|  | /* | 
|  | *  linux/kernel/exit.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/mm.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/namespace.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/acct.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/nsproxy.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/profile.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/mempolicy.h> | 
|  | #include <linux/taskstats_kern.h> | 
|  | #include <linux/delayacct.h> | 
|  | #include <linux/cpuset.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/signal.h> | 
|  | #include <linux/posix-timers.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <linux/futex.h> | 
|  | #include <linux/compat.h> | 
|  | #include <linux/pipe_fs_i.h> | 
|  | #include <linux/audit.h> /* for audit_free() */ | 
|  | #include <linux/resource.h> | 
|  | #include <linux/blkdev.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu_context.h> | 
|  |  | 
|  | extern void sem_exit (void); | 
|  | extern struct task_struct *child_reaper; | 
|  |  | 
|  | static void exit_mm(struct task_struct * tsk); | 
|  |  | 
|  | static void __unhash_process(struct task_struct *p) | 
|  | { | 
|  | nr_threads--; | 
|  | detach_pid(p, PIDTYPE_PID); | 
|  | if (thread_group_leader(p)) { | 
|  | detach_pid(p, PIDTYPE_PGID); | 
|  | detach_pid(p, PIDTYPE_SID); | 
|  |  | 
|  | list_del_rcu(&p->tasks); | 
|  | __get_cpu_var(process_counts)--; | 
|  | } | 
|  | list_del_rcu(&p->thread_group); | 
|  | remove_parent(p); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function expects the tasklist_lock write-locked. | 
|  | */ | 
|  | static void __exit_signal(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig = tsk->signal; | 
|  | struct sighand_struct *sighand; | 
|  |  | 
|  | BUG_ON(!sig); | 
|  | BUG_ON(!atomic_read(&sig->count)); | 
|  |  | 
|  | rcu_read_lock(); | 
|  | sighand = rcu_dereference(tsk->sighand); | 
|  | spin_lock(&sighand->siglock); | 
|  |  | 
|  | posix_cpu_timers_exit(tsk); | 
|  | if (atomic_dec_and_test(&sig->count)) | 
|  | posix_cpu_timers_exit_group(tsk); | 
|  | else { | 
|  | /* | 
|  | * If there is any task waiting for the group exit | 
|  | * then notify it: | 
|  | */ | 
|  | if (sig->group_exit_task && atomic_read(&sig->count) == sig->notify_count) { | 
|  | wake_up_process(sig->group_exit_task); | 
|  | sig->group_exit_task = NULL; | 
|  | } | 
|  | if (tsk == sig->curr_target) | 
|  | sig->curr_target = next_thread(tsk); | 
|  | /* | 
|  | * Accumulate here the counters for all threads but the | 
|  | * group leader as they die, so they can be added into | 
|  | * the process-wide totals when those are taken. | 
|  | * The group leader stays around as a zombie as long | 
|  | * as there are other threads.  When it gets reaped, | 
|  | * the exit.c code will add its counts into these totals. | 
|  | * We won't ever get here for the group leader, since it | 
|  | * will have been the last reference on the signal_struct. | 
|  | */ | 
|  | sig->utime = cputime_add(sig->utime, tsk->utime); | 
|  | sig->stime = cputime_add(sig->stime, tsk->stime); | 
|  | sig->min_flt += tsk->min_flt; | 
|  | sig->maj_flt += tsk->maj_flt; | 
|  | sig->nvcsw += tsk->nvcsw; | 
|  | sig->nivcsw += tsk->nivcsw; | 
|  | sig->sched_time += tsk->sched_time; | 
|  | sig = NULL; /* Marker for below. */ | 
|  | } | 
|  |  | 
|  | __unhash_process(tsk); | 
|  |  | 
|  | tsk->signal = NULL; | 
|  | tsk->sighand = NULL; | 
|  | spin_unlock(&sighand->siglock); | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | __cleanup_sighand(sighand); | 
|  | clear_tsk_thread_flag(tsk,TIF_SIGPENDING); | 
|  | flush_sigqueue(&tsk->pending); | 
|  | if (sig) { | 
|  | flush_sigqueue(&sig->shared_pending); | 
|  | __cleanup_signal(sig); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void delayed_put_task_struct(struct rcu_head *rhp) | 
|  | { | 
|  | put_task_struct(container_of(rhp, struct task_struct, rcu)); | 
|  | } | 
|  |  | 
|  | void release_task(struct task_struct * p) | 
|  | { | 
|  | struct task_struct *leader; | 
|  | int zap_leader; | 
|  | repeat: | 
|  | atomic_dec(&p->user->processes); | 
|  | write_lock_irq(&tasklist_lock); | 
|  | ptrace_unlink(p); | 
|  | BUG_ON(!list_empty(&p->ptrace_list) || !list_empty(&p->ptrace_children)); | 
|  | __exit_signal(p); | 
|  |  | 
|  | /* | 
|  | * If we are the last non-leader member of the thread | 
|  | * group, and the leader is zombie, then notify the | 
|  | * group leader's parent process. (if it wants notification.) | 
|  | */ | 
|  | zap_leader = 0; | 
|  | leader = p->group_leader; | 
|  | if (leader != p && thread_group_empty(leader) && leader->exit_state == EXIT_ZOMBIE) { | 
|  | BUG_ON(leader->exit_signal == -1); | 
|  | do_notify_parent(leader, leader->exit_signal); | 
|  | /* | 
|  | * If we were the last child thread and the leader has | 
|  | * exited already, and the leader's parent ignores SIGCHLD, | 
|  | * then we are the one who should release the leader. | 
|  | * | 
|  | * do_notify_parent() will have marked it self-reaping in | 
|  | * that case. | 
|  | */ | 
|  | zap_leader = (leader->exit_signal == -1); | 
|  | } | 
|  |  | 
|  | sched_exit(p); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | proc_flush_task(p); | 
|  | release_thread(p); | 
|  | call_rcu(&p->rcu, delayed_put_task_struct); | 
|  |  | 
|  | p = leader; | 
|  | if (unlikely(zap_leader)) | 
|  | goto repeat; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This checks not only the pgrp, but falls back on the pid if no | 
|  | * satisfactory pgrp is found. I dunno - gdb doesn't work correctly | 
|  | * without this... | 
|  | */ | 
|  | int session_of_pgrp(int pgrp) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int sid = -1; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | 
|  | if (p->signal->session > 0) { | 
|  | sid = p->signal->session; | 
|  | goto out; | 
|  | } | 
|  | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | 
|  | p = find_task_by_pid(pgrp); | 
|  | if (p) | 
|  | sid = p->signal->session; | 
|  | out: | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return sid; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine if a process group is "orphaned", according to the POSIX | 
|  | * definition in 2.2.2.52.  Orphaned process groups are not to be affected | 
|  | * by terminal-generated stop signals.  Newly orphaned process groups are | 
|  | * to receive a SIGHUP and a SIGCONT. | 
|  | * | 
|  | * "I ask you, have you ever known what it is to be an orphan?" | 
|  | */ | 
|  | static int will_become_orphaned_pgrp(int pgrp, struct task_struct *ignored_task) | 
|  | { | 
|  | struct task_struct *p; | 
|  | int ret = 1; | 
|  |  | 
|  | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | 
|  | if (p == ignored_task | 
|  | || p->exit_state | 
|  | || is_init(p->real_parent)) | 
|  | continue; | 
|  | if (process_group(p->real_parent) != pgrp | 
|  | && p->real_parent->signal->session == p->signal->session) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | 
|  | return ret;	/* (sighing) "Often!" */ | 
|  | } | 
|  |  | 
|  | int is_orphaned_pgrp(int pgrp) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  | retval = will_become_orphaned_pgrp(pgrp, NULL); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static int has_stopped_jobs(int pgrp) | 
|  | { | 
|  | int retval = 0; | 
|  | struct task_struct *p; | 
|  |  | 
|  | do_each_task_pid(pgrp, PIDTYPE_PGID, p) { | 
|  | if (p->state != TASK_STOPPED) | 
|  | continue; | 
|  | retval = 1; | 
|  | break; | 
|  | } while_each_task_pid(pgrp, PIDTYPE_PGID, p); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * reparent_to_init - Reparent the calling kernel thread to the init task. | 
|  | * | 
|  | * If a kernel thread is launched as a result of a system call, or if | 
|  | * it ever exits, it should generally reparent itself to init so that | 
|  | * it is correctly cleaned up on exit. | 
|  | * | 
|  | * The various task state such as scheduling policy and priority may have | 
|  | * been inherited from a user process, so we reset them to sane values here. | 
|  | * | 
|  | * NOTE that reparent_to_init() gives the caller full capabilities. | 
|  | */ | 
|  | static void reparent_to_init(void) | 
|  | { | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | ptrace_unlink(current); | 
|  | /* Reparent to init */ | 
|  | remove_parent(current); | 
|  | current->parent = child_reaper; | 
|  | current->real_parent = child_reaper; | 
|  | add_parent(current); | 
|  |  | 
|  | /* Set the exit signal to SIGCHLD so we signal init on exit */ | 
|  | current->exit_signal = SIGCHLD; | 
|  |  | 
|  | if (!has_rt_policy(current) && (task_nice(current) < 0)) | 
|  | set_user_nice(current, 0); | 
|  | /* cpus_allowed? */ | 
|  | /* rt_priority? */ | 
|  | /* signals? */ | 
|  | security_task_reparent_to_init(current); | 
|  | memcpy(current->signal->rlim, init_task.signal->rlim, | 
|  | sizeof(current->signal->rlim)); | 
|  | atomic_inc(&(INIT_USER->__count)); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | switch_uid(INIT_USER); | 
|  | } | 
|  |  | 
|  | void __set_special_pids(pid_t session, pid_t pgrp) | 
|  | { | 
|  | struct task_struct *curr = current->group_leader; | 
|  |  | 
|  | if (curr->signal->session != session) { | 
|  | detach_pid(curr, PIDTYPE_SID); | 
|  | curr->signal->session = session; | 
|  | attach_pid(curr, PIDTYPE_SID, session); | 
|  | } | 
|  | if (process_group(curr) != pgrp) { | 
|  | detach_pid(curr, PIDTYPE_PGID); | 
|  | curr->signal->pgrp = pgrp; | 
|  | attach_pid(curr, PIDTYPE_PGID, pgrp); | 
|  | } | 
|  | } | 
|  |  | 
|  | void set_special_pids(pid_t session, pid_t pgrp) | 
|  | { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | __set_special_pids(session, pgrp); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Let kernel threads use this to say that they | 
|  | * allow a certain signal (since daemonize() will | 
|  | * have disabled all of them by default). | 
|  | */ | 
|  | int allow_signal(int sig) | 
|  | { | 
|  | if (!valid_signal(sig) || sig < 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sigdelset(¤t->blocked, sig); | 
|  | if (!current->mm) { | 
|  | /* Kernel threads handle their own signals. | 
|  | Let the signal code know it'll be handled, so | 
|  | that they don't get converted to SIGKILL or | 
|  | just silently dropped */ | 
|  | current->sighand->action[(sig)-1].sa.sa_handler = (void __user *)2; | 
|  | } | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(allow_signal); | 
|  |  | 
|  | int disallow_signal(int sig) | 
|  | { | 
|  | if (!valid_signal(sig) || sig < 1) | 
|  | return -EINVAL; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | sigaddset(¤t->blocked, sig); | 
|  | recalc_sigpending(); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(disallow_signal); | 
|  |  | 
|  | /* | 
|  | *	Put all the gunge required to become a kernel thread without | 
|  | *	attached user resources in one place where it belongs. | 
|  | */ | 
|  |  | 
|  | void daemonize(const char *name, ...) | 
|  | { | 
|  | va_list args; | 
|  | struct fs_struct *fs; | 
|  | sigset_t blocked; | 
|  |  | 
|  | va_start(args, name); | 
|  | vsnprintf(current->comm, sizeof(current->comm), name, args); | 
|  | va_end(args); | 
|  |  | 
|  | /* | 
|  | * If we were started as result of loading a module, close all of the | 
|  | * user space pages.  We don't need them, and if we didn't close them | 
|  | * they would be locked into memory. | 
|  | */ | 
|  | exit_mm(current); | 
|  |  | 
|  | set_special_pids(1, 1); | 
|  | mutex_lock(&tty_mutex); | 
|  | current->signal->tty = NULL; | 
|  | mutex_unlock(&tty_mutex); | 
|  |  | 
|  | /* Block and flush all signals */ | 
|  | sigfillset(&blocked); | 
|  | sigprocmask(SIG_BLOCK, &blocked, NULL); | 
|  | flush_signals(current); | 
|  |  | 
|  | /* Become as one with the init task */ | 
|  |  | 
|  | exit_fs(current);	/* current->fs->count--; */ | 
|  | fs = init_task.fs; | 
|  | current->fs = fs; | 
|  | atomic_inc(&fs->count); | 
|  |  | 
|  | exit_task_namespaces(current); | 
|  | current->nsproxy = init_task.nsproxy; | 
|  | get_task_namespaces(current); | 
|  |  | 
|  | exit_files(current); | 
|  | current->files = init_task.files; | 
|  | atomic_inc(¤t->files->count); | 
|  |  | 
|  | reparent_to_init(); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(daemonize); | 
|  |  | 
|  | static void close_files(struct files_struct * files) | 
|  | { | 
|  | int i, j; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | j = 0; | 
|  |  | 
|  | /* | 
|  | * It is safe to dereference the fd table without RCU or | 
|  | * ->file_lock because this is the last reference to the | 
|  | * files structure. | 
|  | */ | 
|  | fdt = files_fdtable(files); | 
|  | for (;;) { | 
|  | unsigned long set; | 
|  | i = j * __NFDBITS; | 
|  | if (i >= fdt->max_fdset || i >= fdt->max_fds) | 
|  | break; | 
|  | set = fdt->open_fds->fds_bits[j++]; | 
|  | while (set) { | 
|  | if (set & 1) { | 
|  | struct file * file = xchg(&fdt->fd[i], NULL); | 
|  | if (file) | 
|  | filp_close(file, files); | 
|  | } | 
|  | i++; | 
|  | set >>= 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | struct files_struct *get_files_struct(struct task_struct *task) | 
|  | { | 
|  | struct files_struct *files; | 
|  |  | 
|  | task_lock(task); | 
|  | files = task->files; | 
|  | if (files) | 
|  | atomic_inc(&files->count); | 
|  | task_unlock(task); | 
|  |  | 
|  | return files; | 
|  | } | 
|  |  | 
|  | void fastcall put_files_struct(struct files_struct *files) | 
|  | { | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | if (atomic_dec_and_test(&files->count)) { | 
|  | close_files(files); | 
|  | /* | 
|  | * Free the fd and fdset arrays if we expanded them. | 
|  | * If the fdtable was embedded, pass files for freeing | 
|  | * at the end of the RCU grace period. Otherwise, | 
|  | * you can free files immediately. | 
|  | */ | 
|  | fdt = files_fdtable(files); | 
|  | if (fdt == &files->fdtab) | 
|  | fdt->free_files = files; | 
|  | else | 
|  | kmem_cache_free(files_cachep, files); | 
|  | free_fdtable(fdt); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(put_files_struct); | 
|  |  | 
|  | void reset_files_struct(struct task_struct *tsk, struct files_struct *files) | 
|  | { | 
|  | struct files_struct *old; | 
|  |  | 
|  | old = tsk->files; | 
|  | task_lock(tsk); | 
|  | tsk->files = files; | 
|  | task_unlock(tsk); | 
|  | put_files_struct(old); | 
|  | } | 
|  | EXPORT_SYMBOL(reset_files_struct); | 
|  |  | 
|  | static inline void __exit_files(struct task_struct *tsk) | 
|  | { | 
|  | struct files_struct * files = tsk->files; | 
|  |  | 
|  | if (files) { | 
|  | task_lock(tsk); | 
|  | tsk->files = NULL; | 
|  | task_unlock(tsk); | 
|  | put_files_struct(files); | 
|  | } | 
|  | } | 
|  |  | 
|  | void exit_files(struct task_struct *tsk) | 
|  | { | 
|  | __exit_files(tsk); | 
|  | } | 
|  |  | 
|  | static inline void __put_fs_struct(struct fs_struct *fs) | 
|  | { | 
|  | /* No need to hold fs->lock if we are killing it */ | 
|  | if (atomic_dec_and_test(&fs->count)) { | 
|  | dput(fs->root); | 
|  | mntput(fs->rootmnt); | 
|  | dput(fs->pwd); | 
|  | mntput(fs->pwdmnt); | 
|  | if (fs->altroot) { | 
|  | dput(fs->altroot); | 
|  | mntput(fs->altrootmnt); | 
|  | } | 
|  | kmem_cache_free(fs_cachep, fs); | 
|  | } | 
|  | } | 
|  |  | 
|  | void put_fs_struct(struct fs_struct *fs) | 
|  | { | 
|  | __put_fs_struct(fs); | 
|  | } | 
|  |  | 
|  | static inline void __exit_fs(struct task_struct *tsk) | 
|  | { | 
|  | struct fs_struct * fs = tsk->fs; | 
|  |  | 
|  | if (fs) { | 
|  | task_lock(tsk); | 
|  | tsk->fs = NULL; | 
|  | task_unlock(tsk); | 
|  | __put_fs_struct(fs); | 
|  | } | 
|  | } | 
|  |  | 
|  | void exit_fs(struct task_struct *tsk) | 
|  | { | 
|  | __exit_fs(tsk); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(exit_fs); | 
|  |  | 
|  | /* | 
|  | * Turn us into a lazy TLB process if we | 
|  | * aren't already.. | 
|  | */ | 
|  | static void exit_mm(struct task_struct * tsk) | 
|  | { | 
|  | struct mm_struct *mm = tsk->mm; | 
|  |  | 
|  | mm_release(tsk, mm); | 
|  | if (!mm) | 
|  | return; | 
|  | /* | 
|  | * Serialize with any possible pending coredump. | 
|  | * We must hold mmap_sem around checking core_waiters | 
|  | * and clearing tsk->mm.  The core-inducing thread | 
|  | * will increment core_waiters for each thread in the | 
|  | * group with ->mm != NULL. | 
|  | */ | 
|  | down_read(&mm->mmap_sem); | 
|  | if (mm->core_waiters) { | 
|  | up_read(&mm->mmap_sem); | 
|  | down_write(&mm->mmap_sem); | 
|  | if (!--mm->core_waiters) | 
|  | complete(mm->core_startup_done); | 
|  | up_write(&mm->mmap_sem); | 
|  |  | 
|  | wait_for_completion(&mm->core_done); | 
|  | down_read(&mm->mmap_sem); | 
|  | } | 
|  | atomic_inc(&mm->mm_count); | 
|  | BUG_ON(mm != tsk->active_mm); | 
|  | /* more a memory barrier than a real lock */ | 
|  | task_lock(tsk); | 
|  | tsk->mm = NULL; | 
|  | up_read(&mm->mmap_sem); | 
|  | enter_lazy_tlb(mm, current); | 
|  | task_unlock(tsk); | 
|  | mmput(mm); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | choose_new_parent(struct task_struct *p, struct task_struct *reaper) | 
|  | { | 
|  | /* | 
|  | * Make sure we're not reparenting to ourselves and that | 
|  | * the parent is not a zombie. | 
|  | */ | 
|  | BUG_ON(p == reaper || reaper->exit_state); | 
|  | p->real_parent = reaper; | 
|  | } | 
|  |  | 
|  | static void | 
|  | reparent_thread(struct task_struct *p, struct task_struct *father, int traced) | 
|  | { | 
|  | /* We don't want people slaying init.  */ | 
|  | if (p->exit_signal != -1) | 
|  | p->exit_signal = SIGCHLD; | 
|  |  | 
|  | if (p->pdeath_signal) | 
|  | /* We already hold the tasklist_lock here.  */ | 
|  | group_send_sig_info(p->pdeath_signal, SEND_SIG_NOINFO, p); | 
|  |  | 
|  | /* Move the child from its dying parent to the new one.  */ | 
|  | if (unlikely(traced)) { | 
|  | /* Preserve ptrace links if someone else is tracing this child.  */ | 
|  | list_del_init(&p->ptrace_list); | 
|  | if (p->parent != p->real_parent) | 
|  | list_add(&p->ptrace_list, &p->real_parent->ptrace_children); | 
|  | } else { | 
|  | /* If this child is being traced, then we're the one tracing it | 
|  | * anyway, so let go of it. | 
|  | */ | 
|  | p->ptrace = 0; | 
|  | remove_parent(p); | 
|  | p->parent = p->real_parent; | 
|  | add_parent(p); | 
|  |  | 
|  | /* If we'd notified the old parent about this child's death, | 
|  | * also notify the new parent. | 
|  | */ | 
|  | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && | 
|  | thread_group_empty(p)) | 
|  | do_notify_parent(p, p->exit_signal); | 
|  | else if (p->state == TASK_TRACED) { | 
|  | /* | 
|  | * If it was at a trace stop, turn it into | 
|  | * a normal stop since it's no longer being | 
|  | * traced. | 
|  | */ | 
|  | ptrace_untrace(p); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * process group orphan check | 
|  | * Case ii: Our child is in a different pgrp | 
|  | * than we are, and it was the only connection | 
|  | * outside, so the child pgrp is now orphaned. | 
|  | */ | 
|  | if ((process_group(p) != process_group(father)) && | 
|  | (p->signal->session == father->signal->session)) { | 
|  | int pgrp = process_group(p); | 
|  |  | 
|  | if (will_become_orphaned_pgrp(pgrp, NULL) && has_stopped_jobs(pgrp)) { | 
|  | __kill_pg_info(SIGHUP, SEND_SIG_PRIV, pgrp); | 
|  | __kill_pg_info(SIGCONT, SEND_SIG_PRIV, pgrp); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we die, we re-parent all our children. | 
|  | * Try to give them to another thread in our thread | 
|  | * group, and if no such member exists, give it to | 
|  | * the global child reaper process (ie "init") | 
|  | */ | 
|  | static void | 
|  | forget_original_parent(struct task_struct *father, struct list_head *to_release) | 
|  | { | 
|  | struct task_struct *p, *reaper = father; | 
|  | struct list_head *_p, *_n; | 
|  |  | 
|  | do { | 
|  | reaper = next_thread(reaper); | 
|  | if (reaper == father) { | 
|  | reaper = child_reaper; | 
|  | break; | 
|  | } | 
|  | } while (reaper->exit_state); | 
|  |  | 
|  | /* | 
|  | * There are only two places where our children can be: | 
|  | * | 
|  | * - in our child list | 
|  | * - in our ptraced child list | 
|  | * | 
|  | * Search them and reparent children. | 
|  | */ | 
|  | list_for_each_safe(_p, _n, &father->children) { | 
|  | int ptrace; | 
|  | p = list_entry(_p, struct task_struct, sibling); | 
|  |  | 
|  | ptrace = p->ptrace; | 
|  |  | 
|  | /* if father isn't the real parent, then ptrace must be enabled */ | 
|  | BUG_ON(father != p->real_parent && !ptrace); | 
|  |  | 
|  | if (father == p->real_parent) { | 
|  | /* reparent with a reaper, real father it's us */ | 
|  | choose_new_parent(p, reaper); | 
|  | reparent_thread(p, father, 0); | 
|  | } else { | 
|  | /* reparent ptraced task to its real parent */ | 
|  | __ptrace_unlink (p); | 
|  | if (p->exit_state == EXIT_ZOMBIE && p->exit_signal != -1 && | 
|  | thread_group_empty(p)) | 
|  | do_notify_parent(p, p->exit_signal); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if the ptraced child is a zombie with exit_signal == -1 | 
|  | * we must collect it before we exit, or it will remain | 
|  | * zombie forever since we prevented it from self-reap itself | 
|  | * while it was being traced by us, to be able to see it in wait4. | 
|  | */ | 
|  | if (unlikely(ptrace && p->exit_state == EXIT_ZOMBIE && p->exit_signal == -1)) | 
|  | list_add(&p->ptrace_list, to_release); | 
|  | } | 
|  | list_for_each_safe(_p, _n, &father->ptrace_children) { | 
|  | p = list_entry(_p, struct task_struct, ptrace_list); | 
|  | choose_new_parent(p, reaper); | 
|  | reparent_thread(p, father, 1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Send signals to all our closest relatives so that they know | 
|  | * to properly mourn us.. | 
|  | */ | 
|  | static void exit_notify(struct task_struct *tsk) | 
|  | { | 
|  | int state; | 
|  | struct task_struct *t; | 
|  | struct list_head ptrace_dead, *_p, *_n; | 
|  |  | 
|  | if (signal_pending(tsk) && !(tsk->signal->flags & SIGNAL_GROUP_EXIT) | 
|  | && !thread_group_empty(tsk)) { | 
|  | /* | 
|  | * This occurs when there was a race between our exit | 
|  | * syscall and a group signal choosing us as the one to | 
|  | * wake up.  It could be that we are the only thread | 
|  | * alerted to check for pending signals, but another thread | 
|  | * should be woken now to take the signal since we will not. | 
|  | * Now we'll wake all the threads in the group just to make | 
|  | * sure someone gets all the pending signals. | 
|  | */ | 
|  | read_lock(&tasklist_lock); | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | for (t = next_thread(tsk); t != tsk; t = next_thread(t)) | 
|  | if (!signal_pending(t) && !(t->flags & PF_EXITING)) { | 
|  | recalc_sigpending_tsk(t); | 
|  | if (signal_pending(t)) | 
|  | signal_wake_up(t, 0); | 
|  | } | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | read_unlock(&tasklist_lock); | 
|  | } | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | /* | 
|  | * This does two things: | 
|  | * | 
|  | * A.  Make init inherit all the child processes | 
|  | * B.  Check to see if any process groups have become orphaned | 
|  | *	as a result of our exiting, and if they have any stopped | 
|  | *	jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2) | 
|  | */ | 
|  |  | 
|  | INIT_LIST_HEAD(&ptrace_dead); | 
|  | forget_original_parent(tsk, &ptrace_dead); | 
|  | BUG_ON(!list_empty(&tsk->children)); | 
|  | BUG_ON(!list_empty(&tsk->ptrace_children)); | 
|  |  | 
|  | /* | 
|  | * Check to see if any process groups have become orphaned | 
|  | * as a result of our exiting, and if they have any stopped | 
|  | * jobs, send them a SIGHUP and then a SIGCONT.  (POSIX 3.2.2.2) | 
|  | * | 
|  | * Case i: Our father is in a different pgrp than we are | 
|  | * and we were the only connection outside, so our pgrp | 
|  | * is about to become orphaned. | 
|  | */ | 
|  |  | 
|  | t = tsk->real_parent; | 
|  |  | 
|  | if ((process_group(t) != process_group(tsk)) && | 
|  | (t->signal->session == tsk->signal->session) && | 
|  | will_become_orphaned_pgrp(process_group(tsk), tsk) && | 
|  | has_stopped_jobs(process_group(tsk))) { | 
|  | __kill_pg_info(SIGHUP, SEND_SIG_PRIV, process_group(tsk)); | 
|  | __kill_pg_info(SIGCONT, SEND_SIG_PRIV, process_group(tsk)); | 
|  | } | 
|  |  | 
|  | /* Let father know we died | 
|  | * | 
|  | * Thread signals are configurable, but you aren't going to use | 
|  | * that to send signals to arbitary processes. | 
|  | * That stops right now. | 
|  | * | 
|  | * If the parent exec id doesn't match the exec id we saved | 
|  | * when we started then we know the parent has changed security | 
|  | * domain. | 
|  | * | 
|  | * If our self_exec id doesn't match our parent_exec_id then | 
|  | * we have changed execution domain as these two values started | 
|  | * the same after a fork. | 
|  | * | 
|  | */ | 
|  |  | 
|  | if (tsk->exit_signal != SIGCHLD && tsk->exit_signal != -1 && | 
|  | ( tsk->parent_exec_id != t->self_exec_id  || | 
|  | tsk->self_exec_id != tsk->parent_exec_id) | 
|  | && !capable(CAP_KILL)) | 
|  | tsk->exit_signal = SIGCHLD; | 
|  |  | 
|  |  | 
|  | /* If something other than our normal parent is ptracing us, then | 
|  | * send it a SIGCHLD instead of honoring exit_signal.  exit_signal | 
|  | * only has special meaning to our real parent. | 
|  | */ | 
|  | if (tsk->exit_signal != -1 && thread_group_empty(tsk)) { | 
|  | int signal = tsk->parent == tsk->real_parent ? tsk->exit_signal : SIGCHLD; | 
|  | do_notify_parent(tsk, signal); | 
|  | } else if (tsk->ptrace) { | 
|  | do_notify_parent(tsk, SIGCHLD); | 
|  | } | 
|  |  | 
|  | state = EXIT_ZOMBIE; | 
|  | if (tsk->exit_signal == -1 && | 
|  | (likely(tsk->ptrace == 0) || | 
|  | unlikely(tsk->parent->signal->flags & SIGNAL_GROUP_EXIT))) | 
|  | state = EXIT_DEAD; | 
|  | tsk->exit_state = state; | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | list_for_each_safe(_p, _n, &ptrace_dead) { | 
|  | list_del_init(_p); | 
|  | t = list_entry(_p, struct task_struct, ptrace_list); | 
|  | release_task(t); | 
|  | } | 
|  |  | 
|  | /* If the process is dead, release it - nobody will wait for it */ | 
|  | if (state == EXIT_DEAD) | 
|  | release_task(tsk); | 
|  | } | 
|  |  | 
|  | fastcall NORET_TYPE void do_exit(long code) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct taskstats *tidstats; | 
|  | int group_dead; | 
|  | unsigned int mycpu; | 
|  |  | 
|  | profile_task_exit(tsk); | 
|  |  | 
|  | WARN_ON(atomic_read(&tsk->fs_excl)); | 
|  |  | 
|  | if (unlikely(in_interrupt())) | 
|  | panic("Aiee, killing interrupt handler!"); | 
|  | if (unlikely(!tsk->pid)) | 
|  | panic("Attempted to kill the idle task!"); | 
|  | if (unlikely(tsk == child_reaper)) | 
|  | panic("Attempted to kill init!"); | 
|  |  | 
|  | if (unlikely(current->ptrace & PT_TRACE_EXIT)) { | 
|  | current->ptrace_message = code; | 
|  | ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're taking recursive faults here in do_exit. Safest is to just | 
|  | * leave this task alone and wait for reboot. | 
|  | */ | 
|  | if (unlikely(tsk->flags & PF_EXITING)) { | 
|  | printk(KERN_ALERT | 
|  | "Fixing recursive fault but reboot is needed!\n"); | 
|  | if (tsk->io_context) | 
|  | exit_io_context(); | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | tsk->flags |= PF_EXITING; | 
|  |  | 
|  | if (unlikely(in_atomic())) | 
|  | printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n", | 
|  | current->comm, current->pid, | 
|  | preempt_count()); | 
|  |  | 
|  | taskstats_exit_alloc(&tidstats, &mycpu); | 
|  |  | 
|  | acct_update_integrals(tsk); | 
|  | if (tsk->mm) { | 
|  | update_hiwater_rss(tsk->mm); | 
|  | update_hiwater_vm(tsk->mm); | 
|  | } | 
|  | group_dead = atomic_dec_and_test(&tsk->signal->live); | 
|  | if (group_dead) { | 
|  | hrtimer_cancel(&tsk->signal->real_timer); | 
|  | exit_itimers(tsk->signal); | 
|  | } | 
|  | acct_collect(code, group_dead); | 
|  | if (unlikely(tsk->robust_list)) | 
|  | exit_robust_list(tsk); | 
|  | #if defined(CONFIG_FUTEX) && defined(CONFIG_COMPAT) | 
|  | if (unlikely(tsk->compat_robust_list)) | 
|  | compat_exit_robust_list(tsk); | 
|  | #endif | 
|  | if (unlikely(tsk->audit_context)) | 
|  | audit_free(tsk); | 
|  | taskstats_exit_send(tsk, tidstats, group_dead, mycpu); | 
|  | taskstats_exit_free(tidstats); | 
|  |  | 
|  | exit_mm(tsk); | 
|  |  | 
|  | if (group_dead) | 
|  | acct_process(); | 
|  | exit_sem(tsk); | 
|  | __exit_files(tsk); | 
|  | __exit_fs(tsk); | 
|  | exit_thread(); | 
|  | cpuset_exit(tsk); | 
|  | exit_keys(tsk); | 
|  |  | 
|  | if (group_dead && tsk->signal->leader) | 
|  | disassociate_ctty(1); | 
|  |  | 
|  | module_put(task_thread_info(tsk)->exec_domain->module); | 
|  | if (tsk->binfmt) | 
|  | module_put(tsk->binfmt->module); | 
|  |  | 
|  | tsk->exit_code = code; | 
|  | proc_exit_connector(tsk); | 
|  | exit_notify(tsk); | 
|  | exit_task_namespaces(tsk); | 
|  | #ifdef CONFIG_NUMA | 
|  | mpol_free(tsk->mempolicy); | 
|  | tsk->mempolicy = NULL; | 
|  | #endif | 
|  | /* | 
|  | * This must happen late, after the PID is not | 
|  | * hashed anymore: | 
|  | */ | 
|  | if (unlikely(!list_empty(&tsk->pi_state_list))) | 
|  | exit_pi_state_list(tsk); | 
|  | if (unlikely(current->pi_state_cache)) | 
|  | kfree(current->pi_state_cache); | 
|  | /* | 
|  | * Make sure we are holding no locks: | 
|  | */ | 
|  | debug_check_no_locks_held(tsk); | 
|  |  | 
|  | if (tsk->io_context) | 
|  | exit_io_context(); | 
|  |  | 
|  | if (tsk->splice_pipe) | 
|  | __free_pipe_info(tsk->splice_pipe); | 
|  |  | 
|  | preempt_disable(); | 
|  | /* causes final put_task_struct in finish_task_switch(). */ | 
|  | tsk->state = TASK_DEAD; | 
|  |  | 
|  | schedule(); | 
|  | BUG(); | 
|  | /* Avoid "noreturn function does return".  */ | 
|  | for (;;) | 
|  | cpu_relax();	/* For when BUG is null */ | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(do_exit); | 
|  |  | 
|  | NORET_TYPE void complete_and_exit(struct completion *comp, long code) | 
|  | { | 
|  | if (comp) | 
|  | complete(comp); | 
|  |  | 
|  | do_exit(code); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(complete_and_exit); | 
|  |  | 
|  | asmlinkage long sys_exit(int error_code) | 
|  | { | 
|  | do_exit((error_code&0xff)<<8); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Take down every thread in the group.  This is called by fatal signals | 
|  | * as well as by sys_exit_group (below). | 
|  | */ | 
|  | NORET_TYPE void | 
|  | do_group_exit(int exit_code) | 
|  | { | 
|  | BUG_ON(exit_code & 0x80); /* core dumps don't get here */ | 
|  |  | 
|  | if (current->signal->flags & SIGNAL_GROUP_EXIT) | 
|  | exit_code = current->signal->group_exit_code; | 
|  | else if (!thread_group_empty(current)) { | 
|  | struct signal_struct *const sig = current->signal; | 
|  | struct sighand_struct *const sighand = current->sighand; | 
|  | spin_lock_irq(&sighand->siglock); | 
|  | if (sig->flags & SIGNAL_GROUP_EXIT) | 
|  | /* Another thread got here before we took the lock.  */ | 
|  | exit_code = sig->group_exit_code; | 
|  | else { | 
|  | sig->group_exit_code = exit_code; | 
|  | zap_other_threads(current); | 
|  | } | 
|  | spin_unlock_irq(&sighand->siglock); | 
|  | } | 
|  |  | 
|  | do_exit(exit_code); | 
|  | /* NOTREACHED */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * this kills every thread in the thread group. Note that any externally | 
|  | * wait4()-ing process will get the correct exit code - even if this | 
|  | * thread is not the thread group leader. | 
|  | */ | 
|  | asmlinkage void sys_exit_group(int error_code) | 
|  | { | 
|  | do_group_exit((error_code & 0xff) << 8); | 
|  | } | 
|  |  | 
|  | static int eligible_child(pid_t pid, int options, struct task_struct *p) | 
|  | { | 
|  | if (pid > 0) { | 
|  | if (p->pid != pid) | 
|  | return 0; | 
|  | } else if (!pid) { | 
|  | if (process_group(p) != process_group(current)) | 
|  | return 0; | 
|  | } else if (pid != -1) { | 
|  | if (process_group(p) != -pid) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do not consider detached threads that are | 
|  | * not ptraced: | 
|  | */ | 
|  | if (p->exit_signal == -1 && !p->ptrace) | 
|  | return 0; | 
|  |  | 
|  | /* Wait for all children (clone and not) if __WALL is set; | 
|  | * otherwise, wait for clone children *only* if __WCLONE is | 
|  | * set; otherwise, wait for non-clone children *only*.  (Note: | 
|  | * A "clone" child here is one that reports to its parent | 
|  | * using a signal other than SIGCHLD.) */ | 
|  | if (((p->exit_signal != SIGCHLD) ^ ((options & __WCLONE) != 0)) | 
|  | && !(options & __WALL)) | 
|  | return 0; | 
|  | /* | 
|  | * Do not consider thread group leaders that are | 
|  | * in a non-empty thread group: | 
|  | */ | 
|  | if (delay_group_leader(p)) | 
|  | return 2; | 
|  |  | 
|  | if (security_task_wait(p)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static int wait_noreap_copyout(struct task_struct *p, pid_t pid, uid_t uid, | 
|  | int why, int status, | 
|  | struct siginfo __user *infop, | 
|  | struct rusage __user *rusagep) | 
|  | { | 
|  | int retval = rusagep ? getrusage(p, RUSAGE_BOTH, rusagep) : 0; | 
|  |  | 
|  | put_task_struct(p); | 
|  | if (!retval) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval) | 
|  | retval = put_user((short)why, &infop->si_code); | 
|  | if (!retval) | 
|  | retval = put_user(pid, &infop->si_pid); | 
|  | if (!retval) | 
|  | retval = put_user(uid, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = put_user(status, &infop->si_status); | 
|  | if (!retval) | 
|  | retval = pid; | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle sys_wait4 work for one task in state EXIT_ZOMBIE.  We hold | 
|  | * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
|  | * the lock and this task is uninteresting.  If we return nonzero, we have | 
|  | * released the lock and the system call should return. | 
|  | */ | 
|  | static int wait_task_zombie(struct task_struct *p, int noreap, | 
|  | struct siginfo __user *infop, | 
|  | int __user *stat_addr, struct rusage __user *ru) | 
|  | { | 
|  | unsigned long state; | 
|  | int retval; | 
|  | int status; | 
|  |  | 
|  | if (unlikely(noreap)) { | 
|  | pid_t pid = p->pid; | 
|  | uid_t uid = p->uid; | 
|  | int exit_code = p->exit_code; | 
|  | int why, status; | 
|  |  | 
|  | if (unlikely(p->exit_state != EXIT_ZOMBIE)) | 
|  | return 0; | 
|  | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) | 
|  | return 0; | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  | if ((exit_code & 0x7f) == 0) { | 
|  | why = CLD_EXITED; | 
|  | status = exit_code >> 8; | 
|  | } else { | 
|  | why = (exit_code & 0x80) ? CLD_DUMPED : CLD_KILLED; | 
|  | status = exit_code & 0x7f; | 
|  | } | 
|  | return wait_noreap_copyout(p, pid, uid, why, | 
|  | status, infop, ru); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to move the task's state to DEAD | 
|  | * only one thread is allowed to do this: | 
|  | */ | 
|  | state = xchg(&p->exit_state, EXIT_DEAD); | 
|  | if (state != EXIT_ZOMBIE) { | 
|  | BUG_ON(state != EXIT_DEAD); | 
|  | return 0; | 
|  | } | 
|  | if (unlikely(p->exit_signal == -1 && p->ptrace == 0)) { | 
|  | /* | 
|  | * This can only happen in a race with a ptraced thread | 
|  | * dying on another processor. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (likely(p->real_parent == p->parent) && likely(p->signal)) { | 
|  | struct signal_struct *psig; | 
|  | struct signal_struct *sig; | 
|  |  | 
|  | /* | 
|  | * The resource counters for the group leader are in its | 
|  | * own task_struct.  Those for dead threads in the group | 
|  | * are in its signal_struct, as are those for the child | 
|  | * processes it has previously reaped.  All these | 
|  | * accumulate in the parent's signal_struct c* fields. | 
|  | * | 
|  | * We don't bother to take a lock here to protect these | 
|  | * p->signal fields, because they are only touched by | 
|  | * __exit_signal, which runs with tasklist_lock | 
|  | * write-locked anyway, and so is excluded here.  We do | 
|  | * need to protect the access to p->parent->signal fields, | 
|  | * as other threads in the parent group can be right | 
|  | * here reaping other children at the same time. | 
|  | */ | 
|  | spin_lock_irq(&p->parent->sighand->siglock); | 
|  | psig = p->parent->signal; | 
|  | sig = p->signal; | 
|  | psig->cutime = | 
|  | cputime_add(psig->cutime, | 
|  | cputime_add(p->utime, | 
|  | cputime_add(sig->utime, | 
|  | sig->cutime))); | 
|  | psig->cstime = | 
|  | cputime_add(psig->cstime, | 
|  | cputime_add(p->stime, | 
|  | cputime_add(sig->stime, | 
|  | sig->cstime))); | 
|  | psig->cmin_flt += | 
|  | p->min_flt + sig->min_flt + sig->cmin_flt; | 
|  | psig->cmaj_flt += | 
|  | p->maj_flt + sig->maj_flt + sig->cmaj_flt; | 
|  | psig->cnvcsw += | 
|  | p->nvcsw + sig->nvcsw + sig->cnvcsw; | 
|  | psig->cnivcsw += | 
|  | p->nivcsw + sig->nivcsw + sig->cnivcsw; | 
|  | spin_unlock_irq(&p->parent->sighand->siglock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now we are sure this task is interesting, and no other | 
|  | * thread can reap it because we set its state to EXIT_DEAD. | 
|  | */ | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | 
|  | status = (p->signal->flags & SIGNAL_GROUP_EXIT) | 
|  | ? p->signal->group_exit_code : p->exit_code; | 
|  | if (!retval && stat_addr) | 
|  | retval = put_user(status, stat_addr); | 
|  | if (!retval && infop) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval && infop) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval && infop) { | 
|  | int why; | 
|  |  | 
|  | if ((status & 0x7f) == 0) { | 
|  | why = CLD_EXITED; | 
|  | status >>= 8; | 
|  | } else { | 
|  | why = (status & 0x80) ? CLD_DUMPED : CLD_KILLED; | 
|  | status &= 0x7f; | 
|  | } | 
|  | retval = put_user((short)why, &infop->si_code); | 
|  | if (!retval) | 
|  | retval = put_user(status, &infop->si_status); | 
|  | } | 
|  | if (!retval && infop) | 
|  | retval = put_user(p->pid, &infop->si_pid); | 
|  | if (!retval && infop) | 
|  | retval = put_user(p->uid, &infop->si_uid); | 
|  | if (retval) { | 
|  | // TODO: is this safe? | 
|  | p->exit_state = EXIT_ZOMBIE; | 
|  | return retval; | 
|  | } | 
|  | retval = p->pid; | 
|  | if (p->real_parent != p->parent) { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | /* Double-check with lock held.  */ | 
|  | if (p->real_parent != p->parent) { | 
|  | __ptrace_unlink(p); | 
|  | // TODO: is this safe? | 
|  | p->exit_state = EXIT_ZOMBIE; | 
|  | /* | 
|  | * If this is not a detached task, notify the parent. | 
|  | * If it's still not detached after that, don't release | 
|  | * it now. | 
|  | */ | 
|  | if (p->exit_signal != -1) { | 
|  | do_notify_parent(p, p->exit_signal); | 
|  | if (p->exit_signal != -1) | 
|  | p = NULL; | 
|  | } | 
|  | } | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | } | 
|  | if (p != NULL) | 
|  | release_task(p); | 
|  | BUG_ON(!retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle sys_wait4 work for one task in state TASK_STOPPED.  We hold | 
|  | * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
|  | * the lock and this task is uninteresting.  If we return nonzero, we have | 
|  | * released the lock and the system call should return. | 
|  | */ | 
|  | static int wait_task_stopped(struct task_struct *p, int delayed_group_leader, | 
|  | int noreap, struct siginfo __user *infop, | 
|  | int __user *stat_addr, struct rusage __user *ru) | 
|  | { | 
|  | int retval, exit_code; | 
|  |  | 
|  | if (!p->exit_code) | 
|  | return 0; | 
|  | if (delayed_group_leader && !(p->ptrace & PT_PTRACED) && | 
|  | p->signal && p->signal->group_stop_count > 0) | 
|  | /* | 
|  | * A group stop is in progress and this is the group leader. | 
|  | * We won't report until all threads have stopped. | 
|  | */ | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Now we are pretty sure this task is interesting. | 
|  | * Make sure it doesn't get reaped out from under us while we | 
|  | * give up the lock and then examine it below.  We don't want to | 
|  | * keep holding onto the tasklist_lock while we call getrusage and | 
|  | * possibly take page faults for user memory. | 
|  | */ | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | if (unlikely(noreap)) { | 
|  | pid_t pid = p->pid; | 
|  | uid_t uid = p->uid; | 
|  | int why = (p->ptrace & PT_PTRACED) ? CLD_TRAPPED : CLD_STOPPED; | 
|  |  | 
|  | exit_code = p->exit_code; | 
|  | if (unlikely(!exit_code) || | 
|  | unlikely(p->state & TASK_TRACED)) | 
|  | goto bail_ref; | 
|  | return wait_noreap_copyout(p, pid, uid, | 
|  | why, (exit_code << 8) | 0x7f, | 
|  | infop, ru); | 
|  | } | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  |  | 
|  | /* | 
|  | * This uses xchg to be atomic with the thread resuming and setting | 
|  | * it.  It must also be done with the write lock held to prevent a | 
|  | * race with the EXIT_ZOMBIE case. | 
|  | */ | 
|  | exit_code = xchg(&p->exit_code, 0); | 
|  | if (unlikely(p->exit_state)) { | 
|  | /* | 
|  | * The task resumed and then died.  Let the next iteration | 
|  | * catch it in EXIT_ZOMBIE.  Note that exit_code might | 
|  | * already be zero here if it resumed and did _exit(0). | 
|  | * The task itself is dead and won't touch exit_code again; | 
|  | * other processors in this function are locked out. | 
|  | */ | 
|  | p->exit_code = exit_code; | 
|  | exit_code = 0; | 
|  | } | 
|  | if (unlikely(exit_code == 0)) { | 
|  | /* | 
|  | * Another thread in this function got to it first, or it | 
|  | * resumed, or it resumed and then died. | 
|  | */ | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | bail_ref: | 
|  | put_task_struct(p); | 
|  | /* | 
|  | * We are returning to the wait loop without having successfully | 
|  | * removed the process and having released the lock. We cannot | 
|  | * continue, since the "p" task pointer is potentially stale. | 
|  | * | 
|  | * Return -EAGAIN, and do_wait() will restart the loop from the | 
|  | * beginning. Do _not_ re-acquire the lock. | 
|  | */ | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /* move to end of parent's list to avoid starvation */ | 
|  | remove_parent(p); | 
|  | add_parent(p); | 
|  |  | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | 
|  | if (!retval && stat_addr) | 
|  | retval = put_user((exit_code << 8) | 0x7f, stat_addr); | 
|  | if (!retval && infop) | 
|  | retval = put_user(SIGCHLD, &infop->si_signo); | 
|  | if (!retval && infop) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval && infop) | 
|  | retval = put_user((short)((p->ptrace & PT_PTRACED) | 
|  | ? CLD_TRAPPED : CLD_STOPPED), | 
|  | &infop->si_code); | 
|  | if (!retval && infop) | 
|  | retval = put_user(exit_code, &infop->si_status); | 
|  | if (!retval && infop) | 
|  | retval = put_user(p->pid, &infop->si_pid); | 
|  | if (!retval && infop) | 
|  | retval = put_user(p->uid, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = p->pid; | 
|  | put_task_struct(p); | 
|  |  | 
|  | BUG_ON(!retval); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle do_wait work for one task in a live, non-stopped state. | 
|  | * read_lock(&tasklist_lock) on entry.  If we return zero, we still hold | 
|  | * the lock and this task is uninteresting.  If we return nonzero, we have | 
|  | * released the lock and the system call should return. | 
|  | */ | 
|  | static int wait_task_continued(struct task_struct *p, int noreap, | 
|  | struct siginfo __user *infop, | 
|  | int __user *stat_addr, struct rusage __user *ru) | 
|  | { | 
|  | int retval; | 
|  | pid_t pid; | 
|  | uid_t uid; | 
|  |  | 
|  | if (unlikely(!p->signal)) | 
|  | return 0; | 
|  |  | 
|  | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) | 
|  | return 0; | 
|  |  | 
|  | spin_lock_irq(&p->sighand->siglock); | 
|  | /* Re-check with the lock held.  */ | 
|  | if (!(p->signal->flags & SIGNAL_STOP_CONTINUED)) { | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  | return 0; | 
|  | } | 
|  | if (!noreap) | 
|  | p->signal->flags &= ~SIGNAL_STOP_CONTINUED; | 
|  | spin_unlock_irq(&p->sighand->siglock); | 
|  |  | 
|  | pid = p->pid; | 
|  | uid = p->uid; | 
|  | get_task_struct(p); | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | if (!infop) { | 
|  | retval = ru ? getrusage(p, RUSAGE_BOTH, ru) : 0; | 
|  | put_task_struct(p); | 
|  | if (!retval && stat_addr) | 
|  | retval = put_user(0xffff, stat_addr); | 
|  | if (!retval) | 
|  | retval = p->pid; | 
|  | } else { | 
|  | retval = wait_noreap_copyout(p, pid, uid, | 
|  | CLD_CONTINUED, SIGCONT, | 
|  | infop, ru); | 
|  | BUG_ON(retval == 0); | 
|  | } | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline int my_ptrace_child(struct task_struct *p) | 
|  | { | 
|  | if (!(p->ptrace & PT_PTRACED)) | 
|  | return 0; | 
|  | if (!(p->ptrace & PT_ATTACHED)) | 
|  | return 1; | 
|  | /* | 
|  | * This child was PTRACE_ATTACH'd.  We should be seeing it only if | 
|  | * we are the attacher.  If we are the real parent, this is a race | 
|  | * inside ptrace_attach.  It is waiting for the tasklist_lock, | 
|  | * which we have to switch the parent links, but has already set | 
|  | * the flags in p->ptrace. | 
|  | */ | 
|  | return (p->parent != p->real_parent); | 
|  | } | 
|  |  | 
|  | static long do_wait(pid_t pid, int options, struct siginfo __user *infop, | 
|  | int __user *stat_addr, struct rusage __user *ru) | 
|  | { | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | struct task_struct *tsk; | 
|  | int flag, retval; | 
|  |  | 
|  | add_wait_queue(¤t->signal->wait_chldexit,&wait); | 
|  | repeat: | 
|  | /* | 
|  | * We will set this flag if we see any child that might later | 
|  | * match our criteria, even if we are not able to reap it yet. | 
|  | */ | 
|  | flag = 0; | 
|  | current->state = TASK_INTERRUPTIBLE; | 
|  | read_lock(&tasklist_lock); | 
|  | tsk = current; | 
|  | do { | 
|  | struct task_struct *p; | 
|  | struct list_head *_p; | 
|  | int ret; | 
|  |  | 
|  | list_for_each(_p,&tsk->children) { | 
|  | p = list_entry(_p, struct task_struct, sibling); | 
|  |  | 
|  | ret = eligible_child(pid, options, p); | 
|  | if (!ret) | 
|  | continue; | 
|  |  | 
|  | switch (p->state) { | 
|  | case TASK_TRACED: | 
|  | /* | 
|  | * When we hit the race with PTRACE_ATTACH, | 
|  | * we will not report this child.  But the | 
|  | * race means it has not yet been moved to | 
|  | * our ptrace_children list, so we need to | 
|  | * set the flag here to avoid a spurious ECHILD | 
|  | * when the race happens with the only child. | 
|  | */ | 
|  | flag = 1; | 
|  | if (!my_ptrace_child(p)) | 
|  | continue; | 
|  | /*FALLTHROUGH*/ | 
|  | case TASK_STOPPED: | 
|  | /* | 
|  | * It's stopped now, so it might later | 
|  | * continue, exit, or stop again. | 
|  | */ | 
|  | flag = 1; | 
|  | if (!(options & WUNTRACED) && | 
|  | !my_ptrace_child(p)) | 
|  | continue; | 
|  | retval = wait_task_stopped(p, ret == 2, | 
|  | (options & WNOWAIT), | 
|  | infop, | 
|  | stat_addr, ru); | 
|  | if (retval == -EAGAIN) | 
|  | goto repeat; | 
|  | if (retval != 0) /* He released the lock.  */ | 
|  | goto end; | 
|  | break; | 
|  | default: | 
|  | // case EXIT_DEAD: | 
|  | if (p->exit_state == EXIT_DEAD) | 
|  | continue; | 
|  | // case EXIT_ZOMBIE: | 
|  | if (p->exit_state == EXIT_ZOMBIE) { | 
|  | /* | 
|  | * Eligible but we cannot release | 
|  | * it yet: | 
|  | */ | 
|  | if (ret == 2) | 
|  | goto check_continued; | 
|  | if (!likely(options & WEXITED)) | 
|  | continue; | 
|  | retval = wait_task_zombie( | 
|  | p, (options & WNOWAIT), | 
|  | infop, stat_addr, ru); | 
|  | /* He released the lock.  */ | 
|  | if (retval != 0) | 
|  | goto end; | 
|  | break; | 
|  | } | 
|  | check_continued: | 
|  | /* | 
|  | * It's running now, so it might later | 
|  | * exit, stop, or stop and then continue. | 
|  | */ | 
|  | flag = 1; | 
|  | if (!unlikely(options & WCONTINUED)) | 
|  | continue; | 
|  | retval = wait_task_continued( | 
|  | p, (options & WNOWAIT), | 
|  | infop, stat_addr, ru); | 
|  | if (retval != 0) /* He released the lock.  */ | 
|  | goto end; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!flag) { | 
|  | list_for_each(_p, &tsk->ptrace_children) { | 
|  | p = list_entry(_p, struct task_struct, | 
|  | ptrace_list); | 
|  | if (!eligible_child(pid, options, p)) | 
|  | continue; | 
|  | flag = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (options & __WNOTHREAD) | 
|  | break; | 
|  | tsk = next_thread(tsk); | 
|  | BUG_ON(tsk->signal != current->signal); | 
|  | } while (tsk != current); | 
|  |  | 
|  | read_unlock(&tasklist_lock); | 
|  | if (flag) { | 
|  | retval = 0; | 
|  | if (options & WNOHANG) | 
|  | goto end; | 
|  | retval = -ERESTARTSYS; | 
|  | if (signal_pending(current)) | 
|  | goto end; | 
|  | schedule(); | 
|  | goto repeat; | 
|  | } | 
|  | retval = -ECHILD; | 
|  | end: | 
|  | current->state = TASK_RUNNING; | 
|  | remove_wait_queue(¤t->signal->wait_chldexit,&wait); | 
|  | if (infop) { | 
|  | if (retval > 0) | 
|  | retval = 0; | 
|  | else { | 
|  | /* | 
|  | * For a WNOHANG return, clear out all the fields | 
|  | * we would set so the user can easily tell the | 
|  | * difference. | 
|  | */ | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_signo); | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_errno); | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_code); | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_pid); | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_uid); | 
|  | if (!retval) | 
|  | retval = put_user(0, &infop->si_status); | 
|  | } | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_waitid(int which, pid_t pid, | 
|  | struct siginfo __user *infop, int options, | 
|  | struct rusage __user *ru) | 
|  | { | 
|  | long ret; | 
|  |  | 
|  | if (options & ~(WNOHANG|WNOWAIT|WEXITED|WSTOPPED|WCONTINUED)) | 
|  | return -EINVAL; | 
|  | if (!(options & (WEXITED|WSTOPPED|WCONTINUED))) | 
|  | return -EINVAL; | 
|  |  | 
|  | switch (which) { | 
|  | case P_ALL: | 
|  | pid = -1; | 
|  | break; | 
|  | case P_PID: | 
|  | if (pid <= 0) | 
|  | return -EINVAL; | 
|  | break; | 
|  | case P_PGID: | 
|  | if (pid <= 0) | 
|  | return -EINVAL; | 
|  | pid = -pid; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = do_wait(pid, options, infop, NULL, ru); | 
|  |  | 
|  | /* avoid REGPARM breakage on x86: */ | 
|  | prevent_tail_call(ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_wait4(pid_t pid, int __user *stat_addr, | 
|  | int options, struct rusage __user *ru) | 
|  | { | 
|  | long ret; | 
|  |  | 
|  | if (options & ~(WNOHANG|WUNTRACED|WCONTINUED| | 
|  | __WNOTHREAD|__WCLONE|__WALL)) | 
|  | return -EINVAL; | 
|  | ret = do_wait(pid, options | WEXITED, NULL, stat_addr, ru); | 
|  |  | 
|  | /* avoid REGPARM breakage on x86: */ | 
|  | prevent_tail_call(ret); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_WAITPID | 
|  |  | 
|  | /* | 
|  | * sys_waitpid() remains for compatibility. waitpid() should be | 
|  | * implemented by calling sys_wait4() from libc.a. | 
|  | */ | 
|  | asmlinkage long sys_waitpid(pid_t pid, int __user *stat_addr, int options) | 
|  | { | 
|  | return sys_wait4(pid, stat_addr, options, NULL); | 
|  | } | 
|  |  | 
|  | #endif |