| #ifndef _LINUX_MM_H | 
 | #define _LINUX_MM_H | 
 |  | 
 | #include <linux/sched.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/capability.h> | 
 |  | 
 | #ifdef __KERNEL__ | 
 |  | 
 | #include <linux/gfp.h> | 
 | #include <linux/list.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/rbtree.h> | 
 | #include <linux/prio_tree.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mutex.h> | 
 | #include <linux/debug_locks.h> | 
 | #include <linux/backing-dev.h> | 
 | #include <linux/mm_types.h> | 
 |  | 
 | struct mempolicy; | 
 | struct anon_vma; | 
 |  | 
 | #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */ | 
 | extern unsigned long max_mapnr; | 
 | #endif | 
 |  | 
 | extern unsigned long num_physpages; | 
 | extern void * high_memory; | 
 | extern unsigned long vmalloc_earlyreserve; | 
 | extern int page_cluster; | 
 |  | 
 | #ifdef CONFIG_SYSCTL | 
 | extern int sysctl_legacy_va_layout; | 
 | #else | 
 | #define sysctl_legacy_va_layout 0 | 
 | #endif | 
 |  | 
 | #include <asm/page.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/processor.h> | 
 |  | 
 | #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) | 
 |  | 
 | /* | 
 |  * Linux kernel virtual memory manager primitives. | 
 |  * The idea being to have a "virtual" mm in the same way | 
 |  * we have a virtual fs - giving a cleaner interface to the | 
 |  * mm details, and allowing different kinds of memory mappings | 
 |  * (from shared memory to executable loading to arbitrary | 
 |  * mmap() functions). | 
 |  */ | 
 |  | 
 | /* | 
 |  * This struct defines a memory VMM memory area. There is one of these | 
 |  * per VM-area/task.  A VM area is any part of the process virtual memory | 
 |  * space that has a special rule for the page-fault handlers (ie a shared | 
 |  * library, the executable area etc). | 
 |  */ | 
 | struct vm_area_struct { | 
 | 	struct mm_struct * vm_mm;	/* The address space we belong to. */ | 
 | 	unsigned long vm_start;		/* Our start address within vm_mm. */ | 
 | 	unsigned long vm_end;		/* The first byte after our end address | 
 | 					   within vm_mm. */ | 
 |  | 
 | 	/* linked list of VM areas per task, sorted by address */ | 
 | 	struct vm_area_struct *vm_next; | 
 |  | 
 | 	pgprot_t vm_page_prot;		/* Access permissions of this VMA. */ | 
 | 	unsigned long vm_flags;		/* Flags, listed below. */ | 
 |  | 
 | 	struct rb_node vm_rb; | 
 |  | 
 | 	/* | 
 | 	 * For areas with an address space and backing store, | 
 | 	 * linkage into the address_space->i_mmap prio tree, or | 
 | 	 * linkage to the list of like vmas hanging off its node, or | 
 | 	 * linkage of vma in the address_space->i_mmap_nonlinear list. | 
 | 	 */ | 
 | 	union { | 
 | 		struct { | 
 | 			struct list_head list; | 
 | 			void *parent;	/* aligns with prio_tree_node parent */ | 
 | 			struct vm_area_struct *head; | 
 | 		} vm_set; | 
 |  | 
 | 		struct raw_prio_tree_node prio_tree_node; | 
 | 	} shared; | 
 |  | 
 | 	/* | 
 | 	 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma | 
 | 	 * list, after a COW of one of the file pages.  A MAP_SHARED vma | 
 | 	 * can only be in the i_mmap tree.  An anonymous MAP_PRIVATE, stack | 
 | 	 * or brk vma (with NULL file) can only be in an anon_vma list. | 
 | 	 */ | 
 | 	struct list_head anon_vma_node;	/* Serialized by anon_vma->lock */ | 
 | 	struct anon_vma *anon_vma;	/* Serialized by page_table_lock */ | 
 |  | 
 | 	/* Function pointers to deal with this struct. */ | 
 | 	struct vm_operations_struct * vm_ops; | 
 |  | 
 | 	/* Information about our backing store: */ | 
 | 	unsigned long vm_pgoff;		/* Offset (within vm_file) in PAGE_SIZE | 
 | 					   units, *not* PAGE_CACHE_SIZE */ | 
 | 	struct file * vm_file;		/* File we map to (can be NULL). */ | 
 | 	void * vm_private_data;		/* was vm_pte (shared mem) */ | 
 | 	unsigned long vm_truncate_count;/* truncate_count or restart_addr */ | 
 |  | 
 | #ifndef CONFIG_MMU | 
 | 	atomic_t vm_usage;		/* refcount (VMAs shared if !MMU) */ | 
 | #endif | 
 | #ifdef CONFIG_NUMA | 
 | 	struct mempolicy *vm_policy;	/* NUMA policy for the VMA */ | 
 | #endif | 
 | }; | 
 |  | 
 | /* | 
 |  * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is | 
 |  * disabled, then there's a single shared list of VMAs maintained by the | 
 |  * system, and mm's subscribe to these individually | 
 |  */ | 
 | struct vm_list_struct { | 
 | 	struct vm_list_struct	*next; | 
 | 	struct vm_area_struct	*vma; | 
 | }; | 
 |  | 
 | #ifndef CONFIG_MMU | 
 | extern struct rb_root nommu_vma_tree; | 
 | extern struct rw_semaphore nommu_vma_sem; | 
 |  | 
 | extern unsigned int kobjsize(const void *objp); | 
 | #endif | 
 |  | 
 | /* | 
 |  * vm_flags.. | 
 |  */ | 
 | #define VM_READ		0x00000001	/* currently active flags */ | 
 | #define VM_WRITE	0x00000002 | 
 | #define VM_EXEC		0x00000004 | 
 | #define VM_SHARED	0x00000008 | 
 |  | 
 | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ | 
 | #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */ | 
 | #define VM_MAYWRITE	0x00000020 | 
 | #define VM_MAYEXEC	0x00000040 | 
 | #define VM_MAYSHARE	0x00000080 | 
 |  | 
 | #define VM_GROWSDOWN	0x00000100	/* general info on the segment */ | 
 | #define VM_GROWSUP	0x00000200 | 
 | #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */ | 
 | #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */ | 
 |  | 
 | #define VM_EXECUTABLE	0x00001000 | 
 | #define VM_LOCKED	0x00002000 | 
 | #define VM_IO           0x00004000	/* Memory mapped I/O or similar */ | 
 |  | 
 | 					/* Used by sys_madvise() */ | 
 | #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */ | 
 | #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */ | 
 |  | 
 | #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */ | 
 | #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */ | 
 | #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */ | 
 | #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */ | 
 | #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */ | 
 | #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */ | 
 | #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */ | 
 | #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */ | 
 |  | 
 | #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */ | 
 | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_STACK_GROWSUP | 
 | #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 
 | #else | 
 | #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 
 | #endif | 
 |  | 
 | #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ) | 
 | #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK | 
 | #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK)) | 
 | #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ) | 
 | #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ) | 
 |  | 
 | /* | 
 |  * mapping from the currently active vm_flags protection bits (the | 
 |  * low four bits) to a page protection mask.. | 
 |  */ | 
 | extern pgprot_t protection_map[16]; | 
 |  | 
 |  | 
 | /* | 
 |  * These are the virtual MM functions - opening of an area, closing and | 
 |  * unmapping it (needed to keep files on disk up-to-date etc), pointer | 
 |  * to the functions called when a no-page or a wp-page exception occurs.  | 
 |  */ | 
 | struct vm_operations_struct { | 
 | 	void (*open)(struct vm_area_struct * area); | 
 | 	void (*close)(struct vm_area_struct * area); | 
 | 	struct page * (*nopage)(struct vm_area_struct * area, unsigned long address, int *type); | 
 | 	unsigned long (*nopfn)(struct vm_area_struct * area, unsigned long address); | 
 | 	int (*populate)(struct vm_area_struct * area, unsigned long address, unsigned long len, pgprot_t prot, unsigned long pgoff, int nonblock); | 
 |  | 
 | 	/* notification that a previously read-only page is about to become | 
 | 	 * writable, if an error is returned it will cause a SIGBUS */ | 
 | 	int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); | 
 | #ifdef CONFIG_NUMA | 
 | 	int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); | 
 | 	struct mempolicy *(*get_policy)(struct vm_area_struct *vma, | 
 | 					unsigned long addr); | 
 | 	int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, | 
 | 		const nodemask_t *to, unsigned long flags); | 
 | #endif | 
 | }; | 
 |  | 
 | struct mmu_gather; | 
 | struct inode; | 
 |  | 
 | #define page_private(page)		((page)->private) | 
 | #define set_page_private(page, v)	((page)->private = (v)) | 
 |  | 
 | /* | 
 |  * FIXME: take this include out, include page-flags.h in | 
 |  * files which need it (119 of them) | 
 |  */ | 
 | #include <linux/page-flags.h> | 
 |  | 
 | #ifdef CONFIG_DEBUG_VM | 
 | #define VM_BUG_ON(cond) BUG_ON(cond) | 
 | #else | 
 | #define VM_BUG_ON(condition) do { } while(0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * Methods to modify the page usage count. | 
 |  * | 
 |  * What counts for a page usage: | 
 |  * - cache mapping   (page->mapping) | 
 |  * - private data    (page->private) | 
 |  * - page mapped in a task's page tables, each mapping | 
 |  *   is counted separately | 
 |  * | 
 |  * Also, many kernel routines increase the page count before a critical | 
 |  * routine so they can be sure the page doesn't go away from under them. | 
 |  */ | 
 |  | 
 | /* | 
 |  * Drop a ref, return true if the refcount fell to zero (the page has no users) | 
 |  */ | 
 | static inline int put_page_testzero(struct page *page) | 
 | { | 
 | 	VM_BUG_ON(atomic_read(&page->_count) == 0); | 
 | 	return atomic_dec_and_test(&page->_count); | 
 | } | 
 |  | 
 | /* | 
 |  * Try to grab a ref unless the page has a refcount of zero, return false if | 
 |  * that is the case. | 
 |  */ | 
 | static inline int get_page_unless_zero(struct page *page) | 
 | { | 
 | 	VM_BUG_ON(PageCompound(page)); | 
 | 	return atomic_inc_not_zero(&page->_count); | 
 | } | 
 |  | 
 | static inline int page_count(struct page *page) | 
 | { | 
 | 	if (unlikely(PageCompound(page))) | 
 | 		page = (struct page *)page_private(page); | 
 | 	return atomic_read(&page->_count); | 
 | } | 
 |  | 
 | static inline void get_page(struct page *page) | 
 | { | 
 | 	if (unlikely(PageCompound(page))) | 
 | 		page = (struct page *)page_private(page); | 
 | 	VM_BUG_ON(atomic_read(&page->_count) == 0); | 
 | 	atomic_inc(&page->_count); | 
 | } | 
 |  | 
 | /* | 
 |  * Setup the page count before being freed into the page allocator for | 
 |  * the first time (boot or memory hotplug) | 
 |  */ | 
 | static inline void init_page_count(struct page *page) | 
 | { | 
 | 	atomic_set(&page->_count, 1); | 
 | } | 
 |  | 
 | void put_page(struct page *page); | 
 | void put_pages_list(struct list_head *pages); | 
 |  | 
 | void split_page(struct page *page, unsigned int order); | 
 |  | 
 | /* | 
 |  * Multiple processes may "see" the same page. E.g. for untouched | 
 |  * mappings of /dev/null, all processes see the same page full of | 
 |  * zeroes, and text pages of executables and shared libraries have | 
 |  * only one copy in memory, at most, normally. | 
 |  * | 
 |  * For the non-reserved pages, page_count(page) denotes a reference count. | 
 |  *   page_count() == 0 means the page is free. page->lru is then used for | 
 |  *   freelist management in the buddy allocator. | 
 |  *   page_count() > 0  means the page has been allocated. | 
 |  * | 
 |  * Pages are allocated by the slab allocator in order to provide memory | 
 |  * to kmalloc and kmem_cache_alloc. In this case, the management of the | 
 |  * page, and the fields in 'struct page' are the responsibility of mm/slab.c | 
 |  * unless a particular usage is carefully commented. (the responsibility of | 
 |  * freeing the kmalloc memory is the caller's, of course). | 
 |  * | 
 |  * A page may be used by anyone else who does a __get_free_page(). | 
 |  * In this case, page_count still tracks the references, and should only | 
 |  * be used through the normal accessor functions. The top bits of page->flags | 
 |  * and page->virtual store page management information, but all other fields | 
 |  * are unused and could be used privately, carefully. The management of this | 
 |  * page is the responsibility of the one who allocated it, and those who have | 
 |  * subsequently been given references to it. | 
 |  * | 
 |  * The other pages (we may call them "pagecache pages") are completely | 
 |  * managed by the Linux memory manager: I/O, buffers, swapping etc. | 
 |  * The following discussion applies only to them. | 
 |  * | 
 |  * A pagecache page contains an opaque `private' member, which belongs to the | 
 |  * page's address_space. Usually, this is the address of a circular list of | 
 |  * the page's disk buffers. PG_private must be set to tell the VM to call | 
 |  * into the filesystem to release these pages. | 
 |  * | 
 |  * A page may belong to an inode's memory mapping. In this case, page->mapping | 
 |  * is the pointer to the inode, and page->index is the file offset of the page, | 
 |  * in units of PAGE_CACHE_SIZE. | 
 |  * | 
 |  * If pagecache pages are not associated with an inode, they are said to be | 
 |  * anonymous pages. These may become associated with the swapcache, and in that | 
 |  * case PG_swapcache is set, and page->private is an offset into the swapcache. | 
 |  * | 
 |  * In either case (swapcache or inode backed), the pagecache itself holds one | 
 |  * reference to the page. Setting PG_private should also increment the | 
 |  * refcount. The each user mapping also has a reference to the page. | 
 |  * | 
 |  * The pagecache pages are stored in a per-mapping radix tree, which is | 
 |  * rooted at mapping->page_tree, and indexed by offset. | 
 |  * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space | 
 |  * lists, we instead now tag pages as dirty/writeback in the radix tree. | 
 |  * | 
 |  * All pagecache pages may be subject to I/O: | 
 |  * - inode pages may need to be read from disk, | 
 |  * - inode pages which have been modified and are MAP_SHARED may need | 
 |  *   to be written back to the inode on disk, | 
 |  * - anonymous pages (including MAP_PRIVATE file mappings) which have been | 
 |  *   modified may need to be swapped out to swap space and (later) to be read | 
 |  *   back into memory. | 
 |  */ | 
 |  | 
 | /* | 
 |  * The zone field is never updated after free_area_init_core() | 
 |  * sets it, so none of the operations on it need to be atomic. | 
 |  */ | 
 |  | 
 |  | 
 | /* | 
 |  * page->flags layout: | 
 |  * | 
 |  * There are three possibilities for how page->flags get | 
 |  * laid out.  The first is for the normal case, without | 
 |  * sparsemem.  The second is for sparsemem when there is | 
 |  * plenty of space for node and section.  The last is when | 
 |  * we have run out of space and have to fall back to an | 
 |  * alternate (slower) way of determining the node. | 
 |  * | 
 |  *        No sparsemem: |       NODE     | ZONE | ... | FLAGS | | 
 |  * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | | 
 |  *   no space for node: | SECTION |     ZONE    | ... | FLAGS | | 
 |  */ | 
 | #ifdef CONFIG_SPARSEMEM | 
 | #define SECTIONS_WIDTH		SECTIONS_SHIFT | 
 | #else | 
 | #define SECTIONS_WIDTH		0 | 
 | #endif | 
 |  | 
 | #define ZONES_WIDTH		ZONES_SHIFT | 
 |  | 
 | #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED | 
 | #define NODES_WIDTH		NODES_SHIFT | 
 | #else | 
 | #define NODES_WIDTH		0 | 
 | #endif | 
 |  | 
 | /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ | 
 | #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH) | 
 | #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH) | 
 | #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH) | 
 |  | 
 | /* | 
 |  * We are going to use the flags for the page to node mapping if its in | 
 |  * there.  This includes the case where there is no node, so it is implicit. | 
 |  */ | 
 | #define FLAGS_HAS_NODE		(NODES_WIDTH > 0 || NODES_SHIFT == 0) | 
 |  | 
 | #ifndef PFN_SECTION_SHIFT | 
 | #define PFN_SECTION_SHIFT 0 | 
 | #endif | 
 |  | 
 | /* | 
 |  * Define the bit shifts to access each section.  For non-existant | 
 |  * sections we define the shift as 0; that plus a 0 mask ensures | 
 |  * the compiler will optimise away reference to them. | 
 |  */ | 
 | #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) | 
 | #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0)) | 
 | #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0)) | 
 |  | 
 | /* NODE:ZONE or SECTION:ZONE is used to lookup the zone from a page. */ | 
 | #if FLAGS_HAS_NODE | 
 | #define ZONETABLE_SHIFT		(NODES_SHIFT + ZONES_SHIFT) | 
 | #else | 
 | #define ZONETABLE_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT) | 
 | #endif | 
 | #define ZONETABLE_PGSHIFT	ZONES_PGSHIFT | 
 |  | 
 | #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED | 
 | #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED | 
 | #endif | 
 |  | 
 | #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1) | 
 | #define NODES_MASK		((1UL << NODES_WIDTH) - 1) | 
 | #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1) | 
 | #define ZONETABLE_MASK		((1UL << ZONETABLE_SHIFT) - 1) | 
 |  | 
 | static inline enum zone_type page_zonenum(struct page *page) | 
 | { | 
 | 	return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; | 
 | } | 
 |  | 
 | struct zone; | 
 | extern struct zone *zone_table[]; | 
 |  | 
 | static inline int page_zone_id(struct page *page) | 
 | { | 
 | 	return (page->flags >> ZONETABLE_PGSHIFT) & ZONETABLE_MASK; | 
 | } | 
 | static inline struct zone *page_zone(struct page *page) | 
 | { | 
 | 	return zone_table[page_zone_id(page)]; | 
 | } | 
 |  | 
 | static inline unsigned long zone_to_nid(struct zone *zone) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	return zone->node; | 
 | #else | 
 | 	return 0; | 
 | #endif | 
 | } | 
 |  | 
 | static inline unsigned long page_to_nid(struct page *page) | 
 | { | 
 | 	if (FLAGS_HAS_NODE) | 
 | 		return (page->flags >> NODES_PGSHIFT) & NODES_MASK; | 
 | 	else | 
 | 		return zone_to_nid(page_zone(page)); | 
 | } | 
 | static inline unsigned long page_to_section(struct page *page) | 
 | { | 
 | 	return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; | 
 | } | 
 |  | 
 | static inline void set_page_zone(struct page *page, enum zone_type zone) | 
 | { | 
 | 	page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); | 
 | 	page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; | 
 | } | 
 |  | 
 | static inline void set_page_node(struct page *page, unsigned long node) | 
 | { | 
 | 	page->flags &= ~(NODES_MASK << NODES_PGSHIFT); | 
 | 	page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; | 
 | } | 
 | static inline void set_page_section(struct page *page, unsigned long section) | 
 | { | 
 | 	page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); | 
 | 	page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; | 
 | } | 
 |  | 
 | static inline void set_page_links(struct page *page, enum zone_type zone, | 
 | 	unsigned long node, unsigned long pfn) | 
 | { | 
 | 	set_page_zone(page, zone); | 
 | 	set_page_node(page, node); | 
 | 	set_page_section(page, pfn_to_section_nr(pfn)); | 
 | } | 
 |  | 
 | /* | 
 |  * Some inline functions in vmstat.h depend on page_zone() | 
 |  */ | 
 | #include <linux/vmstat.h> | 
 |  | 
 | static __always_inline void *lowmem_page_address(struct page *page) | 
 | { | 
 | 	return __va(page_to_pfn(page) << PAGE_SHIFT); | 
 | } | 
 |  | 
 | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) | 
 | #define HASHED_PAGE_VIRTUAL | 
 | #endif | 
 |  | 
 | #if defined(WANT_PAGE_VIRTUAL) | 
 | #define page_address(page) ((page)->virtual) | 
 | #define set_page_address(page, address)			\ | 
 | 	do {						\ | 
 | 		(page)->virtual = (address);		\ | 
 | 	} while(0) | 
 | #define page_address_init()  do { } while(0) | 
 | #endif | 
 |  | 
 | #if defined(HASHED_PAGE_VIRTUAL) | 
 | void *page_address(struct page *page); | 
 | void set_page_address(struct page *page, void *virtual); | 
 | void page_address_init(void); | 
 | #endif | 
 |  | 
 | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) | 
 | #define page_address(page) lowmem_page_address(page) | 
 | #define set_page_address(page, address)  do { } while(0) | 
 | #define page_address_init()  do { } while(0) | 
 | #endif | 
 |  | 
 | /* | 
 |  * On an anonymous page mapped into a user virtual memory area, | 
 |  * page->mapping points to its anon_vma, not to a struct address_space; | 
 |  * with the PAGE_MAPPING_ANON bit set to distinguish it. | 
 |  * | 
 |  * Please note that, confusingly, "page_mapping" refers to the inode | 
 |  * address_space which maps the page from disk; whereas "page_mapped" | 
 |  * refers to user virtual address space into which the page is mapped. | 
 |  */ | 
 | #define PAGE_MAPPING_ANON	1 | 
 |  | 
 | extern struct address_space swapper_space; | 
 | static inline struct address_space *page_mapping(struct page *page) | 
 | { | 
 | 	struct address_space *mapping = page->mapping; | 
 |  | 
 | 	if (unlikely(PageSwapCache(page))) | 
 | 		mapping = &swapper_space; | 
 | 	else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) | 
 | 		mapping = NULL; | 
 | 	return mapping; | 
 | } | 
 |  | 
 | static inline int PageAnon(struct page *page) | 
 | { | 
 | 	return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Return the pagecache index of the passed page.  Regular pagecache pages | 
 |  * use ->index whereas swapcache pages use ->private | 
 |  */ | 
 | static inline pgoff_t page_index(struct page *page) | 
 | { | 
 | 	if (unlikely(PageSwapCache(page))) | 
 | 		return page_private(page); | 
 | 	return page->index; | 
 | } | 
 |  | 
 | /* | 
 |  * The atomic page->_mapcount, like _count, starts from -1: | 
 |  * so that transitions both from it and to it can be tracked, | 
 |  * using atomic_inc_and_test and atomic_add_negative(-1). | 
 |  */ | 
 | static inline void reset_page_mapcount(struct page *page) | 
 | { | 
 | 	atomic_set(&(page)->_mapcount, -1); | 
 | } | 
 |  | 
 | static inline int page_mapcount(struct page *page) | 
 | { | 
 | 	return atomic_read(&(page)->_mapcount) + 1; | 
 | } | 
 |  | 
 | /* | 
 |  * Return true if this page is mapped into pagetables. | 
 |  */ | 
 | static inline int page_mapped(struct page *page) | 
 | { | 
 | 	return atomic_read(&(page)->_mapcount) >= 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Error return values for the *_nopage functions | 
 |  */ | 
 | #define NOPAGE_SIGBUS	(NULL) | 
 | #define NOPAGE_OOM	((struct page *) (-1)) | 
 | #define NOPAGE_REFAULT	((struct page *) (-2))	/* Return to userspace, rerun */ | 
 |  | 
 | /* | 
 |  * Error return values for the *_nopfn functions | 
 |  */ | 
 | #define NOPFN_SIGBUS	((unsigned long) -1) | 
 | #define NOPFN_OOM	((unsigned long) -2) | 
 |  | 
 | /* | 
 |  * Different kinds of faults, as returned by handle_mm_fault(). | 
 |  * Used to decide whether a process gets delivered SIGBUS or | 
 |  * just gets major/minor fault counters bumped up. | 
 |  */ | 
 | #define VM_FAULT_OOM	0x00 | 
 | #define VM_FAULT_SIGBUS	0x01 | 
 | #define VM_FAULT_MINOR	0x02 | 
 | #define VM_FAULT_MAJOR	0x03 | 
 |  | 
 | /*  | 
 |  * Special case for get_user_pages. | 
 |  * Must be in a distinct bit from the above VM_FAULT_ flags. | 
 |  */ | 
 | #define VM_FAULT_WRITE	0x10 | 
 |  | 
 | #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK) | 
 |  | 
 | extern void show_free_areas(void); | 
 |  | 
 | #ifdef CONFIG_SHMEM | 
 | struct page *shmem_nopage(struct vm_area_struct *vma, | 
 | 			unsigned long address, int *type); | 
 | int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *new); | 
 | struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, | 
 | 					unsigned long addr); | 
 | int shmem_lock(struct file *file, int lock, struct user_struct *user); | 
 | #else | 
 | #define shmem_nopage filemap_nopage | 
 |  | 
 | static inline int shmem_lock(struct file *file, int lock, | 
 | 			     struct user_struct *user) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline int shmem_set_policy(struct vm_area_struct *vma, | 
 | 				   struct mempolicy *new) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | static inline struct mempolicy *shmem_get_policy(struct vm_area_struct *vma, | 
 | 						 unsigned long addr) | 
 | { | 
 | 	return NULL; | 
 | } | 
 | #endif | 
 | struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); | 
 | extern int shmem_mmap(struct file *file, struct vm_area_struct *vma); | 
 |  | 
 | int shmem_zero_setup(struct vm_area_struct *); | 
 |  | 
 | #ifndef CONFIG_MMU | 
 | extern unsigned long shmem_get_unmapped_area(struct file *file, | 
 | 					     unsigned long addr, | 
 | 					     unsigned long len, | 
 | 					     unsigned long pgoff, | 
 | 					     unsigned long flags); | 
 | #endif | 
 |  | 
 | static inline int can_do_mlock(void) | 
 | { | 
 | 	if (capable(CAP_IPC_LOCK)) | 
 | 		return 1; | 
 | 	if (current->signal->rlim[RLIMIT_MEMLOCK].rlim_cur != 0) | 
 | 		return 1; | 
 | 	return 0; | 
 | } | 
 | extern int user_shm_lock(size_t, struct user_struct *); | 
 | extern void user_shm_unlock(size_t, struct user_struct *); | 
 |  | 
 | /* | 
 |  * Parameter block passed down to zap_pte_range in exceptional cases. | 
 |  */ | 
 | struct zap_details { | 
 | 	struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */ | 
 | 	struct address_space *check_mapping;	/* Check page->mapping if set */ | 
 | 	pgoff_t	first_index;			/* Lowest page->index to unmap */ | 
 | 	pgoff_t last_index;			/* Highest page->index to unmap */ | 
 | 	spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */ | 
 | 	unsigned long truncate_count;		/* Compare vm_truncate_count */ | 
 | }; | 
 |  | 
 | struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); | 
 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
 | 		unsigned long size, struct zap_details *); | 
 | unsigned long unmap_vmas(struct mmu_gather **tlb, | 
 | 		struct vm_area_struct *start_vma, unsigned long start_addr, | 
 | 		unsigned long end_addr, unsigned long *nr_accounted, | 
 | 		struct zap_details *); | 
 | void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, | 
 | 		unsigned long end, unsigned long floor, unsigned long ceiling); | 
 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, | 
 | 		unsigned long floor, unsigned long ceiling); | 
 | int copy_page_range(struct mm_struct *dst, struct mm_struct *src, | 
 | 			struct vm_area_struct *vma); | 
 | int zeromap_page_range(struct vm_area_struct *vma, unsigned long from, | 
 | 			unsigned long size, pgprot_t prot); | 
 | void unmap_mapping_range(struct address_space *mapping, | 
 | 		loff_t const holebegin, loff_t const holelen, int even_cows); | 
 |  | 
 | static inline void unmap_shared_mapping_range(struct address_space *mapping, | 
 | 		loff_t const holebegin, loff_t const holelen) | 
 | { | 
 | 	unmap_mapping_range(mapping, holebegin, holelen, 0); | 
 | } | 
 |  | 
 | extern int vmtruncate(struct inode * inode, loff_t offset); | 
 | extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); | 
 | extern int install_page(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, struct page *page, pgprot_t prot); | 
 | extern int install_file_pte(struct mm_struct *mm, struct vm_area_struct *vma, unsigned long addr, unsigned long pgoff, pgprot_t prot); | 
 |  | 
 | #ifdef CONFIG_MMU | 
 | extern int __handle_mm_fault(struct mm_struct *mm,struct vm_area_struct *vma, | 
 | 			unsigned long address, int write_access); | 
 |  | 
 | static inline int handle_mm_fault(struct mm_struct *mm, | 
 | 			struct vm_area_struct *vma, unsigned long address, | 
 | 			int write_access) | 
 | { | 
 | 	return __handle_mm_fault(mm, vma, address, write_access) & | 
 | 				(~VM_FAULT_WRITE); | 
 | } | 
 | #else | 
 | static inline int handle_mm_fault(struct mm_struct *mm, | 
 | 			struct vm_area_struct *vma, unsigned long address, | 
 | 			int write_access) | 
 | { | 
 | 	/* should never happen if there's no MMU */ | 
 | 	BUG(); | 
 | 	return VM_FAULT_SIGBUS; | 
 | } | 
 | #endif | 
 |  | 
 | extern int make_pages_present(unsigned long addr, unsigned long end); | 
 | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); | 
 | void install_arg_page(struct vm_area_struct *, struct page *, unsigned long); | 
 |  | 
 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, | 
 | 		int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); | 
 | void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); | 
 |  | 
 | extern int try_to_release_page(struct page * page, gfp_t gfp_mask); | 
 | extern void do_invalidatepage(struct page *page, unsigned long offset); | 
 |  | 
 | int __set_page_dirty_nobuffers(struct page *page); | 
 | int redirty_page_for_writepage(struct writeback_control *wbc, | 
 | 				struct page *page); | 
 | int FASTCALL(set_page_dirty(struct page *page)); | 
 | int set_page_dirty_lock(struct page *page); | 
 | int clear_page_dirty_for_io(struct page *page); | 
 |  | 
 | extern unsigned long do_mremap(unsigned long addr, | 
 | 			       unsigned long old_len, unsigned long new_len, | 
 | 			       unsigned long flags, unsigned long new_addr); | 
 |  | 
 | /* | 
 |  * Prototype to add a shrinker callback for ageable caches. | 
 |  *  | 
 |  * These functions are passed a count `nr_to_scan' and a gfpmask.  They should | 
 |  * scan `nr_to_scan' objects, attempting to free them. | 
 |  * | 
 |  * The callback must return the number of objects which remain in the cache. | 
 |  * | 
 |  * The callback will be passed nr_to_scan == 0 when the VM is querying the | 
 |  * cache size, so a fastpath for that case is appropriate. | 
 |  */ | 
 | typedef int (*shrinker_t)(int nr_to_scan, gfp_t gfp_mask); | 
 |  | 
 | /* | 
 |  * Add an aging callback.  The int is the number of 'seeks' it takes | 
 |  * to recreate one of the objects that these functions age. | 
 |  */ | 
 |  | 
 | #define DEFAULT_SEEKS 2 | 
 | struct shrinker; | 
 | extern struct shrinker *set_shrinker(int, shrinker_t); | 
 | extern void remove_shrinker(struct shrinker *shrinker); | 
 |  | 
 | /* | 
 |  * Some shared mappigns will want the pages marked read-only | 
 |  * to track write events. If so, we'll downgrade vm_page_prot | 
 |  * to the private version (using protection_map[] without the | 
 |  * VM_SHARED bit). | 
 |  */ | 
 | static inline int vma_wants_writenotify(struct vm_area_struct *vma) | 
 | { | 
 | 	unsigned int vm_flags = vma->vm_flags; | 
 |  | 
 | 	/* If it was private or non-writable, the write bit is already clear */ | 
 | 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED))) | 
 | 		return 0; | 
 |  | 
 | 	/* The backer wishes to know when pages are first written to? */ | 
 | 	if (vma->vm_ops && vma->vm_ops->page_mkwrite) | 
 | 		return 1; | 
 |  | 
 | 	/* The open routine did something to the protections already? */ | 
 | 	if (pgprot_val(vma->vm_page_prot) != | 
 | 	    pgprot_val(protection_map[vm_flags & | 
 | 		    (VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)])) | 
 | 		return 0; | 
 |  | 
 | 	/* Specialty mapping? */ | 
 | 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE)) | 
 | 		return 0; | 
 |  | 
 | 	/* Can the mapping track the dirty pages? */ | 
 | 	return vma->vm_file && vma->vm_file->f_mapping && | 
 | 		mapping_cap_account_dirty(vma->vm_file->f_mapping); | 
 | } | 
 |  | 
 | extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); | 
 |  | 
 | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); | 
 | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); | 
 | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); | 
 | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); | 
 |  | 
 | /* | 
 |  * The following ifdef needed to get the 4level-fixup.h header to work. | 
 |  * Remove it when 4level-fixup.h has been removed. | 
 |  */ | 
 | #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) | 
 | static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
 | { | 
 | 	return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? | 
 | 		NULL: pud_offset(pgd, address); | 
 | } | 
 |  | 
 | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
 | { | 
 | 	return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? | 
 | 		NULL: pmd_offset(pud, address); | 
 | } | 
 | #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ | 
 |  | 
 | #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS | 
 | /* | 
 |  * We tuck a spinlock to guard each pagetable page into its struct page, | 
 |  * at page->private, with BUILD_BUG_ON to make sure that this will not | 
 |  * overflow into the next struct page (as it might with DEBUG_SPINLOCK). | 
 |  * When freeing, reset page->mapping so free_pages_check won't complain. | 
 |  */ | 
 | #define __pte_lockptr(page)	&((page)->ptl) | 
 | #define pte_lock_init(_page)	do {					\ | 
 | 	spin_lock_init(__pte_lockptr(_page));				\ | 
 | } while (0) | 
 | #define pte_lock_deinit(page)	((page)->mapping = NULL) | 
 | #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) | 
 | #else | 
 | /* | 
 |  * We use mm->page_table_lock to guard all pagetable pages of the mm. | 
 |  */ | 
 | #define pte_lock_init(page)	do {} while (0) | 
 | #define pte_lock_deinit(page)	do {} while (0) | 
 | #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;}) | 
 | #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ | 
 |  | 
 | #define pte_offset_map_lock(mm, pmd, address, ptlp)	\ | 
 | ({							\ | 
 | 	spinlock_t *__ptl = pte_lockptr(mm, pmd);	\ | 
 | 	pte_t *__pte = pte_offset_map(pmd, address);	\ | 
 | 	*(ptlp) = __ptl;				\ | 
 | 	spin_lock(__ptl);				\ | 
 | 	__pte;						\ | 
 | }) | 
 |  | 
 | #define pte_unmap_unlock(pte, ptl)	do {		\ | 
 | 	spin_unlock(ptl);				\ | 
 | 	pte_unmap(pte);					\ | 
 | } while (0) | 
 |  | 
 | #define pte_alloc_map(mm, pmd, address)			\ | 
 | 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ | 
 | 		NULL: pte_offset_map(pmd, address)) | 
 |  | 
 | #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\ | 
 | 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ | 
 | 		NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) | 
 |  | 
 | #define pte_alloc_kernel(pmd, address)			\ | 
 | 	((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ | 
 | 		NULL: pte_offset_kernel(pmd, address)) | 
 |  | 
 | extern void free_area_init(unsigned long * zones_size); | 
 | extern void free_area_init_node(int nid, pg_data_t *pgdat, | 
 | 	unsigned long * zones_size, unsigned long zone_start_pfn,  | 
 | 	unsigned long *zholes_size); | 
 | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 
 | /* | 
 |  * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its | 
 |  * zones, allocate the backing mem_map and account for memory holes in a more | 
 |  * architecture independent manner. This is a substitute for creating the | 
 |  * zone_sizes[] and zholes_size[] arrays and passing them to | 
 |  * free_area_init_node() | 
 |  * | 
 |  * An architecture is expected to register range of page frames backed by | 
 |  * physical memory with add_active_range() before calling | 
 |  * free_area_init_nodes() passing in the PFN each zone ends at. At a basic | 
 |  * usage, an architecture is expected to do something like | 
 |  * | 
 |  * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, | 
 |  * 							 max_highmem_pfn}; | 
 |  * for_each_valid_physical_page_range() | 
 |  * 	add_active_range(node_id, start_pfn, end_pfn) | 
 |  * free_area_init_nodes(max_zone_pfns); | 
 |  * | 
 |  * If the architecture guarantees that there are no holes in the ranges | 
 |  * registered with add_active_range(), free_bootmem_active_regions() | 
 |  * will call free_bootmem_node() for each registered physical page range. | 
 |  * Similarly sparse_memory_present_with_active_regions() calls | 
 |  * memory_present() for each range when SPARSEMEM is enabled. | 
 |  * | 
 |  * See mm/page_alloc.c for more information on each function exposed by | 
 |  * CONFIG_ARCH_POPULATES_NODE_MAP | 
 |  */ | 
 | extern void free_area_init_nodes(unsigned long *max_zone_pfn); | 
 | extern void add_active_range(unsigned int nid, unsigned long start_pfn, | 
 | 					unsigned long end_pfn); | 
 | extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, | 
 | 						unsigned long new_end_pfn); | 
 | extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, | 
 | 					unsigned long end_pfn); | 
 | extern void remove_all_active_ranges(void); | 
 | extern unsigned long absent_pages_in_range(unsigned long start_pfn, | 
 | 						unsigned long end_pfn); | 
 | extern void get_pfn_range_for_nid(unsigned int nid, | 
 | 			unsigned long *start_pfn, unsigned long *end_pfn); | 
 | extern unsigned long find_min_pfn_with_active_regions(void); | 
 | extern unsigned long find_max_pfn_with_active_regions(void); | 
 | extern void free_bootmem_with_active_regions(int nid, | 
 | 						unsigned long max_low_pfn); | 
 | extern void sparse_memory_present_with_active_regions(int nid); | 
 | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 
 | extern int early_pfn_to_nid(unsigned long pfn); | 
 | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 
 | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | 
 | extern void set_dma_reserve(unsigned long new_dma_reserve); | 
 | extern void memmap_init_zone(unsigned long, int, unsigned long, unsigned long); | 
 | extern void setup_per_zone_pages_min(void); | 
 | extern void mem_init(void); | 
 | extern void show_mem(void); | 
 | extern void si_meminfo(struct sysinfo * val); | 
 | extern void si_meminfo_node(struct sysinfo *val, int nid); | 
 | extern void zonetable_add(struct zone *zone, int nid, enum zone_type zid, | 
 | 					unsigned long pfn, unsigned long size); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | extern void setup_per_cpu_pageset(void); | 
 | #else | 
 | static inline void setup_per_cpu_pageset(void) {} | 
 | #endif | 
 |  | 
 | /* prio_tree.c */ | 
 | void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); | 
 | void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); | 
 | void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); | 
 | struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, | 
 | 	struct prio_tree_iter *iter); | 
 |  | 
 | #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\ | 
 | 	for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\ | 
 | 		(vma = vma_prio_tree_next(vma, iter)); ) | 
 |  | 
 | static inline void vma_nonlinear_insert(struct vm_area_struct *vma, | 
 | 					struct list_head *list) | 
 | { | 
 | 	vma->shared.vm_set.parent = NULL; | 
 | 	list_add_tail(&vma->shared.vm_set.list, list); | 
 | } | 
 |  | 
 | /* mmap.c */ | 
 | extern int __vm_enough_memory(long pages, int cap_sys_admin); | 
 | extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, | 
 | 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); | 
 | extern struct vm_area_struct *vma_merge(struct mm_struct *, | 
 | 	struct vm_area_struct *prev, unsigned long addr, unsigned long end, | 
 | 	unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, | 
 | 	struct mempolicy *); | 
 | extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); | 
 | extern int split_vma(struct mm_struct *, | 
 | 	struct vm_area_struct *, unsigned long addr, int new_below); | 
 | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); | 
 | extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, | 
 | 	struct rb_node **, struct rb_node *); | 
 | extern void unlink_file_vma(struct vm_area_struct *); | 
 | extern struct vm_area_struct *copy_vma(struct vm_area_struct **, | 
 | 	unsigned long addr, unsigned long len, pgoff_t pgoff); | 
 | extern void exit_mmap(struct mm_struct *); | 
 | extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); | 
 |  | 
 | extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); | 
 |  | 
 | extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, | 
 | 	unsigned long len, unsigned long prot, | 
 | 	unsigned long flag, unsigned long pgoff); | 
 |  | 
 | static inline unsigned long do_mmap(struct file *file, unsigned long addr, | 
 | 	unsigned long len, unsigned long prot, | 
 | 	unsigned long flag, unsigned long offset) | 
 | { | 
 | 	unsigned long ret = -EINVAL; | 
 | 	if ((offset + PAGE_ALIGN(len)) < offset) | 
 | 		goto out; | 
 | 	if (!(offset & ~PAGE_MASK)) | 
 | 		ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | extern int do_munmap(struct mm_struct *, unsigned long, size_t); | 
 |  | 
 | extern unsigned long do_brk(unsigned long, unsigned long); | 
 |  | 
 | /* filemap.c */ | 
 | extern unsigned long page_unuse(struct page *); | 
 | extern void truncate_inode_pages(struct address_space *, loff_t); | 
 | extern void truncate_inode_pages_range(struct address_space *, | 
 | 				       loff_t lstart, loff_t lend); | 
 |  | 
 | /* generic vm_area_ops exported for stackable file systems */ | 
 | extern struct page *filemap_nopage(struct vm_area_struct *, unsigned long, int *); | 
 | extern int filemap_populate(struct vm_area_struct *, unsigned long, | 
 | 		unsigned long, pgprot_t, unsigned long, int); | 
 |  | 
 | /* mm/page-writeback.c */ | 
 | int write_one_page(struct page *page, int wait); | 
 |  | 
 | /* readahead.c */ | 
 | #define VM_MAX_READAHEAD	128	/* kbytes */ | 
 | #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */ | 
 | #define VM_MAX_CACHE_HIT    	256	/* max pages in a row in cache before | 
 | 					 * turning readahead off */ | 
 |  | 
 | int do_page_cache_readahead(struct address_space *mapping, struct file *filp, | 
 | 			pgoff_t offset, unsigned long nr_to_read); | 
 | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, | 
 | 			pgoff_t offset, unsigned long nr_to_read); | 
 | unsigned long page_cache_readahead(struct address_space *mapping, | 
 | 			  struct file_ra_state *ra, | 
 | 			  struct file *filp, | 
 | 			  pgoff_t offset, | 
 | 			  unsigned long size); | 
 | void handle_ra_miss(struct address_space *mapping,  | 
 | 		    struct file_ra_state *ra, pgoff_t offset); | 
 | unsigned long max_sane_readahead(unsigned long nr); | 
 |  | 
 | /* Do stack extension */ | 
 | extern int expand_stack(struct vm_area_struct *vma, unsigned long address); | 
 | #ifdef CONFIG_IA64 | 
 | extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); | 
 | #endif | 
 |  | 
 | /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */ | 
 | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); | 
 | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, | 
 | 					     struct vm_area_struct **pprev); | 
 |  | 
 | /* Look up the first VMA which intersects the interval start_addr..end_addr-1, | 
 |    NULL if none.  Assume start_addr < end_addr. */ | 
 | static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) | 
 | { | 
 | 	struct vm_area_struct * vma = find_vma(mm,start_addr); | 
 |  | 
 | 	if (vma && end_addr <= vma->vm_start) | 
 | 		vma = NULL; | 
 | 	return vma; | 
 | } | 
 |  | 
 | static inline unsigned long vma_pages(struct vm_area_struct *vma) | 
 | { | 
 | 	return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
 | } | 
 |  | 
 | pgprot_t vm_get_page_prot(unsigned long vm_flags); | 
 | struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); | 
 | struct page *vmalloc_to_page(void *addr); | 
 | unsigned long vmalloc_to_pfn(void *addr); | 
 | int remap_pfn_range(struct vm_area_struct *, unsigned long addr, | 
 | 			unsigned long pfn, unsigned long size, pgprot_t); | 
 | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); | 
 |  | 
 | struct page *follow_page(struct vm_area_struct *, unsigned long address, | 
 | 			unsigned int foll_flags); | 
 | #define FOLL_WRITE	0x01	/* check pte is writable */ | 
 | #define FOLL_TOUCH	0x02	/* mark page accessed */ | 
 | #define FOLL_GET	0x04	/* do get_page on page */ | 
 | #define FOLL_ANON	0x08	/* give ZERO_PAGE if no pgtable */ | 
 |  | 
 | #ifdef CONFIG_PROC_FS | 
 | void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); | 
 | #else | 
 | static inline void vm_stat_account(struct mm_struct *mm, | 
 | 			unsigned long flags, struct file *file, long pages) | 
 | { | 
 | } | 
 | #endif /* CONFIG_PROC_FS */ | 
 |  | 
 | #ifndef CONFIG_DEBUG_PAGEALLOC | 
 | static inline void | 
 | kernel_map_pages(struct page *page, int numpages, int enable) {} | 
 | #endif | 
 |  | 
 | extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); | 
 | #ifdef	__HAVE_ARCH_GATE_AREA | 
 | int in_gate_area_no_task(unsigned long addr); | 
 | int in_gate_area(struct task_struct *task, unsigned long addr); | 
 | #else | 
 | int in_gate_area_no_task(unsigned long addr); | 
 | #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) | 
 | #endif	/* __HAVE_ARCH_GATE_AREA */ | 
 |  | 
 | /* /proc/<pid>/oom_adj set to -17 protects from the oom-killer */ | 
 | #define OOM_DISABLE -17 | 
 |  | 
 | int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, | 
 | 					void __user *, size_t *, loff_t *); | 
 | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, | 
 | 			unsigned long lru_pages); | 
 | void drop_pagecache(void); | 
 | void drop_slab(void); | 
 |  | 
 | #ifndef CONFIG_MMU | 
 | #define randomize_va_space 0 | 
 | #else | 
 | extern int randomize_va_space; | 
 | #endif | 
 |  | 
 | __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma); | 
 |  | 
 | #endif /* __KERNEL__ */ | 
 | #endif /* _LINUX_MM_H */ |