|  | /******************************************************************************* | 
|  |  | 
|  |  | 
|  | Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 2 of the License, or (at your option) | 
|  | any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., 59 | 
|  | Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in the | 
|  | file called LICENSE. | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | /* ethtool support for e1000 */ | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | extern char e1000_driver_name[]; | 
|  | extern char e1000_driver_version[]; | 
|  |  | 
|  | extern int e1000_up(struct e1000_adapter *adapter); | 
|  | extern void e1000_down(struct e1000_adapter *adapter); | 
|  | extern void e1000_reset(struct e1000_adapter *adapter); | 
|  | extern int e1000_set_spd_dplx(struct e1000_adapter *adapter, uint16_t spddplx); | 
|  | extern int e1000_setup_all_rx_resources(struct e1000_adapter *adapter); | 
|  | extern int e1000_setup_all_tx_resources(struct e1000_adapter *adapter); | 
|  | extern void e1000_free_all_rx_resources(struct e1000_adapter *adapter); | 
|  | extern void e1000_free_all_tx_resources(struct e1000_adapter *adapter); | 
|  | extern void e1000_update_stats(struct e1000_adapter *adapter); | 
|  |  | 
|  | struct e1000_stats { | 
|  | char stat_string[ETH_GSTRING_LEN]; | 
|  | int sizeof_stat; | 
|  | int stat_offset; | 
|  | }; | 
|  |  | 
|  | #define E1000_STAT(m) sizeof(((struct e1000_adapter *)0)->m), \ | 
|  | offsetof(struct e1000_adapter, m) | 
|  | static const struct e1000_stats e1000_gstrings_stats[] = { | 
|  | { "rx_packets", E1000_STAT(net_stats.rx_packets) }, | 
|  | { "tx_packets", E1000_STAT(net_stats.tx_packets) }, | 
|  | { "rx_bytes", E1000_STAT(net_stats.rx_bytes) }, | 
|  | { "tx_bytes", E1000_STAT(net_stats.tx_bytes) }, | 
|  | { "rx_errors", E1000_STAT(net_stats.rx_errors) }, | 
|  | { "tx_errors", E1000_STAT(net_stats.tx_errors) }, | 
|  | { "rx_dropped", E1000_STAT(net_stats.rx_dropped) }, | 
|  | { "tx_dropped", E1000_STAT(net_stats.tx_dropped) }, | 
|  | { "multicast", E1000_STAT(net_stats.multicast) }, | 
|  | { "collisions", E1000_STAT(net_stats.collisions) }, | 
|  | { "rx_length_errors", E1000_STAT(net_stats.rx_length_errors) }, | 
|  | { "rx_over_errors", E1000_STAT(net_stats.rx_over_errors) }, | 
|  | { "rx_crc_errors", E1000_STAT(net_stats.rx_crc_errors) }, | 
|  | { "rx_frame_errors", E1000_STAT(net_stats.rx_frame_errors) }, | 
|  | { "rx_fifo_errors", E1000_STAT(net_stats.rx_fifo_errors) }, | 
|  | { "rx_no_buffer_count", E1000_STAT(stats.rnbc) }, | 
|  | { "rx_missed_errors", E1000_STAT(net_stats.rx_missed_errors) }, | 
|  | { "tx_aborted_errors", E1000_STAT(net_stats.tx_aborted_errors) }, | 
|  | { "tx_carrier_errors", E1000_STAT(net_stats.tx_carrier_errors) }, | 
|  | { "tx_fifo_errors", E1000_STAT(net_stats.tx_fifo_errors) }, | 
|  | { "tx_heartbeat_errors", E1000_STAT(net_stats.tx_heartbeat_errors) }, | 
|  | { "tx_window_errors", E1000_STAT(net_stats.tx_window_errors) }, | 
|  | { "tx_abort_late_coll", E1000_STAT(stats.latecol) }, | 
|  | { "tx_deferred_ok", E1000_STAT(stats.dc) }, | 
|  | { "tx_single_coll_ok", E1000_STAT(stats.scc) }, | 
|  | { "tx_multi_coll_ok", E1000_STAT(stats.mcc) }, | 
|  | { "tx_timeout_count", E1000_STAT(tx_timeout_count) }, | 
|  | { "rx_long_length_errors", E1000_STAT(stats.roc) }, | 
|  | { "rx_short_length_errors", E1000_STAT(stats.ruc) }, | 
|  | { "rx_align_errors", E1000_STAT(stats.algnerrc) }, | 
|  | { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) }, | 
|  | { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) }, | 
|  | { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) }, | 
|  | { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) }, | 
|  | { "tx_flow_control_xon", E1000_STAT(stats.xontxc) }, | 
|  | { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) }, | 
|  | { "rx_long_byte_count", E1000_STAT(stats.gorcl) }, | 
|  | { "rx_csum_offload_good", E1000_STAT(hw_csum_good) }, | 
|  | { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) }, | 
|  | { "rx_header_split", E1000_STAT(rx_hdr_split) }, | 
|  | { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) }, | 
|  | }; | 
|  |  | 
|  | #ifdef CONFIG_E1000_MQ | 
|  | #define E1000_QUEUE_STATS_LEN \ | 
|  | (((struct e1000_adapter *)netdev->priv)->num_tx_queues + \ | 
|  | ((struct e1000_adapter *)netdev->priv)->num_rx_queues) \ | 
|  | * (sizeof(struct e1000_queue_stats) / sizeof(uint64_t)) | 
|  | #else | 
|  | #define E1000_QUEUE_STATS_LEN 0 | 
|  | #endif | 
|  | #define E1000_GLOBAL_STATS_LEN	\ | 
|  | sizeof(e1000_gstrings_stats) / sizeof(struct e1000_stats) | 
|  | #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN) | 
|  | static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = { | 
|  | "Register test  (offline)", "Eeprom test    (offline)", | 
|  | "Interrupt test (offline)", "Loopback test  (offline)", | 
|  | "Link test   (on/offline)" | 
|  | }; | 
|  | #define E1000_TEST_LEN sizeof(e1000_gstrings_test) / ETH_GSTRING_LEN | 
|  |  | 
|  | static int | 
|  | e1000_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  |  | 
|  | ecmd->supported = (SUPPORTED_10baseT_Half | | 
|  | SUPPORTED_10baseT_Full | | 
|  | SUPPORTED_100baseT_Half | | 
|  | SUPPORTED_100baseT_Full | | 
|  | SUPPORTED_1000baseT_Full| | 
|  | SUPPORTED_Autoneg | | 
|  | SUPPORTED_TP); | 
|  |  | 
|  | ecmd->advertising = ADVERTISED_TP; | 
|  |  | 
|  | if (hw->autoneg == 1) { | 
|  | ecmd->advertising |= ADVERTISED_Autoneg; | 
|  |  | 
|  | /* the e1000 autoneg seems to match ethtool nicely */ | 
|  |  | 
|  | ecmd->advertising |= hw->autoneg_advertised; | 
|  | } | 
|  |  | 
|  | ecmd->port = PORT_TP; | 
|  | ecmd->phy_address = hw->phy_addr; | 
|  |  | 
|  | if (hw->mac_type == e1000_82543) | 
|  | ecmd->transceiver = XCVR_EXTERNAL; | 
|  | else | 
|  | ecmd->transceiver = XCVR_INTERNAL; | 
|  |  | 
|  | } else { | 
|  | ecmd->supported   = (SUPPORTED_1000baseT_Full | | 
|  | SUPPORTED_FIBRE | | 
|  | SUPPORTED_Autoneg); | 
|  |  | 
|  | ecmd->advertising = (ADVERTISED_1000baseT_Full | | 
|  | ADVERTISED_FIBRE | | 
|  | ADVERTISED_Autoneg); | 
|  |  | 
|  | ecmd->port = PORT_FIBRE; | 
|  |  | 
|  | if (hw->mac_type >= e1000_82545) | 
|  | ecmd->transceiver = XCVR_INTERNAL; | 
|  | else | 
|  | ecmd->transceiver = XCVR_EXTERNAL; | 
|  | } | 
|  |  | 
|  | if (netif_carrier_ok(adapter->netdev)) { | 
|  |  | 
|  | e1000_get_speed_and_duplex(hw, &adapter->link_speed, | 
|  | &adapter->link_duplex); | 
|  | ecmd->speed = adapter->link_speed; | 
|  |  | 
|  | /* unfortunatly FULL_DUPLEX != DUPLEX_FULL | 
|  | *          and HALF_DUPLEX != DUPLEX_HALF */ | 
|  |  | 
|  | if (adapter->link_duplex == FULL_DUPLEX) | 
|  | ecmd->duplex = DUPLEX_FULL; | 
|  | else | 
|  | ecmd->duplex = DUPLEX_HALF; | 
|  | } else { | 
|  | ecmd->speed = -1; | 
|  | ecmd->duplex = -1; | 
|  | } | 
|  |  | 
|  | ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) || | 
|  | hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_set_settings(struct net_device *netdev, struct ethtool_cmd *ecmd) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | /* When SoL/IDER sessions are active, autoneg/speed/duplex | 
|  | * cannot be changed */ | 
|  | if (e1000_check_phy_reset_block(hw)) { | 
|  | DPRINTK(DRV, ERR, "Cannot change link characteristics " | 
|  | "when SoL/IDER is active.\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (ecmd->autoneg == AUTONEG_ENABLE) { | 
|  | hw->autoneg = 1; | 
|  | if (hw->media_type == e1000_media_type_fiber) | 
|  | hw->autoneg_advertised = ADVERTISED_1000baseT_Full | | 
|  | ADVERTISED_FIBRE | | 
|  | ADVERTISED_Autoneg; | 
|  | else | 
|  | hw->autoneg_advertised = ADVERTISED_10baseT_Half | | 
|  | ADVERTISED_10baseT_Full | | 
|  | ADVERTISED_100baseT_Half | | 
|  | ADVERTISED_100baseT_Full | | 
|  | ADVERTISED_1000baseT_Full| | 
|  | ADVERTISED_Autoneg | | 
|  | ADVERTISED_TP; | 
|  | ecmd->advertising = hw->autoneg_advertised; | 
|  | } else | 
|  | if (e1000_set_spd_dplx(adapter, ecmd->speed + ecmd->duplex)) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* reset the link */ | 
|  |  | 
|  | if (netif_running(adapter->netdev)) { | 
|  | e1000_down(adapter); | 
|  | e1000_reset(adapter); | 
|  | e1000_up(adapter); | 
|  | } else | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_get_pauseparam(struct net_device *netdev, | 
|  | struct ethtool_pauseparam *pause) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | pause->autoneg = | 
|  | (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE); | 
|  |  | 
|  | if (hw->fc == e1000_fc_rx_pause) | 
|  | pause->rx_pause = 1; | 
|  | else if (hw->fc == e1000_fc_tx_pause) | 
|  | pause->tx_pause = 1; | 
|  | else if (hw->fc == e1000_fc_full) { | 
|  | pause->rx_pause = 1; | 
|  | pause->tx_pause = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_set_pauseparam(struct net_device *netdev, | 
|  | struct ethtool_pauseparam *pause) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | adapter->fc_autoneg = pause->autoneg; | 
|  |  | 
|  | if (pause->rx_pause && pause->tx_pause) | 
|  | hw->fc = e1000_fc_full; | 
|  | else if (pause->rx_pause && !pause->tx_pause) | 
|  | hw->fc = e1000_fc_rx_pause; | 
|  | else if (!pause->rx_pause && pause->tx_pause) | 
|  | hw->fc = e1000_fc_tx_pause; | 
|  | else if (!pause->rx_pause && !pause->tx_pause) | 
|  | hw->fc = e1000_fc_none; | 
|  |  | 
|  | hw->original_fc = hw->fc; | 
|  |  | 
|  | if (adapter->fc_autoneg == AUTONEG_ENABLE) { | 
|  | if (netif_running(adapter->netdev)) { | 
|  | e1000_down(adapter); | 
|  | e1000_up(adapter); | 
|  | } else | 
|  | e1000_reset(adapter); | 
|  | } else | 
|  | return ((hw->media_type == e1000_media_type_fiber) ? | 
|  | e1000_setup_link(hw) : e1000_force_mac_fc(hw)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000_get_rx_csum(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | return adapter->rx_csum; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_set_rx_csum(struct net_device *netdev, uint32_t data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | adapter->rx_csum = data; | 
|  |  | 
|  | if (netif_running(netdev)) { | 
|  | e1000_down(adapter); | 
|  | e1000_up(adapter); | 
|  | } else | 
|  | e1000_reset(adapter); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static uint32_t | 
|  | e1000_get_tx_csum(struct net_device *netdev) | 
|  | { | 
|  | return (netdev->features & NETIF_F_HW_CSUM) != 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_set_tx_csum(struct net_device *netdev, uint32_t data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (adapter->hw.mac_type < e1000_82543) { | 
|  | if (!data) | 
|  | return -EINVAL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (data) | 
|  | netdev->features |= NETIF_F_HW_CSUM; | 
|  | else | 
|  | netdev->features &= ~NETIF_F_HW_CSUM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef NETIF_F_TSO | 
|  | static int | 
|  | e1000_set_tso(struct net_device *netdev, uint32_t data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | if ((adapter->hw.mac_type < e1000_82544) || | 
|  | (adapter->hw.mac_type == e1000_82547)) | 
|  | return data ? -EINVAL : 0; | 
|  |  | 
|  | if (data) | 
|  | netdev->features |= NETIF_F_TSO; | 
|  | else | 
|  | netdev->features &= ~NETIF_F_TSO; | 
|  | return 0; | 
|  | } | 
|  | #endif /* NETIF_F_TSO */ | 
|  |  | 
|  | static uint32_t | 
|  | e1000_get_msglevel(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | return adapter->msg_enable; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_set_msglevel(struct net_device *netdev, uint32_t data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | adapter->msg_enable = data; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_get_regs_len(struct net_device *netdev) | 
|  | { | 
|  | #define E1000_REGS_LEN 32 | 
|  | return E1000_REGS_LEN * sizeof(uint32_t); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_get_regs(struct net_device *netdev, | 
|  | struct ethtool_regs *regs, void *p) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint32_t *regs_buff = p; | 
|  | uint16_t phy_data; | 
|  |  | 
|  | memset(p, 0, E1000_REGS_LEN * sizeof(uint32_t)); | 
|  |  | 
|  | regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id; | 
|  |  | 
|  | regs_buff[0]  = E1000_READ_REG(hw, CTRL); | 
|  | regs_buff[1]  = E1000_READ_REG(hw, STATUS); | 
|  |  | 
|  | regs_buff[2]  = E1000_READ_REG(hw, RCTL); | 
|  | regs_buff[3]  = E1000_READ_REG(hw, RDLEN); | 
|  | regs_buff[4]  = E1000_READ_REG(hw, RDH); | 
|  | regs_buff[5]  = E1000_READ_REG(hw, RDT); | 
|  | regs_buff[6]  = E1000_READ_REG(hw, RDTR); | 
|  |  | 
|  | regs_buff[7]  = E1000_READ_REG(hw, TCTL); | 
|  | regs_buff[8]  = E1000_READ_REG(hw, TDLEN); | 
|  | regs_buff[9]  = E1000_READ_REG(hw, TDH); | 
|  | regs_buff[10] = E1000_READ_REG(hw, TDT); | 
|  | regs_buff[11] = E1000_READ_REG(hw, TIDV); | 
|  |  | 
|  | regs_buff[12] = adapter->hw.phy_type;  /* PHY type (IGP=1, M88=0) */ | 
|  | if (hw->phy_type == e1000_phy_igp) { | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_AGC_A); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[13] = (uint32_t)phy_data; /* cable length */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_AGC_B); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[14] = (uint32_t)phy_data; /* cable length */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_AGC_C); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[15] = (uint32_t)phy_data; /* cable length */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_AGC_D); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[16] = (uint32_t)phy_data; /* cable length */ | 
|  | regs_buff[17] = 0; /* extended 10bt distance (not needed) */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[18] = (uint32_t)phy_data; /* cable polarity */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | IGP01E1000_PHY_PCS_INIT_REG); | 
|  | e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG & | 
|  | IGP01E1000_PHY_PAGE_SELECT, &phy_data); | 
|  | regs_buff[19] = (uint32_t)phy_data; /* cable polarity */ | 
|  | regs_buff[20] = 0; /* polarity correction enabled (always) */ | 
|  | regs_buff[22] = 0; /* phy receive errors (unavailable) */ | 
|  | regs_buff[23] = regs_buff[18]; /* mdix mode */ | 
|  | e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0); | 
|  | } else { | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | regs_buff[13] = (uint32_t)phy_data; /* cable length */ | 
|  | regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */ | 
|  | regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */ | 
|  | regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */ | 
|  | e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | regs_buff[17] = (uint32_t)phy_data; /* extended 10bt distance */ | 
|  | regs_buff[18] = regs_buff[13]; /* cable polarity */ | 
|  | regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */ | 
|  | regs_buff[20] = regs_buff[17]; /* polarity correction */ | 
|  | /* phy receive errors */ | 
|  | regs_buff[22] = adapter->phy_stats.receive_errors; | 
|  | regs_buff[23] = regs_buff[13]; /* mdix mode */ | 
|  | } | 
|  | regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */ | 
|  | e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
|  | regs_buff[24] = (uint32_t)phy_data;  /* phy local receiver status */ | 
|  | regs_buff[25] = regs_buff[24];  /* phy remote receiver status */ | 
|  | if (hw->mac_type >= e1000_82540 && | 
|  | hw->media_type == e1000_media_type_copper) { | 
|  | regs_buff[26] = E1000_READ_REG(hw, MANC); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_get_eeprom_len(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | return adapter->hw.eeprom.word_size * 2; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_get_eeprom(struct net_device *netdev, | 
|  | struct ethtool_eeprom *eeprom, uint8_t *bytes) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint16_t *eeprom_buff; | 
|  | int first_word, last_word; | 
|  | int ret_val = 0; | 
|  | uint16_t i; | 
|  |  | 
|  | if (eeprom->len == 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | eeprom->magic = hw->vendor_id | (hw->device_id << 16); | 
|  |  | 
|  | first_word = eeprom->offset >> 1; | 
|  | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | 
|  |  | 
|  | eeprom_buff = kmalloc(sizeof(uint16_t) * | 
|  | (last_word - first_word + 1), GFP_KERNEL); | 
|  | if (!eeprom_buff) | 
|  | return -ENOMEM; | 
|  |  | 
|  | if (hw->eeprom.type == e1000_eeprom_spi) | 
|  | ret_val = e1000_read_eeprom(hw, first_word, | 
|  | last_word - first_word + 1, | 
|  | eeprom_buff); | 
|  | else { | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | if ((ret_val = e1000_read_eeprom(hw, first_word + i, 1, | 
|  | &eeprom_buff[i]))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Device's eeprom is always little-endian, word addressable */ | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | le16_to_cpus(&eeprom_buff[i]); | 
|  |  | 
|  | memcpy(bytes, (uint8_t *)eeprom_buff + (eeprom->offset & 1), | 
|  | eeprom->len); | 
|  | kfree(eeprom_buff); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_set_eeprom(struct net_device *netdev, | 
|  | struct ethtool_eeprom *eeprom, uint8_t *bytes) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint16_t *eeprom_buff; | 
|  | void *ptr; | 
|  | int max_len, first_word, last_word, ret_val = 0; | 
|  | uint16_t i; | 
|  |  | 
|  | if (eeprom->len == 0) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16))) | 
|  | return -EFAULT; | 
|  |  | 
|  | max_len = hw->eeprom.word_size * 2; | 
|  |  | 
|  | first_word = eeprom->offset >> 1; | 
|  | last_word = (eeprom->offset + eeprom->len - 1) >> 1; | 
|  | eeprom_buff = kmalloc(max_len, GFP_KERNEL); | 
|  | if (!eeprom_buff) | 
|  | return -ENOMEM; | 
|  |  | 
|  | ptr = (void *)eeprom_buff; | 
|  |  | 
|  | if (eeprom->offset & 1) { | 
|  | /* need read/modify/write of first changed EEPROM word */ | 
|  | /* only the second byte of the word is being modified */ | 
|  | ret_val = e1000_read_eeprom(hw, first_word, 1, | 
|  | &eeprom_buff[0]); | 
|  | ptr++; | 
|  | } | 
|  | if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) { | 
|  | /* need read/modify/write of last changed EEPROM word */ | 
|  | /* only the first byte of the word is being modified */ | 
|  | ret_val = e1000_read_eeprom(hw, last_word, 1, | 
|  | &eeprom_buff[last_word - first_word]); | 
|  | } | 
|  |  | 
|  | /* Device's eeprom is always little-endian, word addressable */ | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | le16_to_cpus(&eeprom_buff[i]); | 
|  |  | 
|  | memcpy(ptr, bytes, eeprom->len); | 
|  |  | 
|  | for (i = 0; i < last_word - first_word + 1; i++) | 
|  | eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]); | 
|  |  | 
|  | ret_val = e1000_write_eeprom(hw, first_word, | 
|  | last_word - first_word + 1, eeprom_buff); | 
|  |  | 
|  | /* Update the checksum over the first part of the EEPROM if needed | 
|  | * and flush shadow RAM for 82573 conrollers */ | 
|  | if ((ret_val == 0) && ((first_word <= EEPROM_CHECKSUM_REG) || | 
|  | (hw->mac_type == e1000_82573))) | 
|  | e1000_update_eeprom_checksum(hw); | 
|  |  | 
|  | kfree(eeprom_buff); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_get_drvinfo(struct net_device *netdev, | 
|  | struct ethtool_drvinfo *drvinfo) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | char firmware_version[32]; | 
|  | uint16_t eeprom_data; | 
|  |  | 
|  | strncpy(drvinfo->driver,  e1000_driver_name, 32); | 
|  | strncpy(drvinfo->version, e1000_driver_version, 32); | 
|  |  | 
|  | /* EEPROM image version # is reported as firmware version # for | 
|  | * 8257{1|2|3} controllers */ | 
|  | e1000_read_eeprom(&adapter->hw, 5, 1, &eeprom_data); | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_82573: | 
|  | sprintf(firmware_version, "%d.%d-%d", | 
|  | (eeprom_data & 0xF000) >> 12, | 
|  | (eeprom_data & 0x0FF0) >> 4, | 
|  | eeprom_data & 0x000F); | 
|  | break; | 
|  | default: | 
|  | sprintf(firmware_version, "N/A"); | 
|  | } | 
|  |  | 
|  | strncpy(drvinfo->fw_version, firmware_version, 32); | 
|  | strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32); | 
|  | drvinfo->n_stats = E1000_STATS_LEN; | 
|  | drvinfo->testinfo_len = E1000_TEST_LEN; | 
|  | drvinfo->regdump_len = e1000_get_regs_len(netdev); | 
|  | drvinfo->eedump_len = e1000_get_eeprom_len(netdev); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_get_ringparam(struct net_device *netdev, | 
|  | struct ethtool_ringparam *ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | e1000_mac_type mac_type = adapter->hw.mac_type; | 
|  | struct e1000_tx_ring *txdr = adapter->tx_ring; | 
|  | struct e1000_rx_ring *rxdr = adapter->rx_ring; | 
|  |  | 
|  | ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD : | 
|  | E1000_MAX_82544_RXD; | 
|  | ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD : | 
|  | E1000_MAX_82544_TXD; | 
|  | ring->rx_mini_max_pending = 0; | 
|  | ring->rx_jumbo_max_pending = 0; | 
|  | ring->rx_pending = rxdr->count; | 
|  | ring->tx_pending = txdr->count; | 
|  | ring->rx_mini_pending = 0; | 
|  | ring->rx_jumbo_pending = 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_set_ringparam(struct net_device *netdev, | 
|  | struct ethtool_ringparam *ring) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | e1000_mac_type mac_type = adapter->hw.mac_type; | 
|  | struct e1000_tx_ring *txdr, *tx_old, *tx_new; | 
|  | struct e1000_rx_ring *rxdr, *rx_old, *rx_new; | 
|  | int i, err, tx_ring_size, rx_ring_size; | 
|  |  | 
|  | tx_ring_size = sizeof(struct e1000_tx_ring) * adapter->num_tx_queues; | 
|  | rx_ring_size = sizeof(struct e1000_rx_ring) * adapter->num_rx_queues; | 
|  |  | 
|  | if (netif_running(adapter->netdev)) | 
|  | e1000_down(adapter); | 
|  |  | 
|  | tx_old = adapter->tx_ring; | 
|  | rx_old = adapter->rx_ring; | 
|  |  | 
|  | adapter->tx_ring = kmalloc(tx_ring_size, GFP_KERNEL); | 
|  | if (!adapter->tx_ring) { | 
|  | err = -ENOMEM; | 
|  | goto err_setup_rx; | 
|  | } | 
|  | memset(adapter->tx_ring, 0, tx_ring_size); | 
|  |  | 
|  | adapter->rx_ring = kmalloc(rx_ring_size, GFP_KERNEL); | 
|  | if (!adapter->rx_ring) { | 
|  | kfree(adapter->tx_ring); | 
|  | err = -ENOMEM; | 
|  | goto err_setup_rx; | 
|  | } | 
|  | memset(adapter->rx_ring, 0, rx_ring_size); | 
|  |  | 
|  | txdr = adapter->tx_ring; | 
|  | rxdr = adapter->rx_ring; | 
|  |  | 
|  | if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending)) | 
|  | return -EINVAL; | 
|  |  | 
|  | rxdr->count = max(ring->rx_pending,(uint32_t)E1000_MIN_RXD); | 
|  | rxdr->count = min(rxdr->count,(uint32_t)(mac_type < e1000_82544 ? | 
|  | E1000_MAX_RXD : E1000_MAX_82544_RXD)); | 
|  | E1000_ROUNDUP(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE); | 
|  |  | 
|  | txdr->count = max(ring->tx_pending,(uint32_t)E1000_MIN_TXD); | 
|  | txdr->count = min(txdr->count,(uint32_t)(mac_type < e1000_82544 ? | 
|  | E1000_MAX_TXD : E1000_MAX_82544_TXD)); | 
|  | E1000_ROUNDUP(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE); | 
|  |  | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) | 
|  | txdr[i].count = txdr->count; | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) | 
|  | rxdr[i].count = rxdr->count; | 
|  |  | 
|  | if (netif_running(adapter->netdev)) { | 
|  | /* Try to get new resources before deleting old */ | 
|  | if ((err = e1000_setup_all_rx_resources(adapter))) | 
|  | goto err_setup_rx; | 
|  | if ((err = e1000_setup_all_tx_resources(adapter))) | 
|  | goto err_setup_tx; | 
|  |  | 
|  | /* save the new, restore the old in order to free it, | 
|  | * then restore the new back again */ | 
|  |  | 
|  | rx_new = adapter->rx_ring; | 
|  | tx_new = adapter->tx_ring; | 
|  | adapter->rx_ring = rx_old; | 
|  | adapter->tx_ring = tx_old; | 
|  | e1000_free_all_rx_resources(adapter); | 
|  | e1000_free_all_tx_resources(adapter); | 
|  | kfree(tx_old); | 
|  | kfree(rx_old); | 
|  | adapter->rx_ring = rx_new; | 
|  | adapter->tx_ring = tx_new; | 
|  | if ((err = e1000_up(adapter))) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | err_setup_tx: | 
|  | e1000_free_all_rx_resources(adapter); | 
|  | err_setup_rx: | 
|  | adapter->rx_ring = rx_old; | 
|  | adapter->tx_ring = tx_old; | 
|  | e1000_up(adapter); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | #define REG_PATTERN_TEST(R, M, W)                                              \ | 
|  | {                                                                              \ | 
|  | uint32_t pat, value;                                                   \ | 
|  | uint32_t test[] =                                                      \ | 
|  | {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};              \ | 
|  | for (pat = 0; pat < sizeof(test)/sizeof(test[0]); pat++) {              \ | 
|  | E1000_WRITE_REG(&adapter->hw, R, (test[pat] & W));             \ | 
|  | value = E1000_READ_REG(&adapter->hw, R);                       \ | 
|  | if (value != (test[pat] & W & M)) {                             \ | 
|  | DPRINTK(DRV, ERR, "pattern test reg %04X failed: got " \ | 
|  | "0x%08X expected 0x%08X\n",                    \ | 
|  | E1000_##R, value, (test[pat] & W & M));        \ | 
|  | *data = (adapter->hw.mac_type < e1000_82543) ?         \ | 
|  | E1000_82542_##R : E1000_##R;                   \ | 
|  | return 1;                                              \ | 
|  | }                                                              \ | 
|  | }                                                                      \ | 
|  | } | 
|  |  | 
|  | #define REG_SET_AND_CHECK(R, M, W)                                             \ | 
|  | {                                                                              \ | 
|  | uint32_t value;                                                        \ | 
|  | E1000_WRITE_REG(&adapter->hw, R, W & M);                               \ | 
|  | value = E1000_READ_REG(&adapter->hw, R);                               \ | 
|  | if ((W & M) != (value & M)) {                                          \ | 
|  | DPRINTK(DRV, ERR, "set/check reg %04X test failed: got 0x%08X "\ | 
|  | "expected 0x%08X\n", E1000_##R, (value & M), (W & M)); \ | 
|  | *data = (adapter->hw.mac_type < e1000_82543) ?                 \ | 
|  | E1000_82542_##R : E1000_##R;                           \ | 
|  | return 1;                                                      \ | 
|  | }                                                                      \ | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_reg_test(struct e1000_adapter *adapter, uint64_t *data) | 
|  | { | 
|  | uint32_t value, before, after; | 
|  | uint32_t i, toggle; | 
|  |  | 
|  | /* The status register is Read Only, so a write should fail. | 
|  | * Some bits that get toggled are ignored. | 
|  | */ | 
|  | switch (adapter->hw.mac_type) { | 
|  | /* there are several bits on newer hardware that are r/w */ | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | toggle = 0x7FFFF3FF; | 
|  | break; | 
|  | case e1000_82573: | 
|  | toggle = 0x7FFFF033; | 
|  | break; | 
|  | default: | 
|  | toggle = 0xFFFFF833; | 
|  | break; | 
|  | } | 
|  |  | 
|  | before = E1000_READ_REG(&adapter->hw, STATUS); | 
|  | value = (E1000_READ_REG(&adapter->hw, STATUS) & toggle); | 
|  | E1000_WRITE_REG(&adapter->hw, STATUS, toggle); | 
|  | after = E1000_READ_REG(&adapter->hw, STATUS) & toggle; | 
|  | if (value != after) { | 
|  | DPRINTK(DRV, ERR, "failed STATUS register test got: " | 
|  | "0x%08X expected: 0x%08X\n", after, value); | 
|  | *data = 1; | 
|  | return 1; | 
|  | } | 
|  | /* restore previous status */ | 
|  | E1000_WRITE_REG(&adapter->hw, STATUS, before); | 
|  |  | 
|  | REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF); | 
|  | REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8); | 
|  | REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF); | 
|  | REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF); | 
|  |  | 
|  | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000); | 
|  | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0x003FFFFB); | 
|  | REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000); | 
|  |  | 
|  | if (adapter->hw.mac_type >= e1000_82543) { | 
|  |  | 
|  | REG_SET_AND_CHECK(RCTL, 0x06DFB3FE, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF); | 
|  |  | 
|  | for (i = 0; i < E1000_RAR_ENTRIES; i++) { | 
|  | REG_PATTERN_TEST(RA + ((i << 1) << 2), 0xFFFFFFFF, | 
|  | 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF, | 
|  | 0xFFFFFFFF); | 
|  | } | 
|  |  | 
|  | } else { | 
|  |  | 
|  | REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF); | 
|  | REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF); | 
|  | REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF); | 
|  | REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF); | 
|  |  | 
|  | } | 
|  |  | 
|  | for (i = 0; i < E1000_MC_TBL_SIZE; i++) | 
|  | REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF); | 
|  |  | 
|  | *data = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_eeprom_test(struct e1000_adapter *adapter, uint64_t *data) | 
|  | { | 
|  | uint16_t temp; | 
|  | uint16_t checksum = 0; | 
|  | uint16_t i; | 
|  |  | 
|  | *data = 0; | 
|  | /* Read and add up the contents of the EEPROM */ | 
|  | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 
|  | if ((e1000_read_eeprom(&adapter->hw, i, 1, &temp)) < 0) { | 
|  | *data = 1; | 
|  | break; | 
|  | } | 
|  | checksum += temp; | 
|  | } | 
|  |  | 
|  | /* If Checksum is not Correct return error else test passed */ | 
|  | if ((checksum != (uint16_t) EEPROM_SUM) && !(*data)) | 
|  | *data = 2; | 
|  |  | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | static irqreturn_t | 
|  | e1000_test_intr(int irq, | 
|  | void *data, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct net_device *netdev = (struct net_device *) data; | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | adapter->test_icr |= E1000_READ_REG(&adapter->hw, ICR); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_intr_test(struct e1000_adapter *adapter, uint64_t *data) | 
|  | { | 
|  | struct net_device *netdev = adapter->netdev; | 
|  | uint32_t mask, i=0, shared_int = TRUE; | 
|  | uint32_t irq = adapter->pdev->irq; | 
|  |  | 
|  | *data = 0; | 
|  |  | 
|  | /* Hook up test interrupt handler just for this test */ | 
|  | if (!request_irq(irq, &e1000_test_intr, 0, netdev->name, netdev)) { | 
|  | shared_int = FALSE; | 
|  | } else if (request_irq(irq, &e1000_test_intr, SA_SHIRQ, | 
|  | netdev->name, netdev)){ | 
|  | *data = 1; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Disable all the interrupts */ | 
|  | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); | 
|  | msec_delay(10); | 
|  |  | 
|  | /* Test each interrupt */ | 
|  | for (; i < 10; i++) { | 
|  |  | 
|  | /* Interrupt to test */ | 
|  | mask = 1 << i; | 
|  |  | 
|  | if (!shared_int) { | 
|  | /* Disable the interrupt to be reported in | 
|  | * the cause register and then force the same | 
|  | * interrupt and see if one gets posted.  If | 
|  | * an interrupt was posted to the bus, the | 
|  | * test failed. | 
|  | */ | 
|  | adapter->test_icr = 0; | 
|  | E1000_WRITE_REG(&adapter->hw, IMC, mask); | 
|  | E1000_WRITE_REG(&adapter->hw, ICS, mask); | 
|  | msec_delay(10); | 
|  |  | 
|  | if (adapter->test_icr & mask) { | 
|  | *data = 3; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Enable the interrupt to be reported in | 
|  | * the cause register and then force the same | 
|  | * interrupt and see if one gets posted.  If | 
|  | * an interrupt was not posted to the bus, the | 
|  | * test failed. | 
|  | */ | 
|  | adapter->test_icr = 0; | 
|  | E1000_WRITE_REG(&adapter->hw, IMS, mask); | 
|  | E1000_WRITE_REG(&adapter->hw, ICS, mask); | 
|  | msec_delay(10); | 
|  |  | 
|  | if (!(adapter->test_icr & mask)) { | 
|  | *data = 4; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!shared_int) { | 
|  | /* Disable the other interrupts to be reported in | 
|  | * the cause register and then force the other | 
|  | * interrupts and see if any get posted.  If | 
|  | * an interrupt was posted to the bus, the | 
|  | * test failed. | 
|  | */ | 
|  | adapter->test_icr = 0; | 
|  | E1000_WRITE_REG(&adapter->hw, IMC, ~mask & 0x00007FFF); | 
|  | E1000_WRITE_REG(&adapter->hw, ICS, ~mask & 0x00007FFF); | 
|  | msec_delay(10); | 
|  |  | 
|  | if (adapter->test_icr) { | 
|  | *data = 5; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Disable all the interrupts */ | 
|  | E1000_WRITE_REG(&adapter->hw, IMC, 0xFFFFFFFF); | 
|  | msec_delay(10); | 
|  |  | 
|  | /* Unhook test interrupt handler */ | 
|  | free_irq(irq, netdev); | 
|  |  | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_free_desc_rings(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | 
|  | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int i; | 
|  |  | 
|  | if (txdr->desc && txdr->buffer_info) { | 
|  | for (i = 0; i < txdr->count; i++) { | 
|  | if (txdr->buffer_info[i].dma) | 
|  | pci_unmap_single(pdev, txdr->buffer_info[i].dma, | 
|  | txdr->buffer_info[i].length, | 
|  | PCI_DMA_TODEVICE); | 
|  | if (txdr->buffer_info[i].skb) | 
|  | dev_kfree_skb(txdr->buffer_info[i].skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (rxdr->desc && rxdr->buffer_info) { | 
|  | for (i = 0; i < rxdr->count; i++) { | 
|  | if (rxdr->buffer_info[i].dma) | 
|  | pci_unmap_single(pdev, rxdr->buffer_info[i].dma, | 
|  | rxdr->buffer_info[i].length, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | if (rxdr->buffer_info[i].skb) | 
|  | dev_kfree_skb(rxdr->buffer_info[i].skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (txdr->desc) { | 
|  | pci_free_consistent(pdev, txdr->size, txdr->desc, txdr->dma); | 
|  | txdr->desc = NULL; | 
|  | } | 
|  | if (rxdr->desc) { | 
|  | pci_free_consistent(pdev, rxdr->size, rxdr->desc, rxdr->dma); | 
|  | rxdr->desc = NULL; | 
|  | } | 
|  |  | 
|  | kfree(txdr->buffer_info); | 
|  | txdr->buffer_info = NULL; | 
|  | kfree(rxdr->buffer_info); | 
|  | rxdr->buffer_info = NULL; | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_setup_desc_rings(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | 
|  | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | uint32_t rctl; | 
|  | int size, i, ret_val; | 
|  |  | 
|  | /* Setup Tx descriptor ring and Tx buffers */ | 
|  |  | 
|  | if (!txdr->count) | 
|  | txdr->count = E1000_DEFAULT_TXD; | 
|  |  | 
|  | size = txdr->count * sizeof(struct e1000_buffer); | 
|  | if (!(txdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | 
|  | ret_val = 1; | 
|  | goto err_nomem; | 
|  | } | 
|  | memset(txdr->buffer_info, 0, size); | 
|  |  | 
|  | txdr->size = txdr->count * sizeof(struct e1000_tx_desc); | 
|  | E1000_ROUNDUP(txdr->size, 4096); | 
|  | if (!(txdr->desc = pci_alloc_consistent(pdev, txdr->size, &txdr->dma))) { | 
|  | ret_val = 2; | 
|  | goto err_nomem; | 
|  | } | 
|  | memset(txdr->desc, 0, txdr->size); | 
|  | txdr->next_to_use = txdr->next_to_clean = 0; | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, TDBAL, | 
|  | ((uint64_t) txdr->dma & 0x00000000FFFFFFFF)); | 
|  | E1000_WRITE_REG(&adapter->hw, TDBAH, ((uint64_t) txdr->dma >> 32)); | 
|  | E1000_WRITE_REG(&adapter->hw, TDLEN, | 
|  | txdr->count * sizeof(struct e1000_tx_desc)); | 
|  | E1000_WRITE_REG(&adapter->hw, TDH, 0); | 
|  | E1000_WRITE_REG(&adapter->hw, TDT, 0); | 
|  | E1000_WRITE_REG(&adapter->hw, TCTL, | 
|  | E1000_TCTL_PSP | E1000_TCTL_EN | | 
|  | E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT | | 
|  | E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT); | 
|  |  | 
|  | for (i = 0; i < txdr->count; i++) { | 
|  | struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i); | 
|  | struct sk_buff *skb; | 
|  | unsigned int size = 1024; | 
|  |  | 
|  | if (!(skb = alloc_skb(size, GFP_KERNEL))) { | 
|  | ret_val = 3; | 
|  | goto err_nomem; | 
|  | } | 
|  | skb_put(skb, size); | 
|  | txdr->buffer_info[i].skb = skb; | 
|  | txdr->buffer_info[i].length = skb->len; | 
|  | txdr->buffer_info[i].dma = | 
|  | pci_map_single(pdev, skb->data, skb->len, | 
|  | PCI_DMA_TODEVICE); | 
|  | tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma); | 
|  | tx_desc->lower.data = cpu_to_le32(skb->len); | 
|  | tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP | | 
|  | E1000_TXD_CMD_IFCS | | 
|  | E1000_TXD_CMD_RPS); | 
|  | tx_desc->upper.data = 0; | 
|  | } | 
|  |  | 
|  | /* Setup Rx descriptor ring and Rx buffers */ | 
|  |  | 
|  | if (!rxdr->count) | 
|  | rxdr->count = E1000_DEFAULT_RXD; | 
|  |  | 
|  | size = rxdr->count * sizeof(struct e1000_buffer); | 
|  | if (!(rxdr->buffer_info = kmalloc(size, GFP_KERNEL))) { | 
|  | ret_val = 4; | 
|  | goto err_nomem; | 
|  | } | 
|  | memset(rxdr->buffer_info, 0, size); | 
|  |  | 
|  | rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc); | 
|  | if (!(rxdr->desc = pci_alloc_consistent(pdev, rxdr->size, &rxdr->dma))) { | 
|  | ret_val = 5; | 
|  | goto err_nomem; | 
|  | } | 
|  | memset(rxdr->desc, 0, rxdr->size); | 
|  | rxdr->next_to_use = rxdr->next_to_clean = 0; | 
|  |  | 
|  | rctl = E1000_READ_REG(&adapter->hw, RCTL); | 
|  | E1000_WRITE_REG(&adapter->hw, RCTL, rctl & ~E1000_RCTL_EN); | 
|  | E1000_WRITE_REG(&adapter->hw, RDBAL, | 
|  | ((uint64_t) rxdr->dma & 0xFFFFFFFF)); | 
|  | E1000_WRITE_REG(&adapter->hw, RDBAH, ((uint64_t) rxdr->dma >> 32)); | 
|  | E1000_WRITE_REG(&adapter->hw, RDLEN, rxdr->size); | 
|  | E1000_WRITE_REG(&adapter->hw, RDH, 0); | 
|  | E1000_WRITE_REG(&adapter->hw, RDT, 0); | 
|  | rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 | | 
|  | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF | | 
|  | (adapter->hw.mc_filter_type << E1000_RCTL_MO_SHIFT); | 
|  | E1000_WRITE_REG(&adapter->hw, RCTL, rctl); | 
|  |  | 
|  | for (i = 0; i < rxdr->count; i++) { | 
|  | struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if (!(skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, | 
|  | GFP_KERNEL))) { | 
|  | ret_val = 6; | 
|  | goto err_nomem; | 
|  | } | 
|  | skb_reserve(skb, NET_IP_ALIGN); | 
|  | rxdr->buffer_info[i].skb = skb; | 
|  | rxdr->buffer_info[i].length = E1000_RXBUFFER_2048; | 
|  | rxdr->buffer_info[i].dma = | 
|  | pci_map_single(pdev, skb->data, E1000_RXBUFFER_2048, | 
|  | PCI_DMA_FROMDEVICE); | 
|  | rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma); | 
|  | memset(skb->data, 0x00, skb->len); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err_nomem: | 
|  | e1000_free_desc_rings(adapter); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_phy_disable_receiver(struct e1000_adapter *adapter) | 
|  | { | 
|  | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | 
|  | e1000_write_phy_reg(&adapter->hw, 29, 0x001F); | 
|  | e1000_write_phy_reg(&adapter->hw, 30, 0x8FFC); | 
|  | e1000_write_phy_reg(&adapter->hw, 29, 0x001A); | 
|  | e1000_write_phy_reg(&adapter->hw, 30, 0x8FF0); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint16_t phy_reg; | 
|  |  | 
|  | /* Because we reset the PHY above, we need to re-force TX_CLK in the | 
|  | * Extended PHY Specific Control Register to 25MHz clock.  This | 
|  | * value defaults back to a 2.5MHz clock when the PHY is reset. | 
|  | */ | 
|  | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | 
|  | phy_reg |= M88E1000_EPSCR_TX_CLK_25; | 
|  | e1000_write_phy_reg(&adapter->hw, | 
|  | M88E1000_EXT_PHY_SPEC_CTRL, phy_reg); | 
|  |  | 
|  | /* In addition, because of the s/w reset above, we need to enable | 
|  | * CRS on TX.  This must be set for both full and half duplex | 
|  | * operation. | 
|  | */ | 
|  | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | 
|  | phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  | e1000_write_phy_reg(&adapter->hw, | 
|  | M88E1000_PHY_SPEC_CTRL, phy_reg); | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint32_t ctrl_reg; | 
|  | uint16_t phy_reg; | 
|  |  | 
|  | /* Setup the Device Control Register for PHY loopback test. */ | 
|  |  | 
|  | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | 
|  | ctrl_reg |= (E1000_CTRL_ILOS |		/* Invert Loss-Of-Signal */ | 
|  | E1000_CTRL_FRCSPD |	/* Set the Force Speed Bit */ | 
|  | E1000_CTRL_FRCDPX |	/* Set the Force Duplex Bit */ | 
|  | E1000_CTRL_SPD_1000 |	/* Force Speed to 1000 */ | 
|  | E1000_CTRL_FD);		/* Force Duplex to FULL */ | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); | 
|  |  | 
|  | /* Read the PHY Specific Control Register (0x10) */ | 
|  | e1000_read_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, &phy_reg); | 
|  |  | 
|  | /* Clear Auto-Crossover bits in PHY Specific Control Register | 
|  | * (bits 6:5). | 
|  | */ | 
|  | phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  | e1000_write_phy_reg(&adapter->hw, M88E1000_PHY_SPEC_CTRL, phy_reg); | 
|  |  | 
|  | /* Perform software reset on the PHY */ | 
|  | e1000_phy_reset(&adapter->hw); | 
|  |  | 
|  | /* Have to setup TX_CLK and TX_CRS after software reset */ | 
|  | e1000_phy_reset_clk_and_crs(adapter); | 
|  |  | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8100); | 
|  |  | 
|  | /* Wait for reset to complete. */ | 
|  | udelay(500); | 
|  |  | 
|  | /* Have to setup TX_CLK and TX_CRS after software reset */ | 
|  | e1000_phy_reset_clk_and_crs(adapter); | 
|  |  | 
|  | /* Write out to PHY registers 29 and 30 to disable the Receiver. */ | 
|  | e1000_phy_disable_receiver(adapter); | 
|  |  | 
|  | /* Set the loopback bit in the PHY control register. */ | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | 
|  | phy_reg |= MII_CR_LOOPBACK; | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | 
|  |  | 
|  | /* Setup TX_CLK and TX_CRS one more time. */ | 
|  | e1000_phy_reset_clk_and_crs(adapter); | 
|  |  | 
|  | /* Check Phy Configuration */ | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | 
|  | if (phy_reg != 0x4100) | 
|  | return 9; | 
|  |  | 
|  | e1000_read_phy_reg(&adapter->hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg); | 
|  | if (phy_reg != 0x0070) | 
|  | return 10; | 
|  |  | 
|  | e1000_read_phy_reg(&adapter->hw, 29, &phy_reg); | 
|  | if (phy_reg != 0x001A) | 
|  | return 11; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_integrated_phy_loopback(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint32_t ctrl_reg = 0; | 
|  | uint32_t stat_reg = 0; | 
|  |  | 
|  | adapter->hw.autoneg = FALSE; | 
|  |  | 
|  | if (adapter->hw.phy_type == e1000_phy_m88) { | 
|  | /* Auto-MDI/MDIX Off */ | 
|  | e1000_write_phy_reg(&adapter->hw, | 
|  | M88E1000_PHY_SPEC_CTRL, 0x0808); | 
|  | /* reset to update Auto-MDI/MDIX */ | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x9140); | 
|  | /* autoneg off */ | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x8140); | 
|  | } | 
|  | /* force 1000, set loopback */ | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, 0x4140); | 
|  |  | 
|  | /* Now set up the MAC to the same speed/duplex as the PHY. */ | 
|  | ctrl_reg = E1000_READ_REG(&adapter->hw, CTRL); | 
|  | ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */ | 
|  | ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */ | 
|  | E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */ | 
|  | E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */ | 
|  | E1000_CTRL_FD);	 /* Force Duplex to FULL */ | 
|  |  | 
|  | if (adapter->hw.media_type == e1000_media_type_copper && | 
|  | adapter->hw.phy_type == e1000_phy_m88) { | 
|  | ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */ | 
|  | } else { | 
|  | /* Set the ILOS bit on the fiber Nic is half | 
|  | * duplex link is detected. */ | 
|  | stat_reg = E1000_READ_REG(&adapter->hw, STATUS); | 
|  | if ((stat_reg & E1000_STATUS_FD) == 0) | 
|  | ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU); | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, CTRL, ctrl_reg); | 
|  |  | 
|  | /* Disable the receiver on the PHY so when a cable is plugged in, the | 
|  | * PHY does not begin to autoneg when a cable is reconnected to the NIC. | 
|  | */ | 
|  | if (adapter->hw.phy_type == e1000_phy_m88) | 
|  | e1000_phy_disable_receiver(adapter); | 
|  |  | 
|  | udelay(500); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_set_phy_loopback(struct e1000_adapter *adapter) | 
|  | { | 
|  | uint16_t phy_reg = 0; | 
|  | uint16_t count = 0; | 
|  |  | 
|  | switch (adapter->hw.mac_type) { | 
|  | case e1000_82543: | 
|  | if (adapter->hw.media_type == e1000_media_type_copper) { | 
|  | /* Attempt to setup Loopback mode on Non-integrated PHY. | 
|  | * Some PHY registers get corrupted at random, so | 
|  | * attempt this 10 times. | 
|  | */ | 
|  | while (e1000_nonintegrated_phy_loopback(adapter) && | 
|  | count++ < 10); | 
|  | if (count < 11) | 
|  | return 0; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case e1000_82544: | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_82573: | 
|  | return e1000_integrated_phy_loopback(adapter); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | /* Default PHY loopback work is to read the MII | 
|  | * control register and assert bit 14 (loopback mode). | 
|  | */ | 
|  | e1000_read_phy_reg(&adapter->hw, PHY_CTRL, &phy_reg); | 
|  | phy_reg |= MII_CR_LOOPBACK; | 
|  | e1000_write_phy_reg(&adapter->hw, PHY_CTRL, phy_reg); | 
|  | return 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 8; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_setup_loopback_test(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint32_t rctl; | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_fiber || | 
|  | hw->media_type == e1000_media_type_internal_serdes) { | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545: | 
|  | case e1000_82546: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | return e1000_set_phy_loopback(adapter); | 
|  | break; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | #define E1000_SERDES_LB_ON 0x410 | 
|  | e1000_set_phy_loopback(adapter); | 
|  | E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_ON); | 
|  | msec_delay(10); | 
|  | return 0; | 
|  | break; | 
|  | default: | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  | rctl |= E1000_RCTL_LBM_TCVR; | 
|  | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  | return 0; | 
|  | } | 
|  | } else if (hw->media_type == e1000_media_type_copper) | 
|  | return e1000_set_phy_loopback(adapter); | 
|  |  | 
|  | return 7; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_loopback_cleanup(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | uint32_t rctl; | 
|  | uint16_t phy_reg; | 
|  |  | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  | rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC); | 
|  | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | if (hw->media_type == e1000_media_type_fiber || | 
|  | hw->media_type == e1000_media_type_internal_serdes) { | 
|  | #define E1000_SERDES_LB_OFF 0x400 | 
|  | E1000_WRITE_REG(hw, SCTL, E1000_SERDES_LB_OFF); | 
|  | msec_delay(10); | 
|  | break; | 
|  | } | 
|  | /* Fall Through */ | 
|  | case e1000_82545: | 
|  | case e1000_82546: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | default: | 
|  | hw->autoneg = TRUE; | 
|  | e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg); | 
|  | if (phy_reg & MII_CR_LOOPBACK) { | 
|  | phy_reg &= ~MII_CR_LOOPBACK; | 
|  | e1000_write_phy_reg(hw, PHY_CTRL, phy_reg); | 
|  | e1000_phy_reset(hw); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_create_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | 
|  | { | 
|  | memset(skb->data, 0xFF, frame_size); | 
|  | frame_size &= ~1; | 
|  | memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1); | 
|  | memset(&skb->data[frame_size / 2 + 10], 0xBE, 1); | 
|  | memset(&skb->data[frame_size / 2 + 12], 0xAF, 1); | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_check_lbtest_frame(struct sk_buff *skb, unsigned int frame_size) | 
|  | { | 
|  | frame_size &= ~1; | 
|  | if (*(skb->data + 3) == 0xFF) { | 
|  | if ((*(skb->data + frame_size / 2 + 10) == 0xBE) && | 
|  | (*(skb->data + frame_size / 2 + 12) == 0xAF)) { | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | return 13; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_run_loopback_test(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_tx_ring *txdr = &adapter->test_tx_ring; | 
|  | struct e1000_rx_ring *rxdr = &adapter->test_rx_ring; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int i, j, k, l, lc, good_cnt, ret_val=0; | 
|  | unsigned long time; | 
|  |  | 
|  | E1000_WRITE_REG(&adapter->hw, RDT, rxdr->count - 1); | 
|  |  | 
|  | /* Calculate the loop count based on the largest descriptor ring | 
|  | * The idea is to wrap the largest ring a number of times using 64 | 
|  | * send/receive pairs during each loop | 
|  | */ | 
|  |  | 
|  | if (rxdr->count <= txdr->count) | 
|  | lc = ((txdr->count / 64) * 2) + 1; | 
|  | else | 
|  | lc = ((rxdr->count / 64) * 2) + 1; | 
|  |  | 
|  | k = l = 0; | 
|  | for (j = 0; j <= lc; j++) { /* loop count loop */ | 
|  | for (i = 0; i < 64; i++) { /* send the packets */ | 
|  | e1000_create_lbtest_frame(txdr->buffer_info[i].skb, | 
|  | 1024); | 
|  | pci_dma_sync_single_for_device(pdev, | 
|  | txdr->buffer_info[k].dma, | 
|  | txdr->buffer_info[k].length, | 
|  | PCI_DMA_TODEVICE); | 
|  | if (unlikely(++k == txdr->count)) k = 0; | 
|  | } | 
|  | E1000_WRITE_REG(&adapter->hw, TDT, k); | 
|  | msec_delay(200); | 
|  | time = jiffies; /* set the start time for the receive */ | 
|  | good_cnt = 0; | 
|  | do { /* receive the sent packets */ | 
|  | pci_dma_sync_single_for_cpu(pdev, | 
|  | rxdr->buffer_info[l].dma, | 
|  | rxdr->buffer_info[l].length, | 
|  | PCI_DMA_FROMDEVICE); | 
|  |  | 
|  | ret_val = e1000_check_lbtest_frame( | 
|  | rxdr->buffer_info[l].skb, | 
|  | 1024); | 
|  | if (!ret_val) | 
|  | good_cnt++; | 
|  | if (unlikely(++l == rxdr->count)) l = 0; | 
|  | /* time + 20 msecs (200 msecs on 2.4) is more than | 
|  | * enough time to complete the receives, if it's | 
|  | * exceeded, break and error off | 
|  | */ | 
|  | } while (good_cnt < 64 && jiffies < (time + 20)); | 
|  | if (good_cnt != 64) { | 
|  | ret_val = 13; /* ret_val is the same as mis-compare */ | 
|  | break; | 
|  | } | 
|  | if (jiffies >= (time + 2)) { | 
|  | ret_val = 14; /* error code for time out error */ | 
|  | break; | 
|  | } | 
|  | } /* end loop count loop */ | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_loopback_test(struct e1000_adapter *adapter, uint64_t *data) | 
|  | { | 
|  | /* PHY loopback cannot be performed if SoL/IDER | 
|  | * sessions are active */ | 
|  | if (e1000_check_phy_reset_block(&adapter->hw)) { | 
|  | DPRINTK(DRV, ERR, "Cannot do PHY loopback test " | 
|  | "when SoL/IDER is active.\n"); | 
|  | *data = 0; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if ((*data = e1000_setup_desc_rings(adapter))) | 
|  | goto out; | 
|  | if ((*data = e1000_setup_loopback_test(adapter))) | 
|  | goto err_loopback; | 
|  | *data = e1000_run_loopback_test(adapter); | 
|  | e1000_loopback_cleanup(adapter); | 
|  |  | 
|  | err_loopback: | 
|  | e1000_free_desc_rings(adapter); | 
|  | out: | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_link_test(struct e1000_adapter *adapter, uint64_t *data) | 
|  | { | 
|  | *data = 0; | 
|  | if (adapter->hw.media_type == e1000_media_type_internal_serdes) { | 
|  | int i = 0; | 
|  | adapter->hw.serdes_link_down = TRUE; | 
|  |  | 
|  | /* On some blade server designs, link establishment | 
|  | * could take as long as 2-3 minutes */ | 
|  | do { | 
|  | e1000_check_for_link(&adapter->hw); | 
|  | if (adapter->hw.serdes_link_down == FALSE) | 
|  | return *data; | 
|  | msec_delay(20); | 
|  | } while (i++ < 3750); | 
|  |  | 
|  | *data = 1; | 
|  | } else { | 
|  | e1000_check_for_link(&adapter->hw); | 
|  | if (adapter->hw.autoneg)  /* if auto_neg is set wait for it */ | 
|  | msec_delay(4000); | 
|  |  | 
|  | if (!(E1000_READ_REG(&adapter->hw, STATUS) & E1000_STATUS_LU)) { | 
|  | *data = 1; | 
|  | } | 
|  | } | 
|  | return *data; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_diag_test_count(struct net_device *netdev) | 
|  | { | 
|  | return E1000_TEST_LEN; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_diag_test(struct net_device *netdev, | 
|  | struct ethtool_test *eth_test, uint64_t *data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | boolean_t if_running = netif_running(netdev); | 
|  |  | 
|  | if (eth_test->flags == ETH_TEST_FL_OFFLINE) { | 
|  | /* Offline tests */ | 
|  |  | 
|  | /* save speed, duplex, autoneg settings */ | 
|  | uint16_t autoneg_advertised = adapter->hw.autoneg_advertised; | 
|  | uint8_t forced_speed_duplex = adapter->hw.forced_speed_duplex; | 
|  | uint8_t autoneg = adapter->hw.autoneg; | 
|  |  | 
|  | /* Link test performed before hardware reset so autoneg doesn't | 
|  | * interfere with test result */ | 
|  | if (e1000_link_test(adapter, &data[4])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | if (if_running) | 
|  | e1000_down(adapter); | 
|  | else | 
|  | e1000_reset(adapter); | 
|  |  | 
|  | if (e1000_reg_test(adapter, &data[0])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | if (e1000_eeprom_test(adapter, &data[1])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | if (e1000_intr_test(adapter, &data[2])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | if (e1000_loopback_test(adapter, &data[3])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | /* restore speed, duplex, autoneg settings */ | 
|  | adapter->hw.autoneg_advertised = autoneg_advertised; | 
|  | adapter->hw.forced_speed_duplex = forced_speed_duplex; | 
|  | adapter->hw.autoneg = autoneg; | 
|  |  | 
|  | e1000_reset(adapter); | 
|  | if (if_running) | 
|  | e1000_up(adapter); | 
|  | } else { | 
|  | /* Online tests */ | 
|  | if (e1000_link_test(adapter, &data[4])) | 
|  | eth_test->flags |= ETH_TEST_FL_FAILED; | 
|  |  | 
|  | /* Offline tests aren't run; pass by default */ | 
|  | data[0] = 0; | 
|  | data[1] = 0; | 
|  | data[2] = 0; | 
|  | data[3] = 0; | 
|  | } | 
|  | msleep_interruptible(4 * 1000); | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_get_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | switch (adapter->hw.device_id) { | 
|  | case E1000_DEV_ID_82542: | 
|  | case E1000_DEV_ID_82543GC_FIBER: | 
|  | case E1000_DEV_ID_82543GC_COPPER: | 
|  | case E1000_DEV_ID_82544EI_FIBER: | 
|  | case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82545EM_FIBER: | 
|  | case E1000_DEV_ID_82545EM_COPPER: | 
|  | wol->supported = 0; | 
|  | wol->wolopts   = 0; | 
|  | return; | 
|  |  | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | case E1000_DEV_ID_82546GB_FIBER: | 
|  | case E1000_DEV_ID_82571EB_FIBER: | 
|  | /* Wake events only supported on port A for dual fiber */ | 
|  | if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) { | 
|  | wol->supported = 0; | 
|  | wol->wolopts   = 0; | 
|  | return; | 
|  | } | 
|  | /* Fall Through */ | 
|  |  | 
|  | default: | 
|  | wol->supported = WAKE_UCAST | WAKE_MCAST | | 
|  | WAKE_BCAST | WAKE_MAGIC; | 
|  |  | 
|  | wol->wolopts = 0; | 
|  | if (adapter->wol & E1000_WUFC_EX) | 
|  | wol->wolopts |= WAKE_UCAST; | 
|  | if (adapter->wol & E1000_WUFC_MC) | 
|  | wol->wolopts |= WAKE_MCAST; | 
|  | if (adapter->wol & E1000_WUFC_BC) | 
|  | wol->wolopts |= WAKE_BCAST; | 
|  | if (adapter->wol & E1000_WUFC_MAG) | 
|  | wol->wolopts |= WAKE_MAGIC; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  |  | 
|  | switch (adapter->hw.device_id) { | 
|  | case E1000_DEV_ID_82542: | 
|  | case E1000_DEV_ID_82543GC_FIBER: | 
|  | case E1000_DEV_ID_82543GC_COPPER: | 
|  | case E1000_DEV_ID_82544EI_FIBER: | 
|  | case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82545EM_FIBER: | 
|  | case E1000_DEV_ID_82545EM_COPPER: | 
|  | return wol->wolopts ? -EOPNOTSUPP : 0; | 
|  |  | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | case E1000_DEV_ID_82546GB_FIBER: | 
|  | case E1000_DEV_ID_82571EB_FIBER: | 
|  | /* Wake events only supported on port A for dual fiber */ | 
|  | if (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1) | 
|  | return wol->wolopts ? -EOPNOTSUPP : 0; | 
|  | /* Fall Through */ | 
|  |  | 
|  | default: | 
|  | if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE)) | 
|  | return -EOPNOTSUPP; | 
|  |  | 
|  | adapter->wol = 0; | 
|  |  | 
|  | if (wol->wolopts & WAKE_UCAST) | 
|  | adapter->wol |= E1000_WUFC_EX; | 
|  | if (wol->wolopts & WAKE_MCAST) | 
|  | adapter->wol |= E1000_WUFC_MC; | 
|  | if (wol->wolopts & WAKE_BCAST) | 
|  | adapter->wol |= E1000_WUFC_BC; | 
|  | if (wol->wolopts & WAKE_MAGIC) | 
|  | adapter->wol |= E1000_WUFC_MAG; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* toggle LED 4 times per second = 2 "blinks" per second */ | 
|  | #define E1000_ID_INTERVAL	(HZ/4) | 
|  |  | 
|  | /* bit defines for adapter->led_status */ | 
|  | #define E1000_LED_ON		0 | 
|  |  | 
|  | static void | 
|  | e1000_led_blink_callback(unsigned long data) | 
|  | { | 
|  | struct e1000_adapter *adapter = (struct e1000_adapter *) data; | 
|  |  | 
|  | if (test_and_change_bit(E1000_LED_ON, &adapter->led_status)) | 
|  | e1000_led_off(&adapter->hw); | 
|  | else | 
|  | e1000_led_on(&adapter->hw); | 
|  |  | 
|  | mod_timer(&adapter->blink_timer, jiffies + E1000_ID_INTERVAL); | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_phys_id(struct net_device *netdev, uint32_t data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  |  | 
|  | if (!data || data > (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ)) | 
|  | data = (uint32_t)(MAX_SCHEDULE_TIMEOUT / HZ); | 
|  |  | 
|  | if (adapter->hw.mac_type < e1000_82571) { | 
|  | if (!adapter->blink_timer.function) { | 
|  | init_timer(&adapter->blink_timer); | 
|  | adapter->blink_timer.function = e1000_led_blink_callback; | 
|  | adapter->blink_timer.data = (unsigned long) adapter; | 
|  | } | 
|  | e1000_setup_led(&adapter->hw); | 
|  | mod_timer(&adapter->blink_timer, jiffies); | 
|  | msleep_interruptible(data * 1000); | 
|  | del_timer_sync(&adapter->blink_timer); | 
|  | } else if (adapter->hw.mac_type < e1000_82573) { | 
|  | E1000_WRITE_REG(&adapter->hw, LEDCTL, | 
|  | (E1000_LEDCTL_LED2_BLINK_RATE | | 
|  | E1000_LEDCTL_LED0_BLINK | E1000_LEDCTL_LED2_BLINK | | 
|  | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | | 
|  | (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED0_MODE_SHIFT) | | 
|  | (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED1_MODE_SHIFT))); | 
|  | msleep_interruptible(data * 1000); | 
|  | } else { | 
|  | E1000_WRITE_REG(&adapter->hw, LEDCTL, | 
|  | (E1000_LEDCTL_LED2_BLINK_RATE | | 
|  | E1000_LEDCTL_LED1_BLINK | E1000_LEDCTL_LED2_BLINK | | 
|  | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED2_MODE_SHIFT) | | 
|  | (E1000_LEDCTL_MODE_LINK_ACTIVITY << E1000_LEDCTL_LED1_MODE_SHIFT) | | 
|  | (E1000_LEDCTL_MODE_LED_OFF << E1000_LEDCTL_LED0_MODE_SHIFT))); | 
|  | msleep_interruptible(data * 1000); | 
|  | } | 
|  |  | 
|  | e1000_led_off(&adapter->hw); | 
|  | clear_bit(E1000_LED_ON, &adapter->led_status); | 
|  | e1000_cleanup_led(&adapter->hw); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_nway_reset(struct net_device *netdev) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | if (netif_running(netdev)) { | 
|  | e1000_down(adapter); | 
|  | e1000_up(adapter); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_get_stats_count(struct net_device *netdev) | 
|  | { | 
|  | return E1000_STATS_LEN; | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_get_ethtool_stats(struct net_device *netdev, | 
|  | struct ethtool_stats *stats, uint64_t *data) | 
|  | { | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | #ifdef CONFIG_E1000_MQ | 
|  | uint64_t *queue_stat; | 
|  | int stat_count = sizeof(struct e1000_queue_stats) / sizeof(uint64_t); | 
|  | int j, k; | 
|  | #endif | 
|  | int i; | 
|  |  | 
|  | e1000_update_stats(adapter); | 
|  | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | 
|  | char *p = (char *)adapter+e1000_gstrings_stats[i].stat_offset; | 
|  | data[i] = (e1000_gstrings_stats[i].sizeof_stat == | 
|  | sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p; | 
|  | } | 
|  | #ifdef CONFIG_E1000_MQ | 
|  | for (j = 0; j < adapter->num_tx_queues; j++) { | 
|  | queue_stat = (uint64_t *)&adapter->tx_ring[j].tx_stats; | 
|  | for (k = 0; k < stat_count; k++) | 
|  | data[i + k] = queue_stat[k]; | 
|  | i += k; | 
|  | } | 
|  | for (j = 0; j < adapter->num_rx_queues; j++) { | 
|  | queue_stat = (uint64_t *)&adapter->rx_ring[j].rx_stats; | 
|  | for (k = 0; k < stat_count; k++) | 
|  | data[i + k] = queue_stat[k]; | 
|  | i += k; | 
|  | } | 
|  | #endif | 
|  | /*	BUG_ON(i != E1000_STATS_LEN); */ | 
|  | } | 
|  |  | 
|  | static void | 
|  | e1000_get_strings(struct net_device *netdev, uint32_t stringset, uint8_t *data) | 
|  | { | 
|  | #ifdef CONFIG_E1000_MQ | 
|  | struct e1000_adapter *adapter = netdev_priv(netdev); | 
|  | #endif | 
|  | uint8_t *p = data; | 
|  | int i; | 
|  |  | 
|  | switch (stringset) { | 
|  | case ETH_SS_TEST: | 
|  | memcpy(data, *e1000_gstrings_test, | 
|  | E1000_TEST_LEN*ETH_GSTRING_LEN); | 
|  | break; | 
|  | case ETH_SS_STATS: | 
|  | for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) { | 
|  | memcpy(p, e1000_gstrings_stats[i].stat_string, | 
|  | ETH_GSTRING_LEN); | 
|  | p += ETH_GSTRING_LEN; | 
|  | } | 
|  | #ifdef CONFIG_E1000_MQ | 
|  | for (i = 0; i < adapter->num_tx_queues; i++) { | 
|  | sprintf(p, "tx_queue_%u_packets", i); | 
|  | p += ETH_GSTRING_LEN; | 
|  | sprintf(p, "tx_queue_%u_bytes", i); | 
|  | p += ETH_GSTRING_LEN; | 
|  | } | 
|  | for (i = 0; i < adapter->num_rx_queues; i++) { | 
|  | sprintf(p, "rx_queue_%u_packets", i); | 
|  | p += ETH_GSTRING_LEN; | 
|  | sprintf(p, "rx_queue_%u_bytes", i); | 
|  | p += ETH_GSTRING_LEN; | 
|  | } | 
|  | #endif | 
|  | /*		BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct ethtool_ops e1000_ethtool_ops = { | 
|  | .get_settings           = e1000_get_settings, | 
|  | .set_settings           = e1000_set_settings, | 
|  | .get_drvinfo            = e1000_get_drvinfo, | 
|  | .get_regs_len           = e1000_get_regs_len, | 
|  | .get_regs               = e1000_get_regs, | 
|  | .get_wol                = e1000_get_wol, | 
|  | .set_wol                = e1000_set_wol, | 
|  | .get_msglevel	        = e1000_get_msglevel, | 
|  | .set_msglevel	        = e1000_set_msglevel, | 
|  | .nway_reset             = e1000_nway_reset, | 
|  | .get_link               = ethtool_op_get_link, | 
|  | .get_eeprom_len         = e1000_get_eeprom_len, | 
|  | .get_eeprom             = e1000_get_eeprom, | 
|  | .set_eeprom             = e1000_set_eeprom, | 
|  | .get_ringparam          = e1000_get_ringparam, | 
|  | .set_ringparam          = e1000_set_ringparam, | 
|  | .get_pauseparam		= e1000_get_pauseparam, | 
|  | .set_pauseparam		= e1000_set_pauseparam, | 
|  | .get_rx_csum		= e1000_get_rx_csum, | 
|  | .set_rx_csum		= e1000_set_rx_csum, | 
|  | .get_tx_csum		= e1000_get_tx_csum, | 
|  | .set_tx_csum		= e1000_set_tx_csum, | 
|  | .get_sg			= ethtool_op_get_sg, | 
|  | .set_sg			= ethtool_op_set_sg, | 
|  | #ifdef NETIF_F_TSO | 
|  | .get_tso		= ethtool_op_get_tso, | 
|  | .set_tso		= e1000_set_tso, | 
|  | #endif | 
|  | .self_test_count        = e1000_diag_test_count, | 
|  | .self_test              = e1000_diag_test, | 
|  | .get_strings            = e1000_get_strings, | 
|  | .phys_id                = e1000_phys_id, | 
|  | .get_stats_count        = e1000_get_stats_count, | 
|  | .get_ethtool_stats      = e1000_get_ethtool_stats, | 
|  | .get_perm_addr		= ethtool_op_get_perm_addr, | 
|  | }; | 
|  |  | 
|  | void e1000_set_ethtool_ops(struct net_device *netdev) | 
|  | { | 
|  | SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops); | 
|  | } |