| /* | 
 |  * pSeries NUMA support | 
 |  * | 
 |  * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License | 
 |  * as published by the Free Software Foundation; either version | 
 |  * 2 of the License, or (at your option) any later version. | 
 |  */ | 
 | #include <linux/threads.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/init.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/module.h> | 
 | #include <linux/nodemask.h> | 
 | #include <linux/cpu.h> | 
 | #include <linux/notifier.h> | 
 | #include <linux/lmb.h> | 
 | #include <linux/of.h> | 
 | #include <asm/sparsemem.h> | 
 | #include <asm/prom.h> | 
 | #include <asm/system.h> | 
 | #include <asm/smp.h> | 
 |  | 
 | static int numa_enabled = 1; | 
 |  | 
 | static char *cmdline __initdata; | 
 |  | 
 | static int numa_debug; | 
 | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | 
 |  | 
 | int numa_cpu_lookup_table[NR_CPUS]; | 
 | cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; | 
 | struct pglist_data *node_data[MAX_NUMNODES]; | 
 |  | 
 | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
 | EXPORT_SYMBOL(numa_cpumask_lookup_table); | 
 | EXPORT_SYMBOL(node_data); | 
 |  | 
 | static int min_common_depth; | 
 | static int n_mem_addr_cells, n_mem_size_cells; | 
 |  | 
 | static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn, | 
 | 						unsigned int *nid) | 
 | { | 
 | 	unsigned long long mem; | 
 | 	char *p = cmdline; | 
 | 	static unsigned int fake_nid; | 
 | 	static unsigned long long curr_boundary; | 
 |  | 
 | 	/* | 
 | 	 * Modify node id, iff we started creating NUMA nodes | 
 | 	 * We want to continue from where we left of the last time | 
 | 	 */ | 
 | 	if (fake_nid) | 
 | 		*nid = fake_nid; | 
 | 	/* | 
 | 	 * In case there are no more arguments to parse, the | 
 | 	 * node_id should be the same as the last fake node id | 
 | 	 * (we've handled this above). | 
 | 	 */ | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	mem = memparse(p, &p); | 
 | 	if (!mem) | 
 | 		return 0; | 
 |  | 
 | 	if (mem < curr_boundary) | 
 | 		return 0; | 
 |  | 
 | 	curr_boundary = mem; | 
 |  | 
 | 	if ((end_pfn << PAGE_SHIFT) > mem) { | 
 | 		/* | 
 | 		 * Skip commas and spaces | 
 | 		 */ | 
 | 		while (*p == ',' || *p == ' ' || *p == '\t') | 
 | 			p++; | 
 |  | 
 | 		cmdline = p; | 
 | 		fake_nid++; | 
 | 		*nid = fake_nid; | 
 | 		dbg("created new fake_node with id %d\n", fake_nid); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __cpuinit map_cpu_to_node(int cpu, int node) | 
 | { | 
 | 	numa_cpu_lookup_table[cpu] = node; | 
 |  | 
 | 	dbg("adding cpu %d to node %d\n", cpu, node); | 
 |  | 
 | 	if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) | 
 | 		cpu_set(cpu, numa_cpumask_lookup_table[node]); | 
 | } | 
 |  | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | static void unmap_cpu_from_node(unsigned long cpu) | 
 | { | 
 | 	int node = numa_cpu_lookup_table[cpu]; | 
 |  | 
 | 	dbg("removing cpu %lu from node %d\n", cpu, node); | 
 |  | 
 | 	if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { | 
 | 		cpu_clear(cpu, numa_cpumask_lookup_table[node]); | 
 | 	} else { | 
 | 		printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | 
 | 		       cpu, node); | 
 | 	} | 
 | } | 
 | #endif /* CONFIG_HOTPLUG_CPU */ | 
 |  | 
 | static struct device_node * __cpuinit find_cpu_node(unsigned int cpu) | 
 | { | 
 | 	unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); | 
 | 	struct device_node *cpu_node = NULL; | 
 | 	const unsigned int *interrupt_server, *reg; | 
 | 	int len; | 
 |  | 
 | 	while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { | 
 | 		/* Try interrupt server first */ | 
 | 		interrupt_server = of_get_property(cpu_node, | 
 | 					"ibm,ppc-interrupt-server#s", &len); | 
 |  | 
 | 		len = len / sizeof(u32); | 
 |  | 
 | 		if (interrupt_server && (len > 0)) { | 
 | 			while (len--) { | 
 | 				if (interrupt_server[len] == hw_cpuid) | 
 | 					return cpu_node; | 
 | 			} | 
 | 		} else { | 
 | 			reg = of_get_property(cpu_node, "reg", &len); | 
 | 			if (reg && (len > 0) && (reg[0] == hw_cpuid)) | 
 | 				return cpu_node; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return NULL; | 
 | } | 
 |  | 
 | /* must hold reference to node during call */ | 
 | static const int *of_get_associativity(struct device_node *dev) | 
 | { | 
 | 	return of_get_property(dev, "ibm,associativity", NULL); | 
 | } | 
 |  | 
 | /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa | 
 |  * info is found. | 
 |  */ | 
 | static int of_node_to_nid_single(struct device_node *device) | 
 | { | 
 | 	int nid = -1; | 
 | 	const unsigned int *tmp; | 
 |  | 
 | 	if (min_common_depth == -1) | 
 | 		goto out; | 
 |  | 
 | 	tmp = of_get_associativity(device); | 
 | 	if (!tmp) | 
 | 		goto out; | 
 |  | 
 | 	if (tmp[0] >= min_common_depth) | 
 | 		nid = tmp[min_common_depth]; | 
 |  | 
 | 	/* POWER4 LPAR uses 0xffff as invalid node */ | 
 | 	if (nid == 0xffff || nid >= MAX_NUMNODES) | 
 | 		nid = -1; | 
 | out: | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* Walk the device tree upwards, looking for an associativity id */ | 
 | int of_node_to_nid(struct device_node *device) | 
 | { | 
 | 	struct device_node *tmp; | 
 | 	int nid = -1; | 
 |  | 
 | 	of_node_get(device); | 
 | 	while (device) { | 
 | 		nid = of_node_to_nid_single(device); | 
 | 		if (nid != -1) | 
 | 			break; | 
 |  | 
 | 	        tmp = device; | 
 | 		device = of_get_parent(tmp); | 
 | 		of_node_put(tmp); | 
 | 	} | 
 | 	of_node_put(device); | 
 |  | 
 | 	return nid; | 
 | } | 
 | EXPORT_SYMBOL_GPL(of_node_to_nid); | 
 |  | 
 | /* | 
 |  * In theory, the "ibm,associativity" property may contain multiple | 
 |  * associativity lists because a resource may be multiply connected | 
 |  * into the machine.  This resource then has different associativity | 
 |  * characteristics relative to its multiple connections.  We ignore | 
 |  * this for now.  We also assume that all cpu and memory sets have | 
 |  * their distances represented at a common level.  This won't be | 
 |  * true for hierarchical NUMA. | 
 |  * | 
 |  * In any case the ibm,associativity-reference-points should give | 
 |  * the correct depth for a normal NUMA system. | 
 |  * | 
 |  * - Dave Hansen <haveblue@us.ibm.com> | 
 |  */ | 
 | static int __init find_min_common_depth(void) | 
 | { | 
 | 	int depth; | 
 | 	const unsigned int *ref_points; | 
 | 	struct device_node *rtas_root; | 
 | 	unsigned int len; | 
 |  | 
 | 	rtas_root = of_find_node_by_path("/rtas"); | 
 |  | 
 | 	if (!rtas_root) | 
 | 		return -1; | 
 |  | 
 | 	/* | 
 | 	 * this property is 2 32-bit integers, each representing a level of | 
 | 	 * depth in the associativity nodes.  The first is for an SMP | 
 | 	 * configuration (should be all 0's) and the second is for a normal | 
 | 	 * NUMA configuration. | 
 | 	 */ | 
 | 	ref_points = of_get_property(rtas_root, | 
 | 			"ibm,associativity-reference-points", &len); | 
 |  | 
 | 	if ((len >= 1) && ref_points) { | 
 | 		depth = ref_points[1]; | 
 | 	} else { | 
 | 		dbg("NUMA: ibm,associativity-reference-points not found.\n"); | 
 | 		depth = -1; | 
 | 	} | 
 | 	of_node_put(rtas_root); | 
 |  | 
 | 	return depth; | 
 | } | 
 |  | 
 | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 |  | 
 | 	memory = of_find_node_by_type(memory, "memory"); | 
 | 	if (!memory) | 
 | 		panic("numa.c: No memory nodes found!"); | 
 |  | 
 | 	*n_addr_cells = of_n_addr_cells(memory); | 
 | 	*n_size_cells = of_n_size_cells(memory); | 
 | 	of_node_put(memory); | 
 | } | 
 |  | 
 | static unsigned long __devinit read_n_cells(int n, const unsigned int **buf) | 
 | { | 
 | 	unsigned long result = 0; | 
 |  | 
 | 	while (n--) { | 
 | 		result = (result << 32) | **buf; | 
 | 		(*buf)++; | 
 | 	} | 
 | 	return result; | 
 | } | 
 |  | 
 | struct of_drconf_cell { | 
 | 	u64	base_addr; | 
 | 	u32	drc_index; | 
 | 	u32	reserved; | 
 | 	u32	aa_index; | 
 | 	u32	flags; | 
 | }; | 
 |  | 
 | #define DRCONF_MEM_ASSIGNED	0x00000008 | 
 | #define DRCONF_MEM_AI_INVALID	0x00000040 | 
 | #define DRCONF_MEM_RESERVED	0x00000080 | 
 |  | 
 | /* | 
 |  * Read the next lmb list entry from the ibm,dynamic-memory property | 
 |  * and return the information in the provided of_drconf_cell structure. | 
 |  */ | 
 | static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp) | 
 | { | 
 | 	const u32 *cp; | 
 |  | 
 | 	drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp); | 
 |  | 
 | 	cp = *cellp; | 
 | 	drmem->drc_index = cp[0]; | 
 | 	drmem->reserved = cp[1]; | 
 | 	drmem->aa_index = cp[2]; | 
 | 	drmem->flags = cp[3]; | 
 |  | 
 | 	*cellp = cp + 4; | 
 | } | 
 |  | 
 | /* | 
 |  * Retreive and validate the ibm,dynamic-memory property of the device tree. | 
 |  * | 
 |  * The layout of the ibm,dynamic-memory property is a number N of lmb | 
 |  * list entries followed by N lmb list entries.  Each lmb list entry | 
 |  * contains information as layed out in the of_drconf_cell struct above. | 
 |  */ | 
 | static int of_get_drconf_memory(struct device_node *memory, const u32 **dm) | 
 | { | 
 | 	const u32 *prop; | 
 | 	u32 len, entries; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,dynamic-memory", &len); | 
 | 	if (!prop || len < sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	entries = *prop++; | 
 |  | 
 | 	/* Now that we know the number of entries, revalidate the size | 
 | 	 * of the property read in to ensure we have everything | 
 | 	 */ | 
 | 	if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	*dm = prop; | 
 | 	return entries; | 
 | } | 
 |  | 
 | /* | 
 |  * Retreive and validate the ibm,lmb-size property for drconf memory | 
 |  * from the device tree. | 
 |  */ | 
 | static u64 of_get_lmb_size(struct device_node *memory) | 
 | { | 
 | 	const u32 *prop; | 
 | 	u32 len; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,lmb-size", &len); | 
 | 	if (!prop || len < sizeof(unsigned int)) | 
 | 		return 0; | 
 |  | 
 | 	return read_n_cells(n_mem_size_cells, &prop); | 
 | } | 
 |  | 
 | struct assoc_arrays { | 
 | 	u32	n_arrays; | 
 | 	u32	array_sz; | 
 | 	const u32 *arrays; | 
 | }; | 
 |  | 
 | /* | 
 |  * Retreive and validate the list of associativity arrays for drconf | 
 |  * memory from the ibm,associativity-lookup-arrays property of the | 
 |  * device tree.. | 
 |  * | 
 |  * The layout of the ibm,associativity-lookup-arrays property is a number N | 
 |  * indicating the number of associativity arrays, followed by a number M | 
 |  * indicating the size of each associativity array, followed by a list | 
 |  * of N associativity arrays. | 
 |  */ | 
 | static int of_get_assoc_arrays(struct device_node *memory, | 
 | 			       struct assoc_arrays *aa) | 
 | { | 
 | 	const u32 *prop; | 
 | 	u32 len; | 
 |  | 
 | 	prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len); | 
 | 	if (!prop || len < 2 * sizeof(unsigned int)) | 
 | 		return -1; | 
 |  | 
 | 	aa->n_arrays = *prop++; | 
 | 	aa->array_sz = *prop++; | 
 |  | 
 | 	/* Now that we know the number of arrrays and size of each array, | 
 | 	 * revalidate the size of the property read in. | 
 | 	 */ | 
 | 	if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int)) | 
 | 		return -1; | 
 |  | 
 | 	aa->arrays = prop; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * This is like of_node_to_nid_single() for memory represented in the | 
 |  * ibm,dynamic-reconfiguration-memory node. | 
 |  */ | 
 | static int of_drconf_to_nid_single(struct of_drconf_cell *drmem, | 
 | 				   struct assoc_arrays *aa) | 
 | { | 
 | 	int default_nid = 0; | 
 | 	int nid = default_nid; | 
 | 	int index; | 
 |  | 
 | 	if (min_common_depth > 0 && min_common_depth <= aa->array_sz && | 
 | 	    !(drmem->flags & DRCONF_MEM_AI_INVALID) && | 
 | 	    drmem->aa_index < aa->n_arrays) { | 
 | 		index = drmem->aa_index * aa->array_sz + min_common_depth - 1; | 
 | 		nid = aa->arrays[index]; | 
 |  | 
 | 		if (nid == 0xffff || nid >= MAX_NUMNODES) | 
 | 			nid = default_nid; | 
 | 	} | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | /* | 
 |  * Figure out to which domain a cpu belongs and stick it there. | 
 |  * Return the id of the domain used. | 
 |  */ | 
 | static int __cpuinit numa_setup_cpu(unsigned long lcpu) | 
 | { | 
 | 	int nid = 0; | 
 | 	struct device_node *cpu = find_cpu_node(lcpu); | 
 |  | 
 | 	if (!cpu) { | 
 | 		WARN_ON(1); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	nid = of_node_to_nid_single(cpu); | 
 |  | 
 | 	if (nid < 0 || !node_online(nid)) | 
 | 		nid = any_online_node(NODE_MASK_ALL); | 
 | out: | 
 | 	map_cpu_to_node(lcpu, nid); | 
 |  | 
 | 	of_node_put(cpu); | 
 |  | 
 | 	return nid; | 
 | } | 
 |  | 
 | static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, | 
 | 			     unsigned long action, | 
 | 			     void *hcpu) | 
 | { | 
 | 	unsigned long lcpu = (unsigned long)hcpu; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	switch (action) { | 
 | 	case CPU_UP_PREPARE: | 
 | 	case CPU_UP_PREPARE_FROZEN: | 
 | 		numa_setup_cpu(lcpu); | 
 | 		ret = NOTIFY_OK; | 
 | 		break; | 
 | #ifdef CONFIG_HOTPLUG_CPU | 
 | 	case CPU_DEAD: | 
 | 	case CPU_DEAD_FROZEN: | 
 | 	case CPU_UP_CANCELED: | 
 | 	case CPU_UP_CANCELED_FROZEN: | 
 | 		unmap_cpu_from_node(lcpu); | 
 | 		break; | 
 | 		ret = NOTIFY_OK; | 
 | #endif | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Check and possibly modify a memory region to enforce the memory limit. | 
 |  * | 
 |  * Returns the size the region should have to enforce the memory limit. | 
 |  * This will either be the original value of size, a truncated value, | 
 |  * or zero. If the returned value of size is 0 the region should be | 
 |  * discarded as it lies wholy above the memory limit. | 
 |  */ | 
 | static unsigned long __init numa_enforce_memory_limit(unsigned long start, | 
 | 						      unsigned long size) | 
 | { | 
 | 	/* | 
 | 	 * We use lmb_end_of_DRAM() in here instead of memory_limit because | 
 | 	 * we've already adjusted it for the limit and it takes care of | 
 | 	 * having memory holes below the limit. | 
 | 	 */ | 
 |  | 
 | 	if (! memory_limit) | 
 | 		return size; | 
 |  | 
 | 	if (start + size <= lmb_end_of_DRAM()) | 
 | 		return size; | 
 |  | 
 | 	if (start >= lmb_end_of_DRAM()) | 
 | 		return 0; | 
 |  | 
 | 	return lmb_end_of_DRAM() - start; | 
 | } | 
 |  | 
 | /* | 
 |  * Extract NUMA information from the ibm,dynamic-reconfiguration-memory | 
 |  * node.  This assumes n_mem_{addr,size}_cells have been set. | 
 |  */ | 
 | static void __init parse_drconf_memory(struct device_node *memory) | 
 | { | 
 | 	const u32 *dm; | 
 | 	unsigned int n, rc; | 
 | 	unsigned long lmb_size, size; | 
 | 	int nid; | 
 | 	struct assoc_arrays aa; | 
 |  | 
 | 	n = of_get_drconf_memory(memory, &dm); | 
 | 	if (!n) | 
 | 		return; | 
 |  | 
 | 	lmb_size = of_get_lmb_size(memory); | 
 | 	if (!lmb_size) | 
 | 		return; | 
 |  | 
 | 	rc = of_get_assoc_arrays(memory, &aa); | 
 | 	if (rc) | 
 | 		return; | 
 |  | 
 | 	for (; n != 0; --n) { | 
 | 		struct of_drconf_cell drmem; | 
 |  | 
 | 		read_drconf_cell(&drmem, &dm); | 
 |  | 
 | 		/* skip this block if the reserved bit is set in flags (0x80) | 
 | 		   or if the block is not assigned to this partition (0x8) */ | 
 | 		if ((drmem.flags & DRCONF_MEM_RESERVED) | 
 | 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED)) | 
 | 			continue; | 
 |  | 
 | 		nid = of_drconf_to_nid_single(&drmem, &aa); | 
 |  | 
 | 		fake_numa_create_new_node( | 
 | 				((drmem.base_addr + lmb_size) >> PAGE_SHIFT), | 
 | 					   &nid); | 
 |  | 
 | 		node_set_online(nid); | 
 |  | 
 | 		size = numa_enforce_memory_limit(drmem.base_addr, lmb_size); | 
 | 		if (!size) | 
 | 			continue; | 
 |  | 
 | 		add_active_range(nid, drmem.base_addr >> PAGE_SHIFT, | 
 | 				 (drmem.base_addr >> PAGE_SHIFT) | 
 | 				 + (size >> PAGE_SHIFT)); | 
 | 	} | 
 | } | 
 |  | 
 | static int __init parse_numa_properties(void) | 
 | { | 
 | 	struct device_node *cpu = NULL; | 
 | 	struct device_node *memory = NULL; | 
 | 	int default_nid = 0; | 
 | 	unsigned long i; | 
 |  | 
 | 	if (numa_enabled == 0) { | 
 | 		printk(KERN_WARNING "NUMA disabled by user\n"); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	min_common_depth = find_min_common_depth(); | 
 |  | 
 | 	if (min_common_depth < 0) | 
 | 		return min_common_depth; | 
 |  | 
 | 	dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | 
 |  | 
 | 	/* | 
 | 	 * Even though we connect cpus to numa domains later in SMP | 
 | 	 * init, we need to know the node ids now. This is because | 
 | 	 * each node to be onlined must have NODE_DATA etc backing it. | 
 | 	 */ | 
 | 	for_each_present_cpu(i) { | 
 | 		int nid; | 
 |  | 
 | 		cpu = find_cpu_node(i); | 
 | 		BUG_ON(!cpu); | 
 | 		nid = of_node_to_nid_single(cpu); | 
 | 		of_node_put(cpu); | 
 |  | 
 | 		/* | 
 | 		 * Don't fall back to default_nid yet -- we will plug | 
 | 		 * cpus into nodes once the memory scan has discovered | 
 | 		 * the topology. | 
 | 		 */ | 
 | 		if (nid < 0) | 
 | 			continue; | 
 | 		node_set_online(nid); | 
 | 	} | 
 |  | 
 | 	get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); | 
 | 	memory = NULL; | 
 | 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
 | 		unsigned long start; | 
 | 		unsigned long size; | 
 | 		int nid; | 
 | 		int ranges; | 
 | 		const unsigned int *memcell_buf; | 
 | 		unsigned int len; | 
 |  | 
 | 		memcell_buf = of_get_property(memory, | 
 | 			"linux,usable-memory", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			memcell_buf = of_get_property(memory, "reg", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			continue; | 
 |  | 
 | 		/* ranges in cell */ | 
 | 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
 | new_range: | 
 | 		/* these are order-sensitive, and modify the buffer pointer */ | 
 | 		start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
 | 		size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
 |  | 
 | 		/* | 
 | 		 * Assumption: either all memory nodes or none will | 
 | 		 * have associativity properties.  If none, then | 
 | 		 * everything goes to default_nid. | 
 | 		 */ | 
 | 		nid = of_node_to_nid_single(memory); | 
 | 		if (nid < 0) | 
 | 			nid = default_nid; | 
 |  | 
 | 		fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid); | 
 | 		node_set_online(nid); | 
 |  | 
 | 		if (!(size = numa_enforce_memory_limit(start, size))) { | 
 | 			if (--ranges) | 
 | 				goto new_range; | 
 | 			else | 
 | 				continue; | 
 | 		} | 
 |  | 
 | 		add_active_range(nid, start >> PAGE_SHIFT, | 
 | 				(start >> PAGE_SHIFT) + (size >> PAGE_SHIFT)); | 
 |  | 
 | 		if (--ranges) | 
 | 			goto new_range; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Now do the same thing for each LMB listed in the ibm,dynamic-memory | 
 | 	 * property in the ibm,dynamic-reconfiguration-memory node. | 
 | 	 */ | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) | 
 | 		parse_drconf_memory(memory); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void __init setup_nonnuma(void) | 
 | { | 
 | 	unsigned long top_of_ram = lmb_end_of_DRAM(); | 
 | 	unsigned long total_ram = lmb_phys_mem_size(); | 
 | 	unsigned long start_pfn, end_pfn; | 
 | 	unsigned int i, nid = 0; | 
 |  | 
 | 	printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
 | 	       top_of_ram, total_ram); | 
 | 	printk(KERN_DEBUG "Memory hole size: %ldMB\n", | 
 | 	       (top_of_ram - total_ram) >> 20); | 
 |  | 
 | 	for (i = 0; i < lmb.memory.cnt; ++i) { | 
 | 		start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT; | 
 | 		end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i); | 
 |  | 
 | 		fake_numa_create_new_node(end_pfn, &nid); | 
 | 		add_active_range(nid, start_pfn, end_pfn); | 
 | 		node_set_online(nid); | 
 | 	} | 
 | } | 
 |  | 
 | void __init dump_numa_cpu_topology(void) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int cpu, count; | 
 |  | 
 | 	if (min_common_depth == -1 || !numa_enabled) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		printk(KERN_DEBUG "Node %d CPUs:", node); | 
 |  | 
 | 		count = 0; | 
 | 		/* | 
 | 		 * If we used a CPU iterator here we would miss printing | 
 | 		 * the holes in the cpumap. | 
 | 		 */ | 
 | 		for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
 | 			if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { | 
 | 				if (count == 0) | 
 | 					printk(" %u", cpu); | 
 | 				++count; | 
 | 			} else { | 
 | 				if (count > 1) | 
 | 					printk("-%u", cpu - 1); | 
 | 				count = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (count > 1) | 
 | 			printk("-%u", NR_CPUS - 1); | 
 | 		printk("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | static void __init dump_numa_memory_topology(void) | 
 | { | 
 | 	unsigned int node; | 
 | 	unsigned int count; | 
 |  | 
 | 	if (min_common_depth == -1 || !numa_enabled) | 
 | 		return; | 
 |  | 
 | 	for_each_online_node(node) { | 
 | 		unsigned long i; | 
 |  | 
 | 		printk(KERN_DEBUG "Node %d Memory:", node); | 
 |  | 
 | 		count = 0; | 
 |  | 
 | 		for (i = 0; i < lmb_end_of_DRAM(); | 
 | 		     i += (1 << SECTION_SIZE_BITS)) { | 
 | 			if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { | 
 | 				if (count == 0) | 
 | 					printk(" 0x%lx", i); | 
 | 				++count; | 
 | 			} else { | 
 | 				if (count > 0) | 
 | 					printk("-0x%lx", i); | 
 | 				count = 0; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (count > 0) | 
 | 			printk("-0x%lx", i); | 
 | 		printk("\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Allocate some memory, satisfying the lmb or bootmem allocator where | 
 |  * required. nid is the preferred node and end is the physical address of | 
 |  * the highest address in the node. | 
 |  * | 
 |  * Returns the physical address of the memory. | 
 |  */ | 
 | static void __init *careful_allocation(int nid, unsigned long size, | 
 | 				       unsigned long align, | 
 | 				       unsigned long end_pfn) | 
 | { | 
 | 	int new_nid; | 
 | 	unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT); | 
 |  | 
 | 	/* retry over all memory */ | 
 | 	if (!ret) | 
 | 		ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM()); | 
 |  | 
 | 	if (!ret) | 
 | 		panic("numa.c: cannot allocate %lu bytes on node %d", | 
 | 		      size, nid); | 
 |  | 
 | 	/* | 
 | 	 * If the memory came from a previously allocated node, we must | 
 | 	 * retry with the bootmem allocator. | 
 | 	 */ | 
 | 	new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT); | 
 | 	if (new_nid < nid) { | 
 | 		ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid), | 
 | 				size, align, 0); | 
 |  | 
 | 		if (!ret) | 
 | 			panic("numa.c: cannot allocate %lu bytes on node %d", | 
 | 			      size, new_nid); | 
 |  | 
 | 		ret = __pa(ret); | 
 |  | 
 | 		dbg("alloc_bootmem %lx %lx\n", ret, size); | 
 | 	} | 
 |  | 
 | 	return (void *)ret; | 
 | } | 
 |  | 
 | static struct notifier_block __cpuinitdata ppc64_numa_nb = { | 
 | 	.notifier_call = cpu_numa_callback, | 
 | 	.priority = 1 /* Must run before sched domains notifier. */ | 
 | }; | 
 |  | 
 | void __init do_init_bootmem(void) | 
 | { | 
 | 	int nid; | 
 | 	unsigned int i; | 
 |  | 
 | 	min_low_pfn = 0; | 
 | 	max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; | 
 | 	max_pfn = max_low_pfn; | 
 |  | 
 | 	if (parse_numa_properties()) | 
 | 		setup_nonnuma(); | 
 | 	else | 
 | 		dump_numa_memory_topology(); | 
 |  | 
 | 	register_cpu_notifier(&ppc64_numa_nb); | 
 | 	cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, | 
 | 			  (void *)(unsigned long)boot_cpuid); | 
 |  | 
 | 	for_each_online_node(nid) { | 
 | 		unsigned long start_pfn, end_pfn; | 
 | 		unsigned long bootmem_paddr; | 
 | 		unsigned long bootmap_pages; | 
 |  | 
 | 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); | 
 |  | 
 | 		/* Allocate the node structure node local if possible */ | 
 | 		NODE_DATA(nid) = careful_allocation(nid, | 
 | 					sizeof(struct pglist_data), | 
 | 					SMP_CACHE_BYTES, end_pfn); | 
 | 		NODE_DATA(nid) = __va(NODE_DATA(nid)); | 
 | 		memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); | 
 |  | 
 |   		dbg("node %d\n", nid); | 
 | 		dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); | 
 |  | 
 | 		NODE_DATA(nid)->bdata = &bootmem_node_data[nid]; | 
 | 		NODE_DATA(nid)->node_start_pfn = start_pfn; | 
 | 		NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; | 
 |  | 
 | 		if (NODE_DATA(nid)->node_spanned_pages == 0) | 
 |   			continue; | 
 |  | 
 |   		dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); | 
 |   		dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); | 
 |  | 
 | 		bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); | 
 | 		bootmem_paddr = (unsigned long)careful_allocation(nid, | 
 | 					bootmap_pages << PAGE_SHIFT, | 
 | 					PAGE_SIZE, end_pfn); | 
 | 		memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT); | 
 |  | 
 | 		dbg("bootmap_paddr = %lx\n", bootmem_paddr); | 
 |  | 
 | 		init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, | 
 | 				  start_pfn, end_pfn); | 
 |  | 
 | 		free_bootmem_with_active_regions(nid, end_pfn); | 
 |  | 
 | 		/* Mark reserved regions on this node */ | 
 | 		for (i = 0; i < lmb.reserved.cnt; i++) { | 
 | 			unsigned long physbase = lmb.reserved.region[i].base; | 
 | 			unsigned long size = lmb.reserved.region[i].size; | 
 | 			unsigned long start_paddr = start_pfn << PAGE_SHIFT; | 
 | 			unsigned long end_paddr = end_pfn << PAGE_SHIFT; | 
 |  | 
 | 			if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid && | 
 | 			    early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid) | 
 | 				continue; | 
 |  | 
 | 			if (physbase < end_paddr && | 
 | 			    (physbase+size) > start_paddr) { | 
 | 				/* overlaps */ | 
 | 				if (physbase < start_paddr) { | 
 | 					size -= start_paddr - physbase; | 
 | 					physbase = start_paddr; | 
 | 				} | 
 |  | 
 | 				if (size > end_paddr - physbase) | 
 | 					size = end_paddr - physbase; | 
 |  | 
 | 				dbg("reserve_bootmem %lx %lx\n", physbase, | 
 | 				    size); | 
 | 				reserve_bootmem_node(NODE_DATA(nid), physbase, | 
 | 						     size, BOOTMEM_DEFAULT); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		sparse_memory_present_with_active_regions(nid); | 
 | 	} | 
 | } | 
 |  | 
 | void __init paging_init(void) | 
 | { | 
 | 	unsigned long max_zone_pfns[MAX_NR_ZONES]; | 
 | 	memset(max_zone_pfns, 0, sizeof(max_zone_pfns)); | 
 | 	max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT; | 
 | 	free_area_init_nodes(max_zone_pfns); | 
 | } | 
 |  | 
 | static int __init early_numa(char *p) | 
 | { | 
 | 	if (!p) | 
 | 		return 0; | 
 |  | 
 | 	if (strstr(p, "off")) | 
 | 		numa_enabled = 0; | 
 |  | 
 | 	if (strstr(p, "debug")) | 
 | 		numa_debug = 1; | 
 |  | 
 | 	p = strstr(p, "fake="); | 
 | 	if (p) | 
 | 		cmdline = p + strlen("fake="); | 
 |  | 
 | 	return 0; | 
 | } | 
 | early_param("numa", early_numa); | 
 |  | 
 | #ifdef CONFIG_MEMORY_HOTPLUG | 
 | /* | 
 |  * Validate the node associated with the memory section we are | 
 |  * trying to add. | 
 |  */ | 
 | int valid_hot_add_scn(int *nid, unsigned long start, u32 lmb_size, | 
 | 		      unsigned long scn_addr) | 
 | { | 
 | 	nodemask_t nodes; | 
 |  | 
 | 	if (*nid < 0 || !node_online(*nid)) | 
 | 		*nid = any_online_node(NODE_MASK_ALL); | 
 |  | 
 | 	if ((scn_addr >= start) && (scn_addr < (start + lmb_size))) { | 
 | 		nodes_setall(nodes); | 
 | 		while (NODE_DATA(*nid)->node_spanned_pages == 0) { | 
 | 			node_clear(*nid, nodes); | 
 | 			*nid = any_online_node(nodes); | 
 | 		} | 
 |  | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the node associated with a hot added memory section represented | 
 |  * by the ibm,dynamic-reconfiguration-memory node. | 
 |  */ | 
 | static int hot_add_drconf_scn_to_nid(struct device_node *memory, | 
 | 				     unsigned long scn_addr) | 
 | { | 
 | 	const u32 *dm; | 
 | 	unsigned int n, rc; | 
 | 	unsigned long lmb_size; | 
 | 	int default_nid = any_online_node(NODE_MASK_ALL); | 
 | 	int nid; | 
 | 	struct assoc_arrays aa; | 
 |  | 
 | 	n = of_get_drconf_memory(memory, &dm); | 
 | 	if (!n) | 
 | 		return default_nid;; | 
 |  | 
 | 	lmb_size = of_get_lmb_size(memory); | 
 | 	if (!lmb_size) | 
 | 		return default_nid; | 
 |  | 
 | 	rc = of_get_assoc_arrays(memory, &aa); | 
 | 	if (rc) | 
 | 		return default_nid; | 
 |  | 
 | 	for (; n != 0; --n) { | 
 | 		struct of_drconf_cell drmem; | 
 |  | 
 | 		read_drconf_cell(&drmem, &dm); | 
 |  | 
 | 		/* skip this block if it is reserved or not assigned to | 
 | 		 * this partition */ | 
 | 		if ((drmem.flags & DRCONF_MEM_RESERVED) | 
 | 		    || !(drmem.flags & DRCONF_MEM_ASSIGNED)) | 
 | 			continue; | 
 |  | 
 | 		nid = of_drconf_to_nid_single(&drmem, &aa); | 
 |  | 
 | 		if (valid_hot_add_scn(&nid, drmem.base_addr, lmb_size, | 
 | 				      scn_addr)) | 
 | 			return nid; | 
 | 	} | 
 |  | 
 | 	BUG();	/* section address should be found above */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Find the node associated with a hot added memory section.  Section | 
 |  * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that | 
 |  * sections are fully contained within a single LMB. | 
 |  */ | 
 | int hot_add_scn_to_nid(unsigned long scn_addr) | 
 | { | 
 | 	struct device_node *memory = NULL; | 
 | 	int nid; | 
 |  | 
 | 	if (!numa_enabled || (min_common_depth < 0)) | 
 | 		return any_online_node(NODE_MASK_ALL); | 
 |  | 
 | 	memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory"); | 
 | 	if (memory) { | 
 | 		nid = hot_add_drconf_scn_to_nid(memory, scn_addr); | 
 | 		of_node_put(memory); | 
 | 		return nid; | 
 | 	} | 
 |  | 
 | 	while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
 | 		unsigned long start, size; | 
 | 		int ranges; | 
 | 		const unsigned int *memcell_buf; | 
 | 		unsigned int len; | 
 |  | 
 | 		memcell_buf = of_get_property(memory, "reg", &len); | 
 | 		if (!memcell_buf || len <= 0) | 
 | 			continue; | 
 |  | 
 | 		/* ranges in cell */ | 
 | 		ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
 | ha_new_range: | 
 | 		start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
 | 		size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
 | 		nid = of_node_to_nid_single(memory); | 
 |  | 
 | 		if (valid_hot_add_scn(&nid, start, size, scn_addr)) { | 
 | 			of_node_put(memory); | 
 | 			return nid; | 
 | 		} | 
 |  | 
 | 		if (--ranges)		/* process all ranges in cell */ | 
 | 			goto ha_new_range; | 
 | 	} | 
 | 	BUG();	/* section address should be found above */ | 
 | 	return 0; | 
 | } | 
 | #endif /* CONFIG_MEMORY_HOTPLUG */ |