | 
|  |  | 
|  | nr_pages = ((q->max_sectors << 9) + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | if (nr_pages > q->max_phys_segments) | 
|  | nr_pages = q->max_phys_segments; | 
|  | if (nr_pages > q->max_hw_segments) | 
|  | nr_pages = q->max_hw_segments; | 
|  |  | 
|  | return nr_pages; | 
|  | } | 
|  |  | 
|  | static int __bio_add_page(request_queue_t *q, struct bio *bio, struct page | 
|  | *page, unsigned int len, unsigned int offset, | 
|  | unsigned short max_sectors) | 
|  | { | 
|  | int retried_segments = 0; | 
|  | struct bio_vec *bvec; | 
|  |  | 
|  | /* | 
|  | * cloned bio must not modify vec list | 
|  | */ | 
|  | if (unlikely(bio_flagged(bio, BIO_CLONED))) | 
|  | return 0; | 
|  |  | 
|  | if (((bio->bi_size + len) >> 9) > max_sectors) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * For filesystems with a blocksize smaller than the pagesize | 
|  | * we will often be called with the same page as last time and | 
|  | * a consecutive offset.  Optimize this special case. | 
|  | */ | 
|  | if (bio->bi_vcnt > 0) { | 
|  | struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; | 
|  |  | 
|  | if (page == prev->bv_page && | 
|  | offset == prev->bv_offset + prev->bv_len) { | 
|  | prev->bv_len += len; | 
|  | if (q->merge_bvec_fn && | 
|  | q->merge_bvec_fn(q, bio, prev) < len) { | 
|  | prev->bv_len -= len; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | goto done; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (bio->bi_vcnt >= bio->bi_max_vecs) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * we might lose a segment or two here, but rather that than | 
|  | * make this too complex. | 
|  | */ | 
|  |  | 
|  | while (bio->bi_phys_segments >= q->max_phys_segments | 
|  | || bio->bi_hw_segments >= q->max_hw_segments | 
|  | || BIOVEC_VIRT_OVERSIZE(bio->bi_size)) { | 
|  |  | 
|  | if (retried_segments) | 
|  | return 0; | 
|  |  | 
|  | retried_segments = 1; | 
|  | blk_recount_segments(q, bio); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * setup the new entry, we might clear it again later if we | 
|  | * cannot add the page | 
|  | */ | 
|  | bvec = &bio->bi_io_vec[bio->bi_vcnt]; | 
|  | bvec->bv_page = page; | 
|  | bvec->bv_len = len; | 
|  | bvec->bv_offset = offset; | 
|  |  | 
|  | /* | 
|  | * if queue has other restrictions (eg varying max sector size | 
|  | * depending on offset), it can specify a merge_bvec_fn in the | 
|  | * queue to get further control | 
|  | */ | 
|  | if (q->merge_bvec_fn) { | 
|  | /* | 
|  | * merge_bvec_fn() returns number of bytes it can accept | 
|  | * at this offset | 
|  | */ | 
|  | if (q->merge_bvec_fn(q, bio, bvec) < len) { | 
|  | bvec->bv_page = NULL; | 
|  | bvec->bv_len = 0; | 
|  | bvec->bv_offset = 0; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we may be able to merge these biovecs, force a recount */ | 
|  | if (bio->bi_vcnt && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec) || | 
|  | BIOVEC_VIRT_MERGEABLE(bvec-1, bvec))) | 
|  | bio->bi_flags &= ~(1 << BIO_SEG_VALID); | 
|  |  | 
|  | bio->bi_vcnt++; | 
|  | bio->bi_phys_segments++; | 
|  | bio->bi_hw_segments++; | 
|  | done: | 
|  | bio->bi_size += len; | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_add_pc_page	-	attempt to add page to bio | 
|  | *	@q: the target queue | 
|  | *	@bio: destination bio | 
|  | *	@page: page to add | 
|  | *	@len: vec entry length | 
|  | *	@offset: vec entry offset | 
|  | * | 
|  | *	Attempt to add a page to the bio_vec maplist. This can fail for a | 
|  | *	number of reasons, such as the bio being full or target block | 
|  | *	device limitations. The target block device must allow bio's | 
|  | *      smaller than PAGE_SIZE, so it is always possible to add a single | 
|  | *      page to an empty bio. This should only be used by REQ_PC bios. | 
|  | */ | 
|  | int bio_add_pc_page(request_queue_t *q, struct bio *bio, struct page *page, | 
|  | unsigned int len, unsigned int offset) | 
|  | { | 
|  | return __bio_add_page(q, bio, page, len, offset, q->max_hw_sectors); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_add_page	-	attempt to add page to bio | 
|  | *	@bio: destination bio | 
|  | *	@page: page to add | 
|  | *	@len: vec entry length | 
|  | *	@offset: vec entry offset | 
|  | * | 
|  | *	Attempt to add a page to the bio_vec maplist. This can fail for a | 
|  | *	number of reasons, such as the bio being full or target block | 
|  | *	device limitations. The target block device must allow bio's | 
|  | *      smaller than PAGE_SIZE, so it is always possible to add a single | 
|  | *      page to an empty bio. | 
|  | */ | 
|  | int bio_add_page(struct bio *bio, struct page *page, unsigned int len, | 
|  | unsigned int offset) | 
|  | { | 
|  | struct request_queue *q = bdev_get_queue(bio->bi_bdev); | 
|  | return __bio_add_page(q, bio, page, len, offset, q->max_sectors); | 
|  | } | 
|  |  | 
|  | struct bio_map_data { | 
|  | struct bio_vec *iovecs; | 
|  | void __user *userptr; | 
|  | }; | 
|  |  | 
|  | static void bio_set_map_data(struct bio_map_data *bmd, struct bio *bio) | 
|  | { | 
|  | memcpy(bmd->iovecs, bio->bi_io_vec, sizeof(struct bio_vec) * bio->bi_vcnt); | 
|  | bio->bi_private = bmd; | 
|  | } | 
|  |  | 
|  | static void bio_free_map_data(struct bio_map_data *bmd) | 
|  | { | 
|  | kfree(bmd->iovecs); | 
|  | kfree(bmd); | 
|  | } | 
|  |  | 
|  | static struct bio_map_data *bio_alloc_map_data(int nr_segs) | 
|  | { | 
|  | struct bio_map_data *bmd = kmalloc(sizeof(*bmd), GFP_KERNEL); | 
|  |  | 
|  | if (!bmd) | 
|  | return NULL; | 
|  |  | 
|  | bmd->iovecs = kmalloc(sizeof(struct bio_vec) * nr_segs, GFP_KERNEL); | 
|  | if (bmd->iovecs) | 
|  | return bmd; | 
|  |  | 
|  | kfree(bmd); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_uncopy_user	-	finish previously mapped bio | 
|  | *	@bio: bio being terminated | 
|  | * | 
|  | *	Free pages allocated from bio_copy_user() and write back data | 
|  | *	to user space in case of a read. | 
|  | */ | 
|  | int bio_uncopy_user(struct bio *bio) | 
|  | { | 
|  | struct bio_map_data *bmd = bio->bi_private; | 
|  | const int read = bio_data_dir(bio) == READ; | 
|  | struct bio_vec *bvec; | 
|  | int i, ret = 0; | 
|  |  | 
|  | __bio_for_each_segment(bvec, bio, i, 0) { | 
|  | char *addr = page_address(bvec->bv_page); | 
|  | unsigned int len = bmd->iovecs[i].bv_len; | 
|  |  | 
|  | if (read && !ret && copy_to_user(bmd->userptr, addr, len)) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | __free_page(bvec->bv_page); | 
|  | bmd->userptr += len; | 
|  | } | 
|  | bio_free_map_data(bmd); | 
|  | bio_put(bio); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_copy_user	-	copy user data to bio | 
|  | *	@q: destination block queue | 
|  | *	@uaddr: start of user address | 
|  | *	@len: length in bytes | 
|  | *	@write_to_vm: bool indicating writing to pages or not | 
|  | * | 
|  | *	Prepares and returns a bio for indirect user io, bouncing data | 
|  | *	to/from kernel pages as necessary. Must be paired with | 
|  | *	call bio_uncopy_user() on io completion. | 
|  | */ | 
|  | struct bio *bio_copy_user(request_queue_t *q, unsigned long uaddr, | 
|  | unsigned int len, int write_to_vm) | 
|  | { | 
|  | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | unsigned long start = uaddr >> PAGE_SHIFT; | 
|  | struct bio_map_data *bmd; | 
|  | struct bio_vec *bvec; | 
|  | struct page *page; | 
|  | struct bio *bio; | 
|  | int i, ret; | 
|  |  | 
|  | bmd = bio_alloc_map_data(end - start); | 
|  | if (!bmd) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | bmd->userptr = (void __user *) uaddr; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | bio = bio_alloc(GFP_KERNEL, end - start); | 
|  | if (!bio) | 
|  | goto out_bmd; | 
|  |  | 
|  | bio->bi_rw |= (!write_to_vm << BIO_RW); | 
|  |  | 
|  | ret = 0; | 
|  | while (len) { | 
|  | unsigned int bytes = PAGE_SIZE; | 
|  |  | 
|  | if (bytes > len) | 
|  | bytes = len; | 
|  |  | 
|  | page = alloc_page(q->bounce_gfp | GFP_KERNEL); | 
|  | if (!page) { | 
|  | ret = -ENOMEM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes) | 
|  | break; | 
|  |  | 
|  | len -= bytes; | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | goto cleanup; | 
|  |  | 
|  | /* | 
|  | * success | 
|  | */ | 
|  | if (!write_to_vm) { | 
|  | char __user *p = (char __user *) uaddr; | 
|  |  | 
|  | /* | 
|  | * for a write, copy in data to kernel pages | 
|  | */ | 
|  | ret = -EFAULT; | 
|  | bio_for_each_segment(bvec, bio, i) { | 
|  | char *addr = page_address(bvec->bv_page); | 
|  |  | 
|  | if (copy_from_user(addr, p, bvec->bv_len)) | 
|  | goto cleanup; | 
|  | p += bvec->bv_len; | 
|  | } | 
|  | } | 
|  |  | 
|  | bio_set_map_data(bmd, bio); | 
|  | return bio; | 
|  | cleanup: | 
|  | bio_for_each_segment(bvec, bio, i) | 
|  | __free_page(bvec->bv_page); | 
|  |  | 
|  | bio_put(bio); | 
|  | out_bmd: | 
|  | bio_free_map_data(bmd); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | static struct bio *__bio_map_user_iov(request_queue_t *q, | 
|  | struct block_device *bdev, | 
|  | struct sg_iovec *iov, int iov_count, | 
|  | int write_to_vm) | 
|  | { | 
|  | int i, j; | 
|  | int nr_pages = 0; | 
|  | struct page **pages; | 
|  | struct bio *bio; | 
|  | int cur_page = 0; | 
|  | int ret, offset; | 
|  |  | 
|  | for (i = 0; i < iov_count; i++) { | 
|  | unsigned long uaddr = (unsigned long)iov[i].iov_base; | 
|  | unsigned long len = iov[i].iov_len; | 
|  | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | unsigned long start = uaddr >> PAGE_SHIFT; | 
|  |  | 
|  | nr_pages += end - start; | 
|  | /* | 
|  | * buffer must be aligned to at least hardsector size for now | 
|  | */ | 
|  | if (uaddr & queue_dma_alignment(q)) | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | if (!nr_pages) | 
|  | return ERR_PTR(-EINVAL); | 
|  |  | 
|  | bio = bio_alloc(GFP_KERNEL, nr_pages); | 
|  | if (!bio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  | pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); | 
|  | if (!pages) | 
|  | goto out; | 
|  |  | 
|  | for (i = 0; i < iov_count; i++) { | 
|  | unsigned long uaddr = (unsigned long)iov[i].iov_base; | 
|  | unsigned long len = iov[i].iov_len; | 
|  | unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | unsigned long start = uaddr >> PAGE_SHIFT; | 
|  | const int local_nr_pages = end - start; | 
|  | const int page_limit = cur_page + local_nr_pages; | 
|  |  | 
|  | down_read(¤t->mm->mmap_sem); | 
|  | ret = get_user_pages(current, current->mm, uaddr, | 
|  | local_nr_pages, | 
|  | write_to_vm, 0, &pages[cur_page], NULL); | 
|  | up_read(¤t->mm->mmap_sem); | 
|  |  | 
|  | if (ret < local_nr_pages) { | 
|  | ret = -EFAULT; | 
|  | goto out_unmap; | 
|  | } | 
|  |  | 
|  | offset = uaddr & ~PAGE_MASK; | 
|  | for (j = cur_page; j < page_limit; j++) { | 
|  | unsigned int bytes = PAGE_SIZE - offset; | 
|  |  | 
|  | if (len <= 0) | 
|  | break; | 
|  |  | 
|  | if (bytes > len) | 
|  | bytes = len; | 
|  |  | 
|  | /* | 
|  | * sorry... | 
|  | */ | 
|  | if (bio_add_pc_page(q, bio, pages[j], bytes, offset) < | 
|  | bytes) | 
|  | break; | 
|  |  | 
|  | len -= bytes; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | cur_page = j; | 
|  | /* | 
|  | * release the pages we didn't map into the bio, if any | 
|  | */ | 
|  | while (j < page_limit) | 
|  | page_cache_release(pages[j++]); | 
|  | } | 
|  |  | 
|  | kfree(pages); | 
|  |  | 
|  | /* | 
|  | * set data direction, and check if mapped pages need bouncing | 
|  | */ | 
|  | if (!write_to_vm) | 
|  | bio->bi_rw |= (1 << BIO_RW); | 
|  |  | 
|  | bio->bi_bdev = bdev; | 
|  | bio->bi_flags |= (1 << BIO_USER_MAPPED); | 
|  | return bio; | 
|  |  | 
|  | out_unmap: | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | if(!pages[i]) | 
|  | break; | 
|  | page_cache_release(pages[i]); | 
|  | } | 
|  | out: | 
|  | kfree(pages); | 
|  | bio_put(bio); | 
|  | return ERR_PTR(ret); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_map_user	-	map user address into bio | 
|  | *	@q: the request_queue_t for the bio | 
|  | *	@bdev: destination block device | 
|  | *	@uaddr: start of user address | 
|  | *	@len: length in bytes | 
|  | *	@write_to_vm: bool indicating writing to pages or not | 
|  | * | 
|  | *	Map the user space address into a bio suitable for io to a block | 
|  | *	device. Returns an error pointer in case of error. | 
|  | */ | 
|  | struct bio *bio_map_user(request_queue_t *q, struct block_device *bdev, | 
|  | unsigned long uaddr, unsigned int len, int write_to_vm) | 
|  | { | 
|  | struct sg_iovec iov; | 
|  |  | 
|  | iov.iov_base = (void __user *)uaddr; | 
|  | iov.iov_len = len; | 
|  |  | 
|  | return bio_map_user_iov(q, bdev, &iov, 1, write_to_vm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_map_user_iov - map user sg_iovec table into bio | 
|  | *	@q: the request_queue_t for the bio | 
|  | *	@bdev: destination block device | 
|  | *	@iov:	the iovec. | 
|  | *	@iov_count: number of elements in the iovec | 
|  | *	@write_to_vm: bool indicating writing to pages or not | 
|  | * | 
|  | *	Map the user space address into a bio suitable for io to a block | 
|  | *	device. Returns an error pointer in case of error. | 
|  | */ | 
|  | struct bio *bio_map_user_iov(request_queue_t *q, struct block_device *bdev, | 
|  | struct sg_iovec *iov, int iov_count, | 
|  | int write_to_vm) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = __bio_map_user_iov(q, bdev, iov, iov_count, write_to_vm); | 
|  |  | 
|  | if (IS_ERR(bio)) | 
|  | return bio; | 
|  |  | 
|  | /* | 
|  | * subtle -- if __bio_map_user() ended up bouncing a bio, | 
|  | * it would normally disappear when its bi_end_io is run. | 
|  | * however, we need it for the unmap, so grab an extra | 
|  | * reference to it | 
|  | */ | 
|  | bio_get(bio); | 
|  |  | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | static void __bio_unmap_user(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * make sure we dirty pages we wrote to | 
|  | */ | 
|  | __bio_for_each_segment(bvec, bio, i, 0) { | 
|  | if (bio_data_dir(bio) == READ) | 
|  | set_page_dirty_lock(bvec->bv_page); | 
|  |  | 
|  | page_cache_release(bvec->bv_page); | 
|  | } | 
|  |  | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_unmap_user	-	unmap a bio | 
|  | *	@bio:		the bio being unmapped | 
|  | * | 
|  | *	Unmap a bio previously mapped by bio_map_user(). Must be called with | 
|  | *	a process context. | 
|  | * | 
|  | *	bio_unmap_user() may sleep. | 
|  | */ | 
|  | void bio_unmap_user(struct bio *bio) | 
|  | { | 
|  | __bio_unmap_user(bio); | 
|  | bio_put(bio); | 
|  | } | 
|  |  | 
|  | static int bio_map_kern_endio(struct bio *bio, unsigned int bytes_done, int err) | 
|  | { | 
|  | if (bio->bi_size) | 
|  | return 1; | 
|  |  | 
|  | bio_put(bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct bio *__bio_map_kern(request_queue_t *q, void *data, | 
|  | unsigned int len, gfp_t gfp_mask) | 
|  | { | 
|  | unsigned long kaddr = (unsigned long)data; | 
|  | unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
|  | unsigned long start = kaddr >> PAGE_SHIFT; | 
|  | const int nr_pages = end - start; | 
|  | int offset, i; | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = bio_alloc(gfp_mask, nr_pages); | 
|  | if (!bio) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | offset = offset_in_page(kaddr); | 
|  | for (i = 0; i < nr_pages; i++) { | 
|  | unsigned int bytes = PAGE_SIZE - offset; | 
|  |  | 
|  | if (len <= 0) | 
|  | break; | 
|  |  | 
|  | if (bytes > len) | 
|  | bytes = len; | 
|  |  | 
|  | if (bio_add_pc_page(q, bio, virt_to_page(data), bytes, | 
|  | offset) < bytes) | 
|  | break; | 
|  |  | 
|  | data += bytes; | 
|  | len -= bytes; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | bio->bi_end_io = bio_map_kern_endio; | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	bio_map_kern	-	map kernel address into bio | 
|  | *	@q: the request_queue_t for the bio | 
|  | *	@data: pointer to buffer to map | 
|  | *	@len: length in bytes | 
|  | *	@gfp_mask: allocation flags for bio allocation | 
|  | * | 
|  | *	Map the kernel address into a bio suitable for io to a block | 
|  | *	device. Returns an error pointer in case of error. | 
|  | */ | 
|  | struct bio *bio_map_kern(request_queue_t *q, void *data, unsigned int len, | 
|  | gfp_t gfp_mask) | 
|  | { | 
|  | struct bio *bio; | 
|  |  | 
|  | bio = __bio_map_kern(q, data, len, gfp_mask); | 
|  | if (IS_ERR(bio)) | 
|  | return bio; | 
|  |  | 
|  | if (bio->bi_size == len) | 
|  | return bio; | 
|  |  | 
|  | /* | 
|  | * Don't support partial mappings. | 
|  | */ | 
|  | bio_put(bio); | 
|  | return ERR_PTR(-EINVAL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions | 
|  | * for performing direct-IO in BIOs. | 
|  | * | 
|  | * The problem is that we cannot run set_page_dirty() from interrupt context | 
|  | * because the required locks are not interrupt-safe.  So what we can do is to | 
|  | * mark the pages dirty _before_ performing IO.  And in interrupt context, | 
|  | * check that the pages are still dirty.   If so, fine.  If not, redirty them | 
|  | * in process context. | 
|  | * | 
|  | * We special-case compound pages here: normally this means reads into hugetlb | 
|  | * pages.  The logic in here doesn't really work right for compound pages | 
|  | * because the VM does not uniformly chase down the head page in all cases. | 
|  | * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't | 
|  | * handle them at all.  So we skip compound pages here at an early stage. | 
|  | * | 
|  | * Note that this code is very hard to test under normal circumstances because | 
|  | * direct-io pins the pages with get_user_pages().  This makes | 
|  | * is_page_cache_freeable return false, and the VM will not clean the pages. | 
|  | * But other code (eg, pdflush) could clean the pages if they are mapped | 
|  | * pagecache. | 
|  | * | 
|  | * Simply disabling the call to bio_set_pages_dirty() is a good way to test the | 
|  | * deferred bio dirtying paths. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * bio_set_pages_dirty() will mark all the bio's pages as dirty. | 
|  | */ | 
|  | void bio_set_pages_dirty(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec = bio->bi_io_vec; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < bio->bi_vcnt; i++) { | 
|  | struct page *page = bvec[i].bv_page; | 
|  |  | 
|  | if (page && !PageCompound(page)) | 
|  | set_page_dirty_lock(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | void bio_release_pages(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec = bio->bi_io_vec; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < bio->bi_vcnt; i++) { | 
|  | struct page *page = bvec[i].bv_page; | 
|  |  | 
|  | if (page) | 
|  | put_page(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bio_check_pages_dirty() will check that all the BIO's pages are still dirty. | 
|  | * If they are, then fine.  If, however, some pages are clean then they must | 
|  | * have been written out during the direct-IO read.  So we take another ref on | 
|  | * the BIO and the offending pages and re-dirty the pages in process context. | 
|  | * | 
|  | * It is expected that bio_check_pages_dirty() will wholly own the BIO from | 
|  | * here on.  It will run one page_cache_release() against each page and will | 
|  | * run one bio_put() against the BIO. | 
|  | */ | 
|  |  | 
|  | static void bio_dirty_fn(struct work_struct *work); | 
|  |  | 
|  | static DECLARE_WORK(bio_dirty_work, bio_dirty_fn); | 
|  | static DEFINE_SPINLOCK(bio_dirty_lock); | 
|  | static struct bio *bio_dirty_list; | 
|  |  | 
|  | /* | 
|  | * This runs in process context | 
|  | */ | 
|  | static void bio_dirty_fn(struct work_struct *work) | 
|  | { | 
|  | unsigned long flags; | 
|  | struct bio *bio; | 
|  |  | 
|  | spin_lock_irqsave(&bio_dirty_lock, flags); | 
|  | bio = bio_dirty_list; | 
|  | bio_dirty_list = NULL; | 
|  | spin_unlock_irqrestore(&bio_dirty_lock, flags); | 
|  |  | 
|  | while (bio) { | 
|  | struct bio *next = bio->bi_private; | 
|  |  | 
|  | bio_set_pages_dirty(bio); | 
|  | bio_release_pages(bio); | 
|  | bio_put(bio); | 
|  | bio = next; | 
|  | } | 
|  | } | 
|  |  | 
|  | void bio_check_pages_dirty(struct bio *bio) | 
|  | { | 
|  | struct bio_vec *bvec = bio->bi_io_vec; | 
|  | int nr_clean_pages = 0; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < bio->bi_vcnt; i++) { | 
|  | struct page *page = bvec[i].bv_page; | 
|  |  | 
|  | if (PageDirty(page) || PageCompound(page)) { | 
|  | page_cache_release(page); | 
|  | bvec[i].bv_page = NULL; | 
|  | } else { | 
|  | nr_clean_pages++; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (nr_clean_pages) { | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&bio_dirty_lock, flags); | 
|  | bio->bi_private = bio_dirty_list; | 
|  | bio_dirty_list = bio; | 
|  | spin_unlock_irqrestore(&bio_dirty_lock, flags); | 
|  | schedule_work(&bio_dirty_work); | 
|  | } else { | 
|  | bio_put(bio); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * bio_endio - end I/O on a bio | 
|  | * @bio:	bio | 
|  | * @bytes_done:	number of bytes completed | 
|  | * @error:	error, if any | 
|  | * | 
|  | * Description: | 
|  | *   bio_endio() will end I/O on @bytes_done number of bytes. This may be | 
|  | *   just a partial part of the bio, or it may be the whole bio. bio_endio() | 
|  | *   is the preferred way to end I/O on a bio, it takes care of decrementing | 
|  | *   bi_size and clearing BIO_UPTODATE on error. @error is 0 on success, and | 
|  | *   and one of the established -Exxxx (-EIO, for instance) error values in | 
|  | *   case something went wrong. Noone should call bi_end_io() directly on | 
|  | *   a bio unless they own it and thus know that it has an end_io function. | 
|  | **/ | 
|  | void bio_endio(struct bio *bio, unsigned int bytes_done, int error) | 
|  | { | 
|  | if (error) | 
|  | clear_bit(BIO_UPTODATE, &bio->bi_flags); | 
|  |  | 
|  | if (unlikely(bytes_done > bio->bi_size)) { | 
|  | printk("%s: want %u bytes done, only %u left\n", __FUNCTION__, | 
|  | bytes_done, bio->bi_size); | 
|  | bytes_done = bio->bi_size; | 
|  | } | 
|  |  | 
|  | bio->bi_size -= bytes_done; | 
|  | bio->bi_sector += (bytes_done >> 9); | 
|  |  | 
|  | if (bio->bi_end_io) | 
|  | bio->bi_end_io(bio, bytes_done, error); | 
|  | } | 
|  |  | 
|  | void bio_pair_release(struct bio_pair *bp) | 
|  | { | 
|  | if (atomic_dec_and_test(&bp->cnt)) { | 
|  | struct bio *master = bp->bio1.bi_private; | 
|  |  | 
|  | bio_endio(master, master->bi_size, bp->error); | 
|  | mempool_free(bp, bp->bio2.bi_private); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int bio_pair_end_1(struct bio * bi, unsigned int done, int err) | 
|  | { | 
|  | struct bio_pair *bp = container_of(bi, struct bio_pair, bio1); | 
|  |  | 
|  | if (err) | 
|  | bp->error = err; | 
|  |  | 
|  | if (bi->bi_size) | 
|  | return 1; | 
|  |  | 
|  | bio_pair_release(bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int bio_pair_end_2(struct bio * bi, unsigned int done, int err) | 
|  | { | 
|  | struct bio_pair *bp = container_of(bi, struct bio_pair, bio2); | 
|  |  | 
|  | if (err) | 
|  | bp->error = err; | 
|  |  | 
|  | if (bi->bi_size) | 
|  | return 1; | 
|  |  | 
|  | bio_pair_release(bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * split a bio - only worry about a bio with a single page | 
|  | * in it's iovec | 
|  | */ | 
|  | struct bio_pair *bio_split(struct bio *bi, mempool_t *pool, int first_sectors) | 
|  | { | 
|  | struct bio_pair *bp = mempool_alloc(pool, GFP_NOIO); | 
|  |  | 
|  | if (!bp) | 
|  | return bp; | 
|  |  | 
|  | blk_add_trace_pdu_int(bdev_get_queue(bi->bi_bdev), BLK_TA_SPLIT, bi, | 
|  | bi->bi_sector + first_sectors); | 
|  |  | 
|  | BUG_ON(bi->bi_vcnt != 1); | 
|  | BUG_ON(bi->bi_idx != 0); | 
|  | atomic_set(&bp->cnt, 3); | 
|  | bp->error = 0; | 
|  | bp->bio1 = *bi; | 
|  | bp->bio2 = *bi; | 
|  | bp->bio2.bi_sector += first_sectors; | 
|  | bp->bio2.bi_size -= first_sectors << 9; | 
|  | bp->bio1.bi_size = first_sectors << 9; | 
|  |  | 
|  | bp->bv1 = bi->bi_io_vec[0]; | 
|  | bp->bv2 = bi->bi_io_vec[0]; | 
|  | bp->bv2.bv_offset += first_sectors << 9; | 
|  | bp->bv2.bv_len -= first_sectors << 9; | 
|  | bp->bv1.bv_len = first_sectors << 9; | 
|  |  | 
|  | bp->bio1.bi_io_vec = &bp->bv1; | 
|  | bp->bio2.bi_io_vec = &bp->bv2; | 
|  |  | 
|  | bp->bio1.bi_max_vecs = 1; | 
|  | bp->bio2.bi_max_vecs = 1; | 
|  |  | 
|  | bp->bio1.bi_end_io = bio_pair_end_1; | 
|  | bp->bio2.bi_end_io = bio_pair_end_2; | 
|  |  | 
|  | bp->bio1.bi_private = bi; | 
|  | bp->bio2.bi_private = pool; | 
|  |  | 
|  | return bp; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * create memory pools for biovec's in a bio_set. | 
|  | * use the global biovec slabs created for general use. | 
|  | */ | 
|  | static int biovec_create_pools(struct bio_set *bs, int pool_entries) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | 
|  | struct biovec_slab *bp = bvec_slabs + i; | 
|  | mempool_t **bvp = bs->bvec_pools + i; | 
|  |  | 
|  | *bvp = mempool_create_slab_pool(pool_entries, bp->slab); | 
|  | if (!*bvp) | 
|  | return -ENOMEM; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void biovec_free_pools(struct bio_set *bs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | 
|  | mempool_t *bvp = bs->bvec_pools[i]; | 
|  |  | 
|  | if (bvp) | 
|  | mempool_destroy(bvp); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | void bioset_free(struct bio_set *bs) | 
|  | { | 
|  | if (bs->bio_pool) | 
|  | mempool_destroy(bs->bio_pool); | 
|  |  | 
|  | biovec_free_pools(bs); | 
|  |  | 
|  | kfree(bs); | 
|  | } | 
|  |  | 
|  | struct bio_set *bioset_create(int bio_pool_size, int bvec_pool_size) | 
|  | { | 
|  | struct bio_set *bs = kzalloc(sizeof(*bs), GFP_KERNEL); | 
|  |  | 
|  | if (!bs) | 
|  | return NULL; | 
|  |  | 
|  | bs->bio_pool = mempool_create_slab_pool(bio_pool_size, bio_slab); | 
|  | if (!bs->bio_pool) | 
|  | goto bad; | 
|  |  | 
|  | if (!biovec_create_pools(bs, bvec_pool_size)) | 
|  | return bs; | 
|  |  | 
|  | bad: | 
|  | bioset_free(bs); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void __init biovec_init_slabs(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < BIOVEC_NR_POOLS; i++) { | 
|  | int size; | 
|  | struct biovec_slab *bvs = bvec_slabs + i; | 
|  |  | 
|  | size = bvs->nr_vecs * sizeof(struct bio_vec); | 
|  | bvs->slab = kmem_cache_create(bvs->name, size, 0, | 
|  | SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init init_bio(void) | 
|  | { | 
|  | bio_slab = KMEM_CACHE(bio, SLAB_HWCACHE_ALIGN|SLAB_PANIC); | 
|  |  | 
|  | biovec_init_slabs(); | 
|  |  | 
|  | fs_bio_set = bioset_create(BIO_POOL_SIZE, 2); | 
|  | if (!fs_bio_set) | 
|  | panic("bio: can't allocate bios\n"); | 
|  |  | 
|  | bio_split_pool = mempool_create_kmalloc_pool(BIO_SPLIT_ENTRIES, | 
|  | sizeof(struct bio_pair)); | 
|  | if (!bio_split_pool) | 
|  | panic("bio: can't create split pool\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | subsys_initcall(init_bio); | 
|  |  | 
|  | EXPORT_SYMBOL(bio_alloc); | 
|  | EXPORT_SYMBOL(bio_put); | 
|  | EXPORT_SYMBOL(bio_free); | 
|  | EXPORT_SYMBOL(bio_endio); | 
|  | EXPORT_SYMBOL(bio_init); | 
|  | EXPORT_SYMBOL(__bio_clone); | 
|  | EXPORT_SYMBOL(bio_clone); | 
|  | EXPORT_SYMBOL(bio_phys_segments); | 
|  | EXPORT_SYMBOL(bio_hw_segments); | 
|  | EXPORT_SYMBOL(bio_add_page); | 
|  | EXPORT_SYMBOL(bio_add_pc_page); | 
|  | EXPORT_SYMBOL(bio_get_nr_vecs); | 
|  | EXPORT_SYMBOL(bio_map_kern); | 
|  | EXPORT_SYMBOL(bio_pair_release); | 
|  | EXPORT_SYMBOL(bio_split); | 
|  | EXPORT_SYMBOL(bio_split_pool); | 
|  | EXPORT_SYMBOL(bio_copy_user); | 
|  | EXPORT_SYMBOL(bio_uncopy_user); | 
|  | EXPORT_SYMBOL(bioset_create); | 
|  | EXPORT_SYMBOL(bioset_free); | 
|  | EXPORT_SYMBOL(bio_alloc_bioset); |