| /* | 
 |  * mm/rmap.c - physical to virtual reverse mappings | 
 |  * | 
 |  * Copyright 2001, Rik van Riel <riel@conectiva.com.br> | 
 |  * Released under the General Public License (GPL). | 
 |  * | 
 |  * Simple, low overhead reverse mapping scheme. | 
 |  * Please try to keep this thing as modular as possible. | 
 |  * | 
 |  * Provides methods for unmapping each kind of mapped page: | 
 |  * the anon methods track anonymous pages, and | 
 |  * the file methods track pages belonging to an inode. | 
 |  * | 
 |  * Original design by Rik van Riel <riel@conectiva.com.br> 2001 | 
 |  * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004 | 
 |  * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004 | 
 |  * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004 | 
 |  */ | 
 |  | 
 | /* | 
 |  * Lock ordering in mm: | 
 |  * | 
 |  * inode->i_sem	(while writing or truncating, not reading or faulting) | 
 |  *   inode->i_alloc_sem | 
 |  * | 
 |  * When a page fault occurs in writing from user to file, down_read | 
 |  * of mmap_sem nests within i_sem; in sys_msync, i_sem nests within | 
 |  * down_read of mmap_sem; i_sem and down_write of mmap_sem are never | 
 |  * taken together; in truncation, i_sem is taken outermost. | 
 |  * | 
 |  * mm->mmap_sem | 
 |  *   page->flags PG_locked (lock_page) | 
 |  *     mapping->i_mmap_lock | 
 |  *       anon_vma->lock | 
 |  *         mm->page_table_lock | 
 |  *           zone->lru_lock (in mark_page_accessed) | 
 |  *           swap_list_lock (in swap_free etc's swap_info_get) | 
 |  *             mmlist_lock (in mmput, drain_mmlist and others) | 
 |  *             swap_device_lock (in swap_duplicate, swap_info_get) | 
 |  *             mapping->private_lock (in __set_page_dirty_buffers) | 
 |  *             inode_lock (in set_page_dirty's __mark_inode_dirty) | 
 |  *               sb_lock (within inode_lock in fs/fs-writeback.c) | 
 |  *               mapping->tree_lock (widely used, in set_page_dirty, | 
 |  *                         in arch-dependent flush_dcache_mmap_lock, | 
 |  *                         within inode_lock in __sync_single_inode) | 
 |  */ | 
 |  | 
 | #include <linux/mm.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/swap.h> | 
 | #include <linux/swapops.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/init.h> | 
 | #include <linux/rmap.h> | 
 | #include <linux/rcupdate.h> | 
 |  | 
 | #include <asm/tlbflush.h> | 
 |  | 
 | //#define RMAP_DEBUG /* can be enabled only for debugging */ | 
 |  | 
 | kmem_cache_t *anon_vma_cachep; | 
 |  | 
 | static inline void validate_anon_vma(struct vm_area_struct *find_vma) | 
 | { | 
 | #ifdef RMAP_DEBUG | 
 | 	struct anon_vma *anon_vma = find_vma->anon_vma; | 
 | 	struct vm_area_struct *vma; | 
 | 	unsigned int mapcount = 0; | 
 | 	int found = 0; | 
 |  | 
 | 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | 
 | 		mapcount++; | 
 | 		BUG_ON(mapcount > 100000); | 
 | 		if (vma == find_vma) | 
 | 			found = 1; | 
 | 	} | 
 | 	BUG_ON(!found); | 
 | #endif | 
 | } | 
 |  | 
 | /* This must be called under the mmap_sem. */ | 
 | int anon_vma_prepare(struct vm_area_struct *vma) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 |  | 
 | 	might_sleep(); | 
 | 	if (unlikely(!anon_vma)) { | 
 | 		struct mm_struct *mm = vma->vm_mm; | 
 | 		struct anon_vma *allocated, *locked; | 
 |  | 
 | 		anon_vma = find_mergeable_anon_vma(vma); | 
 | 		if (anon_vma) { | 
 | 			allocated = NULL; | 
 | 			locked = anon_vma; | 
 | 			spin_lock(&locked->lock); | 
 | 		} else { | 
 | 			anon_vma = anon_vma_alloc(); | 
 | 			if (unlikely(!anon_vma)) | 
 | 				return -ENOMEM; | 
 | 			allocated = anon_vma; | 
 | 			locked = NULL; | 
 | 		} | 
 |  | 
 | 		/* page_table_lock to protect against threads */ | 
 | 		spin_lock(&mm->page_table_lock); | 
 | 		if (likely(!vma->anon_vma)) { | 
 | 			vma->anon_vma = anon_vma; | 
 | 			list_add(&vma->anon_vma_node, &anon_vma->head); | 
 | 			allocated = NULL; | 
 | 		} | 
 | 		spin_unlock(&mm->page_table_lock); | 
 |  | 
 | 		if (locked) | 
 | 			spin_unlock(&locked->lock); | 
 | 		if (unlikely(allocated)) | 
 | 			anon_vma_free(allocated); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next) | 
 | { | 
 | 	BUG_ON(vma->anon_vma != next->anon_vma); | 
 | 	list_del(&next->anon_vma_node); | 
 | } | 
 |  | 
 | void __anon_vma_link(struct vm_area_struct *vma) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 |  | 
 | 	if (anon_vma) { | 
 | 		list_add(&vma->anon_vma_node, &anon_vma->head); | 
 | 		validate_anon_vma(vma); | 
 | 	} | 
 | } | 
 |  | 
 | void anon_vma_link(struct vm_area_struct *vma) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 |  | 
 | 	if (anon_vma) { | 
 | 		spin_lock(&anon_vma->lock); | 
 | 		list_add(&vma->anon_vma_node, &anon_vma->head); | 
 | 		validate_anon_vma(vma); | 
 | 		spin_unlock(&anon_vma->lock); | 
 | 	} | 
 | } | 
 |  | 
 | void anon_vma_unlink(struct vm_area_struct *vma) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 | 	int empty; | 
 |  | 
 | 	if (!anon_vma) | 
 | 		return; | 
 |  | 
 | 	spin_lock(&anon_vma->lock); | 
 | 	validate_anon_vma(vma); | 
 | 	list_del(&vma->anon_vma_node); | 
 |  | 
 | 	/* We must garbage collect the anon_vma if it's empty */ | 
 | 	empty = list_empty(&anon_vma->head); | 
 | 	spin_unlock(&anon_vma->lock); | 
 |  | 
 | 	if (empty) | 
 | 		anon_vma_free(anon_vma); | 
 | } | 
 |  | 
 | static void anon_vma_ctor(void *data, kmem_cache_t *cachep, unsigned long flags) | 
 | { | 
 | 	if ((flags & (SLAB_CTOR_VERIFY|SLAB_CTOR_CONSTRUCTOR)) == | 
 | 						SLAB_CTOR_CONSTRUCTOR) { | 
 | 		struct anon_vma *anon_vma = data; | 
 |  | 
 | 		spin_lock_init(&anon_vma->lock); | 
 | 		INIT_LIST_HEAD(&anon_vma->head); | 
 | 	} | 
 | } | 
 |  | 
 | void __init anon_vma_init(void) | 
 | { | 
 | 	anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma), | 
 | 			0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL); | 
 | } | 
 |  | 
 | /* | 
 |  * Getting a lock on a stable anon_vma from a page off the LRU is | 
 |  * tricky: page_lock_anon_vma rely on RCU to guard against the races. | 
 |  */ | 
 | static struct anon_vma *page_lock_anon_vma(struct page *page) | 
 | { | 
 | 	struct anon_vma *anon_vma = NULL; | 
 | 	unsigned long anon_mapping; | 
 |  | 
 | 	rcu_read_lock(); | 
 | 	anon_mapping = (unsigned long) page->mapping; | 
 | 	if (!(anon_mapping & PAGE_MAPPING_ANON)) | 
 | 		goto out; | 
 | 	if (!page_mapped(page)) | 
 | 		goto out; | 
 |  | 
 | 	anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON); | 
 | 	spin_lock(&anon_vma->lock); | 
 | out: | 
 | 	rcu_read_unlock(); | 
 | 	return anon_vma; | 
 | } | 
 |  | 
 | /* | 
 |  * At what user virtual address is page expected in vma? | 
 |  */ | 
 | static inline unsigned long | 
 | vma_address(struct page *page, struct vm_area_struct *vma) | 
 | { | 
 | 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
 | 	unsigned long address; | 
 |  | 
 | 	address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT); | 
 | 	if (unlikely(address < vma->vm_start || address >= vma->vm_end)) { | 
 | 		/* page should be within any vma from prio_tree_next */ | 
 | 		BUG_ON(!PageAnon(page)); | 
 | 		return -EFAULT; | 
 | 	} | 
 | 	return address; | 
 | } | 
 |  | 
 | /* | 
 |  * At what user virtual address is page expected in vma? checking that the | 
 |  * page matches the vma: currently only used by unuse_process, on anon pages. | 
 |  */ | 
 | unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma) | 
 | { | 
 | 	if (PageAnon(page)) { | 
 | 		if ((void *)vma->anon_vma != | 
 | 		    (void *)page->mapping - PAGE_MAPPING_ANON) | 
 | 			return -EFAULT; | 
 | 	} else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) { | 
 | 		if (vma->vm_file->f_mapping != page->mapping) | 
 | 			return -EFAULT; | 
 | 	} else | 
 | 		return -EFAULT; | 
 | 	return vma_address(page, vma); | 
 | } | 
 |  | 
 | /* | 
 |  * Check that @page is mapped at @address into @mm. | 
 |  * | 
 |  * On success returns with mapped pte and locked mm->page_table_lock. | 
 |  */ | 
 | static pte_t *page_check_address(struct page *page, struct mm_struct *mm, | 
 | 					unsigned long address) | 
 | { | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte; | 
 |  | 
 | 	/* | 
 | 	 * We need the page_table_lock to protect us from page faults, | 
 | 	 * munmap, fork, etc... | 
 | 	 */ | 
 | 	spin_lock(&mm->page_table_lock); | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (likely(pgd_present(*pgd))) { | 
 | 		pud = pud_offset(pgd, address); | 
 | 		if (likely(pud_present(*pud))) { | 
 | 			pmd = pmd_offset(pud, address); | 
 | 			if (likely(pmd_present(*pmd))) { | 
 | 				pte = pte_offset_map(pmd, address); | 
 | 				if (likely(pte_present(*pte) && | 
 | 					   page_to_pfn(page) == pte_pfn(*pte))) | 
 | 					return pte; | 
 | 				pte_unmap(pte); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | 	return ERR_PTR(-ENOENT); | 
 | } | 
 |  | 
 | /* | 
 |  * Subfunctions of page_referenced: page_referenced_one called | 
 |  * repeatedly from either page_referenced_anon or page_referenced_file. | 
 |  */ | 
 | static int page_referenced_one(struct page *page, | 
 | 	struct vm_area_struct *vma, unsigned int *mapcount, int ignore_token) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long address; | 
 | 	pte_t *pte; | 
 | 	int referenced = 0; | 
 |  | 
 | 	if (!get_mm_counter(mm, rss)) | 
 | 		goto out; | 
 | 	address = vma_address(page, vma); | 
 | 	if (address == -EFAULT) | 
 | 		goto out; | 
 |  | 
 | 	pte = page_check_address(page, mm, address); | 
 | 	if (!IS_ERR(pte)) { | 
 | 		if (ptep_clear_flush_young(vma, address, pte)) | 
 | 			referenced++; | 
 |  | 
 | 		if (mm != current->mm && !ignore_token && has_swap_token(mm)) | 
 | 			referenced++; | 
 |  | 
 | 		(*mapcount)--; | 
 | 		pte_unmap(pte); | 
 | 		spin_unlock(&mm->page_table_lock); | 
 | 	} | 
 | out: | 
 | 	return referenced; | 
 | } | 
 |  | 
 | static int page_referenced_anon(struct page *page, int ignore_token) | 
 | { | 
 | 	unsigned int mapcount; | 
 | 	struct anon_vma *anon_vma; | 
 | 	struct vm_area_struct *vma; | 
 | 	int referenced = 0; | 
 |  | 
 | 	anon_vma = page_lock_anon_vma(page); | 
 | 	if (!anon_vma) | 
 | 		return referenced; | 
 |  | 
 | 	mapcount = page_mapcount(page); | 
 | 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | 
 | 		referenced += page_referenced_one(page, vma, &mapcount, | 
 | 							ignore_token); | 
 | 		if (!mapcount) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock(&anon_vma->lock); | 
 | 	return referenced; | 
 | } | 
 |  | 
 | /** | 
 |  * page_referenced_file - referenced check for object-based rmap | 
 |  * @page: the page we're checking references on. | 
 |  * | 
 |  * For an object-based mapped page, find all the places it is mapped and | 
 |  * check/clear the referenced flag.  This is done by following the page->mapping | 
 |  * pointer, then walking the chain of vmas it holds.  It returns the number | 
 |  * of references it found. | 
 |  * | 
 |  * This function is only called from page_referenced for object-based pages. | 
 |  */ | 
 | static int page_referenced_file(struct page *page, int ignore_token) | 
 | { | 
 | 	unsigned int mapcount; | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
 | 	struct vm_area_struct *vma; | 
 | 	struct prio_tree_iter iter; | 
 | 	int referenced = 0; | 
 |  | 
 | 	/* | 
 | 	 * The caller's checks on page->mapping and !PageAnon have made | 
 | 	 * sure that this is a file page: the check for page->mapping | 
 | 	 * excludes the case just before it gets set on an anon page. | 
 | 	 */ | 
 | 	BUG_ON(PageAnon(page)); | 
 |  | 
 | 	/* | 
 | 	 * The page lock not only makes sure that page->mapping cannot | 
 | 	 * suddenly be NULLified by truncation, it makes sure that the | 
 | 	 * structure at mapping cannot be freed and reused yet, | 
 | 	 * so we can safely take mapping->i_mmap_lock. | 
 | 	 */ | 
 | 	BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	spin_lock(&mapping->i_mmap_lock); | 
 |  | 
 | 	/* | 
 | 	 * i_mmap_lock does not stabilize mapcount at all, but mapcount | 
 | 	 * is more likely to be accurate if we note it after spinning. | 
 | 	 */ | 
 | 	mapcount = page_mapcount(page); | 
 |  | 
 | 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
 | 		if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE)) | 
 | 				  == (VM_LOCKED|VM_MAYSHARE)) { | 
 | 			referenced++; | 
 | 			break; | 
 | 		} | 
 | 		referenced += page_referenced_one(page, vma, &mapcount, | 
 | 							ignore_token); | 
 | 		if (!mapcount) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&mapping->i_mmap_lock); | 
 | 	return referenced; | 
 | } | 
 |  | 
 | /** | 
 |  * page_referenced - test if the page was referenced | 
 |  * @page: the page to test | 
 |  * @is_locked: caller holds lock on the page | 
 |  * | 
 |  * Quick test_and_clear_referenced for all mappings to a page, | 
 |  * returns the number of ptes which referenced the page. | 
 |  */ | 
 | int page_referenced(struct page *page, int is_locked, int ignore_token) | 
 | { | 
 | 	int referenced = 0; | 
 |  | 
 | 	if (!swap_token_default_timeout) | 
 | 		ignore_token = 1; | 
 |  | 
 | 	if (page_test_and_clear_young(page)) | 
 | 		referenced++; | 
 |  | 
 | 	if (TestClearPageReferenced(page)) | 
 | 		referenced++; | 
 |  | 
 | 	if (page_mapped(page) && page->mapping) { | 
 | 		if (PageAnon(page)) | 
 | 			referenced += page_referenced_anon(page, ignore_token); | 
 | 		else if (is_locked) | 
 | 			referenced += page_referenced_file(page, ignore_token); | 
 | 		else if (TestSetPageLocked(page)) | 
 | 			referenced++; | 
 | 		else { | 
 | 			if (page->mapping) | 
 | 				referenced += page_referenced_file(page, | 
 | 								ignore_token); | 
 | 			unlock_page(page); | 
 | 		} | 
 | 	} | 
 | 	return referenced; | 
 | } | 
 |  | 
 | /** | 
 |  * page_add_anon_rmap - add pte mapping to an anonymous page | 
 |  * @page:	the page to add the mapping to | 
 |  * @vma:	the vm area in which the mapping is added | 
 |  * @address:	the user virtual address mapped | 
 |  * | 
 |  * The caller needs to hold the mm->page_table_lock. | 
 |  */ | 
 | void page_add_anon_rmap(struct page *page, | 
 | 	struct vm_area_struct *vma, unsigned long address) | 
 | { | 
 | 	struct anon_vma *anon_vma = vma->anon_vma; | 
 | 	pgoff_t index; | 
 |  | 
 | 	BUG_ON(PageReserved(page)); | 
 | 	BUG_ON(!anon_vma); | 
 |  | 
 | 	inc_mm_counter(vma->vm_mm, anon_rss); | 
 |  | 
 | 	anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON; | 
 | 	index = (address - vma->vm_start) >> PAGE_SHIFT; | 
 | 	index += vma->vm_pgoff; | 
 | 	index >>= PAGE_CACHE_SHIFT - PAGE_SHIFT; | 
 |  | 
 | 	if (atomic_inc_and_test(&page->_mapcount)) { | 
 | 		page->index = index; | 
 | 		page->mapping = (struct address_space *) anon_vma; | 
 | 		inc_page_state(nr_mapped); | 
 | 	} | 
 | 	/* else checking page index and mapping is racy */ | 
 | } | 
 |  | 
 | /** | 
 |  * page_add_file_rmap - add pte mapping to a file page | 
 |  * @page: the page to add the mapping to | 
 |  * | 
 |  * The caller needs to hold the mm->page_table_lock. | 
 |  */ | 
 | void page_add_file_rmap(struct page *page) | 
 | { | 
 | 	BUG_ON(PageAnon(page)); | 
 | 	if (!pfn_valid(page_to_pfn(page)) || PageReserved(page)) | 
 | 		return; | 
 |  | 
 | 	if (atomic_inc_and_test(&page->_mapcount)) | 
 | 		inc_page_state(nr_mapped); | 
 | } | 
 |  | 
 | /** | 
 |  * page_remove_rmap - take down pte mapping from a page | 
 |  * @page: page to remove mapping from | 
 |  * | 
 |  * Caller needs to hold the mm->page_table_lock. | 
 |  */ | 
 | void page_remove_rmap(struct page *page) | 
 | { | 
 | 	BUG_ON(PageReserved(page)); | 
 |  | 
 | 	if (atomic_add_negative(-1, &page->_mapcount)) { | 
 | 		BUG_ON(page_mapcount(page) < 0); | 
 | 		/* | 
 | 		 * It would be tidy to reset the PageAnon mapping here, | 
 | 		 * but that might overwrite a racing page_add_anon_rmap | 
 | 		 * which increments mapcount after us but sets mapping | 
 | 		 * before us: so leave the reset to free_hot_cold_page, | 
 | 		 * and remember that it's only reliable while mapped. | 
 | 		 * Leaving it set also helps swapoff to reinstate ptes | 
 | 		 * faster for those pages still in swapcache. | 
 | 		 */ | 
 | 		if (page_test_and_clear_dirty(page)) | 
 | 			set_page_dirty(page); | 
 | 		dec_page_state(nr_mapped); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Subfunctions of try_to_unmap: try_to_unmap_one called | 
 |  * repeatedly from either try_to_unmap_anon or try_to_unmap_file. | 
 |  */ | 
 | static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	unsigned long address; | 
 | 	pte_t *pte; | 
 | 	pte_t pteval; | 
 | 	int ret = SWAP_AGAIN; | 
 |  | 
 | 	if (!get_mm_counter(mm, rss)) | 
 | 		goto out; | 
 | 	address = vma_address(page, vma); | 
 | 	if (address == -EFAULT) | 
 | 		goto out; | 
 |  | 
 | 	pte = page_check_address(page, mm, address); | 
 | 	if (IS_ERR(pte)) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * If the page is mlock()d, we cannot swap it out. | 
 | 	 * If it's recently referenced (perhaps page_referenced | 
 | 	 * skipped over this mm) then we should reactivate it. | 
 | 	 */ | 
 | 	if ((vma->vm_flags & (VM_LOCKED|VM_RESERVED)) || | 
 | 			ptep_clear_flush_young(vma, address, pte)) { | 
 | 		ret = SWAP_FAIL; | 
 | 		goto out_unmap; | 
 | 	} | 
 |  | 
 | 	/* Nuke the page table entry. */ | 
 | 	flush_cache_page(vma, address, page_to_pfn(page)); | 
 | 	pteval = ptep_clear_flush(vma, address, pte); | 
 |  | 
 | 	/* Move the dirty bit to the physical page now the pte is gone. */ | 
 | 	if (pte_dirty(pteval)) | 
 | 		set_page_dirty(page); | 
 |  | 
 | 	if (PageAnon(page)) { | 
 | 		swp_entry_t entry = { .val = page->private }; | 
 | 		/* | 
 | 		 * Store the swap location in the pte. | 
 | 		 * See handle_pte_fault() ... | 
 | 		 */ | 
 | 		BUG_ON(!PageSwapCache(page)); | 
 | 		swap_duplicate(entry); | 
 | 		if (list_empty(&mm->mmlist)) { | 
 | 			spin_lock(&mmlist_lock); | 
 | 			list_add(&mm->mmlist, &init_mm.mmlist); | 
 | 			spin_unlock(&mmlist_lock); | 
 | 		} | 
 | 		set_pte_at(mm, address, pte, swp_entry_to_pte(entry)); | 
 | 		BUG_ON(pte_file(*pte)); | 
 | 		dec_mm_counter(mm, anon_rss); | 
 | 	} | 
 |  | 
 | 	dec_mm_counter(mm, rss); | 
 | 	page_remove_rmap(page); | 
 | 	page_cache_release(page); | 
 |  | 
 | out_unmap: | 
 | 	pte_unmap(pte); | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * objrmap doesn't work for nonlinear VMAs because the assumption that | 
 |  * offset-into-file correlates with offset-into-virtual-addresses does not hold. | 
 |  * Consequently, given a particular page and its ->index, we cannot locate the | 
 |  * ptes which are mapping that page without an exhaustive linear search. | 
 |  * | 
 |  * So what this code does is a mini "virtual scan" of each nonlinear VMA which | 
 |  * maps the file to which the target page belongs.  The ->vm_private_data field | 
 |  * holds the current cursor into that scan.  Successive searches will circulate | 
 |  * around the vma's virtual address space. | 
 |  * | 
 |  * So as more replacement pressure is applied to the pages in a nonlinear VMA, | 
 |  * more scanning pressure is placed against them as well.   Eventually pages | 
 |  * will become fully unmapped and are eligible for eviction. | 
 |  * | 
 |  * For very sparsely populated VMAs this is a little inefficient - chances are | 
 |  * there there won't be many ptes located within the scan cluster.  In this case | 
 |  * maybe we could scan further - to the end of the pte page, perhaps. | 
 |  */ | 
 | #define CLUSTER_SIZE	min(32*PAGE_SIZE, PMD_SIZE) | 
 | #define CLUSTER_MASK	(~(CLUSTER_SIZE - 1)) | 
 |  | 
 | static void try_to_unmap_cluster(unsigned long cursor, | 
 | 	unsigned int *mapcount, struct vm_area_struct *vma) | 
 | { | 
 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 	pgd_t *pgd; | 
 | 	pud_t *pud; | 
 | 	pmd_t *pmd; | 
 | 	pte_t *pte, *original_pte; | 
 | 	pte_t pteval; | 
 | 	struct page *page; | 
 | 	unsigned long address; | 
 | 	unsigned long end; | 
 | 	unsigned long pfn; | 
 |  | 
 | 	/* | 
 | 	 * We need the page_table_lock to protect us from page faults, | 
 | 	 * munmap, fork, etc... | 
 | 	 */ | 
 | 	spin_lock(&mm->page_table_lock); | 
 |  | 
 | 	address = (vma->vm_start + cursor) & CLUSTER_MASK; | 
 | 	end = address + CLUSTER_SIZE; | 
 | 	if (address < vma->vm_start) | 
 | 		address = vma->vm_start; | 
 | 	if (end > vma->vm_end) | 
 | 		end = vma->vm_end; | 
 |  | 
 | 	pgd = pgd_offset(mm, address); | 
 | 	if (!pgd_present(*pgd)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	pud = pud_offset(pgd, address); | 
 | 	if (!pud_present(*pud)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	pmd = pmd_offset(pud, address); | 
 | 	if (!pmd_present(*pmd)) | 
 | 		goto out_unlock; | 
 |  | 
 | 	for (original_pte = pte = pte_offset_map(pmd, address); | 
 | 			address < end; pte++, address += PAGE_SIZE) { | 
 |  | 
 | 		if (!pte_present(*pte)) | 
 | 			continue; | 
 |  | 
 | 		pfn = pte_pfn(*pte); | 
 | 		if (!pfn_valid(pfn)) | 
 | 			continue; | 
 |  | 
 | 		page = pfn_to_page(pfn); | 
 | 		BUG_ON(PageAnon(page)); | 
 | 		if (PageReserved(page)) | 
 | 			continue; | 
 |  | 
 | 		if (ptep_clear_flush_young(vma, address, pte)) | 
 | 			continue; | 
 |  | 
 | 		/* Nuke the page table entry. */ | 
 | 		flush_cache_page(vma, address, pfn); | 
 | 		pteval = ptep_clear_flush(vma, address, pte); | 
 |  | 
 | 		/* If nonlinear, store the file page offset in the pte. */ | 
 | 		if (page->index != linear_page_index(vma, address)) | 
 | 			set_pte_at(mm, address, pte, pgoff_to_pte(page->index)); | 
 |  | 
 | 		/* Move the dirty bit to the physical page now the pte is gone. */ | 
 | 		if (pte_dirty(pteval)) | 
 | 			set_page_dirty(page); | 
 |  | 
 | 		page_remove_rmap(page); | 
 | 		page_cache_release(page); | 
 | 		dec_mm_counter(mm, rss); | 
 | 		(*mapcount)--; | 
 | 	} | 
 |  | 
 | 	pte_unmap(original_pte); | 
 | out_unlock: | 
 | 	spin_unlock(&mm->page_table_lock); | 
 | } | 
 |  | 
 | static int try_to_unmap_anon(struct page *page) | 
 | { | 
 | 	struct anon_vma *anon_vma; | 
 | 	struct vm_area_struct *vma; | 
 | 	int ret = SWAP_AGAIN; | 
 |  | 
 | 	anon_vma = page_lock_anon_vma(page); | 
 | 	if (!anon_vma) | 
 | 		return ret; | 
 |  | 
 | 	list_for_each_entry(vma, &anon_vma->head, anon_vma_node) { | 
 | 		ret = try_to_unmap_one(page, vma); | 
 | 		if (ret == SWAP_FAIL || !page_mapped(page)) | 
 | 			break; | 
 | 	} | 
 | 	spin_unlock(&anon_vma->lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_unmap_file - unmap file page using the object-based rmap method | 
 |  * @page: the page to unmap | 
 |  * | 
 |  * Find all the mappings of a page using the mapping pointer and the vma chains | 
 |  * contained in the address_space struct it points to. | 
 |  * | 
 |  * This function is only called from try_to_unmap for object-based pages. | 
 |  */ | 
 | static int try_to_unmap_file(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 | 	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT); | 
 | 	struct vm_area_struct *vma; | 
 | 	struct prio_tree_iter iter; | 
 | 	int ret = SWAP_AGAIN; | 
 | 	unsigned long cursor; | 
 | 	unsigned long max_nl_cursor = 0; | 
 | 	unsigned long max_nl_size = 0; | 
 | 	unsigned int mapcount; | 
 |  | 
 | 	spin_lock(&mapping->i_mmap_lock); | 
 | 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) { | 
 | 		ret = try_to_unmap_one(page, vma); | 
 | 		if (ret == SWAP_FAIL || !page_mapped(page)) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (list_empty(&mapping->i_mmap_nonlinear)) | 
 | 		goto out; | 
 |  | 
 | 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 
 | 						shared.vm_set.list) { | 
 | 		if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) | 
 | 			continue; | 
 | 		cursor = (unsigned long) vma->vm_private_data; | 
 | 		if (cursor > max_nl_cursor) | 
 | 			max_nl_cursor = cursor; | 
 | 		cursor = vma->vm_end - vma->vm_start; | 
 | 		if (cursor > max_nl_size) | 
 | 			max_nl_size = cursor; | 
 | 	} | 
 |  | 
 | 	if (max_nl_size == 0) {	/* any nonlinears locked or reserved */ | 
 | 		ret = SWAP_FAIL; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * We don't try to search for this page in the nonlinear vmas, | 
 | 	 * and page_referenced wouldn't have found it anyway.  Instead | 
 | 	 * just walk the nonlinear vmas trying to age and unmap some. | 
 | 	 * The mapcount of the page we came in with is irrelevant, | 
 | 	 * but even so use it as a guide to how hard we should try? | 
 | 	 */ | 
 | 	mapcount = page_mapcount(page); | 
 | 	if (!mapcount) | 
 | 		goto out; | 
 | 	cond_resched_lock(&mapping->i_mmap_lock); | 
 |  | 
 | 	max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK; | 
 | 	if (max_nl_cursor == 0) | 
 | 		max_nl_cursor = CLUSTER_SIZE; | 
 |  | 
 | 	do { | 
 | 		list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 
 | 						shared.vm_set.list) { | 
 | 			if (vma->vm_flags & (VM_LOCKED|VM_RESERVED)) | 
 | 				continue; | 
 | 			cursor = (unsigned long) vma->vm_private_data; | 
 | 			while (get_mm_counter(vma->vm_mm, rss) && | 
 | 				cursor < max_nl_cursor && | 
 | 				cursor < vma->vm_end - vma->vm_start) { | 
 | 				try_to_unmap_cluster(cursor, &mapcount, vma); | 
 | 				cursor += CLUSTER_SIZE; | 
 | 				vma->vm_private_data = (void *) cursor; | 
 | 				if ((int)mapcount <= 0) | 
 | 					goto out; | 
 | 			} | 
 | 			vma->vm_private_data = (void *) max_nl_cursor; | 
 | 		} | 
 | 		cond_resched_lock(&mapping->i_mmap_lock); | 
 | 		max_nl_cursor += CLUSTER_SIZE; | 
 | 	} while (max_nl_cursor <= max_nl_size); | 
 |  | 
 | 	/* | 
 | 	 * Don't loop forever (perhaps all the remaining pages are | 
 | 	 * in locked vmas).  Reset cursor on all unreserved nonlinear | 
 | 	 * vmas, now forgetting on which ones it had fallen behind. | 
 | 	 */ | 
 | 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, | 
 | 						shared.vm_set.list) { | 
 | 		if (!(vma->vm_flags & VM_RESERVED)) | 
 | 			vma->vm_private_data = NULL; | 
 | 	} | 
 | out: | 
 | 	spin_unlock(&mapping->i_mmap_lock); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  * try_to_unmap - try to remove all page table mappings to a page | 
 |  * @page: the page to get unmapped | 
 |  * | 
 |  * Tries to remove all the page table entries which are mapping this | 
 |  * page, used in the pageout path.  Caller must hold the page lock. | 
 |  * Return values are: | 
 |  * | 
 |  * SWAP_SUCCESS	- we succeeded in removing all mappings | 
 |  * SWAP_AGAIN	- we missed a mapping, try again later | 
 |  * SWAP_FAIL	- the page is unswappable | 
 |  */ | 
 | int try_to_unmap(struct page *page) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(PageReserved(page)); | 
 | 	BUG_ON(!PageLocked(page)); | 
 |  | 
 | 	if (PageAnon(page)) | 
 | 		ret = try_to_unmap_anon(page); | 
 | 	else | 
 | 		ret = try_to_unmap_file(page); | 
 |  | 
 | 	if (!page_mapped(page)) | 
 | 		ret = SWAP_SUCCESS; | 
 | 	return ret; | 
 | } | 
 |  |