|  | /* blz1230.c: Driver for Blizzard 1230 SCSI IV Controller. | 
|  | * | 
|  | * Copyright (C) 1996 Jesper Skov (jskov@cygnus.co.uk) | 
|  | * | 
|  | * This driver is based on the CyberStorm driver, hence the occasional | 
|  | * reference to CyberStorm. | 
|  | */ | 
|  |  | 
|  | /* TODO: | 
|  | * | 
|  | * 1) Figure out how to make a cleaner merge with the sparc driver with regard | 
|  | *    to the caches and the Sparc MMU mapping. | 
|  | * 2) Make as few routines required outside the generic driver. A lot of the | 
|  | *    routines in this file used to be inline! | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/interrupt.h> | 
|  |  | 
|  | #include "scsi.h" | 
|  | #include <scsi/scsi_host.h> | 
|  | #include "NCR53C9x.h" | 
|  |  | 
|  | #include <linux/zorro.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/amigaints.h> | 
|  | #include <asm/amigahw.h> | 
|  |  | 
|  | #include <asm/pgtable.h> | 
|  |  | 
|  | #define MKIV 1 | 
|  |  | 
|  | /* The controller registers can be found in the Z2 config area at these | 
|  | * offsets: | 
|  | */ | 
|  | #define BLZ1230_ESP_ADDR 0x8000 | 
|  | #define BLZ1230_DMA_ADDR 0x10000 | 
|  | #define BLZ1230II_ESP_ADDR 0x10000 | 
|  | #define BLZ1230II_DMA_ADDR 0x10021 | 
|  |  | 
|  |  | 
|  | /* The Blizzard 1230 DMA interface | 
|  | * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | 
|  | * Only two things can be programmed in the Blizzard DMA: | 
|  | *  1) The data direction is controlled by the status of bit 31 (1 = write) | 
|  | *  2) The source/dest address (word aligned, shifted one right) in bits 30-0 | 
|  | * | 
|  | * Program DMA by first latching the highest byte of the address/direction | 
|  | * (i.e. bits 31-24 of the long word constructed as described in steps 1+2 | 
|  | * above). Then write each byte of the address/direction (starting with the | 
|  | * top byte, working down) to the DMA address register. | 
|  | * | 
|  | * Figure out interrupt status by reading the ESP status byte. | 
|  | */ | 
|  | struct blz1230_dma_registers { | 
|  | volatile unsigned char dma_addr; 	/* DMA address      [0x0000] */ | 
|  | unsigned char dmapad2[0x7fff]; | 
|  | volatile unsigned char dma_latch; 	/* DMA latch        [0x8000] */ | 
|  | }; | 
|  |  | 
|  | struct blz1230II_dma_registers { | 
|  | volatile unsigned char dma_addr; 	/* DMA address      [0x0000] */ | 
|  | unsigned char dmapad2[0xf]; | 
|  | volatile unsigned char dma_latch; 	/* DMA latch        [0x0010] */ | 
|  | }; | 
|  |  | 
|  | #define BLZ1230_DMA_WRITE 0x80000000 | 
|  |  | 
|  | static int  dma_bytes_sent(struct NCR_ESP *esp, int fifo_count); | 
|  | static int  dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp); | 
|  | static void dma_dump_state(struct NCR_ESP *esp); | 
|  | static void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length); | 
|  | static void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length); | 
|  | static void dma_ints_off(struct NCR_ESP *esp); | 
|  | static void dma_ints_on(struct NCR_ESP *esp); | 
|  | static int  dma_irq_p(struct NCR_ESP *esp); | 
|  | static int  dma_ports_p(struct NCR_ESP *esp); | 
|  | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write); | 
|  |  | 
|  | static volatile unsigned char cmd_buffer[16]; | 
|  | /* This is where all commands are put | 
|  | * before they are transferred to the ESP chip | 
|  | * via PIO. | 
|  | */ | 
|  |  | 
|  | /***************************************************************** Detection */ | 
|  | int __init blz1230_esp_detect(struct scsi_host_template *tpnt) | 
|  | { | 
|  | struct NCR_ESP *esp; | 
|  | struct zorro_dev *z = NULL; | 
|  | unsigned long address; | 
|  | struct ESP_regs *eregs; | 
|  | unsigned long board; | 
|  |  | 
|  | #if MKIV | 
|  | #define REAL_BLZ1230_ID		ZORRO_PROD_PHASE5_BLIZZARD_1230_IV_1260 | 
|  | #define REAL_BLZ1230_ESP_ADDR	BLZ1230_ESP_ADDR | 
|  | #define REAL_BLZ1230_DMA_ADDR	BLZ1230_DMA_ADDR | 
|  | #else | 
|  | #define REAL_BLZ1230_ID		ZORRO_PROD_PHASE5_BLIZZARD_1230_II_FASTLANE_Z3_CYBERSCSI_CYBERSTORM060 | 
|  | #define REAL_BLZ1230_ESP_ADDR	BLZ1230II_ESP_ADDR | 
|  | #define REAL_BLZ1230_DMA_ADDR	BLZ1230II_DMA_ADDR | 
|  | #endif | 
|  |  | 
|  | if ((z = zorro_find_device(REAL_BLZ1230_ID, z))) { | 
|  | board = z->resource.start; | 
|  | if (request_mem_region(board+REAL_BLZ1230_ESP_ADDR, | 
|  | sizeof(struct ESP_regs), "NCR53C9x")) { | 
|  | /* Do some magic to figure out if the blizzard is | 
|  | * equipped with a SCSI controller | 
|  | */ | 
|  | address = ZTWO_VADDR(board); | 
|  | eregs = (struct ESP_regs *)(address + REAL_BLZ1230_ESP_ADDR); | 
|  | esp = esp_allocate(tpnt, (void *)board+REAL_BLZ1230_ESP_ADDR); | 
|  |  | 
|  | esp_write(eregs->esp_cfg1, (ESP_CONFIG1_PENABLE | 7)); | 
|  | udelay(5); | 
|  | if(esp_read(eregs->esp_cfg1) != (ESP_CONFIG1_PENABLE | 7)) | 
|  | goto err_out; | 
|  |  | 
|  | /* Do command transfer with programmed I/O */ | 
|  | esp->do_pio_cmds = 1; | 
|  |  | 
|  | /* Required functions */ | 
|  | esp->dma_bytes_sent = &dma_bytes_sent; | 
|  | esp->dma_can_transfer = &dma_can_transfer; | 
|  | esp->dma_dump_state = &dma_dump_state; | 
|  | esp->dma_init_read = &dma_init_read; | 
|  | esp->dma_init_write = &dma_init_write; | 
|  | esp->dma_ints_off = &dma_ints_off; | 
|  | esp->dma_ints_on = &dma_ints_on; | 
|  | esp->dma_irq_p = &dma_irq_p; | 
|  | esp->dma_ports_p = &dma_ports_p; | 
|  | esp->dma_setup = &dma_setup; | 
|  |  | 
|  | /* Optional functions */ | 
|  | esp->dma_barrier = 0; | 
|  | esp->dma_drain = 0; | 
|  | esp->dma_invalidate = 0; | 
|  | esp->dma_irq_entry = 0; | 
|  | esp->dma_irq_exit = 0; | 
|  | esp->dma_led_on = 0; | 
|  | esp->dma_led_off = 0; | 
|  | esp->dma_poll = 0; | 
|  | esp->dma_reset = 0; | 
|  |  | 
|  | /* SCSI chip speed */ | 
|  | esp->cfreq = 40000000; | 
|  |  | 
|  | /* The DMA registers on the Blizzard are mapped | 
|  | * relative to the device (i.e. in the same Zorro | 
|  | * I/O block). | 
|  | */ | 
|  | esp->dregs = (void *)(address + REAL_BLZ1230_DMA_ADDR); | 
|  |  | 
|  | /* ESP register base */ | 
|  | esp->eregs = eregs; | 
|  |  | 
|  | /* Set the command buffer */ | 
|  | esp->esp_command = cmd_buffer; | 
|  | esp->esp_command_dvma = virt_to_bus((void *)cmd_buffer); | 
|  |  | 
|  | esp->irq = IRQ_AMIGA_PORTS; | 
|  | esp->slot = board+REAL_BLZ1230_ESP_ADDR; | 
|  | if (request_irq(IRQ_AMIGA_PORTS, esp_intr, IRQF_SHARED, | 
|  | "Blizzard 1230 SCSI IV", esp->ehost)) | 
|  | goto err_out; | 
|  |  | 
|  | /* Figure out our scsi ID on the bus */ | 
|  | esp->scsi_id = 7; | 
|  |  | 
|  | /* We don't have a differential SCSI-bus. */ | 
|  | esp->diff = 0; | 
|  |  | 
|  | esp_initialize(esp); | 
|  |  | 
|  | printk("ESP: Total of %d ESP hosts found, %d actually in use.\n", nesps, esps_in_use); | 
|  | esps_running = esps_in_use; | 
|  | return esps_in_use; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | err_out: | 
|  | scsi_unregister(esp->ehost); | 
|  | esp_deallocate(esp); | 
|  | release_mem_region(board+REAL_BLZ1230_ESP_ADDR, | 
|  | sizeof(struct ESP_regs)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /************************************************************* DMA Functions */ | 
|  | static int dma_bytes_sent(struct NCR_ESP *esp, int fifo_count) | 
|  | { | 
|  | /* Since the Blizzard DMA is fully dedicated to the ESP chip, | 
|  | * the number of bytes sent (to the ESP chip) equals the number | 
|  | * of bytes in the FIFO - there is no buffering in the DMA controller. | 
|  | * XXXX Do I read this right? It is from host to ESP, right? | 
|  | */ | 
|  | return fifo_count; | 
|  | } | 
|  |  | 
|  | static int dma_can_transfer(struct NCR_ESP *esp, Scsi_Cmnd *sp) | 
|  | { | 
|  | /* I don't think there's any limit on the Blizzard DMA. So we use what | 
|  | * the ESP chip can handle (24 bit). | 
|  | */ | 
|  | unsigned long sz = sp->SCp.this_residual; | 
|  | if(sz > 0x1000000) | 
|  | sz = 0x1000000; | 
|  | return sz; | 
|  | } | 
|  |  | 
|  | static void dma_dump_state(struct NCR_ESP *esp) | 
|  | { | 
|  | ESPLOG(("intreq:<%04x>, intena:<%04x>\n", | 
|  | amiga_custom.intreqr, amiga_custom.intenar)); | 
|  | } | 
|  |  | 
|  | void dma_init_read(struct NCR_ESP *esp, __u32 addr, int length) | 
|  | { | 
|  | #if MKIV | 
|  | struct blz1230_dma_registers *dregs = | 
|  | (struct blz1230_dma_registers *) (esp->dregs); | 
|  | #else | 
|  | struct blz1230II_dma_registers *dregs = | 
|  | (struct blz1230II_dma_registers *) (esp->dregs); | 
|  | #endif | 
|  |  | 
|  | cache_clear(addr, length); | 
|  |  | 
|  | addr >>= 1; | 
|  | addr &= ~(BLZ1230_DMA_WRITE); | 
|  |  | 
|  | /* First set latch */ | 
|  | dregs->dma_latch = (addr >> 24) & 0xff; | 
|  |  | 
|  | /* Then pump the address to the DMA address register */ | 
|  | #if MKIV | 
|  | dregs->dma_addr = (addr >> 24) & 0xff; | 
|  | #endif | 
|  | dregs->dma_addr = (addr >> 16) & 0xff; | 
|  | dregs->dma_addr = (addr >>  8) & 0xff; | 
|  | dregs->dma_addr = (addr      ) & 0xff; | 
|  | } | 
|  |  | 
|  | void dma_init_write(struct NCR_ESP *esp, __u32 addr, int length) | 
|  | { | 
|  | #if MKIV | 
|  | struct blz1230_dma_registers *dregs = | 
|  | (struct blz1230_dma_registers *) (esp->dregs); | 
|  | #else | 
|  | struct blz1230II_dma_registers *dregs = | 
|  | (struct blz1230II_dma_registers *) (esp->dregs); | 
|  | #endif | 
|  |  | 
|  | cache_push(addr, length); | 
|  |  | 
|  | addr >>= 1; | 
|  | addr |= BLZ1230_DMA_WRITE; | 
|  |  | 
|  | /* First set latch */ | 
|  | dregs->dma_latch = (addr >> 24) & 0xff; | 
|  |  | 
|  | /* Then pump the address to the DMA address register */ | 
|  | #if MKIV | 
|  | dregs->dma_addr = (addr >> 24) & 0xff; | 
|  | #endif | 
|  | dregs->dma_addr = (addr >> 16) & 0xff; | 
|  | dregs->dma_addr = (addr >>  8) & 0xff; | 
|  | dregs->dma_addr = (addr      ) & 0xff; | 
|  | } | 
|  |  | 
|  | static void dma_ints_off(struct NCR_ESP *esp) | 
|  | { | 
|  | disable_irq(esp->irq); | 
|  | } | 
|  |  | 
|  | static void dma_ints_on(struct NCR_ESP *esp) | 
|  | { | 
|  | enable_irq(esp->irq); | 
|  | } | 
|  |  | 
|  | static int dma_irq_p(struct NCR_ESP *esp) | 
|  | { | 
|  | return (esp_read(esp->eregs->esp_status) & ESP_STAT_INTR); | 
|  | } | 
|  |  | 
|  | static int dma_ports_p(struct NCR_ESP *esp) | 
|  | { | 
|  | return ((amiga_custom.intenar) & IF_PORTS); | 
|  | } | 
|  |  | 
|  | static void dma_setup(struct NCR_ESP *esp, __u32 addr, int count, int write) | 
|  | { | 
|  | /* On the Sparc, DMA_ST_WRITE means "move data from device to memory" | 
|  | * so when (write) is true, it actually means READ! | 
|  | */ | 
|  | if(write){ | 
|  | dma_init_read(esp, addr, count); | 
|  | } else { | 
|  | dma_init_write(esp, addr, count); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define HOSTS_C | 
|  |  | 
|  | int blz1230_esp_release(struct Scsi_Host *instance) | 
|  | { | 
|  | #ifdef MODULE | 
|  | unsigned long address = (unsigned long)((struct NCR_ESP *)instance->hostdata)->edev; | 
|  | esp_deallocate((struct NCR_ESP *)instance->hostdata); | 
|  | esp_release(); | 
|  | release_mem_region(address, sizeof(struct ESP_regs)); | 
|  | free_irq(IRQ_AMIGA_PORTS, esp_intr); | 
|  | #endif | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct scsi_host_template driver_template = { | 
|  | .proc_name		= "esp-blz1230", | 
|  | .proc_info		= esp_proc_info, | 
|  | .name			= "Blizzard1230 SCSI IV", | 
|  | .detect			= blz1230_esp_detect, | 
|  | .slave_alloc		= esp_slave_alloc, | 
|  | .slave_destroy		= esp_slave_destroy, | 
|  | .release		= blz1230_esp_release, | 
|  | .queuecommand		= esp_queue, | 
|  | .eh_abort_handler	= esp_abort, | 
|  | .eh_bus_reset_handler	= esp_reset, | 
|  | .can_queue		= 7, | 
|  | .this_id		= 7, | 
|  | .sg_tablesize		= SG_ALL, | 
|  | .cmd_per_lun		= 1, | 
|  | .use_clustering		= ENABLE_CLUSTERING | 
|  | }; | 
|  |  | 
|  |  | 
|  | #include "scsi_module.c" | 
|  |  | 
|  | MODULE_LICENSE("GPL"); |