|  | /* drivers/net/ks8851.c | 
|  | * | 
|  | * Copyright 2009 Simtec Electronics | 
|  | *	http://www.simtec.co.uk/ | 
|  | *	Ben Dooks <ben@simtec.co.uk> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #define DEBUG | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/ethtool.h> | 
|  | #include <linux/cache.h> | 
|  | #include <linux/crc32.h> | 
|  | #include <linux/mii.h> | 
|  |  | 
|  | #include <linux/spi/spi.h> | 
|  |  | 
|  | #include "ks8851.h" | 
|  |  | 
|  | /** | 
|  | * struct ks8851_rxctrl - KS8851 driver rx control | 
|  | * @mchash: Multicast hash-table data. | 
|  | * @rxcr1: KS_RXCR1 register setting | 
|  | * @rxcr2: KS_RXCR2 register setting | 
|  | * | 
|  | * Representation of the settings needs to control the receive filtering | 
|  | * such as the multicast hash-filter and the receive register settings. This | 
|  | * is used to make the job of working out if the receive settings change and | 
|  | * then issuing the new settings to the worker that will send the necessary | 
|  | * commands. | 
|  | */ | 
|  | struct ks8851_rxctrl { | 
|  | u16	mchash[4]; | 
|  | u16	rxcr1; | 
|  | u16	rxcr2; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * union ks8851_tx_hdr - tx header data | 
|  | * @txb: The header as bytes | 
|  | * @txw: The header as 16bit, little-endian words | 
|  | * | 
|  | * A dual representation of the tx header data to allow | 
|  | * access to individual bytes, and to allow 16bit accesses | 
|  | * with 16bit alignment. | 
|  | */ | 
|  | union ks8851_tx_hdr { | 
|  | u8	txb[6]; | 
|  | __le16	txw[3]; | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * struct ks8851_net - KS8851 driver private data | 
|  | * @netdev: The network device we're bound to | 
|  | * @spidev: The spi device we're bound to. | 
|  | * @lock: Lock to ensure that the device is not accessed when busy. | 
|  | * @statelock: Lock on this structure for tx list. | 
|  | * @mii: The MII state information for the mii calls. | 
|  | * @rxctrl: RX settings for @rxctrl_work. | 
|  | * @tx_work: Work queue for tx packets | 
|  | * @irq_work: Work queue for servicing interrupts | 
|  | * @rxctrl_work: Work queue for updating RX mode and multicast lists | 
|  | * @txq: Queue of packets for transmission. | 
|  | * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1. | 
|  | * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2. | 
|  | * @txh: Space for generating packet TX header in DMA-able data | 
|  | * @rxd: Space for receiving SPI data, in DMA-able space. | 
|  | * @txd: Space for transmitting SPI data, in DMA-able space. | 
|  | * @msg_enable: The message flags controlling driver output (see ethtool). | 
|  | * @fid: Incrementing frame id tag. | 
|  | * @rc_ier: Cached copy of KS_IER. | 
|  | * @rc_ccr: Cached copy of KS_CCR. | 
|  | * @rc_rxqcr: Cached copy of KS_RXQCR. | 
|  | * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom | 
|  | * | 
|  | * The @lock ensures that the chip is protected when certain operations are | 
|  | * in progress. When the read or write packet transfer is in progress, most | 
|  | * of the chip registers are not ccessible until the transfer is finished and | 
|  | * the DMA has been de-asserted. | 
|  | * | 
|  | * The @statelock is used to protect information in the structure which may | 
|  | * need to be accessed via several sources, such as the network driver layer | 
|  | * or one of the work queues. | 
|  | * | 
|  | * We align the buffers we may use for rx/tx to ensure that if the SPI driver | 
|  | * wants to DMA map them, it will not have any problems with data the driver | 
|  | * modifies. | 
|  | */ | 
|  | struct ks8851_net { | 
|  | struct net_device	*netdev; | 
|  | struct spi_device	*spidev; | 
|  | struct mutex		lock; | 
|  | spinlock_t		statelock; | 
|  |  | 
|  | union ks8851_tx_hdr	txh ____cacheline_aligned; | 
|  | u8			rxd[8]; | 
|  | u8			txd[8]; | 
|  |  | 
|  | u32			msg_enable ____cacheline_aligned; | 
|  | u16			tx_space; | 
|  | u8			fid; | 
|  |  | 
|  | u16			rc_ier; | 
|  | u16			rc_rxqcr; | 
|  | u16			rc_ccr; | 
|  | u16			eeprom_size; | 
|  |  | 
|  | struct mii_if_info	mii; | 
|  | struct ks8851_rxctrl	rxctrl; | 
|  |  | 
|  | struct work_struct	tx_work; | 
|  | struct work_struct	irq_work; | 
|  | struct work_struct	rxctrl_work; | 
|  |  | 
|  | struct sk_buff_head	txq; | 
|  |  | 
|  | struct spi_message	spi_msg1; | 
|  | struct spi_message	spi_msg2; | 
|  | struct spi_transfer	spi_xfer1; | 
|  | struct spi_transfer	spi_xfer2[2]; | 
|  | }; | 
|  |  | 
|  | static int msg_enable; | 
|  |  | 
|  | /* shift for byte-enable data */ | 
|  | #define BYTE_EN(_x)	((_x) << 2) | 
|  |  | 
|  | /* turn register number and byte-enable mask into data for start of packet */ | 
|  | #define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6) | 
|  |  | 
|  | /* SPI register read/write calls. | 
|  | * | 
|  | * All these calls issue SPI transactions to access the chip's registers. They | 
|  | * all require that the necessary lock is held to prevent accesses when the | 
|  | * chip is busy transfering packet data (RX/TX FIFO accesses). | 
|  | */ | 
|  |  | 
|  | /** | 
|  | * ks8851_wrreg16 - write 16bit register value to chip | 
|  | * @ks: The chip state | 
|  | * @reg: The register address | 
|  | * @val: The value to write | 
|  | * | 
|  | * Issue a write to put the value @val into the register specified in @reg. | 
|  | */ | 
|  | static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val) | 
|  | { | 
|  | struct spi_transfer *xfer = &ks->spi_xfer1; | 
|  | struct spi_message *msg = &ks->spi_msg1; | 
|  | __le16 txb[2]; | 
|  | int ret; | 
|  |  | 
|  | txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR); | 
|  | txb[1] = cpu_to_le16(val); | 
|  |  | 
|  | xfer->tx_buf = txb; | 
|  | xfer->rx_buf = NULL; | 
|  | xfer->len = 4; | 
|  |  | 
|  | ret = spi_sync(ks->spidev, msg); | 
|  | if (ret < 0) | 
|  | netdev_err(ks->netdev, "spi_sync() failed\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_wrreg8 - write 8bit register value to chip | 
|  | * @ks: The chip state | 
|  | * @reg: The register address | 
|  | * @val: The value to write | 
|  | * | 
|  | * Issue a write to put the value @val into the register specified in @reg. | 
|  | */ | 
|  | static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val) | 
|  | { | 
|  | struct spi_transfer *xfer = &ks->spi_xfer1; | 
|  | struct spi_message *msg = &ks->spi_msg1; | 
|  | __le16 txb[2]; | 
|  | int ret; | 
|  | int bit; | 
|  |  | 
|  | bit = 1 << (reg & 3); | 
|  |  | 
|  | txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR); | 
|  | txb[1] = val; | 
|  |  | 
|  | xfer->tx_buf = txb; | 
|  | xfer->rx_buf = NULL; | 
|  | xfer->len = 3; | 
|  |  | 
|  | ret = spi_sync(ks->spidev, msg); | 
|  | if (ret < 0) | 
|  | netdev_err(ks->netdev, "spi_sync() failed\n"); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_rx_1msg - select whether to use one or two messages for spi read | 
|  | * @ks: The device structure | 
|  | * | 
|  | * Return whether to generate a single message with a tx and rx buffer | 
|  | * supplied to spi_sync(), or alternatively send the tx and rx buffers | 
|  | * as separate messages. | 
|  | * | 
|  | * Depending on the hardware in use, a single message may be more efficient | 
|  | * on interrupts or work done by the driver. | 
|  | * | 
|  | * This currently always returns true until we add some per-device data passed | 
|  | * from the platform code to specify which mode is better. | 
|  | */ | 
|  | static inline bool ks8851_rx_1msg(struct ks8851_net *ks) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_rdreg - issue read register command and return the data | 
|  | * @ks: The device state | 
|  | * @op: The register address and byte enables in message format. | 
|  | * @rxb: The RX buffer to return the result into | 
|  | * @rxl: The length of data expected. | 
|  | * | 
|  | * This is the low level read call that issues the necessary spi message(s) | 
|  | * to read data from the register specified in @op. | 
|  | */ | 
|  | static void ks8851_rdreg(struct ks8851_net *ks, unsigned op, | 
|  | u8 *rxb, unsigned rxl) | 
|  | { | 
|  | struct spi_transfer *xfer; | 
|  | struct spi_message *msg; | 
|  | __le16 *txb = (__le16 *)ks->txd; | 
|  | u8 *trx = ks->rxd; | 
|  | int ret; | 
|  |  | 
|  | txb[0] = cpu_to_le16(op | KS_SPIOP_RD); | 
|  |  | 
|  | if (ks8851_rx_1msg(ks)) { | 
|  | msg = &ks->spi_msg1; | 
|  | xfer = &ks->spi_xfer1; | 
|  |  | 
|  | xfer->tx_buf = txb; | 
|  | xfer->rx_buf = trx; | 
|  | xfer->len = rxl + 2; | 
|  | } else { | 
|  | msg = &ks->spi_msg2; | 
|  | xfer = ks->spi_xfer2; | 
|  |  | 
|  | xfer->tx_buf = txb; | 
|  | xfer->rx_buf = NULL; | 
|  | xfer->len = 2; | 
|  |  | 
|  | xfer++; | 
|  | xfer->tx_buf = NULL; | 
|  | xfer->rx_buf = trx; | 
|  | xfer->len = rxl; | 
|  | } | 
|  |  | 
|  | ret = spi_sync(ks->spidev, msg); | 
|  | if (ret < 0) | 
|  | netdev_err(ks->netdev, "read: spi_sync() failed\n"); | 
|  | else if (ks8851_rx_1msg(ks)) | 
|  | memcpy(rxb, trx + 2, rxl); | 
|  | else | 
|  | memcpy(rxb, trx, rxl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_rdreg8 - read 8 bit register from device | 
|  | * @ks: The chip information | 
|  | * @reg: The register address | 
|  | * | 
|  | * Read a 8bit register from the chip, returning the result | 
|  | */ | 
|  | static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg) | 
|  | { | 
|  | u8 rxb[1]; | 
|  |  | 
|  | ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1); | 
|  | return rxb[0]; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_rdreg16 - read 16 bit register from device | 
|  | * @ks: The chip information | 
|  | * @reg: The register address | 
|  | * | 
|  | * Read a 16bit register from the chip, returning the result | 
|  | */ | 
|  | static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg) | 
|  | { | 
|  | __le16 rx = 0; | 
|  |  | 
|  | ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2); | 
|  | return le16_to_cpu(rx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_rdreg32 - read 32 bit register from device | 
|  | * @ks: The chip information | 
|  | * @reg: The register address | 
|  | * | 
|  | * Read a 32bit register from the chip. | 
|  | * | 
|  | * Note, this read requires the address be aligned to 4 bytes. | 
|  | */ | 
|  | static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg) | 
|  | { | 
|  | __le32 rx = 0; | 
|  |  | 
|  | WARN_ON(reg & 3); | 
|  |  | 
|  | ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4); | 
|  | return le32_to_cpu(rx); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_soft_reset - issue one of the soft reset to the device | 
|  | * @ks: The device state. | 
|  | * @op: The bit(s) to set in the GRR | 
|  | * | 
|  | * Issue the relevant soft-reset command to the device's GRR register | 
|  | * specified by @op. | 
|  | * | 
|  | * Note, the delays are in there as a caution to ensure that the reset | 
|  | * has time to take effect and then complete. Since the datasheet does | 
|  | * not currently specify the exact sequence, we have chosen something | 
|  | * that seems to work with our device. | 
|  | */ | 
|  | static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op) | 
|  | { | 
|  | ks8851_wrreg16(ks, KS_GRR, op); | 
|  | mdelay(1);	/* wait a short time to effect reset */ | 
|  | ks8851_wrreg16(ks, KS_GRR, 0); | 
|  | mdelay(1);	/* wait for condition to clear */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_write_mac_addr - write mac address to device registers | 
|  | * @dev: The network device | 
|  | * | 
|  | * Update the KS8851 MAC address registers from the address in @dev. | 
|  | * | 
|  | * This call assumes that the chip is not running, so there is no need to | 
|  | * shutdown the RXQ process whilst setting this. | 
|  | */ | 
|  | static int ks8851_write_mac_addr(struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | int i; | 
|  |  | 
|  | mutex_lock(&ks->lock); | 
|  |  | 
|  | for (i = 0; i < ETH_ALEN; i++) | 
|  | ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]); | 
|  |  | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_init_mac - initialise the mac address | 
|  | * @ks: The device structure | 
|  | * | 
|  | * Get or create the initial mac address for the device and then set that | 
|  | * into the station address register. Currently we assume that the device | 
|  | * does not have a valid mac address in it, and so we use random_ether_addr() | 
|  | * to create a new one. | 
|  | * | 
|  | * In future, the driver should check to see if the device has an EEPROM | 
|  | * attached and whether that has a valid ethernet address in it. | 
|  | */ | 
|  | static void ks8851_init_mac(struct ks8851_net *ks) | 
|  | { | 
|  | struct net_device *dev = ks->netdev; | 
|  |  | 
|  | random_ether_addr(dev->dev_addr); | 
|  | ks8851_write_mac_addr(dev); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_irq - device interrupt handler | 
|  | * @irq: Interrupt number passed from the IRQ hnalder. | 
|  | * @pw: The private word passed to register_irq(), our struct ks8851_net. | 
|  | * | 
|  | * Disable the interrupt from happening again until we've processed the | 
|  | * current status by scheduling ks8851_irq_work(). | 
|  | */ | 
|  | static irqreturn_t ks8851_irq(int irq, void *pw) | 
|  | { | 
|  | struct ks8851_net *ks = pw; | 
|  |  | 
|  | disable_irq_nosync(irq); | 
|  | schedule_work(&ks->irq_work); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_rdfifo - read data from the receive fifo | 
|  | * @ks: The device state. | 
|  | * @buff: The buffer address | 
|  | * @len: The length of the data to read | 
|  | * | 
|  | * Issue an RXQ FIFO read command and read the @len amount of data from | 
|  | * the FIFO into the buffer specified by @buff. | 
|  | */ | 
|  | static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len) | 
|  | { | 
|  | struct spi_transfer *xfer = ks->spi_xfer2; | 
|  | struct spi_message *msg = &ks->spi_msg2; | 
|  | u8 txb[1]; | 
|  | int ret; | 
|  |  | 
|  | netif_dbg(ks, rx_status, ks->netdev, | 
|  | "%s: %d@%p\n", __func__, len, buff); | 
|  |  | 
|  | /* set the operation we're issuing */ | 
|  | txb[0] = KS_SPIOP_RXFIFO; | 
|  |  | 
|  | xfer->tx_buf = txb; | 
|  | xfer->rx_buf = NULL; | 
|  | xfer->len = 1; | 
|  |  | 
|  | xfer++; | 
|  | xfer->rx_buf = buff; | 
|  | xfer->tx_buf = NULL; | 
|  | xfer->len = len; | 
|  |  | 
|  | ret = spi_sync(ks->spidev, msg); | 
|  | if (ret < 0) | 
|  | netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_dbg_dumpkkt - dump initial packet contents to debug | 
|  | * @ks: The device state | 
|  | * @rxpkt: The data for the received packet | 
|  | * | 
|  | * Dump the initial data from the packet to dev_dbg(). | 
|  | */ | 
|  | static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt) | 
|  | { | 
|  | netdev_dbg(ks->netdev, | 
|  | "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n", | 
|  | rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7], | 
|  | rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11], | 
|  | rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_rx_pkts - receive packets from the host | 
|  | * @ks: The device information. | 
|  | * | 
|  | * This is called from the IRQ work queue when the system detects that there | 
|  | * are packets in the receive queue. Find out how many packets there are and | 
|  | * read them from the FIFO. | 
|  | */ | 
|  | static void ks8851_rx_pkts(struct ks8851_net *ks) | 
|  | { | 
|  | struct sk_buff *skb; | 
|  | unsigned rxfc; | 
|  | unsigned rxlen; | 
|  | unsigned rxstat; | 
|  | u32 rxh; | 
|  | u8 *rxpkt; | 
|  |  | 
|  | rxfc = ks8851_rdreg8(ks, KS_RXFC); | 
|  |  | 
|  | netif_dbg(ks, rx_status, ks->netdev, | 
|  | "%s: %d packets\n", __func__, rxfc); | 
|  |  | 
|  | /* Currently we're issuing a read per packet, but we could possibly | 
|  | * improve the code by issuing a single read, getting the receive | 
|  | * header, allocating the packet and then reading the packet data | 
|  | * out in one go. | 
|  | * | 
|  | * This form of operation would require us to hold the SPI bus' | 
|  | * chipselect low during the entie transaction to avoid any | 
|  | * reset to the data stream comming from the chip. | 
|  | */ | 
|  |  | 
|  | for (; rxfc != 0; rxfc--) { | 
|  | rxh = ks8851_rdreg32(ks, KS_RXFHSR); | 
|  | rxstat = rxh & 0xffff; | 
|  | rxlen = rxh >> 16; | 
|  |  | 
|  | netif_dbg(ks, rx_status, ks->netdev, | 
|  | "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen); | 
|  |  | 
|  | /* the length of the packet includes the 32bit CRC */ | 
|  |  | 
|  | /* set dma read address */ | 
|  | ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00); | 
|  |  | 
|  | /* start the packet dma process, and set auto-dequeue rx */ | 
|  | ks8851_wrreg16(ks, KS_RXQCR, | 
|  | ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE); | 
|  |  | 
|  | if (rxlen > 0) { | 
|  | skb = netdev_alloc_skb(ks->netdev, rxlen + 2 + 8); | 
|  | if (!skb) { | 
|  | /* todo - dump frame and move on */ | 
|  | } | 
|  |  | 
|  | /* two bytes to ensure ip is aligned, and four bytes | 
|  | * for the status header and 4 bytes of garbage */ | 
|  | skb_reserve(skb, 2 + 4 + 4); | 
|  |  | 
|  | rxpkt = skb_put(skb, rxlen - 4) - 8; | 
|  |  | 
|  | /* align the packet length to 4 bytes, and add 4 bytes | 
|  | * as we're getting the rx status header as well */ | 
|  | ks8851_rdfifo(ks, rxpkt, ALIGN(rxlen, 4) + 8); | 
|  |  | 
|  | if (netif_msg_pktdata(ks)) | 
|  | ks8851_dbg_dumpkkt(ks, rxpkt); | 
|  |  | 
|  | skb->protocol = eth_type_trans(skb, ks->netdev); | 
|  | netif_rx(skb); | 
|  |  | 
|  | ks->netdev->stats.rx_packets++; | 
|  | ks->netdev->stats.rx_bytes += rxlen - 4; | 
|  | } | 
|  |  | 
|  | ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_irq_work - work queue handler for dealing with interrupt requests | 
|  | * @work: The work structure that was scheduled by schedule_work() | 
|  | * | 
|  | * This is the handler invoked when the ks8851_irq() is called to find out | 
|  | * what happened, as we cannot allow ourselves to sleep whilst waiting for | 
|  | * anything other process has the chip's lock. | 
|  | * | 
|  | * Read the interrupt status, work out what needs to be done and then clear | 
|  | * any of the interrupts that are not needed. | 
|  | */ | 
|  | static void ks8851_irq_work(struct work_struct *work) | 
|  | { | 
|  | struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work); | 
|  | unsigned status; | 
|  | unsigned handled = 0; | 
|  |  | 
|  | mutex_lock(&ks->lock); | 
|  |  | 
|  | status = ks8851_rdreg16(ks, KS_ISR); | 
|  |  | 
|  | netif_dbg(ks, intr, ks->netdev, | 
|  | "%s: status 0x%04x\n", __func__, status); | 
|  |  | 
|  | if (status & IRQ_LCI) { | 
|  | /* should do something about checking link status */ | 
|  | handled |= IRQ_LCI; | 
|  | } | 
|  |  | 
|  | if (status & IRQ_LDI) { | 
|  | u16 pmecr = ks8851_rdreg16(ks, KS_PMECR); | 
|  | pmecr &= ~PMECR_WKEVT_MASK; | 
|  | ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK); | 
|  |  | 
|  | handled |= IRQ_LDI; | 
|  | } | 
|  |  | 
|  | if (status & IRQ_RXPSI) | 
|  | handled |= IRQ_RXPSI; | 
|  |  | 
|  | if (status & IRQ_TXI) { | 
|  | handled |= IRQ_TXI; | 
|  |  | 
|  | /* no lock here, tx queue should have been stopped */ | 
|  |  | 
|  | /* update our idea of how much tx space is available to the | 
|  | * system */ | 
|  | ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR); | 
|  |  | 
|  | netif_dbg(ks, intr, ks->netdev, | 
|  | "%s: txspace %d\n", __func__, ks->tx_space); | 
|  | } | 
|  |  | 
|  | if (status & IRQ_RXI) | 
|  | handled |= IRQ_RXI; | 
|  |  | 
|  | if (status & IRQ_SPIBEI) { | 
|  | dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__); | 
|  | handled |= IRQ_SPIBEI; | 
|  | } | 
|  |  | 
|  | ks8851_wrreg16(ks, KS_ISR, handled); | 
|  |  | 
|  | if (status & IRQ_RXI) { | 
|  | /* the datasheet says to disable the rx interrupt during | 
|  | * packet read-out, however we're masking the interrupt | 
|  | * from the device so do not bother masking just the RX | 
|  | * from the device. */ | 
|  |  | 
|  | ks8851_rx_pkts(ks); | 
|  | } | 
|  |  | 
|  | /* if something stopped the rx process, probably due to wanting | 
|  | * to change the rx settings, then do something about restarting | 
|  | * it. */ | 
|  | if (status & IRQ_RXPSI) { | 
|  | struct ks8851_rxctrl *rxc = &ks->rxctrl; | 
|  |  | 
|  | /* update the multicast hash table */ | 
|  | ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]); | 
|  | ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]); | 
|  | ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]); | 
|  | ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]); | 
|  |  | 
|  | ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2); | 
|  | ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | if (status & IRQ_TXI) | 
|  | netif_wake_queue(ks->netdev); | 
|  |  | 
|  | enable_irq(ks->netdev->irq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * calc_txlen - calculate size of message to send packet | 
|  | * @len: Lenght of data | 
|  | * | 
|  | * Returns the size of the TXFIFO message needed to send | 
|  | * this packet. | 
|  | */ | 
|  | static inline unsigned calc_txlen(unsigned len) | 
|  | { | 
|  | return ALIGN(len + 4, 4); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_wrpkt - write packet to TX FIFO | 
|  | * @ks: The device state. | 
|  | * @txp: The sk_buff to transmit. | 
|  | * @irq: IRQ on completion of the packet. | 
|  | * | 
|  | * Send the @txp to the chip. This means creating the relevant packet header | 
|  | * specifying the length of the packet and the other information the chip | 
|  | * needs, such as IRQ on completion. Send the header and the packet data to | 
|  | * the device. | 
|  | */ | 
|  | static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq) | 
|  | { | 
|  | struct spi_transfer *xfer = ks->spi_xfer2; | 
|  | struct spi_message *msg = &ks->spi_msg2; | 
|  | unsigned fid = 0; | 
|  | int ret; | 
|  |  | 
|  | netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n", | 
|  | __func__, txp, txp->len, txp->data, irq); | 
|  |  | 
|  | fid = ks->fid++; | 
|  | fid &= TXFR_TXFID_MASK; | 
|  |  | 
|  | if (irq) | 
|  | fid |= TXFR_TXIC;	/* irq on completion */ | 
|  |  | 
|  | /* start header at txb[1] to align txw entries */ | 
|  | ks->txh.txb[1] = KS_SPIOP_TXFIFO; | 
|  | ks->txh.txw[1] = cpu_to_le16(fid); | 
|  | ks->txh.txw[2] = cpu_to_le16(txp->len); | 
|  |  | 
|  | xfer->tx_buf = &ks->txh.txb[1]; | 
|  | xfer->rx_buf = NULL; | 
|  | xfer->len = 5; | 
|  |  | 
|  | xfer++; | 
|  | xfer->tx_buf = txp->data; | 
|  | xfer->rx_buf = NULL; | 
|  | xfer->len = ALIGN(txp->len, 4); | 
|  |  | 
|  | ret = spi_sync(ks->spidev, msg); | 
|  | if (ret < 0) | 
|  | netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_done_tx - update and then free skbuff after transmitting | 
|  | * @ks: The device state | 
|  | * @txb: The buffer transmitted | 
|  | */ | 
|  | static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb) | 
|  | { | 
|  | struct net_device *dev = ks->netdev; | 
|  |  | 
|  | dev->stats.tx_bytes += txb->len; | 
|  | dev->stats.tx_packets++; | 
|  |  | 
|  | dev_kfree_skb(txb); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_tx_work - process tx packet(s) | 
|  | * @work: The work strucutre what was scheduled. | 
|  | * | 
|  | * This is called when a number of packets have been scheduled for | 
|  | * transmission and need to be sent to the device. | 
|  | */ | 
|  | static void ks8851_tx_work(struct work_struct *work) | 
|  | { | 
|  | struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work); | 
|  | struct sk_buff *txb; | 
|  | bool last = skb_queue_empty(&ks->txq); | 
|  |  | 
|  | mutex_lock(&ks->lock); | 
|  |  | 
|  | while (!last) { | 
|  | txb = skb_dequeue(&ks->txq); | 
|  | last = skb_queue_empty(&ks->txq); | 
|  |  | 
|  | if (txb != NULL) { | 
|  | ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA); | 
|  | ks8851_wrpkt(ks, txb, last); | 
|  | ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); | 
|  | ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE); | 
|  |  | 
|  | ks8851_done_tx(ks, txb); | 
|  | } | 
|  | } | 
|  |  | 
|  | mutex_unlock(&ks->lock); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_set_powermode - set power mode of the device | 
|  | * @ks: The device state | 
|  | * @pwrmode: The power mode value to write to KS_PMECR. | 
|  | * | 
|  | * Change the power mode of the chip. | 
|  | */ | 
|  | static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode) | 
|  | { | 
|  | unsigned pmecr; | 
|  |  | 
|  | netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode); | 
|  |  | 
|  | pmecr = ks8851_rdreg16(ks, KS_PMECR); | 
|  | pmecr &= ~PMECR_PM_MASK; | 
|  | pmecr |= pwrmode; | 
|  |  | 
|  | ks8851_wrreg16(ks, KS_PMECR, pmecr); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_net_open - open network device | 
|  | * @dev: The network device being opened. | 
|  | * | 
|  | * Called when the network device is marked active, such as a user executing | 
|  | * 'ifconfig up' on the device. | 
|  | */ | 
|  | static int ks8851_net_open(struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  |  | 
|  | /* lock the card, even if we may not actually be doing anything | 
|  | * else at the moment */ | 
|  | mutex_lock(&ks->lock); | 
|  |  | 
|  | netif_dbg(ks, ifup, ks->netdev, "opening\n"); | 
|  |  | 
|  | /* bring chip out of any power saving mode it was in */ | 
|  | ks8851_set_powermode(ks, PMECR_PM_NORMAL); | 
|  |  | 
|  | /* issue a soft reset to the RX/TX QMU to put it into a known | 
|  | * state. */ | 
|  | ks8851_soft_reset(ks, GRR_QMU); | 
|  |  | 
|  | /* setup transmission parameters */ | 
|  |  | 
|  | ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */ | 
|  | TXCR_TXPE | /* pad to min length */ | 
|  | TXCR_TXCRC | /* add CRC */ | 
|  | TXCR_TXFCE)); /* enable flow control */ | 
|  |  | 
|  | /* auto-increment tx data, reset tx pointer */ | 
|  | ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI); | 
|  |  | 
|  | /* setup receiver control */ | 
|  |  | 
|  | ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */ | 
|  | RXCR1_RXFCE | /* enable flow control */ | 
|  | RXCR1_RXBE | /* broadcast enable */ | 
|  | RXCR1_RXUE | /* unicast enable */ | 
|  | RXCR1_RXE)); /* enable rx block */ | 
|  |  | 
|  | /* transfer entire frames out in one go */ | 
|  | ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME); | 
|  |  | 
|  | /* set receive counter timeouts */ | 
|  | ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */ | 
|  | ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */ | 
|  | ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */ | 
|  |  | 
|  | ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */ | 
|  | RXQCR_RXDBCTE | /* IRQ on byte count exceeded */ | 
|  | RXQCR_RXDTTE);  /* IRQ on time exceeded */ | 
|  |  | 
|  | ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr); | 
|  |  | 
|  | /* clear then enable interrupts */ | 
|  |  | 
|  | #define STD_IRQ (IRQ_LCI |	/* Link Change */	\ | 
|  | IRQ_TXI |	/* TX done */		\ | 
|  | IRQ_RXI |	/* RX done */		\ | 
|  | IRQ_SPIBEI |	/* SPI bus error */	\ | 
|  | IRQ_TXPSI |	/* TX process stop */	\ | 
|  | IRQ_RXPSI)	/* RX process stop */ | 
|  |  | 
|  | ks->rc_ier = STD_IRQ; | 
|  | ks8851_wrreg16(ks, KS_ISR, STD_IRQ); | 
|  | ks8851_wrreg16(ks, KS_IER, STD_IRQ); | 
|  |  | 
|  | netif_start_queue(ks->netdev); | 
|  |  | 
|  | netif_dbg(ks, ifup, ks->netdev, "network device up\n"); | 
|  |  | 
|  | mutex_unlock(&ks->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_net_stop - close network device | 
|  | * @dev: The device being closed. | 
|  | * | 
|  | * Called to close down a network device which has been active. Cancell any | 
|  | * work, shutdown the RX and TX process and then place the chip into a low | 
|  | * power state whilst it is not being used. | 
|  | */ | 
|  | static int ks8851_net_stop(struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  |  | 
|  | netif_info(ks, ifdown, dev, "shutting down\n"); | 
|  |  | 
|  | netif_stop_queue(dev); | 
|  |  | 
|  | mutex_lock(&ks->lock); | 
|  |  | 
|  | /* stop any outstanding work */ | 
|  | flush_work(&ks->irq_work); | 
|  | flush_work(&ks->tx_work); | 
|  | flush_work(&ks->rxctrl_work); | 
|  |  | 
|  | /* turn off the IRQs and ack any outstanding */ | 
|  | ks8851_wrreg16(ks, KS_IER, 0x0000); | 
|  | ks8851_wrreg16(ks, KS_ISR, 0xffff); | 
|  |  | 
|  | /* shutdown RX process */ | 
|  | ks8851_wrreg16(ks, KS_RXCR1, 0x0000); | 
|  |  | 
|  | /* shutdown TX process */ | 
|  | ks8851_wrreg16(ks, KS_TXCR, 0x0000); | 
|  |  | 
|  | /* set powermode to soft power down to save power */ | 
|  | ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN); | 
|  |  | 
|  | /* ensure any queued tx buffers are dumped */ | 
|  | while (!skb_queue_empty(&ks->txq)) { | 
|  | struct sk_buff *txb = skb_dequeue(&ks->txq); | 
|  |  | 
|  | netif_dbg(ks, ifdown, ks->netdev, | 
|  | "%s: freeing txb %p\n", __func__, txb); | 
|  |  | 
|  | dev_kfree_skb(txb); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&ks->lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_start_xmit - transmit packet | 
|  | * @skb: The buffer to transmit | 
|  | * @dev: The device used to transmit the packet. | 
|  | * | 
|  | * Called by the network layer to transmit the @skb. Queue the packet for | 
|  | * the device and schedule the necessary work to transmit the packet when | 
|  | * it is free. | 
|  | * | 
|  | * We do this to firstly avoid sleeping with the network device locked, | 
|  | * and secondly so we can round up more than one packet to transmit which | 
|  | * means we can try and avoid generating too many transmit done interrupts. | 
|  | */ | 
|  | static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb, | 
|  | struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | unsigned needed = calc_txlen(skb->len); | 
|  | netdev_tx_t ret = NETDEV_TX_OK; | 
|  |  | 
|  | netif_dbg(ks, tx_queued, ks->netdev, | 
|  | "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data); | 
|  |  | 
|  | spin_lock(&ks->statelock); | 
|  |  | 
|  | if (needed > ks->tx_space) { | 
|  | netif_stop_queue(dev); | 
|  | ret = NETDEV_TX_BUSY; | 
|  | } else { | 
|  | ks->tx_space -= needed; | 
|  | skb_queue_tail(&ks->txq, skb); | 
|  | } | 
|  |  | 
|  | spin_unlock(&ks->statelock); | 
|  | schedule_work(&ks->tx_work); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_rxctrl_work - work handler to change rx mode | 
|  | * @work: The work structure this belongs to. | 
|  | * | 
|  | * Lock the device and issue the necessary changes to the receive mode from | 
|  | * the network device layer. This is done so that we can do this without | 
|  | * having to sleep whilst holding the network device lock. | 
|  | * | 
|  | * Since the recommendation from Micrel is that the RXQ is shutdown whilst the | 
|  | * receive parameters are programmed, we issue a write to disable the RXQ and | 
|  | * then wait for the interrupt handler to be triggered once the RXQ shutdown is | 
|  | * complete. The interrupt handler then writes the new values into the chip. | 
|  | */ | 
|  | static void ks8851_rxctrl_work(struct work_struct *work) | 
|  | { | 
|  | struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work); | 
|  |  | 
|  | mutex_lock(&ks->lock); | 
|  |  | 
|  | /* need to shutdown RXQ before modifying filter parameters */ | 
|  | ks8851_wrreg16(ks, KS_RXCR1, 0x00); | 
|  |  | 
|  | mutex_unlock(&ks->lock); | 
|  | } | 
|  |  | 
|  | static void ks8851_set_rx_mode(struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | struct ks8851_rxctrl rxctrl; | 
|  |  | 
|  | memset(&rxctrl, 0, sizeof(rxctrl)); | 
|  |  | 
|  | if (dev->flags & IFF_PROMISC) { | 
|  | /* interface to receive everything */ | 
|  |  | 
|  | rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF; | 
|  | } else if (dev->flags & IFF_ALLMULTI) { | 
|  | /* accept all multicast packets */ | 
|  |  | 
|  | rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE | | 
|  | RXCR1_RXPAFMA | RXCR1_RXMAFMA); | 
|  | } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) { | 
|  | struct netdev_hw_addr *ha; | 
|  | u32 crc; | 
|  |  | 
|  | /* accept some multicast */ | 
|  |  | 
|  | netdev_for_each_mc_addr(ha, dev) { | 
|  | crc = ether_crc(ETH_ALEN, ha->addr); | 
|  | crc >>= (32 - 6);  /* get top six bits */ | 
|  |  | 
|  | rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf)); | 
|  | } | 
|  |  | 
|  | rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA; | 
|  | } else { | 
|  | /* just accept broadcast / unicast */ | 
|  | rxctrl.rxcr1 = RXCR1_RXPAFMA; | 
|  | } | 
|  |  | 
|  | rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */ | 
|  | RXCR1_RXBE | /* broadcast enable */ | 
|  | RXCR1_RXE | /* RX process enable */ | 
|  | RXCR1_RXFCE); /* enable flow control */ | 
|  |  | 
|  | rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME; | 
|  |  | 
|  | /* schedule work to do the actual set of the data if needed */ | 
|  |  | 
|  | spin_lock(&ks->statelock); | 
|  |  | 
|  | if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) { | 
|  | memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl)); | 
|  | schedule_work(&ks->rxctrl_work); | 
|  | } | 
|  |  | 
|  | spin_unlock(&ks->statelock); | 
|  | } | 
|  |  | 
|  | static int ks8851_set_mac_address(struct net_device *dev, void *addr) | 
|  | { | 
|  | struct sockaddr *sa = addr; | 
|  |  | 
|  | if (netif_running(dev)) | 
|  | return -EBUSY; | 
|  |  | 
|  | if (!is_valid_ether_addr(sa->sa_data)) | 
|  | return -EADDRNOTAVAIL; | 
|  |  | 
|  | memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN); | 
|  | return ks8851_write_mac_addr(dev); | 
|  | } | 
|  |  | 
|  | static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  |  | 
|  | if (!netif_running(dev)) | 
|  | return -EINVAL; | 
|  |  | 
|  | return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL); | 
|  | } | 
|  |  | 
|  | static const struct net_device_ops ks8851_netdev_ops = { | 
|  | .ndo_open		= ks8851_net_open, | 
|  | .ndo_stop		= ks8851_net_stop, | 
|  | .ndo_do_ioctl		= ks8851_net_ioctl, | 
|  | .ndo_start_xmit		= ks8851_start_xmit, | 
|  | .ndo_set_mac_address	= ks8851_set_mac_address, | 
|  | .ndo_set_rx_mode	= ks8851_set_rx_mode, | 
|  | .ndo_change_mtu		= eth_change_mtu, | 
|  | .ndo_validate_addr	= eth_validate_addr, | 
|  | }; | 
|  |  | 
|  | /* Companion eeprom access */ | 
|  |  | 
|  | enum {	/* EEPROM programming states */ | 
|  | EEPROM_CONTROL, | 
|  | EEPROM_ADDRESS, | 
|  | EEPROM_DATA, | 
|  | EEPROM_COMPLETE | 
|  | }; | 
|  |  | 
|  | /** | 
|  | * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM | 
|  | * @dev: The network device the PHY is on. | 
|  | * @addr: EEPROM address to read | 
|  | * | 
|  | * eeprom_size: used to define the data coding length. Can be changed | 
|  | * through debug-fs. | 
|  | * | 
|  | * Programs a read on the EEPROM using ks8851 EEPROM SW access feature. | 
|  | * Warning: The READ feature is not supported on ks8851 revision 0. | 
|  | * | 
|  | * Rough programming model: | 
|  | *  - on period start: set clock high and read value on bus | 
|  | *  - on period / 2: set clock low and program value on bus | 
|  | *  - start on period / 2 | 
|  | */ | 
|  | unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | int eepcr; | 
|  | int ctrl = EEPROM_OP_READ; | 
|  | int state = EEPROM_CONTROL; | 
|  | int bit_count = EEPROM_OP_LEN - 1; | 
|  | unsigned int data = 0; | 
|  | int dummy; | 
|  | unsigned int addr_len; | 
|  |  | 
|  | addr_len = (ks->eeprom_size == 128) ? 6 : 8; | 
|  |  | 
|  | /* start transaction: chip select high, authorize write */ | 
|  | mutex_lock(&ks->lock); | 
|  | eepcr = EEPCR_EESA | EEPCR_EESRWA; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | eepcr |= EEPCR_EECS; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | while (state != EEPROM_COMPLETE) { | 
|  | /* falling clock period starts... */ | 
|  | /* set EED_IO pin for control and address */ | 
|  | eepcr &= ~EEPCR_EEDO; | 
|  | switch (state) { | 
|  | case EEPROM_CONTROL: | 
|  | eepcr |= ((ctrl >> bit_count) & 1) << 2; | 
|  | if (bit_count-- <= 0) { | 
|  | bit_count = addr_len - 1; | 
|  | state = EEPROM_ADDRESS; | 
|  | } | 
|  | break; | 
|  | case EEPROM_ADDRESS: | 
|  | eepcr |= ((addr >> bit_count) & 1) << 2; | 
|  | bit_count--; | 
|  | break; | 
|  | case EEPROM_DATA: | 
|  | /* Change to receive mode */ | 
|  | eepcr &= ~EEPCR_EESRWA; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* lower clock  */ | 
|  | eepcr &= ~EEPCR_EESCK; | 
|  |  | 
|  | mutex_lock(&ks->lock); | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | /* waitread period / 2 */ | 
|  | udelay(EEPROM_SK_PERIOD / 2); | 
|  |  | 
|  | /* rising clock period starts... */ | 
|  |  | 
|  | /* raise clock */ | 
|  | mutex_lock(&ks->lock); | 
|  | eepcr |= EEPCR_EESCK; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | /* Manage read */ | 
|  | switch (state) { | 
|  | case EEPROM_ADDRESS: | 
|  | if (bit_count < 0) { | 
|  | bit_count = EEPROM_DATA_LEN - 1; | 
|  | state = EEPROM_DATA; | 
|  | } | 
|  | break; | 
|  | case EEPROM_DATA: | 
|  | mutex_lock(&ks->lock); | 
|  | dummy = ks8851_rdreg16(ks, KS_EEPCR); | 
|  | mutex_unlock(&ks->lock); | 
|  | data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count; | 
|  | if (bit_count-- <= 0) | 
|  | state = EEPROM_COMPLETE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* wait period / 2 */ | 
|  | udelay(EEPROM_SK_PERIOD / 2); | 
|  | } | 
|  |  | 
|  | /* close transaction */ | 
|  | mutex_lock(&ks->lock); | 
|  | eepcr &= ~EEPCR_EECS; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | eepcr = 0; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM | 
|  | * @dev: The network device the PHY is on. | 
|  | * @op: operand (can be WRITE, EWEN, EWDS) | 
|  | * @addr: EEPROM address to write | 
|  | * @data: data to write | 
|  | * | 
|  | * eeprom_size: used to define the data coding length. Can be changed | 
|  | * through debug-fs. | 
|  | * | 
|  | * Programs a write on the EEPROM using ks8851 EEPROM SW access feature. | 
|  | * | 
|  | * Note that a write enable is required before writing data. | 
|  | * | 
|  | * Rough programming model: | 
|  | *  - on period start: set clock high | 
|  | *  - on period / 2: set clock low and program value on bus | 
|  | *  - start on period / 2 | 
|  | */ | 
|  | void ks8851_eeprom_write(struct net_device *dev, unsigned int op, | 
|  | unsigned int addr, unsigned int data) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | int eepcr; | 
|  | int state = EEPROM_CONTROL; | 
|  | int bit_count = EEPROM_OP_LEN - 1; | 
|  | unsigned int addr_len; | 
|  |  | 
|  | addr_len = (ks->eeprom_size == 128) ? 6 : 8; | 
|  |  | 
|  | switch (op) { | 
|  | case EEPROM_OP_EWEN: | 
|  | addr = 0x30; | 
|  | break; | 
|  | case EEPROM_OP_EWDS: | 
|  | addr = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* start transaction: chip select high, authorize write */ | 
|  | mutex_lock(&ks->lock); | 
|  | eepcr = EEPCR_EESA | EEPCR_EESRWA; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | eepcr |= EEPCR_EECS; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | while (state != EEPROM_COMPLETE) { | 
|  | /* falling clock period starts... */ | 
|  | /* set EED_IO pin for control and address */ | 
|  | eepcr &= ~EEPCR_EEDO; | 
|  | switch (state) { | 
|  | case EEPROM_CONTROL: | 
|  | eepcr |= ((op >> bit_count) & 1) << 2; | 
|  | if (bit_count-- <= 0) { | 
|  | bit_count = addr_len - 1; | 
|  | state = EEPROM_ADDRESS; | 
|  | } | 
|  | break; | 
|  | case EEPROM_ADDRESS: | 
|  | eepcr |= ((addr >> bit_count) & 1) << 2; | 
|  | if (bit_count-- <= 0) { | 
|  | if (op == EEPROM_OP_WRITE) { | 
|  | bit_count = EEPROM_DATA_LEN - 1; | 
|  | state = EEPROM_DATA; | 
|  | } else { | 
|  | state = EEPROM_COMPLETE; | 
|  | } | 
|  | } | 
|  | break; | 
|  | case EEPROM_DATA: | 
|  | eepcr |= ((data >> bit_count) & 1) << 2; | 
|  | if (bit_count-- <= 0) | 
|  | state = EEPROM_COMPLETE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* lower clock  */ | 
|  | eepcr &= ~EEPCR_EESCK; | 
|  |  | 
|  | mutex_lock(&ks->lock); | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | /* wait period / 2 */ | 
|  | udelay(EEPROM_SK_PERIOD / 2); | 
|  |  | 
|  | /* rising clock period starts... */ | 
|  |  | 
|  | /* raise clock */ | 
|  | eepcr |= EEPCR_EESCK; | 
|  | mutex_lock(&ks->lock); | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | /* wait period / 2 */ | 
|  | udelay(EEPROM_SK_PERIOD / 2); | 
|  | } | 
|  |  | 
|  | /* close transaction */ | 
|  | mutex_lock(&ks->lock); | 
|  | eepcr &= ~EEPCR_EECS; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | eepcr = 0; | 
|  | ks8851_wrreg16(ks, KS_EEPCR, eepcr); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* ethtool support */ | 
|  |  | 
|  | static void ks8851_get_drvinfo(struct net_device *dev, | 
|  | struct ethtool_drvinfo *di) | 
|  | { | 
|  | strlcpy(di->driver, "KS8851", sizeof(di->driver)); | 
|  | strlcpy(di->version, "1.00", sizeof(di->version)); | 
|  | strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info)); | 
|  | } | 
|  |  | 
|  | static u32 ks8851_get_msglevel(struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | return ks->msg_enable; | 
|  | } | 
|  |  | 
|  | static void ks8851_set_msglevel(struct net_device *dev, u32 to) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | ks->msg_enable = to; | 
|  | } | 
|  |  | 
|  | static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | return mii_ethtool_gset(&ks->mii, cmd); | 
|  | } | 
|  |  | 
|  | static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | return mii_ethtool_sset(&ks->mii, cmd); | 
|  | } | 
|  |  | 
|  | static u32 ks8851_get_link(struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | return mii_link_ok(&ks->mii); | 
|  | } | 
|  |  | 
|  | static int ks8851_nway_reset(struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | return mii_nway_restart(&ks->mii); | 
|  | } | 
|  |  | 
|  | static int ks8851_get_eeprom_len(struct net_device *dev) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | return ks->eeprom_size; | 
|  | } | 
|  |  | 
|  | static int ks8851_get_eeprom(struct net_device *dev, | 
|  | struct ethtool_eeprom *eeprom, u8 *bytes) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | u16 *eeprom_buff; | 
|  | int first_word; | 
|  | int last_word; | 
|  | int ret_val = 0; | 
|  | u16 i; | 
|  |  | 
|  | if (eeprom->len == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (eeprom->len > ks->eeprom_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | eeprom->magic = ks8851_rdreg16(ks, KS_CIDER); | 
|  |  | 
|  | first_word = eeprom->offset >> 1; | 
|  | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | 
|  |  | 
|  | eeprom_buff = kmalloc(sizeof(u16) * | 
|  | (last_word - first_word + 1), GFP_KERNEL); | 
|  | if (!eeprom_buff) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1); | 
|  |  | 
|  | /* Device's eeprom is little-endian, word addressable */ | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | le16_to_cpus(&eeprom_buff[i]); | 
|  |  | 
|  | memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len); | 
|  | kfree(eeprom_buff); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static int ks8851_set_eeprom(struct net_device *dev, | 
|  | struct ethtool_eeprom *eeprom, u8 *bytes) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | u16 *eeprom_buff; | 
|  | void *ptr; | 
|  | int max_len; | 
|  | int first_word; | 
|  | int last_word; | 
|  | int ret_val = 0; | 
|  | u16 i; | 
|  |  | 
|  | if (eeprom->len == 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (eeprom->len > ks->eeprom_size) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER)) | 
|  | return -EFAULT; | 
|  |  | 
|  | first_word = eeprom->offset >> 1; | 
|  | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | 
|  | max_len = (last_word - first_word + 1) * 2; | 
|  | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | 
|  | if (!eeprom_buff) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ptr = (void *)eeprom_buff; | 
|  |  | 
|  | if (eeprom->offset & 1) { | 
|  | /* need read/modify/write of first changed EEPROM word */ | 
|  | /* only the second byte of the word is being modified */ | 
|  | eeprom_buff[0] = ks8851_eeprom_read(dev, first_word); | 
|  | ptr++; | 
|  | } | 
|  | if ((eeprom->offset + eeprom->len) & 1) | 
|  | /* need read/modify/write of last changed EEPROM word */ | 
|  | /* only the first byte of the word is being modified */ | 
|  | eeprom_buff[last_word - first_word] = | 
|  | ks8851_eeprom_read(dev, last_word); | 
|  |  | 
|  |  | 
|  | /* Device's eeprom is little-endian, word addressable */ | 
|  | le16_to_cpus(&eeprom_buff[0]); | 
|  | le16_to_cpus(&eeprom_buff[last_word - first_word]); | 
|  |  | 
|  | memcpy(ptr, bytes, eeprom->len); | 
|  |  | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | 
|  |  | 
|  | ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0); | 
|  |  | 
|  | for (i = 0; i < last_word - first_word + 1; i++) { | 
|  | ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i, | 
|  | eeprom_buff[i]); | 
|  | mdelay(EEPROM_WRITE_TIME); | 
|  | } | 
|  |  | 
|  | ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0); | 
|  |  | 
|  | kfree(eeprom_buff); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static const struct ethtool_ops ks8851_ethtool_ops = { | 
|  | .get_drvinfo	= ks8851_get_drvinfo, | 
|  | .get_msglevel	= ks8851_get_msglevel, | 
|  | .set_msglevel	= ks8851_set_msglevel, | 
|  | .get_settings	= ks8851_get_settings, | 
|  | .set_settings	= ks8851_set_settings, | 
|  | .get_link	= ks8851_get_link, | 
|  | .nway_reset	= ks8851_nway_reset, | 
|  | .get_eeprom_len	= ks8851_get_eeprom_len, | 
|  | .get_eeprom	= ks8851_get_eeprom, | 
|  | .set_eeprom	= ks8851_set_eeprom, | 
|  | }; | 
|  |  | 
|  | /* MII interface controls */ | 
|  |  | 
|  | /** | 
|  | * ks8851_phy_reg - convert MII register into a KS8851 register | 
|  | * @reg: MII register number. | 
|  | * | 
|  | * Return the KS8851 register number for the corresponding MII PHY register | 
|  | * if possible. Return zero if the MII register has no direct mapping to the | 
|  | * KS8851 register set. | 
|  | */ | 
|  | static int ks8851_phy_reg(int reg) | 
|  | { | 
|  | switch (reg) { | 
|  | case MII_BMCR: | 
|  | return KS_P1MBCR; | 
|  | case MII_BMSR: | 
|  | return KS_P1MBSR; | 
|  | case MII_PHYSID1: | 
|  | return KS_PHY1ILR; | 
|  | case MII_PHYSID2: | 
|  | return KS_PHY1IHR; | 
|  | case MII_ADVERTISE: | 
|  | return KS_P1ANAR; | 
|  | case MII_LPA: | 
|  | return KS_P1ANLPR; | 
|  | } | 
|  |  | 
|  | return 0x0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_phy_read - MII interface PHY register read. | 
|  | * @dev: The network device the PHY is on. | 
|  | * @phy_addr: Address of PHY (ignored as we only have one) | 
|  | * @reg: The register to read. | 
|  | * | 
|  | * This call reads data from the PHY register specified in @reg. Since the | 
|  | * device does not support all the MII registers, the non-existant values | 
|  | * are always returned as zero. | 
|  | * | 
|  | * We return zero for unsupported registers as the MII code does not check | 
|  | * the value returned for any error status, and simply returns it to the | 
|  | * caller. The mii-tool that the driver was tested with takes any -ve error | 
|  | * as real PHY capabilities, thus displaying incorrect data to the user. | 
|  | */ | 
|  | static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | int ksreg; | 
|  | int result; | 
|  |  | 
|  | ksreg = ks8851_phy_reg(reg); | 
|  | if (!ksreg) | 
|  | return 0x0;	/* no error return allowed, so use zero */ | 
|  |  | 
|  | mutex_lock(&ks->lock); | 
|  | result = ks8851_rdreg16(ks, ksreg); | 
|  | mutex_unlock(&ks->lock); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | static void ks8851_phy_write(struct net_device *dev, | 
|  | int phy, int reg, int value) | 
|  | { | 
|  | struct ks8851_net *ks = netdev_priv(dev); | 
|  | int ksreg; | 
|  |  | 
|  | ksreg = ks8851_phy_reg(reg); | 
|  | if (ksreg) { | 
|  | mutex_lock(&ks->lock); | 
|  | ks8851_wrreg16(ks, ksreg, value); | 
|  | mutex_unlock(&ks->lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ks8851_read_selftest - read the selftest memory info. | 
|  | * @ks: The device state | 
|  | * | 
|  | * Read and check the TX/RX memory selftest information. | 
|  | */ | 
|  | static int ks8851_read_selftest(struct ks8851_net *ks) | 
|  | { | 
|  | unsigned both_done = MBIR_TXMBF | MBIR_RXMBF; | 
|  | int ret = 0; | 
|  | unsigned rd; | 
|  |  | 
|  | rd = ks8851_rdreg16(ks, KS_MBIR); | 
|  |  | 
|  | if ((rd & both_done) != both_done) { | 
|  | netdev_warn(ks->netdev, "Memory selftest not finished\n"); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rd & MBIR_TXMBFA) { | 
|  | netdev_err(ks->netdev, "TX memory selftest fail\n"); | 
|  | ret |= 1; | 
|  | } | 
|  |  | 
|  | if (rd & MBIR_RXMBFA) { | 
|  | netdev_err(ks->netdev, "RX memory selftest fail\n"); | 
|  | ret |= 2; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* driver bus management functions */ | 
|  |  | 
|  | static int __devinit ks8851_probe(struct spi_device *spi) | 
|  | { | 
|  | struct net_device *ndev; | 
|  | struct ks8851_net *ks; | 
|  | int ret; | 
|  |  | 
|  | ndev = alloc_etherdev(sizeof(struct ks8851_net)); | 
|  | if (!ndev) { | 
|  | dev_err(&spi->dev, "failed to alloc ethernet device\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | spi->bits_per_word = 8; | 
|  |  | 
|  | ks = netdev_priv(ndev); | 
|  |  | 
|  | ks->netdev = ndev; | 
|  | ks->spidev = spi; | 
|  | ks->tx_space = 6144; | 
|  |  | 
|  | mutex_init(&ks->lock); | 
|  | spin_lock_init(&ks->statelock); | 
|  |  | 
|  | INIT_WORK(&ks->tx_work, ks8851_tx_work); | 
|  | INIT_WORK(&ks->irq_work, ks8851_irq_work); | 
|  | INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work); | 
|  |  | 
|  | /* initialise pre-made spi transfer messages */ | 
|  |  | 
|  | spi_message_init(&ks->spi_msg1); | 
|  | spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1); | 
|  |  | 
|  | spi_message_init(&ks->spi_msg2); | 
|  | spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2); | 
|  | spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2); | 
|  |  | 
|  | /* setup mii state */ | 
|  | ks->mii.dev		= ndev; | 
|  | ks->mii.phy_id		= 1, | 
|  | ks->mii.phy_id_mask	= 1; | 
|  | ks->mii.reg_num_mask	= 0xf; | 
|  | ks->mii.mdio_read	= ks8851_phy_read; | 
|  | ks->mii.mdio_write	= ks8851_phy_write; | 
|  |  | 
|  | dev_info(&spi->dev, "message enable is %d\n", msg_enable); | 
|  |  | 
|  | /* set the default message enable */ | 
|  | ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV | | 
|  | NETIF_MSG_PROBE | | 
|  | NETIF_MSG_LINK)); | 
|  |  | 
|  | skb_queue_head_init(&ks->txq); | 
|  |  | 
|  | SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops); | 
|  | SET_NETDEV_DEV(ndev, &spi->dev); | 
|  |  | 
|  | dev_set_drvdata(&spi->dev, ks); | 
|  |  | 
|  | ndev->if_port = IF_PORT_100BASET; | 
|  | ndev->netdev_ops = &ks8851_netdev_ops; | 
|  | ndev->irq = spi->irq; | 
|  |  | 
|  | /* issue a global soft reset to reset the device. */ | 
|  | ks8851_soft_reset(ks, GRR_GSR); | 
|  |  | 
|  | /* simple check for a valid chip being connected to the bus */ | 
|  |  | 
|  | if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) { | 
|  | dev_err(&spi->dev, "failed to read device ID\n"); | 
|  | ret = -ENODEV; | 
|  | goto err_id; | 
|  | } | 
|  |  | 
|  | /* cache the contents of the CCR register for EEPROM, etc. */ | 
|  | ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR); | 
|  |  | 
|  | if (ks->rc_ccr & CCR_EEPROM) | 
|  | ks->eeprom_size = 128; | 
|  | else | 
|  | ks->eeprom_size = 0; | 
|  |  | 
|  | ks8851_read_selftest(ks); | 
|  | ks8851_init_mac(ks); | 
|  |  | 
|  | ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW, | 
|  | ndev->name, ks); | 
|  | if (ret < 0) { | 
|  | dev_err(&spi->dev, "failed to get irq\n"); | 
|  | goto err_irq; | 
|  | } | 
|  |  | 
|  | ret = register_netdev(ndev); | 
|  | if (ret) { | 
|  | dev_err(&spi->dev, "failed to register network device\n"); | 
|  | goto err_netdev; | 
|  | } | 
|  |  | 
|  | netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n", | 
|  | CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)), | 
|  | ndev->dev_addr, ndev->irq); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  |  | 
|  | err_netdev: | 
|  | free_irq(ndev->irq, ndev); | 
|  |  | 
|  | err_id: | 
|  | err_irq: | 
|  | free_netdev(ndev); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int __devexit ks8851_remove(struct spi_device *spi) | 
|  | { | 
|  | struct ks8851_net *priv = dev_get_drvdata(&spi->dev); | 
|  |  | 
|  | if (netif_msg_drv(priv)) | 
|  | dev_info(&spi->dev, "remove\n"); | 
|  |  | 
|  | unregister_netdev(priv->netdev); | 
|  | free_irq(spi->irq, priv); | 
|  | free_netdev(priv->netdev); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct spi_driver ks8851_driver = { | 
|  | .driver = { | 
|  | .name = "ks8851", | 
|  | .owner = THIS_MODULE, | 
|  | }, | 
|  | .probe = ks8851_probe, | 
|  | .remove = __devexit_p(ks8851_remove), | 
|  | }; | 
|  |  | 
|  | static int __init ks8851_init(void) | 
|  | { | 
|  | return spi_register_driver(&ks8851_driver); | 
|  | } | 
|  |  | 
|  | static void __exit ks8851_exit(void) | 
|  | { | 
|  | spi_unregister_driver(&ks8851_driver); | 
|  | } | 
|  |  | 
|  | module_init(ks8851_init); | 
|  | module_exit(ks8851_exit); | 
|  |  | 
|  | MODULE_DESCRIPTION("KS8851 Network driver"); | 
|  | MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | module_param_named(message, msg_enable, int, 0); | 
|  | MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)"); | 
|  | MODULE_ALIAS("spi:ks8851"); |