|  | /** | 
|  | * mft.c - NTFS kernel mft record operations. Part of the Linux-NTFS project. | 
|  | * | 
|  | * Copyright (c) 2001-2006 Anton Altaparmakov | 
|  | * Copyright (c) 2002 Richard Russon | 
|  | * | 
|  | * This program/include file is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as published | 
|  | * by the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program/include file is distributed in the hope that it will be | 
|  | * useful, but WITHOUT ANY WARRANTY; without even the implied warranty | 
|  | * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program (in the main directory of the Linux-NTFS | 
|  | * distribution in the file COPYING); if not, write to the Free Software | 
|  | * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
|  | */ | 
|  |  | 
|  | #include <linux/buffer_head.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/swap.h> | 
|  |  | 
|  | #include "attrib.h" | 
|  | #include "aops.h" | 
|  | #include "bitmap.h" | 
|  | #include "debug.h" | 
|  | #include "dir.h" | 
|  | #include "lcnalloc.h" | 
|  | #include "malloc.h" | 
|  | #include "mft.h" | 
|  | #include "ntfs.h" | 
|  |  | 
|  | /** | 
|  | * map_mft_record_page - map the page in which a specific mft record resides | 
|  | * @ni:		ntfs inode whose mft record page to map | 
|  | * | 
|  | * This maps the page in which the mft record of the ntfs inode @ni is situated | 
|  | * and returns a pointer to the mft record within the mapped page. | 
|  | * | 
|  | * Return value needs to be checked with IS_ERR() and if that is true PTR_ERR() | 
|  | * contains the negative error code returned. | 
|  | */ | 
|  | static inline MFT_RECORD *map_mft_record_page(ntfs_inode *ni) | 
|  | { | 
|  | loff_t i_size; | 
|  | ntfs_volume *vol = ni->vol; | 
|  | struct inode *mft_vi = vol->mft_ino; | 
|  | struct page *page; | 
|  | unsigned long index, end_index; | 
|  | unsigned ofs; | 
|  |  | 
|  | BUG_ON(ni->page); | 
|  | /* | 
|  | * The index into the page cache and the offset within the page cache | 
|  | * page of the wanted mft record. FIXME: We need to check for | 
|  | * overflowing the unsigned long, but I don't think we would ever get | 
|  | * here if the volume was that big... | 
|  | */ | 
|  | index = (u64)ni->mft_no << vol->mft_record_size_bits >> | 
|  | PAGE_CACHE_SHIFT; | 
|  | ofs = (ni->mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK; | 
|  |  | 
|  | i_size = i_size_read(mft_vi); | 
|  | /* The maximum valid index into the page cache for $MFT's data. */ | 
|  | end_index = i_size >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | /* If the wanted index is out of bounds the mft record doesn't exist. */ | 
|  | if (unlikely(index >= end_index)) { | 
|  | if (index > end_index || (i_size & ~PAGE_CACHE_MASK) < ofs + | 
|  | vol->mft_record_size) { | 
|  | page = ERR_PTR(-ENOENT); | 
|  | ntfs_error(vol->sb, "Attemt to read mft record 0x%lx, " | 
|  | "which is beyond the end of the mft.  " | 
|  | "This is probably a bug in the ntfs " | 
|  | "driver.", ni->mft_no); | 
|  | goto err_out; | 
|  | } | 
|  | } | 
|  | /* Read, map, and pin the page. */ | 
|  | page = ntfs_map_page(mft_vi->i_mapping, index); | 
|  | if (likely(!IS_ERR(page))) { | 
|  | /* Catch multi sector transfer fixup errors. */ | 
|  | if (likely(ntfs_is_mft_recordp((le32*)(page_address(page) + | 
|  | ofs)))) { | 
|  | ni->page = page; | 
|  | ni->page_ofs = ofs; | 
|  | return page_address(page) + ofs; | 
|  | } | 
|  | ntfs_error(vol->sb, "Mft record 0x%lx is corrupt.  " | 
|  | "Run chkdsk.", ni->mft_no); | 
|  | ntfs_unmap_page(page); | 
|  | page = ERR_PTR(-EIO); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | err_out: | 
|  | ni->page = NULL; | 
|  | ni->page_ofs = 0; | 
|  | return (void*)page; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * map_mft_record - map, pin and lock an mft record | 
|  | * @ni:		ntfs inode whose MFT record to map | 
|  | * | 
|  | * First, take the mrec_lock mutex.  We might now be sleeping, while waiting | 
|  | * for the mutex if it was already locked by someone else. | 
|  | * | 
|  | * The page of the record is mapped using map_mft_record_page() before being | 
|  | * returned to the caller. | 
|  | * | 
|  | * This in turn uses ntfs_map_page() to get the page containing the wanted mft | 
|  | * record (it in turn calls read_cache_page() which reads it in from disk if | 
|  | * necessary, increments the use count on the page so that it cannot disappear | 
|  | * under us and returns a reference to the page cache page). | 
|  | * | 
|  | * If read_cache_page() invokes ntfs_readpage() to load the page from disk, it | 
|  | * sets PG_locked and clears PG_uptodate on the page. Once I/O has completed | 
|  | * and the post-read mst fixups on each mft record in the page have been | 
|  | * performed, the page gets PG_uptodate set and PG_locked cleared (this is done | 
|  | * in our asynchronous I/O completion handler end_buffer_read_mft_async()). | 
|  | * ntfs_map_page() waits for PG_locked to become clear and checks if | 
|  | * PG_uptodate is set and returns an error code if not. This provides | 
|  | * sufficient protection against races when reading/using the page. | 
|  | * | 
|  | * However there is the write mapping to think about. Doing the above described | 
|  | * checking here will be fine, because when initiating the write we will set | 
|  | * PG_locked and clear PG_uptodate making sure nobody is touching the page | 
|  | * contents. Doing the locking this way means that the commit to disk code in | 
|  | * the page cache code paths is automatically sufficiently locked with us as | 
|  | * we will not touch a page that has been locked or is not uptodate. The only | 
|  | * locking problem then is them locking the page while we are accessing it. | 
|  | * | 
|  | * So that code will end up having to own the mrec_lock of all mft | 
|  | * records/inodes present in the page before I/O can proceed. In that case we | 
|  | * wouldn't need to bother with PG_locked and PG_uptodate as nobody will be | 
|  | * accessing anything without owning the mrec_lock mutex.  But we do need to | 
|  | * use them because of the read_cache_page() invocation and the code becomes so | 
|  | * much simpler this way that it is well worth it. | 
|  | * | 
|  | * The mft record is now ours and we return a pointer to it. You need to check | 
|  | * the returned pointer with IS_ERR() and if that is true, PTR_ERR() will return | 
|  | * the error code. | 
|  | * | 
|  | * NOTE: Caller is responsible for setting the mft record dirty before calling | 
|  | * unmap_mft_record(). This is obviously only necessary if the caller really | 
|  | * modified the mft record... | 
|  | * Q: Do we want to recycle one of the VFS inode state bits instead? | 
|  | * A: No, the inode ones mean we want to change the mft record, not we want to | 
|  | * write it out. | 
|  | */ | 
|  | MFT_RECORD *map_mft_record(ntfs_inode *ni) | 
|  | { | 
|  | MFT_RECORD *m; | 
|  |  | 
|  | ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); | 
|  |  | 
|  | /* Make sure the ntfs inode doesn't go away. */ | 
|  | atomic_inc(&ni->count); | 
|  |  | 
|  | /* Serialize access to this mft record. */ | 
|  | mutex_lock(&ni->mrec_lock); | 
|  |  | 
|  | m = map_mft_record_page(ni); | 
|  | if (likely(!IS_ERR(m))) | 
|  | return m; | 
|  |  | 
|  | mutex_unlock(&ni->mrec_lock); | 
|  | atomic_dec(&ni->count); | 
|  | ntfs_error(ni->vol->sb, "Failed with error code %lu.", -PTR_ERR(m)); | 
|  | return m; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_mft_record_page - unmap the page in which a specific mft record resides | 
|  | * @ni:		ntfs inode whose mft record page to unmap | 
|  | * | 
|  | * This unmaps the page in which the mft record of the ntfs inode @ni is | 
|  | * situated and returns. This is a NOOP if highmem is not configured. | 
|  | * | 
|  | * The unmap happens via ntfs_unmap_page() which in turn decrements the use | 
|  | * count on the page thus releasing it from the pinned state. | 
|  | * | 
|  | * We do not actually unmap the page from memory of course, as that will be | 
|  | * done by the page cache code itself when memory pressure increases or | 
|  | * whatever. | 
|  | */ | 
|  | static inline void unmap_mft_record_page(ntfs_inode *ni) | 
|  | { | 
|  | BUG_ON(!ni->page); | 
|  |  | 
|  | // TODO: If dirty, blah... | 
|  | ntfs_unmap_page(ni->page); | 
|  | ni->page = NULL; | 
|  | ni->page_ofs = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * unmap_mft_record - release a mapped mft record | 
|  | * @ni:		ntfs inode whose MFT record to unmap | 
|  | * | 
|  | * We release the page mapping and the mrec_lock mutex which unmaps the mft | 
|  | * record and releases it for others to get hold of. We also release the ntfs | 
|  | * inode by decrementing the ntfs inode reference count. | 
|  | * | 
|  | * NOTE: If caller has modified the mft record, it is imperative to set the mft | 
|  | * record dirty BEFORE calling unmap_mft_record(). | 
|  | */ | 
|  | void unmap_mft_record(ntfs_inode *ni) | 
|  | { | 
|  | struct page *page = ni->page; | 
|  |  | 
|  | BUG_ON(!page); | 
|  |  | 
|  | ntfs_debug("Entering for mft_no 0x%lx.", ni->mft_no); | 
|  |  | 
|  | unmap_mft_record_page(ni); | 
|  | mutex_unlock(&ni->mrec_lock); | 
|  | atomic_dec(&ni->count); | 
|  | /* | 
|  | * If pure ntfs_inode, i.e. no vfs inode attached, we leave it to | 
|  | * ntfs_clear_extent_inode() in the extent inode case, and to the | 
|  | * caller in the non-extent, yet pure ntfs inode case, to do the actual | 
|  | * tear down of all structures and freeing of all allocated memory. | 
|  | */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * map_extent_mft_record - load an extent inode and attach it to its base | 
|  | * @base_ni:	base ntfs inode | 
|  | * @mref:	mft reference of the extent inode to load | 
|  | * @ntfs_ino:	on successful return, pointer to the ntfs_inode structure | 
|  | * | 
|  | * Load the extent mft record @mref and attach it to its base inode @base_ni. | 
|  | * Return the mapped extent mft record if IS_ERR(result) is false.  Otherwise | 
|  | * PTR_ERR(result) gives the negative error code. | 
|  | * | 
|  | * On successful return, @ntfs_ino contains a pointer to the ntfs_inode | 
|  | * structure of the mapped extent inode. | 
|  | */ | 
|  | MFT_RECORD *map_extent_mft_record(ntfs_inode *base_ni, MFT_REF mref, | 
|  | ntfs_inode **ntfs_ino) | 
|  | { | 
|  | MFT_RECORD *m; | 
|  | ntfs_inode *ni = NULL; | 
|  | ntfs_inode **extent_nis = NULL; | 
|  | int i; | 
|  | unsigned long mft_no = MREF(mref); | 
|  | u16 seq_no = MSEQNO(mref); | 
|  | bool destroy_ni = false; | 
|  |  | 
|  | ntfs_debug("Mapping extent mft record 0x%lx (base mft record 0x%lx).", | 
|  | mft_no, base_ni->mft_no); | 
|  | /* Make sure the base ntfs inode doesn't go away. */ | 
|  | atomic_inc(&base_ni->count); | 
|  | /* | 
|  | * Check if this extent inode has already been added to the base inode, | 
|  | * in which case just return it. If not found, add it to the base | 
|  | * inode before returning it. | 
|  | */ | 
|  | mutex_lock(&base_ni->extent_lock); | 
|  | if (base_ni->nr_extents > 0) { | 
|  | extent_nis = base_ni->ext.extent_ntfs_inos; | 
|  | for (i = 0; i < base_ni->nr_extents; i++) { | 
|  | if (mft_no != extent_nis[i]->mft_no) | 
|  | continue; | 
|  | ni = extent_nis[i]; | 
|  | /* Make sure the ntfs inode doesn't go away. */ | 
|  | atomic_inc(&ni->count); | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (likely(ni != NULL)) { | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  | atomic_dec(&base_ni->count); | 
|  | /* We found the record; just have to map and return it. */ | 
|  | m = map_mft_record(ni); | 
|  | /* map_mft_record() has incremented this on success. */ | 
|  | atomic_dec(&ni->count); | 
|  | if (likely(!IS_ERR(m))) { | 
|  | /* Verify the sequence number. */ | 
|  | if (likely(le16_to_cpu(m->sequence_number) == seq_no)) { | 
|  | ntfs_debug("Done 1."); | 
|  | *ntfs_ino = ni; | 
|  | return m; | 
|  | } | 
|  | unmap_mft_record(ni); | 
|  | ntfs_error(base_ni->vol->sb, "Found stale extent mft " | 
|  | "reference! Corrupt filesystem. " | 
|  | "Run chkdsk."); | 
|  | return ERR_PTR(-EIO); | 
|  | } | 
|  | map_err_out: | 
|  | ntfs_error(base_ni->vol->sb, "Failed to map extent " | 
|  | "mft record, error code %ld.", -PTR_ERR(m)); | 
|  | return m; | 
|  | } | 
|  | /* Record wasn't there. Get a new ntfs inode and initialize it. */ | 
|  | ni = ntfs_new_extent_inode(base_ni->vol->sb, mft_no); | 
|  | if (unlikely(!ni)) { | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  | atomic_dec(&base_ni->count); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  | ni->vol = base_ni->vol; | 
|  | ni->seq_no = seq_no; | 
|  | ni->nr_extents = -1; | 
|  | ni->ext.base_ntfs_ino = base_ni; | 
|  | /* Now map the record. */ | 
|  | m = map_mft_record(ni); | 
|  | if (IS_ERR(m)) { | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  | atomic_dec(&base_ni->count); | 
|  | ntfs_clear_extent_inode(ni); | 
|  | goto map_err_out; | 
|  | } | 
|  | /* Verify the sequence number if it is present. */ | 
|  | if (seq_no && (le16_to_cpu(m->sequence_number) != seq_no)) { | 
|  | ntfs_error(base_ni->vol->sb, "Found stale extent mft " | 
|  | "reference! Corrupt filesystem. Run chkdsk."); | 
|  | destroy_ni = true; | 
|  | m = ERR_PTR(-EIO); | 
|  | goto unm_err_out; | 
|  | } | 
|  | /* Attach extent inode to base inode, reallocating memory if needed. */ | 
|  | if (!(base_ni->nr_extents & 3)) { | 
|  | ntfs_inode **tmp; | 
|  | int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode *); | 
|  |  | 
|  | tmp = kmalloc(new_size, GFP_NOFS); | 
|  | if (unlikely(!tmp)) { | 
|  | ntfs_error(base_ni->vol->sb, "Failed to allocate " | 
|  | "internal buffer."); | 
|  | destroy_ni = true; | 
|  | m = ERR_PTR(-ENOMEM); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (base_ni->nr_extents) { | 
|  | BUG_ON(!base_ni->ext.extent_ntfs_inos); | 
|  | memcpy(tmp, base_ni->ext.extent_ntfs_inos, new_size - | 
|  | 4 * sizeof(ntfs_inode *)); | 
|  | kfree(base_ni->ext.extent_ntfs_inos); | 
|  | } | 
|  | base_ni->ext.extent_ntfs_inos = tmp; | 
|  | } | 
|  | base_ni->ext.extent_ntfs_inos[base_ni->nr_extents++] = ni; | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  | atomic_dec(&base_ni->count); | 
|  | ntfs_debug("Done 2."); | 
|  | *ntfs_ino = ni; | 
|  | return m; | 
|  | unm_err_out: | 
|  | unmap_mft_record(ni); | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  | atomic_dec(&base_ni->count); | 
|  | /* | 
|  | * If the extent inode was not attached to the base inode we need to | 
|  | * release it or we will leak memory. | 
|  | */ | 
|  | if (destroy_ni) | 
|  | ntfs_clear_extent_inode(ni); | 
|  | return m; | 
|  | } | 
|  |  | 
|  | #ifdef NTFS_RW | 
|  |  | 
|  | /** | 
|  | * __mark_mft_record_dirty - set the mft record and the page containing it dirty | 
|  | * @ni:		ntfs inode describing the mapped mft record | 
|  | * | 
|  | * Internal function.  Users should call mark_mft_record_dirty() instead. | 
|  | * | 
|  | * Set the mapped (extent) mft record of the (base or extent) ntfs inode @ni, | 
|  | * as well as the page containing the mft record, dirty.  Also, mark the base | 
|  | * vfs inode dirty.  This ensures that any changes to the mft record are | 
|  | * written out to disk. | 
|  | * | 
|  | * NOTE:  We only set I_DIRTY_SYNC and I_DIRTY_DATASYNC (and not I_DIRTY_PAGES) | 
|  | * on the base vfs inode, because even though file data may have been modified, | 
|  | * it is dirty in the inode meta data rather than the data page cache of the | 
|  | * inode, and thus there are no data pages that need writing out.  Therefore, a | 
|  | * full mark_inode_dirty() is overkill.  A mark_inode_dirty_sync(), on the | 
|  | * other hand, is not sufficient, because ->write_inode needs to be called even | 
|  | * in case of fdatasync. This needs to happen or the file data would not | 
|  | * necessarily hit the device synchronously, even though the vfs inode has the | 
|  | * O_SYNC flag set.  Also, I_DIRTY_DATASYNC simply "feels" better than just | 
|  | * I_DIRTY_SYNC, since the file data has not actually hit the block device yet, | 
|  | * which is not what I_DIRTY_SYNC on its own would suggest. | 
|  | */ | 
|  | void __mark_mft_record_dirty(ntfs_inode *ni) | 
|  | { | 
|  | ntfs_inode *base_ni; | 
|  |  | 
|  | ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); | 
|  | BUG_ON(NInoAttr(ni)); | 
|  | mark_ntfs_record_dirty(ni->page, ni->page_ofs); | 
|  | /* Determine the base vfs inode and mark it dirty, too. */ | 
|  | mutex_lock(&ni->extent_lock); | 
|  | if (likely(ni->nr_extents >= 0)) | 
|  | base_ni = ni; | 
|  | else | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | mutex_unlock(&ni->extent_lock); | 
|  | __mark_inode_dirty(VFS_I(base_ni), I_DIRTY_SYNC | I_DIRTY_DATASYNC); | 
|  | } | 
|  |  | 
|  | static const char *ntfs_please_email = "Please email " | 
|  | "linux-ntfs-dev@lists.sourceforge.net and say that you saw " | 
|  | "this message.  Thank you."; | 
|  |  | 
|  | /** | 
|  | * ntfs_sync_mft_mirror_umount - synchronise an mft record to the mft mirror | 
|  | * @vol:	ntfs volume on which the mft record to synchronize resides | 
|  | * @mft_no:	mft record number of mft record to synchronize | 
|  | * @m:		mapped, mst protected (extent) mft record to synchronize | 
|  | * | 
|  | * Write the mapped, mst protected (extent) mft record @m with mft record | 
|  | * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol, | 
|  | * bypassing the page cache and the $MFTMirr inode itself. | 
|  | * | 
|  | * This function is only for use at umount time when the mft mirror inode has | 
|  | * already been disposed off.  We BUG() if we are called while the mft mirror | 
|  | * inode is still attached to the volume. | 
|  | * | 
|  | * On success return 0.  On error return -errno. | 
|  | * | 
|  | * NOTE:  This function is not implemented yet as I am not convinced it can | 
|  | * actually be triggered considering the sequence of commits we do in super.c:: | 
|  | * ntfs_put_super().  But just in case we provide this place holder as the | 
|  | * alternative would be either to BUG() or to get a NULL pointer dereference | 
|  | * and Oops. | 
|  | */ | 
|  | static int ntfs_sync_mft_mirror_umount(ntfs_volume *vol, | 
|  | const unsigned long mft_no, MFT_RECORD *m) | 
|  | { | 
|  | BUG_ON(vol->mftmirr_ino); | 
|  | ntfs_error(vol->sb, "Umount time mft mirror syncing is not " | 
|  | "implemented yet.  %s", ntfs_please_email); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_sync_mft_mirror - synchronize an mft record to the mft mirror | 
|  | * @vol:	ntfs volume on which the mft record to synchronize resides | 
|  | * @mft_no:	mft record number of mft record to synchronize | 
|  | * @m:		mapped, mst protected (extent) mft record to synchronize | 
|  | * @sync:	if true, wait for i/o completion | 
|  | * | 
|  | * Write the mapped, mst protected (extent) mft record @m with mft record | 
|  | * number @mft_no to the mft mirror ($MFTMirr) of the ntfs volume @vol. | 
|  | * | 
|  | * On success return 0.  On error return -errno and set the volume errors flag | 
|  | * in the ntfs volume @vol. | 
|  | * | 
|  | * NOTE:  We always perform synchronous i/o and ignore the @sync parameter. | 
|  | * | 
|  | * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just | 
|  | * schedule i/o via ->writepage or do it via kntfsd or whatever. | 
|  | */ | 
|  | int ntfs_sync_mft_mirror(ntfs_volume *vol, const unsigned long mft_no, | 
|  | MFT_RECORD *m, int sync) | 
|  | { | 
|  | struct page *page; | 
|  | unsigned int blocksize = vol->sb->s_blocksize; | 
|  | int max_bhs = vol->mft_record_size / blocksize; | 
|  | struct buffer_head *bhs[max_bhs]; | 
|  | struct buffer_head *bh, *head; | 
|  | u8 *kmirr; | 
|  | runlist_element *rl; | 
|  | unsigned int block_start, block_end, m_start, m_end, page_ofs; | 
|  | int i_bhs, nr_bhs, err = 0; | 
|  | unsigned char blocksize_bits = vol->sb->s_blocksize_bits; | 
|  |  | 
|  | ntfs_debug("Entering for inode 0x%lx.", mft_no); | 
|  | BUG_ON(!max_bhs); | 
|  | if (unlikely(!vol->mftmirr_ino)) { | 
|  | /* This could happen during umount... */ | 
|  | err = ntfs_sync_mft_mirror_umount(vol, mft_no, m); | 
|  | if (likely(!err)) | 
|  | return err; | 
|  | goto err_out; | 
|  | } | 
|  | /* Get the page containing the mirror copy of the mft record @m. */ | 
|  | page = ntfs_map_page(vol->mftmirr_ino->i_mapping, mft_no >> | 
|  | (PAGE_CACHE_SHIFT - vol->mft_record_size_bits)); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(vol->sb, "Failed to map mft mirror page."); | 
|  | err = PTR_ERR(page); | 
|  | goto err_out; | 
|  | } | 
|  | lock_page(page); | 
|  | BUG_ON(!PageUptodate(page)); | 
|  | ClearPageUptodate(page); | 
|  | /* Offset of the mft mirror record inside the page. */ | 
|  | page_ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK; | 
|  | /* The address in the page of the mirror copy of the mft record @m. */ | 
|  | kmirr = page_address(page) + page_ofs; | 
|  | /* Copy the mst protected mft record to the mirror. */ | 
|  | memcpy(kmirr, m, vol->mft_record_size); | 
|  | /* Create uptodate buffers if not present. */ | 
|  | if (unlikely(!page_has_buffers(page))) { | 
|  | struct buffer_head *tail; | 
|  |  | 
|  | bh = head = alloc_page_buffers(page, blocksize, 1); | 
|  | do { | 
|  | set_buffer_uptodate(bh); | 
|  | tail = bh; | 
|  | bh = bh->b_this_page; | 
|  | } while (bh); | 
|  | tail->b_this_page = head; | 
|  | attach_page_buffers(page, head); | 
|  | } | 
|  | bh = head = page_buffers(page); | 
|  | BUG_ON(!bh); | 
|  | rl = NULL; | 
|  | nr_bhs = 0; | 
|  | block_start = 0; | 
|  | m_start = kmirr - (u8*)page_address(page); | 
|  | m_end = m_start + vol->mft_record_size; | 
|  | do { | 
|  | block_end = block_start + blocksize; | 
|  | /* If the buffer is outside the mft record, skip it. */ | 
|  | if (block_end <= m_start) | 
|  | continue; | 
|  | if (unlikely(block_start >= m_end)) | 
|  | break; | 
|  | /* Need to map the buffer if it is not mapped already. */ | 
|  | if (unlikely(!buffer_mapped(bh))) { | 
|  | VCN vcn; | 
|  | LCN lcn; | 
|  | unsigned int vcn_ofs; | 
|  |  | 
|  | bh->b_bdev = vol->sb->s_bdev; | 
|  | /* Obtain the vcn and offset of the current block. */ | 
|  | vcn = ((VCN)mft_no << vol->mft_record_size_bits) + | 
|  | (block_start - m_start); | 
|  | vcn_ofs = vcn & vol->cluster_size_mask; | 
|  | vcn >>= vol->cluster_size_bits; | 
|  | if (!rl) { | 
|  | down_read(&NTFS_I(vol->mftmirr_ino)-> | 
|  | runlist.lock); | 
|  | rl = NTFS_I(vol->mftmirr_ino)->runlist.rl; | 
|  | /* | 
|  | * $MFTMirr always has the whole of its runlist | 
|  | * in memory. | 
|  | */ | 
|  | BUG_ON(!rl); | 
|  | } | 
|  | /* Seek to element containing target vcn. */ | 
|  | while (rl->length && rl[1].vcn <= vcn) | 
|  | rl++; | 
|  | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); | 
|  | /* For $MFTMirr, only lcn >= 0 is a successful remap. */ | 
|  | if (likely(lcn >= 0)) { | 
|  | /* Setup buffer head to correct block. */ | 
|  | bh->b_blocknr = ((lcn << | 
|  | vol->cluster_size_bits) + | 
|  | vcn_ofs) >> blocksize_bits; | 
|  | set_buffer_mapped(bh); | 
|  | } else { | 
|  | bh->b_blocknr = -1; | 
|  | ntfs_error(vol->sb, "Cannot write mft mirror " | 
|  | "record 0x%lx because its " | 
|  | "location on disk could not " | 
|  | "be determined (error code " | 
|  | "%lli).", mft_no, | 
|  | (long long)lcn); | 
|  | err = -EIO; | 
|  | } | 
|  | } | 
|  | BUG_ON(!buffer_uptodate(bh)); | 
|  | BUG_ON(!nr_bhs && (m_start != block_start)); | 
|  | BUG_ON(nr_bhs >= max_bhs); | 
|  | bhs[nr_bhs++] = bh; | 
|  | BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); | 
|  | } while (block_start = block_end, (bh = bh->b_this_page) != head); | 
|  | if (unlikely(rl)) | 
|  | up_read(&NTFS_I(vol->mftmirr_ino)->runlist.lock); | 
|  | if (likely(!err)) { | 
|  | /* Lock buffers and start synchronous write i/o on them. */ | 
|  | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { | 
|  | struct buffer_head *tbh = bhs[i_bhs]; | 
|  |  | 
|  | if (!trylock_buffer(tbh)) | 
|  | BUG(); | 
|  | BUG_ON(!buffer_uptodate(tbh)); | 
|  | clear_buffer_dirty(tbh); | 
|  | get_bh(tbh); | 
|  | tbh->b_end_io = end_buffer_write_sync; | 
|  | submit_bh(WRITE, tbh); | 
|  | } | 
|  | /* Wait on i/o completion of buffers. */ | 
|  | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { | 
|  | struct buffer_head *tbh = bhs[i_bhs]; | 
|  |  | 
|  | wait_on_buffer(tbh); | 
|  | if (unlikely(!buffer_uptodate(tbh))) { | 
|  | err = -EIO; | 
|  | /* | 
|  | * Set the buffer uptodate so the page and | 
|  | * buffer states do not become out of sync. | 
|  | */ | 
|  | set_buffer_uptodate(tbh); | 
|  | } | 
|  | } | 
|  | } else /* if (unlikely(err)) */ { | 
|  | /* Clean the buffers. */ | 
|  | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) | 
|  | clear_buffer_dirty(bhs[i_bhs]); | 
|  | } | 
|  | /* Current state: all buffers are clean, unlocked, and uptodate. */ | 
|  | /* Remove the mst protection fixups again. */ | 
|  | post_write_mst_fixup((NTFS_RECORD*)kmirr); | 
|  | flush_dcache_page(page); | 
|  | SetPageUptodate(page); | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | if (likely(!err)) { | 
|  | ntfs_debug("Done."); | 
|  | } else { | 
|  | ntfs_error(vol->sb, "I/O error while writing mft mirror " | 
|  | "record 0x%lx!", mft_no); | 
|  | err_out: | 
|  | ntfs_error(vol->sb, "Failed to synchronize $MFTMirr (error " | 
|  | "code %i).  Volume will be left marked dirty " | 
|  | "on umount.  Run ntfsfix on the partition " | 
|  | "after umounting to correct this.", -err); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * write_mft_record_nolock - write out a mapped (extent) mft record | 
|  | * @ni:		ntfs inode describing the mapped (extent) mft record | 
|  | * @m:		mapped (extent) mft record to write | 
|  | * @sync:	if true, wait for i/o completion | 
|  | * | 
|  | * Write the mapped (extent) mft record @m described by the (regular or extent) | 
|  | * ntfs inode @ni to backing store.  If the mft record @m has a counterpart in | 
|  | * the mft mirror, that is also updated. | 
|  | * | 
|  | * We only write the mft record if the ntfs inode @ni is dirty and the first | 
|  | * buffer belonging to its mft record is dirty, too.  We ignore the dirty state | 
|  | * of subsequent buffers because we could have raced with | 
|  | * fs/ntfs/aops.c::mark_ntfs_record_dirty(). | 
|  | * | 
|  | * On success, clean the mft record and return 0.  On error, leave the mft | 
|  | * record dirty and return -errno. | 
|  | * | 
|  | * NOTE:  We always perform synchronous i/o and ignore the @sync parameter. | 
|  | * However, if the mft record has a counterpart in the mft mirror and @sync is | 
|  | * true, we write the mft record, wait for i/o completion, and only then write | 
|  | * the mft mirror copy.  This ensures that if the system crashes either the mft | 
|  | * or the mft mirror will contain a self-consistent mft record @m.  If @sync is | 
|  | * false on the other hand, we start i/o on both and then wait for completion | 
|  | * on them.  This provides a speedup but no longer guarantees that you will end | 
|  | * up with a self-consistent mft record in the case of a crash but if you asked | 
|  | * for asynchronous writing you probably do not care about that anyway. | 
|  | * | 
|  | * TODO:  If @sync is false, want to do truly asynchronous i/o, i.e. just | 
|  | * schedule i/o via ->writepage or do it via kntfsd or whatever. | 
|  | */ | 
|  | int write_mft_record_nolock(ntfs_inode *ni, MFT_RECORD *m, int sync) | 
|  | { | 
|  | ntfs_volume *vol = ni->vol; | 
|  | struct page *page = ni->page; | 
|  | unsigned int blocksize = vol->sb->s_blocksize; | 
|  | unsigned char blocksize_bits = vol->sb->s_blocksize_bits; | 
|  | int max_bhs = vol->mft_record_size / blocksize; | 
|  | struct buffer_head *bhs[max_bhs]; | 
|  | struct buffer_head *bh, *head; | 
|  | runlist_element *rl; | 
|  | unsigned int block_start, block_end, m_start, m_end; | 
|  | int i_bhs, nr_bhs, err = 0; | 
|  |  | 
|  | ntfs_debug("Entering for inode 0x%lx.", ni->mft_no); | 
|  | BUG_ON(NInoAttr(ni)); | 
|  | BUG_ON(!max_bhs); | 
|  | BUG_ON(!PageLocked(page)); | 
|  | /* | 
|  | * If the ntfs_inode is clean no need to do anything.  If it is dirty, | 
|  | * mark it as clean now so that it can be redirtied later on if needed. | 
|  | * There is no danger of races since the caller is holding the locks | 
|  | * for the mft record @m and the page it is in. | 
|  | */ | 
|  | if (!NInoTestClearDirty(ni)) | 
|  | goto done; | 
|  | bh = head = page_buffers(page); | 
|  | BUG_ON(!bh); | 
|  | rl = NULL; | 
|  | nr_bhs = 0; | 
|  | block_start = 0; | 
|  | m_start = ni->page_ofs; | 
|  | m_end = m_start + vol->mft_record_size; | 
|  | do { | 
|  | block_end = block_start + blocksize; | 
|  | /* If the buffer is outside the mft record, skip it. */ | 
|  | if (block_end <= m_start) | 
|  | continue; | 
|  | if (unlikely(block_start >= m_end)) | 
|  | break; | 
|  | /* | 
|  | * If this block is not the first one in the record, we ignore | 
|  | * the buffer's dirty state because we could have raced with a | 
|  | * parallel mark_ntfs_record_dirty(). | 
|  | */ | 
|  | if (block_start == m_start) { | 
|  | /* This block is the first one in the record. */ | 
|  | if (!buffer_dirty(bh)) { | 
|  | BUG_ON(nr_bhs); | 
|  | /* Clean records are not written out. */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* Need to map the buffer if it is not mapped already. */ | 
|  | if (unlikely(!buffer_mapped(bh))) { | 
|  | VCN vcn; | 
|  | LCN lcn; | 
|  | unsigned int vcn_ofs; | 
|  |  | 
|  | bh->b_bdev = vol->sb->s_bdev; | 
|  | /* Obtain the vcn and offset of the current block. */ | 
|  | vcn = ((VCN)ni->mft_no << vol->mft_record_size_bits) + | 
|  | (block_start - m_start); | 
|  | vcn_ofs = vcn & vol->cluster_size_mask; | 
|  | vcn >>= vol->cluster_size_bits; | 
|  | if (!rl) { | 
|  | down_read(&NTFS_I(vol->mft_ino)->runlist.lock); | 
|  | rl = NTFS_I(vol->mft_ino)->runlist.rl; | 
|  | BUG_ON(!rl); | 
|  | } | 
|  | /* Seek to element containing target vcn. */ | 
|  | while (rl->length && rl[1].vcn <= vcn) | 
|  | rl++; | 
|  | lcn = ntfs_rl_vcn_to_lcn(rl, vcn); | 
|  | /* For $MFT, only lcn >= 0 is a successful remap. */ | 
|  | if (likely(lcn >= 0)) { | 
|  | /* Setup buffer head to correct block. */ | 
|  | bh->b_blocknr = ((lcn << | 
|  | vol->cluster_size_bits) + | 
|  | vcn_ofs) >> blocksize_bits; | 
|  | set_buffer_mapped(bh); | 
|  | } else { | 
|  | bh->b_blocknr = -1; | 
|  | ntfs_error(vol->sb, "Cannot write mft record " | 
|  | "0x%lx because its location " | 
|  | "on disk could not be " | 
|  | "determined (error code %lli).", | 
|  | ni->mft_no, (long long)lcn); | 
|  | err = -EIO; | 
|  | } | 
|  | } | 
|  | BUG_ON(!buffer_uptodate(bh)); | 
|  | BUG_ON(!nr_bhs && (m_start != block_start)); | 
|  | BUG_ON(nr_bhs >= max_bhs); | 
|  | bhs[nr_bhs++] = bh; | 
|  | BUG_ON((nr_bhs >= max_bhs) && (m_end != block_end)); | 
|  | } while (block_start = block_end, (bh = bh->b_this_page) != head); | 
|  | if (unlikely(rl)) | 
|  | up_read(&NTFS_I(vol->mft_ino)->runlist.lock); | 
|  | if (!nr_bhs) | 
|  | goto done; | 
|  | if (unlikely(err)) | 
|  | goto cleanup_out; | 
|  | /* Apply the mst protection fixups. */ | 
|  | err = pre_write_mst_fixup((NTFS_RECORD*)m, vol->mft_record_size); | 
|  | if (err) { | 
|  | ntfs_error(vol->sb, "Failed to apply mst fixups!"); | 
|  | goto cleanup_out; | 
|  | } | 
|  | flush_dcache_mft_record_page(ni); | 
|  | /* Lock buffers and start synchronous write i/o on them. */ | 
|  | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { | 
|  | struct buffer_head *tbh = bhs[i_bhs]; | 
|  |  | 
|  | if (!trylock_buffer(tbh)) | 
|  | BUG(); | 
|  | BUG_ON(!buffer_uptodate(tbh)); | 
|  | clear_buffer_dirty(tbh); | 
|  | get_bh(tbh); | 
|  | tbh->b_end_io = end_buffer_write_sync; | 
|  | submit_bh(WRITE, tbh); | 
|  | } | 
|  | /* Synchronize the mft mirror now if not @sync. */ | 
|  | if (!sync && ni->mft_no < vol->mftmirr_size) | 
|  | ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); | 
|  | /* Wait on i/o completion of buffers. */ | 
|  | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) { | 
|  | struct buffer_head *tbh = bhs[i_bhs]; | 
|  |  | 
|  | wait_on_buffer(tbh); | 
|  | if (unlikely(!buffer_uptodate(tbh))) { | 
|  | err = -EIO; | 
|  | /* | 
|  | * Set the buffer uptodate so the page and buffer | 
|  | * states do not become out of sync. | 
|  | */ | 
|  | if (PageUptodate(page)) | 
|  | set_buffer_uptodate(tbh); | 
|  | } | 
|  | } | 
|  | /* If @sync, now synchronize the mft mirror. */ | 
|  | if (sync && ni->mft_no < vol->mftmirr_size) | 
|  | ntfs_sync_mft_mirror(vol, ni->mft_no, m, sync); | 
|  | /* Remove the mst protection fixups again. */ | 
|  | post_write_mst_fixup((NTFS_RECORD*)m); | 
|  | flush_dcache_mft_record_page(ni); | 
|  | if (unlikely(err)) { | 
|  | /* I/O error during writing.  This is really bad! */ | 
|  | ntfs_error(vol->sb, "I/O error while writing mft record " | 
|  | "0x%lx!  Marking base inode as bad.  You " | 
|  | "should unmount the volume and run chkdsk.", | 
|  | ni->mft_no); | 
|  | goto err_out; | 
|  | } | 
|  | done: | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | cleanup_out: | 
|  | /* Clean the buffers. */ | 
|  | for (i_bhs = 0; i_bhs < nr_bhs; i_bhs++) | 
|  | clear_buffer_dirty(bhs[i_bhs]); | 
|  | err_out: | 
|  | /* | 
|  | * Current state: all buffers are clean, unlocked, and uptodate. | 
|  | * The caller should mark the base inode as bad so that no more i/o | 
|  | * happens.  ->clear_inode() will still be invoked so all extent inodes | 
|  | * and other allocated memory will be freed. | 
|  | */ | 
|  | if (err == -ENOMEM) { | 
|  | ntfs_error(vol->sb, "Not enough memory to write mft record.  " | 
|  | "Redirtying so the write is retried later."); | 
|  | mark_mft_record_dirty(ni); | 
|  | err = 0; | 
|  | } else | 
|  | NVolSetErrors(vol); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_may_write_mft_record - check if an mft record may be written out | 
|  | * @vol:	[IN]  ntfs volume on which the mft record to check resides | 
|  | * @mft_no:	[IN]  mft record number of the mft record to check | 
|  | * @m:		[IN]  mapped mft record to check | 
|  | * @locked_ni:	[OUT] caller has to unlock this ntfs inode if one is returned | 
|  | * | 
|  | * Check if the mapped (base or extent) mft record @m with mft record number | 
|  | * @mft_no belonging to the ntfs volume @vol may be written out.  If necessary | 
|  | * and possible the ntfs inode of the mft record is locked and the base vfs | 
|  | * inode is pinned.  The locked ntfs inode is then returned in @locked_ni.  The | 
|  | * caller is responsible for unlocking the ntfs inode and unpinning the base | 
|  | * vfs inode. | 
|  | * | 
|  | * Return 'true' if the mft record may be written out and 'false' if not. | 
|  | * | 
|  | * The caller has locked the page and cleared the uptodate flag on it which | 
|  | * means that we can safely write out any dirty mft records that do not have | 
|  | * their inodes in icache as determined by ilookup5() as anyone | 
|  | * opening/creating such an inode would block when attempting to map the mft | 
|  | * record in read_cache_page() until we are finished with the write out. | 
|  | * | 
|  | * Here is a description of the tests we perform: | 
|  | * | 
|  | * If the inode is found in icache we know the mft record must be a base mft | 
|  | * record.  If it is dirty, we do not write it and return 'false' as the vfs | 
|  | * inode write paths will result in the access times being updated which would | 
|  | * cause the base mft record to be redirtied and written out again.  (We know | 
|  | * the access time update will modify the base mft record because Windows | 
|  | * chkdsk complains if the standard information attribute is not in the base | 
|  | * mft record.) | 
|  | * | 
|  | * If the inode is in icache and not dirty, we attempt to lock the mft record | 
|  | * and if we find the lock was already taken, it is not safe to write the mft | 
|  | * record and we return 'false'. | 
|  | * | 
|  | * If we manage to obtain the lock we have exclusive access to the mft record, | 
|  | * which also allows us safe writeout of the mft record.  We then set | 
|  | * @locked_ni to the locked ntfs inode and return 'true'. | 
|  | * | 
|  | * Note we cannot just lock the mft record and sleep while waiting for the lock | 
|  | * because this would deadlock due to lock reversal (normally the mft record is | 
|  | * locked before the page is locked but we already have the page locked here | 
|  | * when we try to lock the mft record). | 
|  | * | 
|  | * If the inode is not in icache we need to perform further checks. | 
|  | * | 
|  | * If the mft record is not a FILE record or it is a base mft record, we can | 
|  | * safely write it and return 'true'. | 
|  | * | 
|  | * We now know the mft record is an extent mft record.  We check if the inode | 
|  | * corresponding to its base mft record is in icache and obtain a reference to | 
|  | * it if it is.  If it is not, we can safely write it and return 'true'. | 
|  | * | 
|  | * We now have the base inode for the extent mft record.  We check if it has an | 
|  | * ntfs inode for the extent mft record attached and if not it is safe to write | 
|  | * the extent mft record and we return 'true'. | 
|  | * | 
|  | * The ntfs inode for the extent mft record is attached to the base inode so we | 
|  | * attempt to lock the extent mft record and if we find the lock was already | 
|  | * taken, it is not safe to write the extent mft record and we return 'false'. | 
|  | * | 
|  | * If we manage to obtain the lock we have exclusive access to the extent mft | 
|  | * record, which also allows us safe writeout of the extent mft record.  We | 
|  | * set the ntfs inode of the extent mft record clean and then set @locked_ni to | 
|  | * the now locked ntfs inode and return 'true'. | 
|  | * | 
|  | * Note, the reason for actually writing dirty mft records here and not just | 
|  | * relying on the vfs inode dirty code paths is that we can have mft records | 
|  | * modified without them ever having actual inodes in memory.  Also we can have | 
|  | * dirty mft records with clean ntfs inodes in memory.  None of the described | 
|  | * cases would result in the dirty mft records being written out if we only | 
|  | * relied on the vfs inode dirty code paths.  And these cases can really occur | 
|  | * during allocation of new mft records and in particular when the | 
|  | * initialized_size of the $MFT/$DATA attribute is extended and the new space | 
|  | * is initialized using ntfs_mft_record_format().  The clean inode can then | 
|  | * appear if the mft record is reused for a new inode before it got written | 
|  | * out. | 
|  | */ | 
|  | bool ntfs_may_write_mft_record(ntfs_volume *vol, const unsigned long mft_no, | 
|  | const MFT_RECORD *m, ntfs_inode **locked_ni) | 
|  | { | 
|  | struct super_block *sb = vol->sb; | 
|  | struct inode *mft_vi = vol->mft_ino; | 
|  | struct inode *vi; | 
|  | ntfs_inode *ni, *eni, **extent_nis; | 
|  | int i; | 
|  | ntfs_attr na; | 
|  |  | 
|  | ntfs_debug("Entering for inode 0x%lx.", mft_no); | 
|  | /* | 
|  | * Normally we do not return a locked inode so set @locked_ni to NULL. | 
|  | */ | 
|  | BUG_ON(!locked_ni); | 
|  | *locked_ni = NULL; | 
|  | /* | 
|  | * Check if the inode corresponding to this mft record is in the VFS | 
|  | * inode cache and obtain a reference to it if it is. | 
|  | */ | 
|  | ntfs_debug("Looking for inode 0x%lx in icache.", mft_no); | 
|  | na.mft_no = mft_no; | 
|  | na.name = NULL; | 
|  | na.name_len = 0; | 
|  | na.type = AT_UNUSED; | 
|  | /* | 
|  | * Optimize inode 0, i.e. $MFT itself, since we have it in memory and | 
|  | * we get here for it rather often. | 
|  | */ | 
|  | if (!mft_no) { | 
|  | /* Balance the below iput(). */ | 
|  | vi = igrab(mft_vi); | 
|  | BUG_ON(vi != mft_vi); | 
|  | } else { | 
|  | /* | 
|  | * Have to use ilookup5_nowait() since ilookup5() waits for the | 
|  | * inode lock which causes ntfs to deadlock when a concurrent | 
|  | * inode write via the inode dirty code paths and the page | 
|  | * dirty code path of the inode dirty code path when writing | 
|  | * $MFT occurs. | 
|  | */ | 
|  | vi = ilookup5_nowait(sb, mft_no, (test_t)ntfs_test_inode, &na); | 
|  | } | 
|  | if (vi) { | 
|  | ntfs_debug("Base inode 0x%lx is in icache.", mft_no); | 
|  | /* The inode is in icache. */ | 
|  | ni = NTFS_I(vi); | 
|  | /* Take a reference to the ntfs inode. */ | 
|  | atomic_inc(&ni->count); | 
|  | /* If the inode is dirty, do not write this record. */ | 
|  | if (NInoDirty(ni)) { | 
|  | ntfs_debug("Inode 0x%lx is dirty, do not write it.", | 
|  | mft_no); | 
|  | atomic_dec(&ni->count); | 
|  | iput(vi); | 
|  | return false; | 
|  | } | 
|  | ntfs_debug("Inode 0x%lx is not dirty.", mft_no); | 
|  | /* The inode is not dirty, try to take the mft record lock. */ | 
|  | if (unlikely(!mutex_trylock(&ni->mrec_lock))) { | 
|  | ntfs_debug("Mft record 0x%lx is already locked, do " | 
|  | "not write it.", mft_no); | 
|  | atomic_dec(&ni->count); | 
|  | iput(vi); | 
|  | return false; | 
|  | } | 
|  | ntfs_debug("Managed to lock mft record 0x%lx, write it.", | 
|  | mft_no); | 
|  | /* | 
|  | * The write has to occur while we hold the mft record lock so | 
|  | * return the locked ntfs inode. | 
|  | */ | 
|  | *locked_ni = ni; | 
|  | return true; | 
|  | } | 
|  | ntfs_debug("Inode 0x%lx is not in icache.", mft_no); | 
|  | /* The inode is not in icache. */ | 
|  | /* Write the record if it is not a mft record (type "FILE"). */ | 
|  | if (!ntfs_is_mft_record(m->magic)) { | 
|  | ntfs_debug("Mft record 0x%lx is not a FILE record, write it.", | 
|  | mft_no); | 
|  | return true; | 
|  | } | 
|  | /* Write the mft record if it is a base inode. */ | 
|  | if (!m->base_mft_record) { | 
|  | ntfs_debug("Mft record 0x%lx is a base record, write it.", | 
|  | mft_no); | 
|  | return true; | 
|  | } | 
|  | /* | 
|  | * This is an extent mft record.  Check if the inode corresponding to | 
|  | * its base mft record is in icache and obtain a reference to it if it | 
|  | * is. | 
|  | */ | 
|  | na.mft_no = MREF_LE(m->base_mft_record); | 
|  | ntfs_debug("Mft record 0x%lx is an extent record.  Looking for base " | 
|  | "inode 0x%lx in icache.", mft_no, na.mft_no); | 
|  | if (!na.mft_no) { | 
|  | /* Balance the below iput(). */ | 
|  | vi = igrab(mft_vi); | 
|  | BUG_ON(vi != mft_vi); | 
|  | } else | 
|  | vi = ilookup5_nowait(sb, na.mft_no, (test_t)ntfs_test_inode, | 
|  | &na); | 
|  | if (!vi) { | 
|  | /* | 
|  | * The base inode is not in icache, write this extent mft | 
|  | * record. | 
|  | */ | 
|  | ntfs_debug("Base inode 0x%lx is not in icache, write the " | 
|  | "extent record.", na.mft_no); | 
|  | return true; | 
|  | } | 
|  | ntfs_debug("Base inode 0x%lx is in icache.", na.mft_no); | 
|  | /* | 
|  | * The base inode is in icache.  Check if it has the extent inode | 
|  | * corresponding to this extent mft record attached. | 
|  | */ | 
|  | ni = NTFS_I(vi); | 
|  | mutex_lock(&ni->extent_lock); | 
|  | if (ni->nr_extents <= 0) { | 
|  | /* | 
|  | * The base inode has no attached extent inodes, write this | 
|  | * extent mft record. | 
|  | */ | 
|  | mutex_unlock(&ni->extent_lock); | 
|  | iput(vi); | 
|  | ntfs_debug("Base inode 0x%lx has no attached extent inodes, " | 
|  | "write the extent record.", na.mft_no); | 
|  | return true; | 
|  | } | 
|  | /* Iterate over the attached extent inodes. */ | 
|  | extent_nis = ni->ext.extent_ntfs_inos; | 
|  | for (eni = NULL, i = 0; i < ni->nr_extents; ++i) { | 
|  | if (mft_no == extent_nis[i]->mft_no) { | 
|  | /* | 
|  | * Found the extent inode corresponding to this extent | 
|  | * mft record. | 
|  | */ | 
|  | eni = extent_nis[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * If the extent inode was not attached to the base inode, write this | 
|  | * extent mft record. | 
|  | */ | 
|  | if (!eni) { | 
|  | mutex_unlock(&ni->extent_lock); | 
|  | iput(vi); | 
|  | ntfs_debug("Extent inode 0x%lx is not attached to its base " | 
|  | "inode 0x%lx, write the extent record.", | 
|  | mft_no, na.mft_no); | 
|  | return true; | 
|  | } | 
|  | ntfs_debug("Extent inode 0x%lx is attached to its base inode 0x%lx.", | 
|  | mft_no, na.mft_no); | 
|  | /* Take a reference to the extent ntfs inode. */ | 
|  | atomic_inc(&eni->count); | 
|  | mutex_unlock(&ni->extent_lock); | 
|  | /* | 
|  | * Found the extent inode coresponding to this extent mft record. | 
|  | * Try to take the mft record lock. | 
|  | */ | 
|  | if (unlikely(!mutex_trylock(&eni->mrec_lock))) { | 
|  | atomic_dec(&eni->count); | 
|  | iput(vi); | 
|  | ntfs_debug("Extent mft record 0x%lx is already locked, do " | 
|  | "not write it.", mft_no); | 
|  | return false; | 
|  | } | 
|  | ntfs_debug("Managed to lock extent mft record 0x%lx, write it.", | 
|  | mft_no); | 
|  | if (NInoTestClearDirty(eni)) | 
|  | ntfs_debug("Extent inode 0x%lx is dirty, marking it clean.", | 
|  | mft_no); | 
|  | /* | 
|  | * The write has to occur while we hold the mft record lock so return | 
|  | * the locked extent ntfs inode. | 
|  | */ | 
|  | *locked_ni = eni; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static const char *es = "  Leaving inconsistent metadata.  Unmount and run " | 
|  | "chkdsk."; | 
|  |  | 
|  | /** | 
|  | * ntfs_mft_bitmap_find_and_alloc_free_rec_nolock - see name | 
|  | * @vol:	volume on which to search for a free mft record | 
|  | * @base_ni:	open base inode if allocating an extent mft record or NULL | 
|  | * | 
|  | * Search for a free mft record in the mft bitmap attribute on the ntfs volume | 
|  | * @vol. | 
|  | * | 
|  | * If @base_ni is NULL start the search at the default allocator position. | 
|  | * | 
|  | * If @base_ni is not NULL start the search at the mft record after the base | 
|  | * mft record @base_ni. | 
|  | * | 
|  | * Return the free mft record on success and -errno on error.  An error code of | 
|  | * -ENOSPC means that there are no free mft records in the currently | 
|  | * initialized mft bitmap. | 
|  | * | 
|  | * Locking: Caller must hold vol->mftbmp_lock for writing. | 
|  | */ | 
|  | static int ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(ntfs_volume *vol, | 
|  | ntfs_inode *base_ni) | 
|  | { | 
|  | s64 pass_end, ll, data_pos, pass_start, ofs, bit; | 
|  | unsigned long flags; | 
|  | struct address_space *mftbmp_mapping; | 
|  | u8 *buf, *byte; | 
|  | struct page *page; | 
|  | unsigned int page_ofs, size; | 
|  | u8 pass, b; | 
|  |  | 
|  | ntfs_debug("Searching for free mft record in the currently " | 
|  | "initialized mft bitmap."); | 
|  | mftbmp_mapping = vol->mftbmp_ino->i_mapping; | 
|  | /* | 
|  | * Set the end of the pass making sure we do not overflow the mft | 
|  | * bitmap. | 
|  | */ | 
|  | read_lock_irqsave(&NTFS_I(vol->mft_ino)->size_lock, flags); | 
|  | pass_end = NTFS_I(vol->mft_ino)->allocated_size >> | 
|  | vol->mft_record_size_bits; | 
|  | read_unlock_irqrestore(&NTFS_I(vol->mft_ino)->size_lock, flags); | 
|  | read_lock_irqsave(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); | 
|  | ll = NTFS_I(vol->mftbmp_ino)->initialized_size << 3; | 
|  | read_unlock_irqrestore(&NTFS_I(vol->mftbmp_ino)->size_lock, flags); | 
|  | if (pass_end > ll) | 
|  | pass_end = ll; | 
|  | pass = 1; | 
|  | if (!base_ni) | 
|  | data_pos = vol->mft_data_pos; | 
|  | else | 
|  | data_pos = base_ni->mft_no + 1; | 
|  | if (data_pos < 24) | 
|  | data_pos = 24; | 
|  | if (data_pos >= pass_end) { | 
|  | data_pos = 24; | 
|  | pass = 2; | 
|  | /* This happens on a freshly formatted volume. */ | 
|  | if (data_pos >= pass_end) | 
|  | return -ENOSPC; | 
|  | } | 
|  | pass_start = data_pos; | 
|  | ntfs_debug("Starting bitmap search: pass %u, pass_start 0x%llx, " | 
|  | "pass_end 0x%llx, data_pos 0x%llx.", pass, | 
|  | (long long)pass_start, (long long)pass_end, | 
|  | (long long)data_pos); | 
|  | /* Loop until a free mft record is found. */ | 
|  | for (; pass <= 2;) { | 
|  | /* Cap size to pass_end. */ | 
|  | ofs = data_pos >> 3; | 
|  | page_ofs = ofs & ~PAGE_CACHE_MASK; | 
|  | size = PAGE_CACHE_SIZE - page_ofs; | 
|  | ll = ((pass_end + 7) >> 3) - ofs; | 
|  | if (size > ll) | 
|  | size = ll; | 
|  | size <<= 3; | 
|  | /* | 
|  | * If we are still within the active pass, search the next page | 
|  | * for a zero bit. | 
|  | */ | 
|  | if (size) { | 
|  | page = ntfs_map_page(mftbmp_mapping, | 
|  | ofs >> PAGE_CACHE_SHIFT); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(vol->sb, "Failed to read mft " | 
|  | "bitmap, aborting."); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | buf = (u8*)page_address(page) + page_ofs; | 
|  | bit = data_pos & 7; | 
|  | data_pos &= ~7ull; | 
|  | ntfs_debug("Before inner for loop: size 0x%x, " | 
|  | "data_pos 0x%llx, bit 0x%llx", size, | 
|  | (long long)data_pos, (long long)bit); | 
|  | for (; bit < size && data_pos + bit < pass_end; | 
|  | bit &= ~7ull, bit += 8) { | 
|  | byte = buf + (bit >> 3); | 
|  | if (*byte == 0xff) | 
|  | continue; | 
|  | b = ffz((unsigned long)*byte); | 
|  | if (b < 8 && b >= (bit & 7)) { | 
|  | ll = data_pos + (bit & ~7ull) + b; | 
|  | if (unlikely(ll > (1ll << 32))) { | 
|  | ntfs_unmap_page(page); | 
|  | return -ENOSPC; | 
|  | } | 
|  | *byte |= 1 << b; | 
|  | flush_dcache_page(page); | 
|  | set_page_dirty(page); | 
|  | ntfs_unmap_page(page); | 
|  | ntfs_debug("Done.  (Found and " | 
|  | "allocated mft record " | 
|  | "0x%llx.)", | 
|  | (long long)ll); | 
|  | return ll; | 
|  | } | 
|  | } | 
|  | ntfs_debug("After inner for loop: size 0x%x, " | 
|  | "data_pos 0x%llx, bit 0x%llx", size, | 
|  | (long long)data_pos, (long long)bit); | 
|  | data_pos += size; | 
|  | ntfs_unmap_page(page); | 
|  | /* | 
|  | * If the end of the pass has not been reached yet, | 
|  | * continue searching the mft bitmap for a zero bit. | 
|  | */ | 
|  | if (data_pos < pass_end) | 
|  | continue; | 
|  | } | 
|  | /* Do the next pass. */ | 
|  | if (++pass == 2) { | 
|  | /* | 
|  | * Starting the second pass, in which we scan the first | 
|  | * part of the zone which we omitted earlier. | 
|  | */ | 
|  | pass_end = pass_start; | 
|  | data_pos = pass_start = 24; | 
|  | ntfs_debug("pass %i, pass_start 0x%llx, pass_end " | 
|  | "0x%llx.", pass, (long long)pass_start, | 
|  | (long long)pass_end); | 
|  | if (data_pos >= pass_end) | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* No free mft records in currently initialized mft bitmap. */ | 
|  | ntfs_debug("Done.  (No free mft records left in currently initialized " | 
|  | "mft bitmap.)"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_mft_bitmap_extend_allocation_nolock - extend mft bitmap by a cluster | 
|  | * @vol:	volume on which to extend the mft bitmap attribute | 
|  | * | 
|  | * Extend the mft bitmap attribute on the ntfs volume @vol by one cluster. | 
|  | * | 
|  | * Note: Only changes allocated_size, i.e. does not touch initialized_size or | 
|  | * data_size. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | * | 
|  | * Locking: - Caller must hold vol->mftbmp_lock for writing. | 
|  | *	    - This function takes NTFS_I(vol->mftbmp_ino)->runlist.lock for | 
|  | *	      writing and releases it before returning. | 
|  | *	    - This function takes vol->lcnbmp_lock for writing and releases it | 
|  | *	      before returning. | 
|  | */ | 
|  | static int ntfs_mft_bitmap_extend_allocation_nolock(ntfs_volume *vol) | 
|  | { | 
|  | LCN lcn; | 
|  | s64 ll; | 
|  | unsigned long flags; | 
|  | struct page *page; | 
|  | ntfs_inode *mft_ni, *mftbmp_ni; | 
|  | runlist_element *rl, *rl2 = NULL; | 
|  | ntfs_attr_search_ctx *ctx = NULL; | 
|  | MFT_RECORD *mrec; | 
|  | ATTR_RECORD *a = NULL; | 
|  | int ret, mp_size; | 
|  | u32 old_alen = 0; | 
|  | u8 *b, tb; | 
|  | struct { | 
|  | u8 added_cluster:1; | 
|  | u8 added_run:1; | 
|  | u8 mp_rebuilt:1; | 
|  | } status = { 0, 0, 0 }; | 
|  |  | 
|  | ntfs_debug("Extending mft bitmap allocation."); | 
|  | mft_ni = NTFS_I(vol->mft_ino); | 
|  | mftbmp_ni = NTFS_I(vol->mftbmp_ino); | 
|  | /* | 
|  | * Determine the last lcn of the mft bitmap.  The allocated size of the | 
|  | * mft bitmap cannot be zero so we are ok to do this. | 
|  | */ | 
|  | down_write(&mftbmp_ni->runlist.lock); | 
|  | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | ll = mftbmp_ni->allocated_size; | 
|  | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | rl = ntfs_attr_find_vcn_nolock(mftbmp_ni, | 
|  | (ll - 1) >> vol->cluster_size_bits, NULL); | 
|  | if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { | 
|  | up_write(&mftbmp_ni->runlist.lock); | 
|  | ntfs_error(vol->sb, "Failed to determine last allocated " | 
|  | "cluster of mft bitmap attribute."); | 
|  | if (!IS_ERR(rl)) | 
|  | ret = -EIO; | 
|  | else | 
|  | ret = PTR_ERR(rl); | 
|  | return ret; | 
|  | } | 
|  | lcn = rl->lcn + rl->length; | 
|  | ntfs_debug("Last lcn of mft bitmap attribute is 0x%llx.", | 
|  | (long long)lcn); | 
|  | /* | 
|  | * Attempt to get the cluster following the last allocated cluster by | 
|  | * hand as it may be in the MFT zone so the allocator would not give it | 
|  | * to us. | 
|  | */ | 
|  | ll = lcn >> 3; | 
|  | page = ntfs_map_page(vol->lcnbmp_ino->i_mapping, | 
|  | ll >> PAGE_CACHE_SHIFT); | 
|  | if (IS_ERR(page)) { | 
|  | up_write(&mftbmp_ni->runlist.lock); | 
|  | ntfs_error(vol->sb, "Failed to read from lcn bitmap."); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | b = (u8*)page_address(page) + (ll & ~PAGE_CACHE_MASK); | 
|  | tb = 1 << (lcn & 7ull); | 
|  | down_write(&vol->lcnbmp_lock); | 
|  | if (*b != 0xff && !(*b & tb)) { | 
|  | /* Next cluster is free, allocate it. */ | 
|  | *b |= tb; | 
|  | flush_dcache_page(page); | 
|  | set_page_dirty(page); | 
|  | up_write(&vol->lcnbmp_lock); | 
|  | ntfs_unmap_page(page); | 
|  | /* Update the mft bitmap runlist. */ | 
|  | rl->length++; | 
|  | rl[1].vcn++; | 
|  | status.added_cluster = 1; | 
|  | ntfs_debug("Appending one cluster to mft bitmap."); | 
|  | } else { | 
|  | up_write(&vol->lcnbmp_lock); | 
|  | ntfs_unmap_page(page); | 
|  | /* Allocate a cluster from the DATA_ZONE. */ | 
|  | rl2 = ntfs_cluster_alloc(vol, rl[1].vcn, 1, lcn, DATA_ZONE, | 
|  | true); | 
|  | if (IS_ERR(rl2)) { | 
|  | up_write(&mftbmp_ni->runlist.lock); | 
|  | ntfs_error(vol->sb, "Failed to allocate a cluster for " | 
|  | "the mft bitmap."); | 
|  | return PTR_ERR(rl2); | 
|  | } | 
|  | rl = ntfs_runlists_merge(mftbmp_ni->runlist.rl, rl2); | 
|  | if (IS_ERR(rl)) { | 
|  | up_write(&mftbmp_ni->runlist.lock); | 
|  | ntfs_error(vol->sb, "Failed to merge runlists for mft " | 
|  | "bitmap."); | 
|  | if (ntfs_cluster_free_from_rl(vol, rl2)) { | 
|  | ntfs_error(vol->sb, "Failed to dealocate " | 
|  | "allocated cluster.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | ntfs_free(rl2); | 
|  | return PTR_ERR(rl); | 
|  | } | 
|  | mftbmp_ni->runlist.rl = rl; | 
|  | status.added_run = 1; | 
|  | ntfs_debug("Adding one run to mft bitmap."); | 
|  | /* Find the last run in the new runlist. */ | 
|  | for (; rl[1].length; rl++) | 
|  | ; | 
|  | } | 
|  | /* | 
|  | * Update the attribute record as well.  Note: @rl is the last | 
|  | * (non-terminator) runlist element of mft bitmap. | 
|  | */ | 
|  | mrec = map_mft_record(mft_ni); | 
|  | if (IS_ERR(mrec)) { | 
|  | ntfs_error(vol->sb, "Failed to map mft record."); | 
|  | ret = PTR_ERR(mrec); | 
|  | goto undo_alloc; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); | 
|  | if (unlikely(!ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to get search context."); | 
|  | ret = -ENOMEM; | 
|  | goto undo_alloc; | 
|  | } | 
|  | ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | 
|  | mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, | 
|  | 0, ctx); | 
|  | if (unlikely(ret)) { | 
|  | ntfs_error(vol->sb, "Failed to find last attribute extent of " | 
|  | "mft bitmap attribute."); | 
|  | if (ret == -ENOENT) | 
|  | ret = -EIO; | 
|  | goto undo_alloc; | 
|  | } | 
|  | a = ctx->attr; | 
|  | ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); | 
|  | /* Search back for the previous last allocated cluster of mft bitmap. */ | 
|  | for (rl2 = rl; rl2 > mftbmp_ni->runlist.rl; rl2--) { | 
|  | if (ll >= rl2->vcn) | 
|  | break; | 
|  | } | 
|  | BUG_ON(ll < rl2->vcn); | 
|  | BUG_ON(ll >= rl2->vcn + rl2->length); | 
|  | /* Get the size for the new mapping pairs array for this extent. */ | 
|  | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); | 
|  | if (unlikely(mp_size <= 0)) { | 
|  | ntfs_error(vol->sb, "Get size for mapping pairs failed for " | 
|  | "mft bitmap attribute extent."); | 
|  | ret = mp_size; | 
|  | if (!ret) | 
|  | ret = -EIO; | 
|  | goto undo_alloc; | 
|  | } | 
|  | /* Expand the attribute record if necessary. */ | 
|  | old_alen = le32_to_cpu(a->length); | 
|  | ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + | 
|  | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); | 
|  | if (unlikely(ret)) { | 
|  | if (ret != -ENOSPC) { | 
|  | ntfs_error(vol->sb, "Failed to resize attribute " | 
|  | "record for mft bitmap attribute."); | 
|  | goto undo_alloc; | 
|  | } | 
|  | // TODO: Deal with this by moving this extent to a new mft | 
|  | // record or by starting a new extent in a new mft record or by | 
|  | // moving other attributes out of this mft record. | 
|  | // Note: It will need to be a special mft record and if none of | 
|  | // those are available it gets rather complicated... | 
|  | ntfs_error(vol->sb, "Not enough space in this mft record to " | 
|  | "accomodate extended mft bitmap attribute " | 
|  | "extent.  Cannot handle this yet."); | 
|  | ret = -EOPNOTSUPP; | 
|  | goto undo_alloc; | 
|  | } | 
|  | status.mp_rebuilt = 1; | 
|  | /* Generate the mapping pairs array directly into the attr record. */ | 
|  | ret = ntfs_mapping_pairs_build(vol, (u8*)a + | 
|  | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), | 
|  | mp_size, rl2, ll, -1, NULL); | 
|  | if (unlikely(ret)) { | 
|  | ntfs_error(vol->sb, "Failed to build mapping pairs array for " | 
|  | "mft bitmap attribute."); | 
|  | goto undo_alloc; | 
|  | } | 
|  | /* Update the highest_vcn. */ | 
|  | a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); | 
|  | /* | 
|  | * We now have extended the mft bitmap allocated_size by one cluster. | 
|  | * Reflect this in the ntfs_inode structure and the attribute record. | 
|  | */ | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | /* | 
|  | * We are not in the first attribute extent, switch to it, but | 
|  | * first ensure the changes will make it to disk later. | 
|  | */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | 
|  | mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, | 
|  | 0, ctx); | 
|  | if (unlikely(ret)) { | 
|  | ntfs_error(vol->sb, "Failed to find first attribute " | 
|  | "extent of mft bitmap attribute."); | 
|  | goto restore_undo_alloc; | 
|  | } | 
|  | a = ctx->attr; | 
|  | } | 
|  | write_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | mftbmp_ni->allocated_size += vol->cluster_size; | 
|  | a->data.non_resident.allocated_size = | 
|  | cpu_to_sle64(mftbmp_ni->allocated_size); | 
|  | write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | /* Ensure the changes make it to disk. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(mft_ni); | 
|  | up_write(&mftbmp_ni->runlist.lock); | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | restore_undo_alloc: | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | 
|  | mftbmp_ni->name_len, CASE_SENSITIVE, rl[1].vcn, NULL, | 
|  | 0, ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to find last attribute extent of " | 
|  | "mft bitmap attribute.%s", es); | 
|  | write_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | mftbmp_ni->allocated_size += vol->cluster_size; | 
|  | write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(mft_ni); | 
|  | up_write(&mftbmp_ni->runlist.lock); | 
|  | /* | 
|  | * The only thing that is now wrong is ->allocated_size of the | 
|  | * base attribute extent which chkdsk should be able to fix. | 
|  | */ | 
|  | NVolSetErrors(vol); | 
|  | return ret; | 
|  | } | 
|  | a = ctx->attr; | 
|  | a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 2); | 
|  | undo_alloc: | 
|  | if (status.added_cluster) { | 
|  | /* Truncate the last run in the runlist by one cluster. */ | 
|  | rl->length--; | 
|  | rl[1].vcn--; | 
|  | } else if (status.added_run) { | 
|  | lcn = rl->lcn; | 
|  | /* Remove the last run from the runlist. */ | 
|  | rl->lcn = rl[1].lcn; | 
|  | rl->length = 0; | 
|  | } | 
|  | /* Deallocate the cluster. */ | 
|  | down_write(&vol->lcnbmp_lock); | 
|  | if (ntfs_bitmap_clear_bit(vol->lcnbmp_ino, lcn)) { | 
|  | ntfs_error(vol->sb, "Failed to free allocated cluster.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | up_write(&vol->lcnbmp_lock); | 
|  | if (status.mp_rebuilt) { | 
|  | if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset), | 
|  | old_alen - le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset), | 
|  | rl2, ll, -1, NULL)) { | 
|  | ntfs_error(vol->sb, "Failed to restore mapping pairs " | 
|  | "array.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { | 
|  | ntfs_error(vol->sb, "Failed to restore attribute " | 
|  | "record.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | } | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (!IS_ERR(mrec)) | 
|  | unmap_mft_record(mft_ni); | 
|  | up_write(&mftbmp_ni->runlist.lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_mft_bitmap_extend_initialized_nolock - extend mftbmp initialized data | 
|  | * @vol:	volume on which to extend the mft bitmap attribute | 
|  | * | 
|  | * Extend the initialized portion of the mft bitmap attribute on the ntfs | 
|  | * volume @vol by 8 bytes. | 
|  | * | 
|  | * Note:  Only changes initialized_size and data_size, i.e. requires that | 
|  | * allocated_size is big enough to fit the new initialized_size. | 
|  | * | 
|  | * Return 0 on success and -error on error. | 
|  | * | 
|  | * Locking: Caller must hold vol->mftbmp_lock for writing. | 
|  | */ | 
|  | static int ntfs_mft_bitmap_extend_initialized_nolock(ntfs_volume *vol) | 
|  | { | 
|  | s64 old_data_size, old_initialized_size; | 
|  | unsigned long flags; | 
|  | struct inode *mftbmp_vi; | 
|  | ntfs_inode *mft_ni, *mftbmp_ni; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | MFT_RECORD *mrec; | 
|  | ATTR_RECORD *a; | 
|  | int ret; | 
|  |  | 
|  | ntfs_debug("Extending mft bitmap initiailized (and data) size."); | 
|  | mft_ni = NTFS_I(vol->mft_ino); | 
|  | mftbmp_vi = vol->mftbmp_ino; | 
|  | mftbmp_ni = NTFS_I(mftbmp_vi); | 
|  | /* Get the attribute record. */ | 
|  | mrec = map_mft_record(mft_ni); | 
|  | if (IS_ERR(mrec)) { | 
|  | ntfs_error(vol->sb, "Failed to map mft record."); | 
|  | return PTR_ERR(mrec); | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); | 
|  | if (unlikely(!ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to get search context."); | 
|  | ret = -ENOMEM; | 
|  | goto unm_err_out; | 
|  | } | 
|  | ret = ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | 
|  | mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(ret)) { | 
|  | ntfs_error(vol->sb, "Failed to find first attribute extent of " | 
|  | "mft bitmap attribute."); | 
|  | if (ret == -ENOENT) | 
|  | ret = -EIO; | 
|  | goto put_err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | write_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | old_data_size = i_size_read(mftbmp_vi); | 
|  | old_initialized_size = mftbmp_ni->initialized_size; | 
|  | /* | 
|  | * We can simply update the initialized_size before filling the space | 
|  | * with zeroes because the caller is holding the mft bitmap lock for | 
|  | * writing which ensures that no one else is trying to access the data. | 
|  | */ | 
|  | mftbmp_ni->initialized_size += 8; | 
|  | a->data.non_resident.initialized_size = | 
|  | cpu_to_sle64(mftbmp_ni->initialized_size); | 
|  | if (mftbmp_ni->initialized_size > old_data_size) { | 
|  | i_size_write(mftbmp_vi, mftbmp_ni->initialized_size); | 
|  | a->data.non_resident.data_size = | 
|  | cpu_to_sle64(mftbmp_ni->initialized_size); | 
|  | } | 
|  | write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | /* Ensure the changes make it to disk. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(mft_ni); | 
|  | /* Initialize the mft bitmap attribute value with zeroes. */ | 
|  | ret = ntfs_attr_set(mftbmp_ni, old_initialized_size, 8, 0); | 
|  | if (likely(!ret)) { | 
|  | ntfs_debug("Done.  (Wrote eight initialized bytes to mft " | 
|  | "bitmap."); | 
|  | return 0; | 
|  | } | 
|  | ntfs_error(vol->sb, "Failed to write to mft bitmap."); | 
|  | /* Try to recover from the error. */ | 
|  | mrec = map_mft_record(mft_ni); | 
|  | if (IS_ERR(mrec)) { | 
|  | ntfs_error(vol->sb, "Failed to map mft record.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | return ret; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); | 
|  | if (unlikely(!ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to get search context.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | goto unm_err_out; | 
|  | } | 
|  | if (ntfs_attr_lookup(mftbmp_ni->type, mftbmp_ni->name, | 
|  | mftbmp_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to find first attribute extent of " | 
|  | "mft bitmap attribute.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | put_err_out: | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unm_err_out: | 
|  | unmap_mft_record(mft_ni); | 
|  | goto err_out; | 
|  | } | 
|  | a = ctx->attr; | 
|  | write_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | mftbmp_ni->initialized_size = old_initialized_size; | 
|  | a->data.non_resident.initialized_size = | 
|  | cpu_to_sle64(old_initialized_size); | 
|  | if (i_size_read(mftbmp_vi) != old_data_size) { | 
|  | i_size_write(mftbmp_vi, old_data_size); | 
|  | a->data.non_resident.data_size = cpu_to_sle64(old_data_size); | 
|  | } | 
|  | write_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(mft_ni); | 
|  | #ifdef DEBUG | 
|  | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | ntfs_debug("Restored status of mftbmp: allocated_size 0x%llx, " | 
|  | "data_size 0x%llx, initialized_size 0x%llx.", | 
|  | (long long)mftbmp_ni->allocated_size, | 
|  | (long long)i_size_read(mftbmp_vi), | 
|  | (long long)mftbmp_ni->initialized_size); | 
|  | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | #endif /* DEBUG */ | 
|  | err_out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_mft_data_extend_allocation_nolock - extend mft data attribute | 
|  | * @vol:	volume on which to extend the mft data attribute | 
|  | * | 
|  | * Extend the mft data attribute on the ntfs volume @vol by 16 mft records | 
|  | * worth of clusters or if not enough space for this by one mft record worth | 
|  | * of clusters. | 
|  | * | 
|  | * Note:  Only changes allocated_size, i.e. does not touch initialized_size or | 
|  | * data_size. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | * | 
|  | * Locking: - Caller must hold vol->mftbmp_lock for writing. | 
|  | *	    - This function takes NTFS_I(vol->mft_ino)->runlist.lock for | 
|  | *	      writing and releases it before returning. | 
|  | *	    - This function calls functions which take vol->lcnbmp_lock for | 
|  | *	      writing and release it before returning. | 
|  | */ | 
|  | static int ntfs_mft_data_extend_allocation_nolock(ntfs_volume *vol) | 
|  | { | 
|  | LCN lcn; | 
|  | VCN old_last_vcn; | 
|  | s64 min_nr, nr, ll; | 
|  | unsigned long flags; | 
|  | ntfs_inode *mft_ni; | 
|  | runlist_element *rl, *rl2; | 
|  | ntfs_attr_search_ctx *ctx = NULL; | 
|  | MFT_RECORD *mrec; | 
|  | ATTR_RECORD *a = NULL; | 
|  | int ret, mp_size; | 
|  | u32 old_alen = 0; | 
|  | bool mp_rebuilt = false; | 
|  |  | 
|  | ntfs_debug("Extending mft data allocation."); | 
|  | mft_ni = NTFS_I(vol->mft_ino); | 
|  | /* | 
|  | * Determine the preferred allocation location, i.e. the last lcn of | 
|  | * the mft data attribute.  The allocated size of the mft data | 
|  | * attribute cannot be zero so we are ok to do this. | 
|  | */ | 
|  | down_write(&mft_ni->runlist.lock); | 
|  | read_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | ll = mft_ni->allocated_size; | 
|  | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | rl = ntfs_attr_find_vcn_nolock(mft_ni, | 
|  | (ll - 1) >> vol->cluster_size_bits, NULL); | 
|  | if (unlikely(IS_ERR(rl) || !rl->length || rl->lcn < 0)) { | 
|  | up_write(&mft_ni->runlist.lock); | 
|  | ntfs_error(vol->sb, "Failed to determine last allocated " | 
|  | "cluster of mft data attribute."); | 
|  | if (!IS_ERR(rl)) | 
|  | ret = -EIO; | 
|  | else | 
|  | ret = PTR_ERR(rl); | 
|  | return ret; | 
|  | } | 
|  | lcn = rl->lcn + rl->length; | 
|  | ntfs_debug("Last lcn of mft data attribute is 0x%llx.", (long long)lcn); | 
|  | /* Minimum allocation is one mft record worth of clusters. */ | 
|  | min_nr = vol->mft_record_size >> vol->cluster_size_bits; | 
|  | if (!min_nr) | 
|  | min_nr = 1; | 
|  | /* Want to allocate 16 mft records worth of clusters. */ | 
|  | nr = vol->mft_record_size << 4 >> vol->cluster_size_bits; | 
|  | if (!nr) | 
|  | nr = min_nr; | 
|  | /* Ensure we do not go above 2^32-1 mft records. */ | 
|  | read_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | ll = mft_ni->allocated_size; | 
|  | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | if (unlikely((ll + (nr << vol->cluster_size_bits)) >> | 
|  | vol->mft_record_size_bits >= (1ll << 32))) { | 
|  | nr = min_nr; | 
|  | if (unlikely((ll + (nr << vol->cluster_size_bits)) >> | 
|  | vol->mft_record_size_bits >= (1ll << 32))) { | 
|  | ntfs_warning(vol->sb, "Cannot allocate mft record " | 
|  | "because the maximum number of inodes " | 
|  | "(2^32) has already been reached."); | 
|  | up_write(&mft_ni->runlist.lock); | 
|  | return -ENOSPC; | 
|  | } | 
|  | } | 
|  | ntfs_debug("Trying mft data allocation with %s cluster count %lli.", | 
|  | nr > min_nr ? "default" : "minimal", (long long)nr); | 
|  | old_last_vcn = rl[1].vcn; | 
|  | do { | 
|  | rl2 = ntfs_cluster_alloc(vol, old_last_vcn, nr, lcn, MFT_ZONE, | 
|  | true); | 
|  | if (likely(!IS_ERR(rl2))) | 
|  | break; | 
|  | if (PTR_ERR(rl2) != -ENOSPC || nr == min_nr) { | 
|  | ntfs_error(vol->sb, "Failed to allocate the minimal " | 
|  | "number of clusters (%lli) for the " | 
|  | "mft data attribute.", (long long)nr); | 
|  | up_write(&mft_ni->runlist.lock); | 
|  | return PTR_ERR(rl2); | 
|  | } | 
|  | /* | 
|  | * There is not enough space to do the allocation, but there | 
|  | * might be enough space to do a minimal allocation so try that | 
|  | * before failing. | 
|  | */ | 
|  | nr = min_nr; | 
|  | ntfs_debug("Retrying mft data allocation with minimal cluster " | 
|  | "count %lli.", (long long)nr); | 
|  | } while (1); | 
|  | rl = ntfs_runlists_merge(mft_ni->runlist.rl, rl2); | 
|  | if (IS_ERR(rl)) { | 
|  | up_write(&mft_ni->runlist.lock); | 
|  | ntfs_error(vol->sb, "Failed to merge runlists for mft data " | 
|  | "attribute."); | 
|  | if (ntfs_cluster_free_from_rl(vol, rl2)) { | 
|  | ntfs_error(vol->sb, "Failed to dealocate clusters " | 
|  | "from the mft data attribute.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | ntfs_free(rl2); | 
|  | return PTR_ERR(rl); | 
|  | } | 
|  | mft_ni->runlist.rl = rl; | 
|  | ntfs_debug("Allocated %lli clusters.", (long long)nr); | 
|  | /* Find the last run in the new runlist. */ | 
|  | for (; rl[1].length; rl++) | 
|  | ; | 
|  | /* Update the attribute record as well. */ | 
|  | mrec = map_mft_record(mft_ni); | 
|  | if (IS_ERR(mrec)) { | 
|  | ntfs_error(vol->sb, "Failed to map mft record."); | 
|  | ret = PTR_ERR(mrec); | 
|  | goto undo_alloc; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(mft_ni, mrec); | 
|  | if (unlikely(!ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to get search context."); | 
|  | ret = -ENOMEM; | 
|  | goto undo_alloc; | 
|  | } | 
|  | ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, | 
|  | CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx); | 
|  | if (unlikely(ret)) { | 
|  | ntfs_error(vol->sb, "Failed to find last attribute extent of " | 
|  | "mft data attribute."); | 
|  | if (ret == -ENOENT) | 
|  | ret = -EIO; | 
|  | goto undo_alloc; | 
|  | } | 
|  | a = ctx->attr; | 
|  | ll = sle64_to_cpu(a->data.non_resident.lowest_vcn); | 
|  | /* Search back for the previous last allocated cluster of mft bitmap. */ | 
|  | for (rl2 = rl; rl2 > mft_ni->runlist.rl; rl2--) { | 
|  | if (ll >= rl2->vcn) | 
|  | break; | 
|  | } | 
|  | BUG_ON(ll < rl2->vcn); | 
|  | BUG_ON(ll >= rl2->vcn + rl2->length); | 
|  | /* Get the size for the new mapping pairs array for this extent. */ | 
|  | mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1); | 
|  | if (unlikely(mp_size <= 0)) { | 
|  | ntfs_error(vol->sb, "Get size for mapping pairs failed for " | 
|  | "mft data attribute extent."); | 
|  | ret = mp_size; | 
|  | if (!ret) | 
|  | ret = -EIO; | 
|  | goto undo_alloc; | 
|  | } | 
|  | /* Expand the attribute record if necessary. */ | 
|  | old_alen = le32_to_cpu(a->length); | 
|  | ret = ntfs_attr_record_resize(ctx->mrec, a, mp_size + | 
|  | le16_to_cpu(a->data.non_resident.mapping_pairs_offset)); | 
|  | if (unlikely(ret)) { | 
|  | if (ret != -ENOSPC) { | 
|  | ntfs_error(vol->sb, "Failed to resize attribute " | 
|  | "record for mft data attribute."); | 
|  | goto undo_alloc; | 
|  | } | 
|  | // TODO: Deal with this by moving this extent to a new mft | 
|  | // record or by starting a new extent in a new mft record or by | 
|  | // moving other attributes out of this mft record. | 
|  | // Note: Use the special reserved mft records and ensure that | 
|  | // this extent is not required to find the mft record in | 
|  | // question.  If no free special records left we would need to | 
|  | // move an existing record away, insert ours in its place, and | 
|  | // then place the moved record into the newly allocated space | 
|  | // and we would then need to update all references to this mft | 
|  | // record appropriately.  This is rather complicated... | 
|  | ntfs_error(vol->sb, "Not enough space in this mft record to " | 
|  | "accomodate extended mft data attribute " | 
|  | "extent.  Cannot handle this yet."); | 
|  | ret = -EOPNOTSUPP; | 
|  | goto undo_alloc; | 
|  | } | 
|  | mp_rebuilt = true; | 
|  | /* Generate the mapping pairs array directly into the attr record. */ | 
|  | ret = ntfs_mapping_pairs_build(vol, (u8*)a + | 
|  | le16_to_cpu(a->data.non_resident.mapping_pairs_offset), | 
|  | mp_size, rl2, ll, -1, NULL); | 
|  | if (unlikely(ret)) { | 
|  | ntfs_error(vol->sb, "Failed to build mapping pairs array of " | 
|  | "mft data attribute."); | 
|  | goto undo_alloc; | 
|  | } | 
|  | /* Update the highest_vcn. */ | 
|  | a->data.non_resident.highest_vcn = cpu_to_sle64(rl[1].vcn - 1); | 
|  | /* | 
|  | * We now have extended the mft data allocated_size by nr clusters. | 
|  | * Reflect this in the ntfs_inode structure and the attribute record. | 
|  | * @rl is the last (non-terminator) runlist element of mft data | 
|  | * attribute. | 
|  | */ | 
|  | if (a->data.non_resident.lowest_vcn) { | 
|  | /* | 
|  | * We are not in the first attribute extent, switch to it, but | 
|  | * first ensure the changes will make it to disk later. | 
|  | */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | ret = ntfs_attr_lookup(mft_ni->type, mft_ni->name, | 
|  | mft_ni->name_len, CASE_SENSITIVE, 0, NULL, 0, | 
|  | ctx); | 
|  | if (unlikely(ret)) { | 
|  | ntfs_error(vol->sb, "Failed to find first attribute " | 
|  | "extent of mft data attribute."); | 
|  | goto restore_undo_alloc; | 
|  | } | 
|  | a = ctx->attr; | 
|  | } | 
|  | write_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | mft_ni->allocated_size += nr << vol->cluster_size_bits; | 
|  | a->data.non_resident.allocated_size = | 
|  | cpu_to_sle64(mft_ni->allocated_size); | 
|  | write_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | /* Ensure the changes make it to disk. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(mft_ni); | 
|  | up_write(&mft_ni->runlist.lock); | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | restore_undo_alloc: | 
|  | ntfs_attr_reinit_search_ctx(ctx); | 
|  | if (ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, | 
|  | CASE_SENSITIVE, rl[1].vcn, NULL, 0, ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to find last attribute extent of " | 
|  | "mft data attribute.%s", es); | 
|  | write_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | mft_ni->allocated_size += nr << vol->cluster_size_bits; | 
|  | write_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(mft_ni); | 
|  | up_write(&mft_ni->runlist.lock); | 
|  | /* | 
|  | * The only thing that is now wrong is ->allocated_size of the | 
|  | * base attribute extent which chkdsk should be able to fix. | 
|  | */ | 
|  | NVolSetErrors(vol); | 
|  | return ret; | 
|  | } | 
|  | ctx->attr->data.non_resident.highest_vcn = | 
|  | cpu_to_sle64(old_last_vcn - 1); | 
|  | undo_alloc: | 
|  | if (ntfs_cluster_free(mft_ni, old_last_vcn, -1, ctx) < 0) { | 
|  | ntfs_error(vol->sb, "Failed to free clusters from mft data " | 
|  | "attribute.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | a = ctx->attr; | 
|  | if (ntfs_rl_truncate_nolock(vol, &mft_ni->runlist, old_last_vcn)) { | 
|  | ntfs_error(vol->sb, "Failed to truncate mft data attribute " | 
|  | "runlist.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | if (mp_rebuilt && !IS_ERR(ctx->mrec)) { | 
|  | if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset), | 
|  | old_alen - le16_to_cpu( | 
|  | a->data.non_resident.mapping_pairs_offset), | 
|  | rl2, ll, -1, NULL)) { | 
|  | ntfs_error(vol->sb, "Failed to restore mapping pairs " | 
|  | "array.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | if (ntfs_attr_record_resize(ctx->mrec, a, old_alen)) { | 
|  | ntfs_error(vol->sb, "Failed to restore attribute " | 
|  | "record.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | } else if (IS_ERR(ctx->mrec)) { | 
|  | ntfs_error(vol->sb, "Failed to restore attribute search " | 
|  | "context.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | if (ctx) | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | if (!IS_ERR(mrec)) | 
|  | unmap_mft_record(mft_ni); | 
|  | up_write(&mft_ni->runlist.lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_mft_record_layout - layout an mft record into a memory buffer | 
|  | * @vol:	volume to which the mft record will belong | 
|  | * @mft_no:	mft reference specifying the mft record number | 
|  | * @m:		destination buffer of size >= @vol->mft_record_size bytes | 
|  | * | 
|  | * Layout an empty, unused mft record with the mft record number @mft_no into | 
|  | * the buffer @m.  The volume @vol is needed because the mft record structure | 
|  | * was modified in NTFS 3.1 so we need to know which volume version this mft | 
|  | * record will be used on. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | */ | 
|  | static int ntfs_mft_record_layout(const ntfs_volume *vol, const s64 mft_no, | 
|  | MFT_RECORD *m) | 
|  | { | 
|  | ATTR_RECORD *a; | 
|  |  | 
|  | ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); | 
|  | if (mft_no >= (1ll << 32)) { | 
|  | ntfs_error(vol->sb, "Mft record number 0x%llx exceeds " | 
|  | "maximum of 2^32.", (long long)mft_no); | 
|  | return -ERANGE; | 
|  | } | 
|  | /* Start by clearing the whole mft record to gives us a clean slate. */ | 
|  | memset(m, 0, vol->mft_record_size); | 
|  | /* Aligned to 2-byte boundary. */ | 
|  | if (vol->major_ver < 3 || (vol->major_ver == 3 && !vol->minor_ver)) | 
|  | m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD_OLD) + 1) & ~1); | 
|  | else { | 
|  | m->usa_ofs = cpu_to_le16((sizeof(MFT_RECORD) + 1) & ~1); | 
|  | /* | 
|  | * Set the NTFS 3.1+ specific fields while we know that the | 
|  | * volume version is 3.1+. | 
|  | */ | 
|  | m->reserved = 0; | 
|  | m->mft_record_number = cpu_to_le32((u32)mft_no); | 
|  | } | 
|  | m->magic = magic_FILE; | 
|  | if (vol->mft_record_size >= NTFS_BLOCK_SIZE) | 
|  | m->usa_count = cpu_to_le16(vol->mft_record_size / | 
|  | NTFS_BLOCK_SIZE + 1); | 
|  | else { | 
|  | m->usa_count = cpu_to_le16(1); | 
|  | ntfs_warning(vol->sb, "Sector size is bigger than mft record " | 
|  | "size.  Setting usa_count to 1.  If chkdsk " | 
|  | "reports this as corruption, please email " | 
|  | "linux-ntfs-dev@lists.sourceforge.net stating " | 
|  | "that you saw this message and that the " | 
|  | "modified filesystem created was corrupt.  " | 
|  | "Thank you."); | 
|  | } | 
|  | /* Set the update sequence number to 1. */ | 
|  | *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = cpu_to_le16(1); | 
|  | m->lsn = 0; | 
|  | m->sequence_number = cpu_to_le16(1); | 
|  | m->link_count = 0; | 
|  | /* | 
|  | * Place the attributes straight after the update sequence array, | 
|  | * aligned to 8-byte boundary. | 
|  | */ | 
|  | m->attrs_offset = cpu_to_le16((le16_to_cpu(m->usa_ofs) + | 
|  | (le16_to_cpu(m->usa_count) << 1) + 7) & ~7); | 
|  | m->flags = 0; | 
|  | /* | 
|  | * Using attrs_offset plus eight bytes (for the termination attribute). | 
|  | * attrs_offset is already aligned to 8-byte boundary, so no need to | 
|  | * align again. | 
|  | */ | 
|  | m->bytes_in_use = cpu_to_le32(le16_to_cpu(m->attrs_offset) + 8); | 
|  | m->bytes_allocated = cpu_to_le32(vol->mft_record_size); | 
|  | m->base_mft_record = 0; | 
|  | m->next_attr_instance = 0; | 
|  | /* Add the termination attribute. */ | 
|  | a = (ATTR_RECORD*)((u8*)m + le16_to_cpu(m->attrs_offset)); | 
|  | a->type = AT_END; | 
|  | a->length = 0; | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_mft_record_format - format an mft record on an ntfs volume | 
|  | * @vol:	volume on which to format the mft record | 
|  | * @mft_no:	mft record number to format | 
|  | * | 
|  | * Format the mft record @mft_no in $MFT/$DATA, i.e. lay out an empty, unused | 
|  | * mft record into the appropriate place of the mft data attribute.  This is | 
|  | * used when extending the mft data attribute. | 
|  | * | 
|  | * Return 0 on success and -errno on error. | 
|  | */ | 
|  | static int ntfs_mft_record_format(const ntfs_volume *vol, const s64 mft_no) | 
|  | { | 
|  | loff_t i_size; | 
|  | struct inode *mft_vi = vol->mft_ino; | 
|  | struct page *page; | 
|  | MFT_RECORD *m; | 
|  | pgoff_t index, end_index; | 
|  | unsigned int ofs; | 
|  | int err; | 
|  |  | 
|  | ntfs_debug("Entering for mft record 0x%llx.", (long long)mft_no); | 
|  | /* | 
|  | * The index into the page cache and the offset within the page cache | 
|  | * page of the wanted mft record. | 
|  | */ | 
|  | index = mft_no << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT; | 
|  | ofs = (mft_no << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK; | 
|  | /* The maximum valid index into the page cache for $MFT's data. */ | 
|  | i_size = i_size_read(mft_vi); | 
|  | end_index = i_size >> PAGE_CACHE_SHIFT; | 
|  | if (unlikely(index >= end_index)) { | 
|  | if (unlikely(index > end_index || ofs + vol->mft_record_size >= | 
|  | (i_size & ~PAGE_CACHE_MASK))) { | 
|  | ntfs_error(vol->sb, "Tried to format non-existing mft " | 
|  | "record 0x%llx.", (long long)mft_no); | 
|  | return -ENOENT; | 
|  | } | 
|  | } | 
|  | /* Read, map, and pin the page containing the mft record. */ | 
|  | page = ntfs_map_page(mft_vi->i_mapping, index); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(vol->sb, "Failed to map page containing mft record " | 
|  | "to format 0x%llx.", (long long)mft_no); | 
|  | return PTR_ERR(page); | 
|  | } | 
|  | lock_page(page); | 
|  | BUG_ON(!PageUptodate(page)); | 
|  | ClearPageUptodate(page); | 
|  | m = (MFT_RECORD*)((u8*)page_address(page) + ofs); | 
|  | err = ntfs_mft_record_layout(vol, mft_no, m); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Failed to layout mft record 0x%llx.", | 
|  | (long long)mft_no); | 
|  | SetPageUptodate(page); | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | return err; | 
|  | } | 
|  | flush_dcache_page(page); | 
|  | SetPageUptodate(page); | 
|  | unlock_page(page); | 
|  | /* | 
|  | * Make sure the mft record is written out to disk.  We could use | 
|  | * ilookup5() to check if an inode is in icache and so on but this is | 
|  | * unnecessary as ntfs_writepage() will write the dirty record anyway. | 
|  | */ | 
|  | mark_ntfs_record_dirty(page, ofs); | 
|  | ntfs_unmap_page(page); | 
|  | ntfs_debug("Done."); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_mft_record_alloc - allocate an mft record on an ntfs volume | 
|  | * @vol:	[IN]  volume on which to allocate the mft record | 
|  | * @mode:	[IN]  mode if want a file or directory, i.e. base inode or 0 | 
|  | * @base_ni:	[IN]  open base inode if allocating an extent mft record or NULL | 
|  | * @mrec:	[OUT] on successful return this is the mapped mft record | 
|  | * | 
|  | * Allocate an mft record in $MFT/$DATA of an open ntfs volume @vol. | 
|  | * | 
|  | * If @base_ni is NULL make the mft record a base mft record, i.e. a file or | 
|  | * direvctory inode, and allocate it at the default allocator position.  In | 
|  | * this case @mode is the file mode as given to us by the caller.  We in | 
|  | * particular use @mode to distinguish whether a file or a directory is being | 
|  | * created (S_IFDIR(mode) and S_IFREG(mode), respectively). | 
|  | * | 
|  | * If @base_ni is not NULL make the allocated mft record an extent record, | 
|  | * allocate it starting at the mft record after the base mft record and attach | 
|  | * the allocated and opened ntfs inode to the base inode @base_ni.  In this | 
|  | * case @mode must be 0 as it is meaningless for extent inodes. | 
|  | * | 
|  | * You need to check the return value with IS_ERR().  If false, the function | 
|  | * was successful and the return value is the now opened ntfs inode of the | 
|  | * allocated mft record.  *@mrec is then set to the allocated, mapped, pinned, | 
|  | * and locked mft record.  If IS_ERR() is true, the function failed and the | 
|  | * error code is obtained from PTR_ERR(return value).  *@mrec is undefined in | 
|  | * this case. | 
|  | * | 
|  | * Allocation strategy: | 
|  | * | 
|  | * To find a free mft record, we scan the mft bitmap for a zero bit.  To | 
|  | * optimize this we start scanning at the place specified by @base_ni or if | 
|  | * @base_ni is NULL we start where we last stopped and we perform wrap around | 
|  | * when we reach the end.  Note, we do not try to allocate mft records below | 
|  | * number 24 because numbers 0 to 15 are the defined system files anyway and 16 | 
|  | * to 24 are special in that they are used for storing extension mft records | 
|  | * for the $DATA attribute of $MFT.  This is required to avoid the possibility | 
|  | * of creating a runlist with a circular dependency which once written to disk | 
|  | * can never be read in again.  Windows will only use records 16 to 24 for | 
|  | * normal files if the volume is completely out of space.  We never use them | 
|  | * which means that when the volume is really out of space we cannot create any | 
|  | * more files while Windows can still create up to 8 small files.  We can start | 
|  | * doing this at some later time, it does not matter much for now. | 
|  | * | 
|  | * When scanning the mft bitmap, we only search up to the last allocated mft | 
|  | * record.  If there are no free records left in the range 24 to number of | 
|  | * allocated mft records, then we extend the $MFT/$DATA attribute in order to | 
|  | * create free mft records.  We extend the allocated size of $MFT/$DATA by 16 | 
|  | * records at a time or one cluster, if cluster size is above 16kiB.  If there | 
|  | * is not sufficient space to do this, we try to extend by a single mft record | 
|  | * or one cluster, if cluster size is above the mft record size. | 
|  | * | 
|  | * No matter how many mft records we allocate, we initialize only the first | 
|  | * allocated mft record, incrementing mft data size and initialized size | 
|  | * accordingly, open an ntfs_inode for it and return it to the caller, unless | 
|  | * there are less than 24 mft records, in which case we allocate and initialize | 
|  | * mft records until we reach record 24 which we consider as the first free mft | 
|  | * record for use by normal files. | 
|  | * | 
|  | * If during any stage we overflow the initialized data in the mft bitmap, we | 
|  | * extend the initialized size (and data size) by 8 bytes, allocating another | 
|  | * cluster if required.  The bitmap data size has to be at least equal to the | 
|  | * number of mft records in the mft, but it can be bigger, in which case the | 
|  | * superflous bits are padded with zeroes. | 
|  | * | 
|  | * Thus, when we return successfully (IS_ERR() is false), we will have: | 
|  | *	- initialized / extended the mft bitmap if necessary, | 
|  | *	- initialized / extended the mft data if necessary, | 
|  | *	- set the bit corresponding to the mft record being allocated in the | 
|  | *	  mft bitmap, | 
|  | *	- opened an ntfs_inode for the allocated mft record, and we will have | 
|  | *	- returned the ntfs_inode as well as the allocated mapped, pinned, and | 
|  | *	  locked mft record. | 
|  | * | 
|  | * On error, the volume will be left in a consistent state and no record will | 
|  | * be allocated.  If rolling back a partial operation fails, we may leave some | 
|  | * inconsistent metadata in which case we set NVolErrors() so the volume is | 
|  | * left dirty when unmounted. | 
|  | * | 
|  | * Note, this function cannot make use of most of the normal functions, like | 
|  | * for example for attribute resizing, etc, because when the run list overflows | 
|  | * the base mft record and an attribute list is used, it is very important that | 
|  | * the extension mft records used to store the $DATA attribute of $MFT can be | 
|  | * reached without having to read the information contained inside them, as | 
|  | * this would make it impossible to find them in the first place after the | 
|  | * volume is unmounted.  $MFT/$BITMAP probably does not need to follow this | 
|  | * rule because the bitmap is not essential for finding the mft records, but on | 
|  | * the other hand, handling the bitmap in this special way would make life | 
|  | * easier because otherwise there might be circular invocations of functions | 
|  | * when reading the bitmap. | 
|  | */ | 
|  | ntfs_inode *ntfs_mft_record_alloc(ntfs_volume *vol, const int mode, | 
|  | ntfs_inode *base_ni, MFT_RECORD **mrec) | 
|  | { | 
|  | s64 ll, bit, old_data_initialized, old_data_size; | 
|  | unsigned long flags; | 
|  | struct inode *vi; | 
|  | struct page *page; | 
|  | ntfs_inode *mft_ni, *mftbmp_ni, *ni; | 
|  | ntfs_attr_search_ctx *ctx; | 
|  | MFT_RECORD *m; | 
|  | ATTR_RECORD *a; | 
|  | pgoff_t index; | 
|  | unsigned int ofs; | 
|  | int err; | 
|  | le16 seq_no, usn; | 
|  | bool record_formatted = false; | 
|  |  | 
|  | if (base_ni) { | 
|  | ntfs_debug("Entering (allocating an extent mft record for " | 
|  | "base mft record 0x%llx).", | 
|  | (long long)base_ni->mft_no); | 
|  | /* @mode and @base_ni are mutually exclusive. */ | 
|  | BUG_ON(mode); | 
|  | } else | 
|  | ntfs_debug("Entering (allocating a base mft record)."); | 
|  | if (mode) { | 
|  | /* @mode and @base_ni are mutually exclusive. */ | 
|  | BUG_ON(base_ni); | 
|  | /* We only support creation of normal files and directories. */ | 
|  | if (!S_ISREG(mode) && !S_ISDIR(mode)) | 
|  | return ERR_PTR(-EOPNOTSUPP); | 
|  | } | 
|  | BUG_ON(!mrec); | 
|  | mft_ni = NTFS_I(vol->mft_ino); | 
|  | mftbmp_ni = NTFS_I(vol->mftbmp_ino); | 
|  | down_write(&vol->mftbmp_lock); | 
|  | bit = ntfs_mft_bitmap_find_and_alloc_free_rec_nolock(vol, base_ni); | 
|  | if (bit >= 0) { | 
|  | ntfs_debug("Found and allocated free record (#1), bit 0x%llx.", | 
|  | (long long)bit); | 
|  | goto have_alloc_rec; | 
|  | } | 
|  | if (bit != -ENOSPC) { | 
|  | up_write(&vol->mftbmp_lock); | 
|  | return ERR_PTR(bit); | 
|  | } | 
|  | /* | 
|  | * No free mft records left.  If the mft bitmap already covers more | 
|  | * than the currently used mft records, the next records are all free, | 
|  | * so we can simply allocate the first unused mft record. | 
|  | * Note: We also have to make sure that the mft bitmap at least covers | 
|  | * the first 24 mft records as they are special and whilst they may not | 
|  | * be in use, we do not allocate from them. | 
|  | */ | 
|  | read_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | ll = mft_ni->initialized_size >> vol->mft_record_size_bits; | 
|  | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | old_data_initialized = mftbmp_ni->initialized_size; | 
|  | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | if (old_data_initialized << 3 > ll && old_data_initialized > 3) { | 
|  | bit = ll; | 
|  | if (bit < 24) | 
|  | bit = 24; | 
|  | if (unlikely(bit >= (1ll << 32))) | 
|  | goto max_err_out; | 
|  | ntfs_debug("Found free record (#2), bit 0x%llx.", | 
|  | (long long)bit); | 
|  | goto found_free_rec; | 
|  | } | 
|  | /* | 
|  | * The mft bitmap needs to be expanded until it covers the first unused | 
|  | * mft record that we can allocate. | 
|  | * Note: The smallest mft record we allocate is mft record 24. | 
|  | */ | 
|  | bit = old_data_initialized << 3; | 
|  | if (unlikely(bit >= (1ll << 32))) | 
|  | goto max_err_out; | 
|  | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | old_data_size = mftbmp_ni->allocated_size; | 
|  | ntfs_debug("Status of mftbmp before extension: allocated_size 0x%llx, " | 
|  | "data_size 0x%llx, initialized_size 0x%llx.", | 
|  | (long long)old_data_size, | 
|  | (long long)i_size_read(vol->mftbmp_ino), | 
|  | (long long)old_data_initialized); | 
|  | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | if (old_data_initialized + 8 > old_data_size) { | 
|  | /* Need to extend bitmap by one more cluster. */ | 
|  | ntfs_debug("mftbmp: initialized_size + 8 > allocated_size."); | 
|  | err = ntfs_mft_bitmap_extend_allocation_nolock(vol); | 
|  | if (unlikely(err)) { | 
|  | up_write(&vol->mftbmp_lock); | 
|  | goto err_out; | 
|  | } | 
|  | #ifdef DEBUG | 
|  | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | ntfs_debug("Status of mftbmp after allocation extension: " | 
|  | "allocated_size 0x%llx, data_size 0x%llx, " | 
|  | "initialized_size 0x%llx.", | 
|  | (long long)mftbmp_ni->allocated_size, | 
|  | (long long)i_size_read(vol->mftbmp_ino), | 
|  | (long long)mftbmp_ni->initialized_size); | 
|  | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | #endif /* DEBUG */ | 
|  | } | 
|  | /* | 
|  | * We now have sufficient allocated space, extend the initialized_size | 
|  | * as well as the data_size if necessary and fill the new space with | 
|  | * zeroes. | 
|  | */ | 
|  | err = ntfs_mft_bitmap_extend_initialized_nolock(vol); | 
|  | if (unlikely(err)) { | 
|  | up_write(&vol->mftbmp_lock); | 
|  | goto err_out; | 
|  | } | 
|  | #ifdef DEBUG | 
|  | read_lock_irqsave(&mftbmp_ni->size_lock, flags); | 
|  | ntfs_debug("Status of mftbmp after initialized extention: " | 
|  | "allocated_size 0x%llx, data_size 0x%llx, " | 
|  | "initialized_size 0x%llx.", | 
|  | (long long)mftbmp_ni->allocated_size, | 
|  | (long long)i_size_read(vol->mftbmp_ino), | 
|  | (long long)mftbmp_ni->initialized_size); | 
|  | read_unlock_irqrestore(&mftbmp_ni->size_lock, flags); | 
|  | #endif /* DEBUG */ | 
|  | ntfs_debug("Found free record (#3), bit 0x%llx.", (long long)bit); | 
|  | found_free_rec: | 
|  | /* @bit is the found free mft record, allocate it in the mft bitmap. */ | 
|  | ntfs_debug("At found_free_rec."); | 
|  | err = ntfs_bitmap_set_bit(vol->mftbmp_ino, bit); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Failed to allocate bit in mft bitmap."); | 
|  | up_write(&vol->mftbmp_lock); | 
|  | goto err_out; | 
|  | } | 
|  | ntfs_debug("Set bit 0x%llx in mft bitmap.", (long long)bit); | 
|  | have_alloc_rec: | 
|  | /* | 
|  | * The mft bitmap is now uptodate.  Deal with mft data attribute now. | 
|  | * Note, we keep hold of the mft bitmap lock for writing until all | 
|  | * modifications to the mft data attribute are complete, too, as they | 
|  | * will impact decisions for mft bitmap and mft record allocation done | 
|  | * by a parallel allocation and if the lock is not maintained a | 
|  | * parallel allocation could allocate the same mft record as this one. | 
|  | */ | 
|  | ll = (bit + 1) << vol->mft_record_size_bits; | 
|  | read_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | old_data_initialized = mft_ni->initialized_size; | 
|  | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | if (ll <= old_data_initialized) { | 
|  | ntfs_debug("Allocated mft record already initialized."); | 
|  | goto mft_rec_already_initialized; | 
|  | } | 
|  | ntfs_debug("Initializing allocated mft record."); | 
|  | /* | 
|  | * The mft record is outside the initialized data.  Extend the mft data | 
|  | * attribute until it covers the allocated record.  The loop is only | 
|  | * actually traversed more than once when a freshly formatted volume is | 
|  | * first written to so it optimizes away nicely in the common case. | 
|  | */ | 
|  | read_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | ntfs_debug("Status of mft data before extension: " | 
|  | "allocated_size 0x%llx, data_size 0x%llx, " | 
|  | "initialized_size 0x%llx.", | 
|  | (long long)mft_ni->allocated_size, | 
|  | (long long)i_size_read(vol->mft_ino), | 
|  | (long long)mft_ni->initialized_size); | 
|  | while (ll > mft_ni->allocated_size) { | 
|  | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | err = ntfs_mft_data_extend_allocation_nolock(vol); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Failed to extend mft data " | 
|  | "allocation."); | 
|  | goto undo_mftbmp_alloc_nolock; | 
|  | } | 
|  | read_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | ntfs_debug("Status of mft data after allocation extension: " | 
|  | "allocated_size 0x%llx, data_size 0x%llx, " | 
|  | "initialized_size 0x%llx.", | 
|  | (long long)mft_ni->allocated_size, | 
|  | (long long)i_size_read(vol->mft_ino), | 
|  | (long long)mft_ni->initialized_size); | 
|  | } | 
|  | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | /* | 
|  | * Extend mft data initialized size (and data size of course) to reach | 
|  | * the allocated mft record, formatting the mft records allong the way. | 
|  | * Note: We only modify the ntfs_inode structure as that is all that is | 
|  | * needed by ntfs_mft_record_format().  We will update the attribute | 
|  | * record itself in one fell swoop later on. | 
|  | */ | 
|  | write_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | old_data_initialized = mft_ni->initialized_size; | 
|  | old_data_size = vol->mft_ino->i_size; | 
|  | while (ll > mft_ni->initialized_size) { | 
|  | s64 new_initialized_size, mft_no; | 
|  |  | 
|  | new_initialized_size = mft_ni->initialized_size + | 
|  | vol->mft_record_size; | 
|  | mft_no = mft_ni->initialized_size >> vol->mft_record_size_bits; | 
|  | if (new_initialized_size > i_size_read(vol->mft_ino)) | 
|  | i_size_write(vol->mft_ino, new_initialized_size); | 
|  | write_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | ntfs_debug("Initializing mft record 0x%llx.", | 
|  | (long long)mft_no); | 
|  | err = ntfs_mft_record_format(vol, mft_no); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Failed to format mft record."); | 
|  | goto undo_data_init; | 
|  | } | 
|  | write_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | mft_ni->initialized_size = new_initialized_size; | 
|  | } | 
|  | write_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | record_formatted = true; | 
|  | /* Update the mft data attribute record to reflect the new sizes. */ | 
|  | m = map_mft_record(mft_ni); | 
|  | if (IS_ERR(m)) { | 
|  | ntfs_error(vol->sb, "Failed to map mft record."); | 
|  | err = PTR_ERR(m); | 
|  | goto undo_data_init; | 
|  | } | 
|  | ctx = ntfs_attr_get_search_ctx(mft_ni, m); | 
|  | if (unlikely(!ctx)) { | 
|  | ntfs_error(vol->sb, "Failed to get search context."); | 
|  | err = -ENOMEM; | 
|  | unmap_mft_record(mft_ni); | 
|  | goto undo_data_init; | 
|  | } | 
|  | err = ntfs_attr_lookup(mft_ni->type, mft_ni->name, mft_ni->name_len, | 
|  | CASE_SENSITIVE, 0, NULL, 0, ctx); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Failed to find first attribute extent of " | 
|  | "mft data attribute."); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(mft_ni); | 
|  | goto undo_data_init; | 
|  | } | 
|  | a = ctx->attr; | 
|  | read_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | a->data.non_resident.initialized_size = | 
|  | cpu_to_sle64(mft_ni->initialized_size); | 
|  | a->data.non_resident.data_size = | 
|  | cpu_to_sle64(i_size_read(vol->mft_ino)); | 
|  | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | /* Ensure the changes make it to disk. */ | 
|  | flush_dcache_mft_record_page(ctx->ntfs_ino); | 
|  | mark_mft_record_dirty(ctx->ntfs_ino); | 
|  | ntfs_attr_put_search_ctx(ctx); | 
|  | unmap_mft_record(mft_ni); | 
|  | read_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | ntfs_debug("Status of mft data after mft record initialization: " | 
|  | "allocated_size 0x%llx, data_size 0x%llx, " | 
|  | "initialized_size 0x%llx.", | 
|  | (long long)mft_ni->allocated_size, | 
|  | (long long)i_size_read(vol->mft_ino), | 
|  | (long long)mft_ni->initialized_size); | 
|  | BUG_ON(i_size_read(vol->mft_ino) > mft_ni->allocated_size); | 
|  | BUG_ON(mft_ni->initialized_size > i_size_read(vol->mft_ino)); | 
|  | read_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | mft_rec_already_initialized: | 
|  | /* | 
|  | * We can finally drop the mft bitmap lock as the mft data attribute | 
|  | * has been fully updated.  The only disparity left is that the | 
|  | * allocated mft record still needs to be marked as in use to match the | 
|  | * set bit in the mft bitmap but this is actually not a problem since | 
|  | * this mft record is not referenced from anywhere yet and the fact | 
|  | * that it is allocated in the mft bitmap means that no-one will try to | 
|  | * allocate it either. | 
|  | */ | 
|  | up_write(&vol->mftbmp_lock); | 
|  | /* | 
|  | * We now have allocated and initialized the mft record.  Calculate the | 
|  | * index of and the offset within the page cache page the record is in. | 
|  | */ | 
|  | index = bit << vol->mft_record_size_bits >> PAGE_CACHE_SHIFT; | 
|  | ofs = (bit << vol->mft_record_size_bits) & ~PAGE_CACHE_MASK; | 
|  | /* Read, map, and pin the page containing the mft record. */ | 
|  | page = ntfs_map_page(vol->mft_ino->i_mapping, index); | 
|  | if (IS_ERR(page)) { | 
|  | ntfs_error(vol->sb, "Failed to map page containing allocated " | 
|  | "mft record 0x%llx.", (long long)bit); | 
|  | err = PTR_ERR(page); | 
|  | goto undo_mftbmp_alloc; | 
|  | } | 
|  | lock_page(page); | 
|  | BUG_ON(!PageUptodate(page)); | 
|  | ClearPageUptodate(page); | 
|  | m = (MFT_RECORD*)((u8*)page_address(page) + ofs); | 
|  | /* If we just formatted the mft record no need to do it again. */ | 
|  | if (!record_formatted) { | 
|  | /* Sanity check that the mft record is really not in use. */ | 
|  | if (ntfs_is_file_record(m->magic) && | 
|  | (m->flags & MFT_RECORD_IN_USE)) { | 
|  | ntfs_error(vol->sb, "Mft record 0x%llx was marked " | 
|  | "free in mft bitmap but is marked " | 
|  | "used itself.  Corrupt filesystem.  " | 
|  | "Unmount and run chkdsk.", | 
|  | (long long)bit); | 
|  | err = -EIO; | 
|  | SetPageUptodate(page); | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | NVolSetErrors(vol); | 
|  | goto undo_mftbmp_alloc; | 
|  | } | 
|  | /* | 
|  | * We need to (re-)format the mft record, preserving the | 
|  | * sequence number if it is not zero as well as the update | 
|  | * sequence number if it is not zero or -1 (0xffff).  This | 
|  | * means we do not need to care whether or not something went | 
|  | * wrong with the previous mft record. | 
|  | */ | 
|  | seq_no = m->sequence_number; | 
|  | usn = *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)); | 
|  | err = ntfs_mft_record_layout(vol, bit, m); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Failed to layout allocated mft " | 
|  | "record 0x%llx.", (long long)bit); | 
|  | SetPageUptodate(page); | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | goto undo_mftbmp_alloc; | 
|  | } | 
|  | if (seq_no) | 
|  | m->sequence_number = seq_no; | 
|  | if (usn && le16_to_cpu(usn) != 0xffff) | 
|  | *(le16*)((u8*)m + le16_to_cpu(m->usa_ofs)) = usn; | 
|  | } | 
|  | /* Set the mft record itself in use. */ | 
|  | m->flags |= MFT_RECORD_IN_USE; | 
|  | if (S_ISDIR(mode)) | 
|  | m->flags |= MFT_RECORD_IS_DIRECTORY; | 
|  | flush_dcache_page(page); | 
|  | SetPageUptodate(page); | 
|  | if (base_ni) { | 
|  | /* | 
|  | * Setup the base mft record in the extent mft record.  This | 
|  | * completes initialization of the allocated extent mft record | 
|  | * and we can simply use it with map_extent_mft_record(). | 
|  | */ | 
|  | m->base_mft_record = MK_LE_MREF(base_ni->mft_no, | 
|  | base_ni->seq_no); | 
|  | /* | 
|  | * Allocate an extent inode structure for the new mft record, | 
|  | * attach it to the base inode @base_ni and map, pin, and lock | 
|  | * its, i.e. the allocated, mft record. | 
|  | */ | 
|  | m = map_extent_mft_record(base_ni, bit, &ni); | 
|  | if (IS_ERR(m)) { | 
|  | ntfs_error(vol->sb, "Failed to map allocated extent " | 
|  | "mft record 0x%llx.", (long long)bit); | 
|  | err = PTR_ERR(m); | 
|  | /* Set the mft record itself not in use. */ | 
|  | m->flags &= cpu_to_le16( | 
|  | ~le16_to_cpu(MFT_RECORD_IN_USE)); | 
|  | flush_dcache_page(page); | 
|  | /* Make sure the mft record is written out to disk. */ | 
|  | mark_ntfs_record_dirty(page, ofs); | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | goto undo_mftbmp_alloc; | 
|  | } | 
|  | /* | 
|  | * Make sure the allocated mft record is written out to disk. | 
|  | * No need to set the inode dirty because the caller is going | 
|  | * to do that anyway after finishing with the new extent mft | 
|  | * record (e.g. at a minimum a new attribute will be added to | 
|  | * the mft record. | 
|  | */ | 
|  | mark_ntfs_record_dirty(page, ofs); | 
|  | unlock_page(page); | 
|  | /* | 
|  | * Need to unmap the page since map_extent_mft_record() mapped | 
|  | * it as well so we have it mapped twice at the moment. | 
|  | */ | 
|  | ntfs_unmap_page(page); | 
|  | } else { | 
|  | /* | 
|  | * Allocate a new VFS inode and set it up.  NOTE: @vi->i_nlink | 
|  | * is set to 1 but the mft record->link_count is 0.  The caller | 
|  | * needs to bear this in mind. | 
|  | */ | 
|  | vi = new_inode(vol->sb); | 
|  | if (unlikely(!vi)) { | 
|  | err = -ENOMEM; | 
|  | /* Set the mft record itself not in use. */ | 
|  | m->flags &= cpu_to_le16( | 
|  | ~le16_to_cpu(MFT_RECORD_IN_USE)); | 
|  | flush_dcache_page(page); | 
|  | /* Make sure the mft record is written out to disk. */ | 
|  | mark_ntfs_record_dirty(page, ofs); | 
|  | unlock_page(page); | 
|  | ntfs_unmap_page(page); | 
|  | goto undo_mftbmp_alloc; | 
|  | } | 
|  | vi->i_ino = bit; | 
|  | /* | 
|  | * This is for checking whether an inode has changed w.r.t. a | 
|  | * file so that the file can be updated if necessary (compare | 
|  | * with f_version). | 
|  | */ | 
|  | vi->i_version = 1; | 
|  |  | 
|  | /* The owner and group come from the ntfs volume. */ | 
|  | vi->i_uid = vol->uid; | 
|  | vi->i_gid = vol->gid; | 
|  |  | 
|  | /* Initialize the ntfs specific part of @vi. */ | 
|  | ntfs_init_big_inode(vi); | 
|  | ni = NTFS_I(vi); | 
|  | /* | 
|  | * Set the appropriate mode, attribute type, and name.  For | 
|  | * directories, also setup the index values to the defaults. | 
|  | */ | 
|  | if (S_ISDIR(mode)) { | 
|  | vi->i_mode = S_IFDIR | S_IRWXUGO; | 
|  | vi->i_mode &= ~vol->dmask; | 
|  |  | 
|  | NInoSetMstProtected(ni); | 
|  | ni->type = AT_INDEX_ALLOCATION; | 
|  | ni->name = I30; | 
|  | ni->name_len = 4; | 
|  |  | 
|  | ni->itype.index.block_size = 4096; | 
|  | ni->itype.index.block_size_bits = ntfs_ffs(4096) - 1; | 
|  | ni->itype.index.collation_rule = COLLATION_FILE_NAME; | 
|  | if (vol->cluster_size <= ni->itype.index.block_size) { | 
|  | ni->itype.index.vcn_size = vol->cluster_size; | 
|  | ni->itype.index.vcn_size_bits = | 
|  | vol->cluster_size_bits; | 
|  | } else { | 
|  | ni->itype.index.vcn_size = vol->sector_size; | 
|  | ni->itype.index.vcn_size_bits = | 
|  | vol->sector_size_bits; | 
|  | } | 
|  | } else { | 
|  | vi->i_mode = S_IFREG | S_IRWXUGO; | 
|  | vi->i_mode &= ~vol->fmask; | 
|  |  | 
|  | ni->type = AT_DATA; | 
|  | ni->name = NULL; | 
|  | ni->name_len = 0; | 
|  | } | 
|  | if (IS_RDONLY(vi)) | 
|  | vi->i_mode &= ~S_IWUGO; | 
|  |  | 
|  | /* Set the inode times to the current time. */ | 
|  | vi->i_atime = vi->i_mtime = vi->i_ctime = | 
|  | current_fs_time(vi->i_sb); | 
|  | /* | 
|  | * Set the file size to 0, the ntfs inode sizes are set to 0 by | 
|  | * the call to ntfs_init_big_inode() below. | 
|  | */ | 
|  | vi->i_size = 0; | 
|  | vi->i_blocks = 0; | 
|  |  | 
|  | /* Set the sequence number. */ | 
|  | vi->i_generation = ni->seq_no = le16_to_cpu(m->sequence_number); | 
|  | /* | 
|  | * Manually map, pin, and lock the mft record as we already | 
|  | * have its page mapped and it is very easy to do. | 
|  | */ | 
|  | atomic_inc(&ni->count); | 
|  | mutex_lock(&ni->mrec_lock); | 
|  | ni->page = page; | 
|  | ni->page_ofs = ofs; | 
|  | /* | 
|  | * Make sure the allocated mft record is written out to disk. | 
|  | * NOTE: We do not set the ntfs inode dirty because this would | 
|  | * fail in ntfs_write_inode() because the inode does not have a | 
|  | * standard information attribute yet.  Also, there is no need | 
|  | * to set the inode dirty because the caller is going to do | 
|  | * that anyway after finishing with the new mft record (e.g. at | 
|  | * a minimum some new attributes will be added to the mft | 
|  | * record. | 
|  | */ | 
|  | mark_ntfs_record_dirty(page, ofs); | 
|  | unlock_page(page); | 
|  |  | 
|  | /* Add the inode to the inode hash for the superblock. */ | 
|  | insert_inode_hash(vi); | 
|  |  | 
|  | /* Update the default mft allocation position. */ | 
|  | vol->mft_data_pos = bit + 1; | 
|  | } | 
|  | /* | 
|  | * Return the opened, allocated inode of the allocated mft record as | 
|  | * well as the mapped, pinned, and locked mft record. | 
|  | */ | 
|  | ntfs_debug("Returning opened, allocated %sinode 0x%llx.", | 
|  | base_ni ? "extent " : "", (long long)bit); | 
|  | *mrec = m; | 
|  | return ni; | 
|  | undo_data_init: | 
|  | write_lock_irqsave(&mft_ni->size_lock, flags); | 
|  | mft_ni->initialized_size = old_data_initialized; | 
|  | i_size_write(vol->mft_ino, old_data_size); | 
|  | write_unlock_irqrestore(&mft_ni->size_lock, flags); | 
|  | goto undo_mftbmp_alloc_nolock; | 
|  | undo_mftbmp_alloc: | 
|  | down_write(&vol->mftbmp_lock); | 
|  | undo_mftbmp_alloc_nolock: | 
|  | if (ntfs_bitmap_clear_bit(vol->mftbmp_ino, bit)) { | 
|  | ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | up_write(&vol->mftbmp_lock); | 
|  | err_out: | 
|  | return ERR_PTR(err); | 
|  | max_err_out: | 
|  | ntfs_warning(vol->sb, "Cannot allocate mft record because the maximum " | 
|  | "number of inodes (2^32) has already been reached."); | 
|  | up_write(&vol->mftbmp_lock); | 
|  | return ERR_PTR(-ENOSPC); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ntfs_extent_mft_record_free - free an extent mft record on an ntfs volume | 
|  | * @ni:		ntfs inode of the mapped extent mft record to free | 
|  | * @m:		mapped extent mft record of the ntfs inode @ni | 
|  | * | 
|  | * Free the mapped extent mft record @m of the extent ntfs inode @ni. | 
|  | * | 
|  | * Note that this function unmaps the mft record and closes and destroys @ni | 
|  | * internally and hence you cannot use either @ni nor @m any more after this | 
|  | * function returns success. | 
|  | * | 
|  | * On success return 0 and on error return -errno.  @ni and @m are still valid | 
|  | * in this case and have not been freed. | 
|  | * | 
|  | * For some errors an error message is displayed and the success code 0 is | 
|  | * returned and the volume is then left dirty on umount.  This makes sense in | 
|  | * case we could not rollback the changes that were already done since the | 
|  | * caller no longer wants to reference this mft record so it does not matter to | 
|  | * the caller if something is wrong with it as long as it is properly detached | 
|  | * from the base inode. | 
|  | */ | 
|  | int ntfs_extent_mft_record_free(ntfs_inode *ni, MFT_RECORD *m) | 
|  | { | 
|  | unsigned long mft_no = ni->mft_no; | 
|  | ntfs_volume *vol = ni->vol; | 
|  | ntfs_inode *base_ni; | 
|  | ntfs_inode **extent_nis; | 
|  | int i, err; | 
|  | le16 old_seq_no; | 
|  | u16 seq_no; | 
|  |  | 
|  | BUG_ON(NInoAttr(ni)); | 
|  | BUG_ON(ni->nr_extents != -1); | 
|  |  | 
|  | mutex_lock(&ni->extent_lock); | 
|  | base_ni = ni->ext.base_ntfs_ino; | 
|  | mutex_unlock(&ni->extent_lock); | 
|  |  | 
|  | BUG_ON(base_ni->nr_extents <= 0); | 
|  |  | 
|  | ntfs_debug("Entering for extent inode 0x%lx, base inode 0x%lx.\n", | 
|  | mft_no, base_ni->mft_no); | 
|  |  | 
|  | mutex_lock(&base_ni->extent_lock); | 
|  |  | 
|  | /* Make sure we are holding the only reference to the extent inode. */ | 
|  | if (atomic_read(&ni->count) > 2) { | 
|  | ntfs_error(vol->sb, "Tried to free busy extent inode 0x%lx, " | 
|  | "not freeing.", base_ni->mft_no); | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* Dissociate the ntfs inode from the base inode. */ | 
|  | extent_nis = base_ni->ext.extent_ntfs_inos; | 
|  | err = -ENOENT; | 
|  | for (i = 0; i < base_ni->nr_extents; i++) { | 
|  | if (ni != extent_nis[i]) | 
|  | continue; | 
|  | extent_nis += i; | 
|  | base_ni->nr_extents--; | 
|  | memmove(extent_nis, extent_nis + 1, (base_ni->nr_extents - i) * | 
|  | sizeof(ntfs_inode*)); | 
|  | err = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  |  | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Extent inode 0x%lx is not attached to " | 
|  | "its base inode 0x%lx.", mft_no, | 
|  | base_ni->mft_no); | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The extent inode is no longer attached to the base inode so no one | 
|  | * can get a reference to it any more. | 
|  | */ | 
|  |  | 
|  | /* Mark the mft record as not in use. */ | 
|  | m->flags &= ~MFT_RECORD_IN_USE; | 
|  |  | 
|  | /* Increment the sequence number, skipping zero, if it is not zero. */ | 
|  | old_seq_no = m->sequence_number; | 
|  | seq_no = le16_to_cpu(old_seq_no); | 
|  | if (seq_no == 0xffff) | 
|  | seq_no = 1; | 
|  | else if (seq_no) | 
|  | seq_no++; | 
|  | m->sequence_number = cpu_to_le16(seq_no); | 
|  |  | 
|  | /* | 
|  | * Set the ntfs inode dirty and write it out.  We do not need to worry | 
|  | * about the base inode here since whatever caused the extent mft | 
|  | * record to be freed is guaranteed to do it already. | 
|  | */ | 
|  | NInoSetDirty(ni); | 
|  | err = write_mft_record(ni, m, 0); | 
|  | if (unlikely(err)) { | 
|  | ntfs_error(vol->sb, "Failed to write mft record 0x%lx, not " | 
|  | "freeing.", mft_no); | 
|  | goto rollback; | 
|  | } | 
|  | rollback_error: | 
|  | /* Unmap and throw away the now freed extent inode. */ | 
|  | unmap_extent_mft_record(ni); | 
|  | ntfs_clear_extent_inode(ni); | 
|  |  | 
|  | /* Clear the bit in the $MFT/$BITMAP corresponding to this record. */ | 
|  | down_write(&vol->mftbmp_lock); | 
|  | err = ntfs_bitmap_clear_bit(vol->mftbmp_ino, mft_no); | 
|  | up_write(&vol->mftbmp_lock); | 
|  | if (unlikely(err)) { | 
|  | /* | 
|  | * The extent inode is gone but we failed to deallocate it in | 
|  | * the mft bitmap.  Just emit a warning and leave the volume | 
|  | * dirty on umount. | 
|  | */ | 
|  | ntfs_error(vol->sb, "Failed to clear bit in mft bitmap.%s", es); | 
|  | NVolSetErrors(vol); | 
|  | } | 
|  | return 0; | 
|  | rollback: | 
|  | /* Rollback what we did... */ | 
|  | mutex_lock(&base_ni->extent_lock); | 
|  | extent_nis = base_ni->ext.extent_ntfs_inos; | 
|  | if (!(base_ni->nr_extents & 3)) { | 
|  | int new_size = (base_ni->nr_extents + 4) * sizeof(ntfs_inode*); | 
|  |  | 
|  | extent_nis = kmalloc(new_size, GFP_NOFS); | 
|  | if (unlikely(!extent_nis)) { | 
|  | ntfs_error(vol->sb, "Failed to allocate internal " | 
|  | "buffer during rollback.%s", es); | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  | NVolSetErrors(vol); | 
|  | goto rollback_error; | 
|  | } | 
|  | if (base_ni->nr_extents) { | 
|  | BUG_ON(!base_ni->ext.extent_ntfs_inos); | 
|  | memcpy(extent_nis, base_ni->ext.extent_ntfs_inos, | 
|  | new_size - 4 * sizeof(ntfs_inode*)); | 
|  | kfree(base_ni->ext.extent_ntfs_inos); | 
|  | } | 
|  | base_ni->ext.extent_ntfs_inos = extent_nis; | 
|  | } | 
|  | m->flags |= MFT_RECORD_IN_USE; | 
|  | m->sequence_number = old_seq_no; | 
|  | extent_nis[base_ni->nr_extents++] = ni; | 
|  | mutex_unlock(&base_ni->extent_lock); | 
|  | mark_mft_record_dirty(ni); | 
|  | return err; | 
|  | } | 
|  | #endif /* NTFS_RW */ |