|  | /* | 
|  | * Intel IXP4xx NPE-C crypto driver | 
|  | * | 
|  | * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of version 2 of the GNU General Public License | 
|  | * as published by the Free Software Foundation. | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/dma-mapping.h> | 
|  | #include <linux/dmapool.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/rtnetlink.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/gfp.h> | 
|  |  | 
|  | #include <crypto/ctr.h> | 
|  | #include <crypto/des.h> | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/sha.h> | 
|  | #include <crypto/algapi.h> | 
|  | #include <crypto/aead.h> | 
|  | #include <crypto/authenc.h> | 
|  | #include <crypto/scatterwalk.h> | 
|  |  | 
|  | #include <mach/npe.h> | 
|  | #include <mach/qmgr.h> | 
|  |  | 
|  | #define MAX_KEYLEN 32 | 
|  |  | 
|  | /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */ | 
|  | #define NPE_CTX_LEN 80 | 
|  | #define AES_BLOCK128 16 | 
|  |  | 
|  | #define NPE_OP_HASH_VERIFY   0x01 | 
|  | #define NPE_OP_CCM_ENABLE    0x04 | 
|  | #define NPE_OP_CRYPT_ENABLE  0x08 | 
|  | #define NPE_OP_HASH_ENABLE   0x10 | 
|  | #define NPE_OP_NOT_IN_PLACE  0x20 | 
|  | #define NPE_OP_HMAC_DISABLE  0x40 | 
|  | #define NPE_OP_CRYPT_ENCRYPT 0x80 | 
|  |  | 
|  | #define NPE_OP_CCM_GEN_MIC   0xcc | 
|  | #define NPE_OP_HASH_GEN_ICV  0x50 | 
|  | #define NPE_OP_ENC_GEN_KEY   0xc9 | 
|  |  | 
|  | #define MOD_ECB     0x0000 | 
|  | #define MOD_CTR     0x1000 | 
|  | #define MOD_CBC_ENC 0x2000 | 
|  | #define MOD_CBC_DEC 0x3000 | 
|  | #define MOD_CCM_ENC 0x4000 | 
|  | #define MOD_CCM_DEC 0x5000 | 
|  |  | 
|  | #define KEYLEN_128  4 | 
|  | #define KEYLEN_192  6 | 
|  | #define KEYLEN_256  8 | 
|  |  | 
|  | #define CIPH_DECR   0x0000 | 
|  | #define CIPH_ENCR   0x0400 | 
|  |  | 
|  | #define MOD_DES     0x0000 | 
|  | #define MOD_TDEA2   0x0100 | 
|  | #define MOD_3DES   0x0200 | 
|  | #define MOD_AES     0x0800 | 
|  | #define MOD_AES128  (0x0800 | KEYLEN_128) | 
|  | #define MOD_AES192  (0x0900 | KEYLEN_192) | 
|  | #define MOD_AES256  (0x0a00 | KEYLEN_256) | 
|  |  | 
|  | #define MAX_IVLEN   16 | 
|  | #define NPE_ID      2  /* NPE C */ | 
|  | #define NPE_QLEN    16 | 
|  | /* Space for registering when the first | 
|  | * NPE_QLEN crypt_ctl are busy */ | 
|  | #define NPE_QLEN_TOTAL 64 | 
|  |  | 
|  | #define SEND_QID    29 | 
|  | #define RECV_QID    30 | 
|  |  | 
|  | #define CTL_FLAG_UNUSED		0x0000 | 
|  | #define CTL_FLAG_USED		0x1000 | 
|  | #define CTL_FLAG_PERFORM_ABLK	0x0001 | 
|  | #define CTL_FLAG_GEN_ICV	0x0002 | 
|  | #define CTL_FLAG_GEN_REVAES	0x0004 | 
|  | #define CTL_FLAG_PERFORM_AEAD	0x0008 | 
|  | #define CTL_FLAG_MASK		0x000f | 
|  |  | 
|  | #define HMAC_IPAD_VALUE   0x36 | 
|  | #define HMAC_OPAD_VALUE   0x5C | 
|  | #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE | 
|  |  | 
|  | #define MD5_DIGEST_SIZE   16 | 
|  |  | 
|  | struct buffer_desc { | 
|  | u32 phys_next; | 
|  | u16 buf_len; | 
|  | u16 pkt_len; | 
|  | u32 phys_addr; | 
|  | u32 __reserved[4]; | 
|  | struct buffer_desc *next; | 
|  | enum dma_data_direction dir; | 
|  | }; | 
|  |  | 
|  | struct crypt_ctl { | 
|  | u8 mode;		/* NPE_OP_*  operation mode */ | 
|  | u8 init_len; | 
|  | u16 reserved; | 
|  | u8 iv[MAX_IVLEN];	/* IV for CBC mode or CTR IV for CTR mode */ | 
|  | u32 icv_rev_aes;	/* icv or rev aes */ | 
|  | u32 src_buf; | 
|  | u32 dst_buf; | 
|  | u16 auth_offs;		/* Authentication start offset */ | 
|  | u16 auth_len;		/* Authentication data length */ | 
|  | u16 crypt_offs;		/* Cryption start offset */ | 
|  | u16 crypt_len;		/* Cryption data length */ | 
|  | u32 aadAddr;		/* Additional Auth Data Addr for CCM mode */ | 
|  | u32 crypto_ctx;		/* NPE Crypto Param structure address */ | 
|  |  | 
|  | /* Used by Host: 4*4 bytes*/ | 
|  | unsigned ctl_flags; | 
|  | union { | 
|  | struct ablkcipher_request *ablk_req; | 
|  | struct aead_request *aead_req; | 
|  | struct crypto_tfm *tfm; | 
|  | } data; | 
|  | struct buffer_desc *regist_buf; | 
|  | u8 *regist_ptr; | 
|  | }; | 
|  |  | 
|  | struct ablk_ctx { | 
|  | struct buffer_desc *src; | 
|  | struct buffer_desc *dst; | 
|  | }; | 
|  |  | 
|  | struct aead_ctx { | 
|  | struct buffer_desc *buffer; | 
|  | struct scatterlist ivlist; | 
|  | /* used when the hmac is not on one sg entry */ | 
|  | u8 *hmac_virt; | 
|  | int encrypt; | 
|  | }; | 
|  |  | 
|  | struct ix_hash_algo { | 
|  | u32 cfgword; | 
|  | unsigned char *icv; | 
|  | }; | 
|  |  | 
|  | struct ix_sa_dir { | 
|  | unsigned char *npe_ctx; | 
|  | dma_addr_t npe_ctx_phys; | 
|  | int npe_ctx_idx; | 
|  | u8 npe_mode; | 
|  | }; | 
|  |  | 
|  | struct ixp_ctx { | 
|  | struct ix_sa_dir encrypt; | 
|  | struct ix_sa_dir decrypt; | 
|  | int authkey_len; | 
|  | u8 authkey[MAX_KEYLEN]; | 
|  | int enckey_len; | 
|  | u8 enckey[MAX_KEYLEN]; | 
|  | u8 salt[MAX_IVLEN]; | 
|  | u8 nonce[CTR_RFC3686_NONCE_SIZE]; | 
|  | unsigned salted; | 
|  | atomic_t configuring; | 
|  | struct completion completion; | 
|  | }; | 
|  |  | 
|  | struct ixp_alg { | 
|  | struct crypto_alg crypto; | 
|  | const struct ix_hash_algo *hash; | 
|  | u32 cfg_enc; | 
|  | u32 cfg_dec; | 
|  |  | 
|  | int registered; | 
|  | }; | 
|  |  | 
|  | static const struct ix_hash_algo hash_alg_md5 = { | 
|  | .cfgword	= 0xAA010004, | 
|  | .icv		= "\x01\x23\x45\x67\x89\xAB\xCD\xEF" | 
|  | "\xFE\xDC\xBA\x98\x76\x54\x32\x10", | 
|  | }; | 
|  | static const struct ix_hash_algo hash_alg_sha1 = { | 
|  | .cfgword	= 0x00000005, | 
|  | .icv		= "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA" | 
|  | "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0", | 
|  | }; | 
|  |  | 
|  | static struct npe *npe_c; | 
|  | static struct dma_pool *buffer_pool = NULL; | 
|  | static struct dma_pool *ctx_pool = NULL; | 
|  |  | 
|  | static struct crypt_ctl *crypt_virt = NULL; | 
|  | static dma_addr_t crypt_phys; | 
|  |  | 
|  | static int support_aes = 1; | 
|  |  | 
|  | static void dev_release(struct device *dev) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | #define DRIVER_NAME "ixp4xx_crypto" | 
|  | static struct platform_device pseudo_dev = { | 
|  | .name = DRIVER_NAME, | 
|  | .id   = 0, | 
|  | .num_resources = 0, | 
|  | .dev  = { | 
|  | .coherent_dma_mask = DMA_BIT_MASK(32), | 
|  | .release = dev_release, | 
|  | } | 
|  | }; | 
|  |  | 
|  | static struct device *dev = &pseudo_dev.dev; | 
|  |  | 
|  | static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt) | 
|  | { | 
|  | return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl); | 
|  | } | 
|  |  | 
|  | static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys) | 
|  | { | 
|  | return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl); | 
|  | } | 
|  |  | 
|  | static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm) | 
|  | { | 
|  | return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc; | 
|  | } | 
|  |  | 
|  | static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm) | 
|  | { | 
|  | return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec; | 
|  | } | 
|  |  | 
|  | static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm) | 
|  | { | 
|  | return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash; | 
|  | } | 
|  |  | 
|  | static int setup_crypt_desc(void) | 
|  | { | 
|  | BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64); | 
|  | crypt_virt = dma_alloc_coherent(dev, | 
|  | NPE_QLEN * sizeof(struct crypt_ctl), | 
|  | &crypt_phys, GFP_KERNEL); | 
|  | if (!crypt_virt) | 
|  | return -ENOMEM; | 
|  | memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static spinlock_t desc_lock; | 
|  | static struct crypt_ctl *get_crypt_desc(void) | 
|  | { | 
|  | int i; | 
|  | static int idx = 0; | 
|  | unsigned long flags; | 
|  |  | 
|  | spin_lock_irqsave(&desc_lock, flags); | 
|  |  | 
|  | if (unlikely(!crypt_virt)) | 
|  | setup_crypt_desc(); | 
|  | if (unlikely(!crypt_virt)) { | 
|  | spin_unlock_irqrestore(&desc_lock, flags); | 
|  | return NULL; | 
|  | } | 
|  | i = idx; | 
|  | if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { | 
|  | if (++idx >= NPE_QLEN) | 
|  | idx = 0; | 
|  | crypt_virt[i].ctl_flags = CTL_FLAG_USED; | 
|  | spin_unlock_irqrestore(&desc_lock, flags); | 
|  | return crypt_virt +i; | 
|  | } else { | 
|  | spin_unlock_irqrestore(&desc_lock, flags); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static spinlock_t emerg_lock; | 
|  | static struct crypt_ctl *get_crypt_desc_emerg(void) | 
|  | { | 
|  | int i; | 
|  | static int idx = NPE_QLEN; | 
|  | struct crypt_ctl *desc; | 
|  | unsigned long flags; | 
|  |  | 
|  | desc = get_crypt_desc(); | 
|  | if (desc) | 
|  | return desc; | 
|  | if (unlikely(!crypt_virt)) | 
|  | return NULL; | 
|  |  | 
|  | spin_lock_irqsave(&emerg_lock, flags); | 
|  | i = idx; | 
|  | if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) { | 
|  | if (++idx >= NPE_QLEN_TOTAL) | 
|  | idx = NPE_QLEN; | 
|  | crypt_virt[i].ctl_flags = CTL_FLAG_USED; | 
|  | spin_unlock_irqrestore(&emerg_lock, flags); | 
|  | return crypt_virt +i; | 
|  | } else { | 
|  | spin_unlock_irqrestore(&emerg_lock, flags); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_buf_chain(struct device *dev, struct buffer_desc *buf,u32 phys) | 
|  | { | 
|  | while (buf) { | 
|  | struct buffer_desc *buf1; | 
|  | u32 phys1; | 
|  |  | 
|  | buf1 = buf->next; | 
|  | phys1 = buf->phys_next; | 
|  | dma_unmap_single(dev, buf->phys_next, buf->buf_len, buf->dir); | 
|  | dma_pool_free(buffer_pool, buf, phys); | 
|  | buf = buf1; | 
|  | phys = phys1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct tasklet_struct crypto_done_tasklet; | 
|  |  | 
|  | static void finish_scattered_hmac(struct crypt_ctl *crypt) | 
|  | { | 
|  | struct aead_request *req = crypt->data.aead_req; | 
|  | struct aead_ctx *req_ctx = aead_request_ctx(req); | 
|  | struct crypto_aead *tfm = crypto_aead_reqtfm(req); | 
|  | int authsize = crypto_aead_authsize(tfm); | 
|  | int decryptlen = req->cryptlen - authsize; | 
|  |  | 
|  | if (req_ctx->encrypt) { | 
|  | scatterwalk_map_and_copy(req_ctx->hmac_virt, | 
|  | req->src, decryptlen, authsize, 1); | 
|  | } | 
|  | dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes); | 
|  | } | 
|  |  | 
|  | static void one_packet(dma_addr_t phys) | 
|  | { | 
|  | struct crypt_ctl *crypt; | 
|  | struct ixp_ctx *ctx; | 
|  | int failed; | 
|  |  | 
|  | failed = phys & 0x1 ? -EBADMSG : 0; | 
|  | phys &= ~0x3; | 
|  | crypt = crypt_phys2virt(phys); | 
|  |  | 
|  | switch (crypt->ctl_flags & CTL_FLAG_MASK) { | 
|  | case CTL_FLAG_PERFORM_AEAD: { | 
|  | struct aead_request *req = crypt->data.aead_req; | 
|  | struct aead_ctx *req_ctx = aead_request_ctx(req); | 
|  |  | 
|  | free_buf_chain(dev, req_ctx->buffer, crypt->src_buf); | 
|  | if (req_ctx->hmac_virt) { | 
|  | finish_scattered_hmac(crypt); | 
|  | } | 
|  | req->base.complete(&req->base, failed); | 
|  | break; | 
|  | } | 
|  | case CTL_FLAG_PERFORM_ABLK: { | 
|  | struct ablkcipher_request *req = crypt->data.ablk_req; | 
|  | struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); | 
|  |  | 
|  | if (req_ctx->dst) { | 
|  | free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); | 
|  | } | 
|  | free_buf_chain(dev, req_ctx->src, crypt->src_buf); | 
|  | req->base.complete(&req->base, failed); | 
|  | break; | 
|  | } | 
|  | case CTL_FLAG_GEN_ICV: | 
|  | ctx = crypto_tfm_ctx(crypt->data.tfm); | 
|  | dma_pool_free(ctx_pool, crypt->regist_ptr, | 
|  | crypt->regist_buf->phys_addr); | 
|  | dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf); | 
|  | if (atomic_dec_and_test(&ctx->configuring)) | 
|  | complete(&ctx->completion); | 
|  | break; | 
|  | case CTL_FLAG_GEN_REVAES: | 
|  | ctx = crypto_tfm_ctx(crypt->data.tfm); | 
|  | *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR); | 
|  | if (atomic_dec_and_test(&ctx->configuring)) | 
|  | complete(&ctx->completion); | 
|  | break; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  | crypt->ctl_flags = CTL_FLAG_UNUSED; | 
|  | } | 
|  |  | 
|  | static void irqhandler(void *_unused) | 
|  | { | 
|  | tasklet_schedule(&crypto_done_tasklet); | 
|  | } | 
|  |  | 
|  | static void crypto_done_action(unsigned long arg) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for(i=0; i<4; i++) { | 
|  | dma_addr_t phys = qmgr_get_entry(RECV_QID); | 
|  | if (!phys) | 
|  | return; | 
|  | one_packet(phys); | 
|  | } | 
|  | tasklet_schedule(&crypto_done_tasklet); | 
|  | } | 
|  |  | 
|  | static int init_ixp_crypto(void) | 
|  | { | 
|  | int ret = -ENODEV; | 
|  | u32 msg[2] = { 0, 0 }; | 
|  |  | 
|  | if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH | | 
|  | IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) { | 
|  | printk(KERN_ERR "ixp_crypto: No HW crypto available\n"); | 
|  | return ret; | 
|  | } | 
|  | npe_c = npe_request(NPE_ID); | 
|  | if (!npe_c) | 
|  | return ret; | 
|  |  | 
|  | if (!npe_running(npe_c)) { | 
|  | ret = npe_load_firmware(npe_c, npe_name(npe_c), dev); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | if (npe_recv_message(npe_c, msg, "STATUS_MSG")) | 
|  | goto npe_error; | 
|  | } else { | 
|  | if (npe_send_message(npe_c, msg, "STATUS_MSG")) | 
|  | goto npe_error; | 
|  |  | 
|  | if (npe_recv_message(npe_c, msg, "STATUS_MSG")) | 
|  | goto npe_error; | 
|  | } | 
|  |  | 
|  | switch ((msg[1]>>16) & 0xff) { | 
|  | case 3: | 
|  | printk(KERN_WARNING "Firmware of %s lacks AES support\n", | 
|  | npe_name(npe_c)); | 
|  | support_aes = 0; | 
|  | break; | 
|  | case 4: | 
|  | case 5: | 
|  | support_aes = 1; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "Firmware of %s lacks crypto support\n", | 
|  | npe_name(npe_c)); | 
|  | return -ENODEV; | 
|  | } | 
|  | /* buffer_pool will also be used to sometimes store the hmac, | 
|  | * so assure it is large enough | 
|  | */ | 
|  | BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc)); | 
|  | buffer_pool = dma_pool_create("buffer", dev, | 
|  | sizeof(struct buffer_desc), 32, 0); | 
|  | ret = -ENOMEM; | 
|  | if (!buffer_pool) { | 
|  | goto err; | 
|  | } | 
|  | ctx_pool = dma_pool_create("context", dev, | 
|  | NPE_CTX_LEN, 16, 0); | 
|  | if (!ctx_pool) { | 
|  | goto err; | 
|  | } | 
|  | ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0, | 
|  | "ixp_crypto:out", NULL); | 
|  | if (ret) | 
|  | goto err; | 
|  | ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0, | 
|  | "ixp_crypto:in", NULL); | 
|  | if (ret) { | 
|  | qmgr_release_queue(SEND_QID); | 
|  | goto err; | 
|  | } | 
|  | qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL); | 
|  | tasklet_init(&crypto_done_tasklet, crypto_done_action, 0); | 
|  |  | 
|  | qmgr_enable_irq(RECV_QID); | 
|  | return 0; | 
|  |  | 
|  | npe_error: | 
|  | printk(KERN_ERR "%s not responding\n", npe_name(npe_c)); | 
|  | ret = -EIO; | 
|  | err: | 
|  | if (ctx_pool) | 
|  | dma_pool_destroy(ctx_pool); | 
|  | if (buffer_pool) | 
|  | dma_pool_destroy(buffer_pool); | 
|  | npe_release(npe_c); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void release_ixp_crypto(void) | 
|  | { | 
|  | qmgr_disable_irq(RECV_QID); | 
|  | tasklet_kill(&crypto_done_tasklet); | 
|  |  | 
|  | qmgr_release_queue(SEND_QID); | 
|  | qmgr_release_queue(RECV_QID); | 
|  |  | 
|  | dma_pool_destroy(ctx_pool); | 
|  | dma_pool_destroy(buffer_pool); | 
|  |  | 
|  | npe_release(npe_c); | 
|  |  | 
|  | if (crypt_virt) { | 
|  | dma_free_coherent(dev, | 
|  | NPE_QLEN_TOTAL * sizeof( struct crypt_ctl), | 
|  | crypt_virt, crypt_phys); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | static void reset_sa_dir(struct ix_sa_dir *dir) | 
|  | { | 
|  | memset(dir->npe_ctx, 0, NPE_CTX_LEN); | 
|  | dir->npe_ctx_idx = 0; | 
|  | dir->npe_mode = 0; | 
|  | } | 
|  |  | 
|  | static int init_sa_dir(struct ix_sa_dir *dir) | 
|  | { | 
|  | dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys); | 
|  | if (!dir->npe_ctx) { | 
|  | return -ENOMEM; | 
|  | } | 
|  | reset_sa_dir(dir); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void free_sa_dir(struct ix_sa_dir *dir) | 
|  | { | 
|  | memset(dir->npe_ctx, 0, NPE_CTX_LEN); | 
|  | dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys); | 
|  | } | 
|  |  | 
|  | static int init_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | int ret; | 
|  |  | 
|  | atomic_set(&ctx->configuring, 0); | 
|  | ret = init_sa_dir(&ctx->encrypt); | 
|  | if (ret) | 
|  | return ret; | 
|  | ret = init_sa_dir(&ctx->decrypt); | 
|  | if (ret) { | 
|  | free_sa_dir(&ctx->encrypt); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int init_tfm_ablk(struct crypto_tfm *tfm) | 
|  | { | 
|  | tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx); | 
|  | return init_tfm(tfm); | 
|  | } | 
|  |  | 
|  | static int init_tfm_aead(struct crypto_tfm *tfm) | 
|  | { | 
|  | tfm->crt_aead.reqsize = sizeof(struct aead_ctx); | 
|  | return init_tfm(tfm); | 
|  | } | 
|  |  | 
|  | static void exit_tfm(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | free_sa_dir(&ctx->encrypt); | 
|  | free_sa_dir(&ctx->decrypt); | 
|  | } | 
|  |  | 
|  | static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target, | 
|  | int init_len, u32 ctx_addr, const u8 *key, int key_len) | 
|  | { | 
|  | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | struct crypt_ctl *crypt; | 
|  | struct buffer_desc *buf; | 
|  | int i; | 
|  | u8 *pad; | 
|  | u32 pad_phys, buf_phys; | 
|  |  | 
|  | BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN); | 
|  | pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys); | 
|  | if (!pad) | 
|  | return -ENOMEM; | 
|  | buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys); | 
|  | if (!buf) { | 
|  | dma_pool_free(ctx_pool, pad, pad_phys); | 
|  | return -ENOMEM; | 
|  | } | 
|  | crypt = get_crypt_desc_emerg(); | 
|  | if (!crypt) { | 
|  | dma_pool_free(ctx_pool, pad, pad_phys); | 
|  | dma_pool_free(buffer_pool, buf, buf_phys); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | memcpy(pad, key, key_len); | 
|  | memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len); | 
|  | for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) { | 
|  | pad[i] ^= xpad; | 
|  | } | 
|  |  | 
|  | crypt->data.tfm = tfm; | 
|  | crypt->regist_ptr = pad; | 
|  | crypt->regist_buf = buf; | 
|  |  | 
|  | crypt->auth_offs = 0; | 
|  | crypt->auth_len = HMAC_PAD_BLOCKLEN; | 
|  | crypt->crypto_ctx = ctx_addr; | 
|  | crypt->src_buf = buf_phys; | 
|  | crypt->icv_rev_aes = target; | 
|  | crypt->mode = NPE_OP_HASH_GEN_ICV; | 
|  | crypt->init_len = init_len; | 
|  | crypt->ctl_flags |= CTL_FLAG_GEN_ICV; | 
|  |  | 
|  | buf->next = 0; | 
|  | buf->buf_len = HMAC_PAD_BLOCKLEN; | 
|  | buf->pkt_len = 0; | 
|  | buf->phys_addr = pad_phys; | 
|  |  | 
|  | atomic_inc(&ctx->configuring); | 
|  | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); | 
|  | BUG_ON(qmgr_stat_overflow(SEND_QID)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize, | 
|  | const u8 *key, int key_len, unsigned digest_len) | 
|  | { | 
|  | u32 itarget, otarget, npe_ctx_addr; | 
|  | unsigned char *cinfo; | 
|  | int init_len, ret = 0; | 
|  | u32 cfgword; | 
|  | struct ix_sa_dir *dir; | 
|  | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | const struct ix_hash_algo *algo; | 
|  |  | 
|  | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; | 
|  | cinfo = dir->npe_ctx + dir->npe_ctx_idx; | 
|  | algo = ix_hash(tfm); | 
|  |  | 
|  | /* write cfg word to cryptinfo */ | 
|  | cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */ | 
|  | *(u32*)cinfo = cpu_to_be32(cfgword); | 
|  | cinfo += sizeof(cfgword); | 
|  |  | 
|  | /* write ICV to cryptinfo */ | 
|  | memcpy(cinfo, algo->icv, digest_len); | 
|  | cinfo += digest_len; | 
|  |  | 
|  | itarget = dir->npe_ctx_phys + dir->npe_ctx_idx | 
|  | + sizeof(algo->cfgword); | 
|  | otarget = itarget + digest_len; | 
|  | init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx); | 
|  | npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx; | 
|  |  | 
|  | dir->npe_ctx_idx += init_len; | 
|  | dir->npe_mode |= NPE_OP_HASH_ENABLE; | 
|  |  | 
|  | if (!encrypt) | 
|  | dir->npe_mode |= NPE_OP_HASH_VERIFY; | 
|  |  | 
|  | ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget, | 
|  | init_len, npe_ctx_addr, key, key_len); | 
|  | if (ret) | 
|  | return ret; | 
|  | return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget, | 
|  | init_len, npe_ctx_addr, key, key_len); | 
|  | } | 
|  |  | 
|  | static int gen_rev_aes_key(struct crypto_tfm *tfm) | 
|  | { | 
|  | struct crypt_ctl *crypt; | 
|  | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | struct ix_sa_dir *dir = &ctx->decrypt; | 
|  |  | 
|  | crypt = get_crypt_desc_emerg(); | 
|  | if (!crypt) { | 
|  | return -EAGAIN; | 
|  | } | 
|  | *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR); | 
|  |  | 
|  | crypt->data.tfm = tfm; | 
|  | crypt->crypt_offs = 0; | 
|  | crypt->crypt_len = AES_BLOCK128; | 
|  | crypt->src_buf = 0; | 
|  | crypt->crypto_ctx = dir->npe_ctx_phys; | 
|  | crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32); | 
|  | crypt->mode = NPE_OP_ENC_GEN_KEY; | 
|  | crypt->init_len = dir->npe_ctx_idx; | 
|  | crypt->ctl_flags |= CTL_FLAG_GEN_REVAES; | 
|  |  | 
|  | atomic_inc(&ctx->configuring); | 
|  | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); | 
|  | BUG_ON(qmgr_stat_overflow(SEND_QID)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int setup_cipher(struct crypto_tfm *tfm, int encrypt, | 
|  | const u8 *key, int key_len) | 
|  | { | 
|  | u8 *cinfo; | 
|  | u32 cipher_cfg; | 
|  | u32 keylen_cfg = 0; | 
|  | struct ix_sa_dir *dir; | 
|  | struct ixp_ctx *ctx = crypto_tfm_ctx(tfm); | 
|  | u32 *flags = &tfm->crt_flags; | 
|  |  | 
|  | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; | 
|  | cinfo = dir->npe_ctx; | 
|  |  | 
|  | if (encrypt) { | 
|  | cipher_cfg = cipher_cfg_enc(tfm); | 
|  | dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT; | 
|  | } else { | 
|  | cipher_cfg = cipher_cfg_dec(tfm); | 
|  | } | 
|  | if (cipher_cfg & MOD_AES) { | 
|  | switch (key_len) { | 
|  | case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break; | 
|  | case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break; | 
|  | case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break; | 
|  | default: | 
|  | *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
|  | return -EINVAL; | 
|  | } | 
|  | cipher_cfg |= keylen_cfg; | 
|  | } else if (cipher_cfg & MOD_3DES) { | 
|  | const u32 *K = (const u32 *)key; | 
|  | if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) || | 
|  | !((K[2] ^ K[4]) | (K[3] ^ K[5])))) | 
|  | { | 
|  | *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED; | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | u32 tmp[DES_EXPKEY_WORDS]; | 
|  | if (des_ekey(tmp, key) == 0) { | 
|  | *flags |= CRYPTO_TFM_RES_WEAK_KEY; | 
|  | } | 
|  | } | 
|  | /* write cfg word to cryptinfo */ | 
|  | *(u32*)cinfo = cpu_to_be32(cipher_cfg); | 
|  | cinfo += sizeof(cipher_cfg); | 
|  |  | 
|  | /* write cipher key to cryptinfo */ | 
|  | memcpy(cinfo, key, key_len); | 
|  | /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */ | 
|  | if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) { | 
|  | memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len); | 
|  | key_len = DES3_EDE_KEY_SIZE; | 
|  | } | 
|  | dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len; | 
|  | dir->npe_mode |= NPE_OP_CRYPT_ENABLE; | 
|  | if ((cipher_cfg & MOD_AES) && !encrypt) { | 
|  | return gen_rev_aes_key(tfm); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct buffer_desc *chainup_buffers(struct device *dev, | 
|  | struct scatterlist *sg,	unsigned nbytes, | 
|  | struct buffer_desc *buf, gfp_t flags, | 
|  | enum dma_data_direction dir) | 
|  | { | 
|  | for (;nbytes > 0; sg = scatterwalk_sg_next(sg)) { | 
|  | unsigned len = min(nbytes, sg->length); | 
|  | struct buffer_desc *next_buf; | 
|  | u32 next_buf_phys; | 
|  | void *ptr; | 
|  |  | 
|  | nbytes -= len; | 
|  | ptr = page_address(sg_page(sg)) + sg->offset; | 
|  | next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys); | 
|  | if (!next_buf) { | 
|  | buf = NULL; | 
|  | break; | 
|  | } | 
|  | sg_dma_address(sg) = dma_map_single(dev, ptr, len, dir); | 
|  | buf->next = next_buf; | 
|  | buf->phys_next = next_buf_phys; | 
|  | buf = next_buf; | 
|  |  | 
|  | buf->phys_addr = sg_dma_address(sg); | 
|  | buf->buf_len = len; | 
|  | buf->dir = dir; | 
|  | } | 
|  | buf->next = NULL; | 
|  | buf->phys_next = 0; | 
|  | return buf; | 
|  | } | 
|  |  | 
|  | static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); | 
|  | u32 *flags = &tfm->base.crt_flags; | 
|  | int ret; | 
|  |  | 
|  | init_completion(&ctx->completion); | 
|  | atomic_inc(&ctx->configuring); | 
|  |  | 
|  | reset_sa_dir(&ctx->encrypt); | 
|  | reset_sa_dir(&ctx->decrypt); | 
|  |  | 
|  | ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE; | 
|  | ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE; | 
|  |  | 
|  | ret = setup_cipher(&tfm->base, 0, key, key_len); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = setup_cipher(&tfm->base, 1, key, key_len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { | 
|  | if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { | 
|  | ret = -EINVAL; | 
|  | } else { | 
|  | *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (!atomic_dec_and_test(&ctx->configuring)) | 
|  | wait_for_completion(&ctx->completion); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key, | 
|  | unsigned int key_len) | 
|  | { | 
|  | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); | 
|  |  | 
|  | /* the nonce is stored in bytes at end of key */ | 
|  | if (key_len < CTR_RFC3686_NONCE_SIZE) | 
|  | return -EINVAL; | 
|  |  | 
|  | memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE), | 
|  | CTR_RFC3686_NONCE_SIZE); | 
|  |  | 
|  | key_len -= CTR_RFC3686_NONCE_SIZE; | 
|  | return ablk_setkey(tfm, key, key_len); | 
|  | } | 
|  |  | 
|  | static int ablk_perform(struct ablkcipher_request *req, int encrypt) | 
|  | { | 
|  | struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); | 
|  | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); | 
|  | unsigned ivsize = crypto_ablkcipher_ivsize(tfm); | 
|  | struct ix_sa_dir *dir; | 
|  | struct crypt_ctl *crypt; | 
|  | unsigned int nbytes = req->nbytes; | 
|  | enum dma_data_direction src_direction = DMA_BIDIRECTIONAL; | 
|  | struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req); | 
|  | struct buffer_desc src_hook; | 
|  | gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? | 
|  | GFP_KERNEL : GFP_ATOMIC; | 
|  |  | 
|  | if (qmgr_stat_full(SEND_QID)) | 
|  | return -EAGAIN; | 
|  | if (atomic_read(&ctx->configuring)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | dir = encrypt ? &ctx->encrypt : &ctx->decrypt; | 
|  |  | 
|  | crypt = get_crypt_desc(); | 
|  | if (!crypt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | crypt->data.ablk_req = req; | 
|  | crypt->crypto_ctx = dir->npe_ctx_phys; | 
|  | crypt->mode = dir->npe_mode; | 
|  | crypt->init_len = dir->npe_ctx_idx; | 
|  |  | 
|  | crypt->crypt_offs = 0; | 
|  | crypt->crypt_len = nbytes; | 
|  |  | 
|  | BUG_ON(ivsize && !req->info); | 
|  | memcpy(crypt->iv, req->info, ivsize); | 
|  | if (req->src != req->dst) { | 
|  | struct buffer_desc dst_hook; | 
|  | crypt->mode |= NPE_OP_NOT_IN_PLACE; | 
|  | /* This was never tested by Intel | 
|  | * for more than one dst buffer, I think. */ | 
|  | BUG_ON(req->dst->length < nbytes); | 
|  | req_ctx->dst = NULL; | 
|  | if (!chainup_buffers(dev, req->dst, nbytes, &dst_hook, | 
|  | flags, DMA_FROM_DEVICE)) | 
|  | goto free_buf_dest; | 
|  | src_direction = DMA_TO_DEVICE; | 
|  | req_ctx->dst = dst_hook.next; | 
|  | crypt->dst_buf = dst_hook.phys_next; | 
|  | } else { | 
|  | req_ctx->dst = NULL; | 
|  | } | 
|  | req_ctx->src = NULL; | 
|  | if (!chainup_buffers(dev, req->src, nbytes, &src_hook, | 
|  | flags, src_direction)) | 
|  | goto free_buf_src; | 
|  |  | 
|  | req_ctx->src = src_hook.next; | 
|  | crypt->src_buf = src_hook.phys_next; | 
|  | crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK; | 
|  | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); | 
|  | BUG_ON(qmgr_stat_overflow(SEND_QID)); | 
|  | return -EINPROGRESS; | 
|  |  | 
|  | free_buf_src: | 
|  | free_buf_chain(dev, req_ctx->src, crypt->src_buf); | 
|  | free_buf_dest: | 
|  | if (req->src != req->dst) { | 
|  | free_buf_chain(dev, req_ctx->dst, crypt->dst_buf); | 
|  | } | 
|  | crypt->ctl_flags = CTL_FLAG_UNUSED; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int ablk_encrypt(struct ablkcipher_request *req) | 
|  | { | 
|  | return ablk_perform(req, 1); | 
|  | } | 
|  |  | 
|  | static int ablk_decrypt(struct ablkcipher_request *req) | 
|  | { | 
|  | return ablk_perform(req, 0); | 
|  | } | 
|  |  | 
|  | static int ablk_rfc3686_crypt(struct ablkcipher_request *req) | 
|  | { | 
|  | struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req); | 
|  | struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm); | 
|  | u8 iv[CTR_RFC3686_BLOCK_SIZE]; | 
|  | u8 *info = req->info; | 
|  | int ret; | 
|  |  | 
|  | /* set up counter block */ | 
|  | memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE); | 
|  | memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE); | 
|  |  | 
|  | /* initialize counter portion of counter block */ | 
|  | *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) = | 
|  | cpu_to_be32(1); | 
|  |  | 
|  | req->info = iv; | 
|  | ret = ablk_perform(req, 1); | 
|  | req->info = info; | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int hmac_inconsistent(struct scatterlist *sg, unsigned start, | 
|  | unsigned int nbytes) | 
|  | { | 
|  | int offset = 0; | 
|  |  | 
|  | if (!nbytes) | 
|  | return 0; | 
|  |  | 
|  | for (;;) { | 
|  | if (start < offset + sg->length) | 
|  | break; | 
|  |  | 
|  | offset += sg->length; | 
|  | sg = scatterwalk_sg_next(sg); | 
|  | } | 
|  | return (start + nbytes > offset + sg->length); | 
|  | } | 
|  |  | 
|  | static int aead_perform(struct aead_request *req, int encrypt, | 
|  | int cryptoffset, int eff_cryptlen, u8 *iv) | 
|  | { | 
|  | struct crypto_aead *tfm = crypto_aead_reqtfm(req); | 
|  | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); | 
|  | unsigned ivsize = crypto_aead_ivsize(tfm); | 
|  | unsigned authsize = crypto_aead_authsize(tfm); | 
|  | struct ix_sa_dir *dir; | 
|  | struct crypt_ctl *crypt; | 
|  | unsigned int cryptlen; | 
|  | struct buffer_desc *buf, src_hook; | 
|  | struct aead_ctx *req_ctx = aead_request_ctx(req); | 
|  | gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ? | 
|  | GFP_KERNEL : GFP_ATOMIC; | 
|  |  | 
|  | if (qmgr_stat_full(SEND_QID)) | 
|  | return -EAGAIN; | 
|  | if (atomic_read(&ctx->configuring)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (encrypt) { | 
|  | dir = &ctx->encrypt; | 
|  | cryptlen = req->cryptlen; | 
|  | } else { | 
|  | dir = &ctx->decrypt; | 
|  | /* req->cryptlen includes the authsize when decrypting */ | 
|  | cryptlen = req->cryptlen -authsize; | 
|  | eff_cryptlen -= authsize; | 
|  | } | 
|  | crypt = get_crypt_desc(); | 
|  | if (!crypt) | 
|  | return -ENOMEM; | 
|  |  | 
|  | crypt->data.aead_req = req; | 
|  | crypt->crypto_ctx = dir->npe_ctx_phys; | 
|  | crypt->mode = dir->npe_mode; | 
|  | crypt->init_len = dir->npe_ctx_idx; | 
|  |  | 
|  | crypt->crypt_offs = cryptoffset; | 
|  | crypt->crypt_len = eff_cryptlen; | 
|  |  | 
|  | crypt->auth_offs = 0; | 
|  | crypt->auth_len = req->assoclen + ivsize + cryptlen; | 
|  | BUG_ON(ivsize && !req->iv); | 
|  | memcpy(crypt->iv, req->iv, ivsize); | 
|  |  | 
|  | if (req->src != req->dst) { | 
|  | BUG(); /* -ENOTSUP because of my lazyness */ | 
|  | } | 
|  |  | 
|  | /* ASSOC data */ | 
|  | buf = chainup_buffers(dev, req->assoc, req->assoclen, &src_hook, | 
|  | flags, DMA_TO_DEVICE); | 
|  | req_ctx->buffer = src_hook.next; | 
|  | crypt->src_buf = src_hook.phys_next; | 
|  | if (!buf) | 
|  | goto out; | 
|  | /* IV */ | 
|  | sg_init_table(&req_ctx->ivlist, 1); | 
|  | sg_set_buf(&req_ctx->ivlist, iv, ivsize); | 
|  | buf = chainup_buffers(dev, &req_ctx->ivlist, ivsize, buf, flags, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (!buf) | 
|  | goto free_chain; | 
|  | if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) { | 
|  | /* The 12 hmac bytes are scattered, | 
|  | * we need to copy them into a safe buffer */ | 
|  | req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags, | 
|  | &crypt->icv_rev_aes); | 
|  | if (unlikely(!req_ctx->hmac_virt)) | 
|  | goto free_chain; | 
|  | if (!encrypt) { | 
|  | scatterwalk_map_and_copy(req_ctx->hmac_virt, | 
|  | req->src, cryptlen, authsize, 0); | 
|  | } | 
|  | req_ctx->encrypt = encrypt; | 
|  | } else { | 
|  | req_ctx->hmac_virt = NULL; | 
|  | } | 
|  | /* Crypt */ | 
|  | buf = chainup_buffers(dev, req->src, cryptlen + authsize, buf, flags, | 
|  | DMA_BIDIRECTIONAL); | 
|  | if (!buf) | 
|  | goto free_hmac_virt; | 
|  | if (!req_ctx->hmac_virt) { | 
|  | crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize; | 
|  | } | 
|  |  | 
|  | crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD; | 
|  | qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt)); | 
|  | BUG_ON(qmgr_stat_overflow(SEND_QID)); | 
|  | return -EINPROGRESS; | 
|  | free_hmac_virt: | 
|  | if (req_ctx->hmac_virt) { | 
|  | dma_pool_free(buffer_pool, req_ctx->hmac_virt, | 
|  | crypt->icv_rev_aes); | 
|  | } | 
|  | free_chain: | 
|  | free_buf_chain(dev, req_ctx->buffer, crypt->src_buf); | 
|  | out: | 
|  | crypt->ctl_flags = CTL_FLAG_UNUSED; | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | static int aead_setup(struct crypto_aead *tfm, unsigned int authsize) | 
|  | { | 
|  | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); | 
|  | u32 *flags = &tfm->base.crt_flags; | 
|  | unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize; | 
|  | int ret; | 
|  |  | 
|  | if (!ctx->enckey_len && !ctx->authkey_len) | 
|  | return 0; | 
|  | init_completion(&ctx->completion); | 
|  | atomic_inc(&ctx->configuring); | 
|  |  | 
|  | reset_sa_dir(&ctx->encrypt); | 
|  | reset_sa_dir(&ctx->decrypt); | 
|  |  | 
|  | ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey, | 
|  | ctx->authkey_len, digest_len); | 
|  | if (ret) | 
|  | goto out; | 
|  | ret = setup_auth(&tfm->base, 1, authsize,  ctx->authkey, | 
|  | ctx->authkey_len, digest_len); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | if (*flags & CRYPTO_TFM_RES_WEAK_KEY) { | 
|  | if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) { | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } else { | 
|  | *flags &= ~CRYPTO_TFM_RES_WEAK_KEY; | 
|  | } | 
|  | } | 
|  | out: | 
|  | if (!atomic_dec_and_test(&ctx->configuring)) | 
|  | wait_for_completion(&ctx->completion); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize) | 
|  | { | 
|  | int max = crypto_aead_alg(tfm)->maxauthsize >> 2; | 
|  |  | 
|  | if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3)) | 
|  | return -EINVAL; | 
|  | return aead_setup(tfm, authsize); | 
|  | } | 
|  |  | 
|  | static int aead_setkey(struct crypto_aead *tfm, const u8 *key, | 
|  | unsigned int keylen) | 
|  | { | 
|  | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); | 
|  | struct rtattr *rta = (struct rtattr *)key; | 
|  | struct crypto_authenc_key_param *param; | 
|  |  | 
|  | if (!RTA_OK(rta, keylen)) | 
|  | goto badkey; | 
|  | if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM) | 
|  | goto badkey; | 
|  | if (RTA_PAYLOAD(rta) < sizeof(*param)) | 
|  | goto badkey; | 
|  |  | 
|  | param = RTA_DATA(rta); | 
|  | ctx->enckey_len = be32_to_cpu(param->enckeylen); | 
|  |  | 
|  | key += RTA_ALIGN(rta->rta_len); | 
|  | keylen -= RTA_ALIGN(rta->rta_len); | 
|  |  | 
|  | if (keylen < ctx->enckey_len) | 
|  | goto badkey; | 
|  |  | 
|  | ctx->authkey_len = keylen - ctx->enckey_len; | 
|  | memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len); | 
|  | memcpy(ctx->authkey, key, ctx->authkey_len); | 
|  |  | 
|  | return aead_setup(tfm, crypto_aead_authsize(tfm)); | 
|  | badkey: | 
|  | ctx->enckey_len = 0; | 
|  | crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static int aead_encrypt(struct aead_request *req) | 
|  | { | 
|  | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); | 
|  | return aead_perform(req, 1, req->assoclen + ivsize, | 
|  | req->cryptlen, req->iv); | 
|  | } | 
|  |  | 
|  | static int aead_decrypt(struct aead_request *req) | 
|  | { | 
|  | unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req)); | 
|  | return aead_perform(req, 0, req->assoclen + ivsize, | 
|  | req->cryptlen, req->iv); | 
|  | } | 
|  |  | 
|  | static int aead_givencrypt(struct aead_givcrypt_request *req) | 
|  | { | 
|  | struct crypto_aead *tfm = aead_givcrypt_reqtfm(req); | 
|  | struct ixp_ctx *ctx = crypto_aead_ctx(tfm); | 
|  | unsigned len, ivsize = crypto_aead_ivsize(tfm); | 
|  | __be64 seq; | 
|  |  | 
|  | /* copied from eseqiv.c */ | 
|  | if (!ctx->salted) { | 
|  | get_random_bytes(ctx->salt, ivsize); | 
|  | ctx->salted = 1; | 
|  | } | 
|  | memcpy(req->areq.iv, ctx->salt, ivsize); | 
|  | len = ivsize; | 
|  | if (ivsize > sizeof(u64)) { | 
|  | memset(req->giv, 0, ivsize - sizeof(u64)); | 
|  | len = sizeof(u64); | 
|  | } | 
|  | seq = cpu_to_be64(req->seq); | 
|  | memcpy(req->giv + ivsize - len, &seq, len); | 
|  | return aead_perform(&req->areq, 1, req->areq.assoclen, | 
|  | req->areq.cryptlen +ivsize, req->giv); | 
|  | } | 
|  |  | 
|  | static struct ixp_alg ixp4xx_algos[] = { | 
|  | { | 
|  | .crypto	= { | 
|  | .cra_name	= "cbc(des)", | 
|  | .cra_blocksize	= DES_BLOCK_SIZE, | 
|  | .cra_u		= { .ablkcipher = { | 
|  | .min_keysize	= DES_KEY_SIZE, | 
|  | .max_keysize	= DES_KEY_SIZE, | 
|  | .ivsize		= DES_BLOCK_SIZE, | 
|  | .geniv		= "eseqiv", | 
|  | } | 
|  | } | 
|  | }, | 
|  | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, | 
|  | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, | 
|  |  | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "ecb(des)", | 
|  | .cra_blocksize	= DES_BLOCK_SIZE, | 
|  | .cra_u		= { .ablkcipher = { | 
|  | .min_keysize	= DES_KEY_SIZE, | 
|  | .max_keysize	= DES_KEY_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192, | 
|  | .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "cbc(des3_ede)", | 
|  | .cra_blocksize	= DES3_EDE_BLOCK_SIZE, | 
|  | .cra_u		= { .ablkcipher = { | 
|  | .min_keysize	= DES3_EDE_KEY_SIZE, | 
|  | .max_keysize	= DES3_EDE_KEY_SIZE, | 
|  | .ivsize		= DES3_EDE_BLOCK_SIZE, | 
|  | .geniv		= "eseqiv", | 
|  | } | 
|  | } | 
|  | }, | 
|  | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, | 
|  | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "ecb(des3_ede)", | 
|  | .cra_blocksize	= DES3_EDE_BLOCK_SIZE, | 
|  | .cra_u		= { .ablkcipher = { | 
|  | .min_keysize	= DES3_EDE_KEY_SIZE, | 
|  | .max_keysize	= DES3_EDE_KEY_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192, | 
|  | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "cbc(aes)", | 
|  | .cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .cra_u		= { .ablkcipher = { | 
|  | .min_keysize	= AES_MIN_KEY_SIZE, | 
|  | .max_keysize	= AES_MAX_KEY_SIZE, | 
|  | .ivsize		= AES_BLOCK_SIZE, | 
|  | .geniv		= "eseqiv", | 
|  | } | 
|  | } | 
|  | }, | 
|  | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, | 
|  | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "ecb(aes)", | 
|  | .cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .cra_u		= { .ablkcipher = { | 
|  | .min_keysize	= AES_MIN_KEY_SIZE, | 
|  | .max_keysize	= AES_MAX_KEY_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB, | 
|  | .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "ctr(aes)", | 
|  | .cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .cra_u		= { .ablkcipher = { | 
|  | .min_keysize	= AES_MIN_KEY_SIZE, | 
|  | .max_keysize	= AES_MAX_KEY_SIZE, | 
|  | .ivsize		= AES_BLOCK_SIZE, | 
|  | .geniv		= "eseqiv", | 
|  | } | 
|  | } | 
|  | }, | 
|  | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, | 
|  | .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "rfc3686(ctr(aes))", | 
|  | .cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .cra_u		= { .ablkcipher = { | 
|  | .min_keysize	= AES_MIN_KEY_SIZE, | 
|  | .max_keysize	= AES_MAX_KEY_SIZE, | 
|  | .ivsize		= AES_BLOCK_SIZE, | 
|  | .geniv		= "eseqiv", | 
|  | .setkey		= ablk_rfc3686_setkey, | 
|  | .encrypt	= ablk_rfc3686_crypt, | 
|  | .decrypt	= ablk_rfc3686_crypt } | 
|  | } | 
|  | }, | 
|  | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR, | 
|  | .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "authenc(hmac(md5),cbc(des))", | 
|  | .cra_blocksize	= DES_BLOCK_SIZE, | 
|  | .cra_u		= { .aead = { | 
|  | .ivsize		= DES_BLOCK_SIZE, | 
|  | .maxauthsize	= MD5_DIGEST_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .hash = &hash_alg_md5, | 
|  | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, | 
|  | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "authenc(hmac(md5),cbc(des3_ede))", | 
|  | .cra_blocksize	= DES3_EDE_BLOCK_SIZE, | 
|  | .cra_u		= { .aead = { | 
|  | .ivsize		= DES3_EDE_BLOCK_SIZE, | 
|  | .maxauthsize	= MD5_DIGEST_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .hash = &hash_alg_md5, | 
|  | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, | 
|  | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "authenc(hmac(sha1),cbc(des))", | 
|  | .cra_blocksize	= DES_BLOCK_SIZE, | 
|  | .cra_u		= { .aead = { | 
|  | .ivsize		= DES_BLOCK_SIZE, | 
|  | .maxauthsize	= SHA1_DIGEST_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .hash = &hash_alg_sha1, | 
|  | .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192, | 
|  | .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "authenc(hmac(sha1),cbc(des3_ede))", | 
|  | .cra_blocksize	= DES3_EDE_BLOCK_SIZE, | 
|  | .cra_u		= { .aead = { | 
|  | .ivsize		= DES3_EDE_BLOCK_SIZE, | 
|  | .maxauthsize	= SHA1_DIGEST_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .hash = &hash_alg_sha1, | 
|  | .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192, | 
|  | .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "authenc(hmac(md5),cbc(aes))", | 
|  | .cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .cra_u		= { .aead = { | 
|  | .ivsize		= AES_BLOCK_SIZE, | 
|  | .maxauthsize	= MD5_DIGEST_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .hash = &hash_alg_md5, | 
|  | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, | 
|  | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, | 
|  | }, { | 
|  | .crypto	= { | 
|  | .cra_name	= "authenc(hmac(sha1),cbc(aes))", | 
|  | .cra_blocksize	= AES_BLOCK_SIZE, | 
|  | .cra_u		= { .aead = { | 
|  | .ivsize		= AES_BLOCK_SIZE, | 
|  | .maxauthsize	= SHA1_DIGEST_SIZE, | 
|  | } | 
|  | } | 
|  | }, | 
|  | .hash = &hash_alg_sha1, | 
|  | .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC, | 
|  | .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC, | 
|  | } }; | 
|  |  | 
|  | #define IXP_POSTFIX "-ixp4xx" | 
|  | static int __init ixp_module_init(void) | 
|  | { | 
|  | int num = ARRAY_SIZE(ixp4xx_algos); | 
|  | int i,err ; | 
|  |  | 
|  | if (platform_device_register(&pseudo_dev)) | 
|  | return -ENODEV; | 
|  |  | 
|  | spin_lock_init(&desc_lock); | 
|  | spin_lock_init(&emerg_lock); | 
|  |  | 
|  | err = init_ixp_crypto(); | 
|  | if (err) { | 
|  | platform_device_unregister(&pseudo_dev); | 
|  | return err; | 
|  | } | 
|  | for (i=0; i< num; i++) { | 
|  | struct crypto_alg *cra = &ixp4xx_algos[i].crypto; | 
|  |  | 
|  | if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME, | 
|  | "%s"IXP_POSTFIX, cra->cra_name) >= | 
|  | CRYPTO_MAX_ALG_NAME) | 
|  | { | 
|  | continue; | 
|  | } | 
|  | if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) { | 
|  | continue; | 
|  | } | 
|  | if (!ixp4xx_algos[i].hash) { | 
|  | /* block ciphers */ | 
|  | cra->cra_type = &crypto_ablkcipher_type; | 
|  | cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER | | 
|  | CRYPTO_ALG_ASYNC; | 
|  | if (!cra->cra_ablkcipher.setkey) | 
|  | cra->cra_ablkcipher.setkey = ablk_setkey; | 
|  | if (!cra->cra_ablkcipher.encrypt) | 
|  | cra->cra_ablkcipher.encrypt = ablk_encrypt; | 
|  | if (!cra->cra_ablkcipher.decrypt) | 
|  | cra->cra_ablkcipher.decrypt = ablk_decrypt; | 
|  | cra->cra_init = init_tfm_ablk; | 
|  | } else { | 
|  | /* authenc */ | 
|  | cra->cra_type = &crypto_aead_type; | 
|  | cra->cra_flags = CRYPTO_ALG_TYPE_AEAD | | 
|  | CRYPTO_ALG_ASYNC; | 
|  | cra->cra_aead.setkey = aead_setkey; | 
|  | cra->cra_aead.setauthsize = aead_setauthsize; | 
|  | cra->cra_aead.encrypt = aead_encrypt; | 
|  | cra->cra_aead.decrypt = aead_decrypt; | 
|  | cra->cra_aead.givencrypt = aead_givencrypt; | 
|  | cra->cra_init = init_tfm_aead; | 
|  | } | 
|  | cra->cra_ctxsize = sizeof(struct ixp_ctx); | 
|  | cra->cra_module = THIS_MODULE; | 
|  | cra->cra_alignmask = 3; | 
|  | cra->cra_priority = 300; | 
|  | cra->cra_exit = exit_tfm; | 
|  | if (crypto_register_alg(cra)) | 
|  | printk(KERN_ERR "Failed to register '%s'\n", | 
|  | cra->cra_name); | 
|  | else | 
|  | ixp4xx_algos[i].registered = 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit ixp_module_exit(void) | 
|  | { | 
|  | int num = ARRAY_SIZE(ixp4xx_algos); | 
|  | int i; | 
|  |  | 
|  | for (i=0; i< num; i++) { | 
|  | if (ixp4xx_algos[i].registered) | 
|  | crypto_unregister_alg(&ixp4xx_algos[i].crypto); | 
|  | } | 
|  | release_ixp_crypto(); | 
|  | platform_device_unregister(&pseudo_dev); | 
|  | } | 
|  |  | 
|  | module_init(ixp_module_init); | 
|  | module_exit(ixp_module_exit); | 
|  |  | 
|  | MODULE_LICENSE("GPL"); | 
|  | MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>"); | 
|  | MODULE_DESCRIPTION("IXP4xx hardware crypto"); | 
|  |  |