|  | /* | 
|  | * This file implements the perfmon-2 subsystem which is used | 
|  | * to program the IA-64 Performance Monitoring Unit (PMU). | 
|  | * | 
|  | * The initial version of perfmon.c was written by | 
|  | * Ganesh Venkitachalam, IBM Corp. | 
|  | * | 
|  | * Then it was modified for perfmon-1.x by Stephane Eranian and | 
|  | * David Mosberger, Hewlett Packard Co. | 
|  | * | 
|  | * Version Perfmon-2.x is a rewrite of perfmon-1.x | 
|  | * by Stephane Eranian, Hewlett Packard Co. | 
|  | * | 
|  | * Copyright (C) 1999-2005  Hewlett Packard Co | 
|  | *               Stephane Eranian <eranian@hpl.hp.com> | 
|  | *               David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | * | 
|  | * More information about perfmon available at: | 
|  | * 	http://www.hpl.hp.com/research/linux/perfmon | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/seq_file.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/poll.h> | 
|  | #include <linux/vfs.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/bitops.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/rcupdate.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/tracehook.h> | 
|  |  | 
|  | #include <asm/errno.h> | 
|  | #include <asm/intrinsics.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/perfmon.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/signal.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/delay.h> | 
|  |  | 
|  | #ifdef CONFIG_PERFMON | 
|  | /* | 
|  | * perfmon context state | 
|  | */ | 
|  | #define PFM_CTX_UNLOADED	1	/* context is not loaded onto any task */ | 
|  | #define PFM_CTX_LOADED		2	/* context is loaded onto a task */ | 
|  | #define PFM_CTX_MASKED		3	/* context is loaded but monitoring is masked due to overflow */ | 
|  | #define PFM_CTX_ZOMBIE		4	/* owner of the context is closing it */ | 
|  |  | 
|  | #define PFM_INVALID_ACTIVATION	(~0UL) | 
|  |  | 
|  | #define PFM_NUM_PMC_REGS	64	/* PMC save area for ctxsw */ | 
|  | #define PFM_NUM_PMD_REGS	64	/* PMD save area for ctxsw */ | 
|  |  | 
|  | /* | 
|  | * depth of message queue | 
|  | */ | 
|  | #define PFM_MAX_MSGS		32 | 
|  | #define PFM_CTXQ_EMPTY(g)	((g)->ctx_msgq_head == (g)->ctx_msgq_tail) | 
|  |  | 
|  | /* | 
|  | * type of a PMU register (bitmask). | 
|  | * bitmask structure: | 
|  | * 	bit0   : register implemented | 
|  | * 	bit1   : end marker | 
|  | * 	bit2-3 : reserved | 
|  | * 	bit4   : pmc has pmc.pm | 
|  | * 	bit5   : pmc controls a counter (has pmc.oi), pmd is used as counter | 
|  | * 	bit6-7 : register type | 
|  | * 	bit8-31: reserved | 
|  | */ | 
|  | #define PFM_REG_NOTIMPL		0x0 /* not implemented at all */ | 
|  | #define PFM_REG_IMPL		0x1 /* register implemented */ | 
|  | #define PFM_REG_END		0x2 /* end marker */ | 
|  | #define PFM_REG_MONITOR		(0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */ | 
|  | #define PFM_REG_COUNTING	(0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */ | 
|  | #define PFM_REG_CONTROL		(0x4<<4|PFM_REG_IMPL) /* PMU control register */ | 
|  | #define	PFM_REG_CONFIG		(0x8<<4|PFM_REG_IMPL) /* configuration register */ | 
|  | #define PFM_REG_BUFFER	 	(0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */ | 
|  |  | 
|  | #define PMC_IS_LAST(i)	(pmu_conf->pmc_desc[i].type & PFM_REG_END) | 
|  | #define PMD_IS_LAST(i)	(pmu_conf->pmd_desc[i].type & PFM_REG_END) | 
|  |  | 
|  | #define PMC_OVFL_NOTIFY(ctx, i)	((ctx)->ctx_pmds[i].flags &  PFM_REGFL_OVFL_NOTIFY) | 
|  |  | 
|  | /* i assumed unsigned */ | 
|  | #define PMC_IS_IMPL(i)	  (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL)) | 
|  | #define PMD_IS_IMPL(i)	  (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL)) | 
|  |  | 
|  | /* XXX: these assume that register i is implemented */ | 
|  | #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) | 
|  | #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING) | 
|  | #define PMC_IS_MONITOR(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR)  == PFM_REG_MONITOR) | 
|  | #define PMC_IS_CONTROL(i)  ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL)  == PFM_REG_CONTROL) | 
|  |  | 
|  | #define PMC_DFL_VAL(i)     pmu_conf->pmc_desc[i].default_value | 
|  | #define PMC_RSVD_MASK(i)   pmu_conf->pmc_desc[i].reserved_mask | 
|  | #define PMD_PMD_DEP(i)	   pmu_conf->pmd_desc[i].dep_pmd[0] | 
|  | #define PMC_PMD_DEP(i)	   pmu_conf->pmc_desc[i].dep_pmd[0] | 
|  |  | 
|  | #define PFM_NUM_IBRS	  IA64_NUM_DBG_REGS | 
|  | #define PFM_NUM_DBRS	  IA64_NUM_DBG_REGS | 
|  |  | 
|  | #define CTX_OVFL_NOBLOCK(c)	((c)->ctx_fl_block == 0) | 
|  | #define CTX_HAS_SMPL(c)		((c)->ctx_fl_is_sampling) | 
|  | #define PFM_CTX_TASK(h)		(h)->ctx_task | 
|  |  | 
|  | #define PMU_PMC_OI		5 /* position of pmc.oi bit */ | 
|  |  | 
|  | /* XXX: does not support more than 64 PMDs */ | 
|  | #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask) | 
|  | #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL) | 
|  |  | 
|  | #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask) | 
|  |  | 
|  | #define CTX_USED_IBR(ctx,n) 	(ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64) | 
|  | #define CTX_USED_DBR(ctx,n) 	(ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64) | 
|  | #define CTX_USES_DBREGS(ctx)	(((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1) | 
|  | #define PFM_CODE_RR	0	/* requesting code range restriction */ | 
|  | #define PFM_DATA_RR	1	/* requestion data range restriction */ | 
|  |  | 
|  | #define PFM_CPUINFO_CLEAR(v)	pfm_get_cpu_var(pfm_syst_info) &= ~(v) | 
|  | #define PFM_CPUINFO_SET(v)	pfm_get_cpu_var(pfm_syst_info) |= (v) | 
|  | #define PFM_CPUINFO_GET()	pfm_get_cpu_var(pfm_syst_info) | 
|  |  | 
|  | #define RDEP(x)	(1UL<<(x)) | 
|  |  | 
|  | /* | 
|  | * context protection macros | 
|  | * in SMP: | 
|  | * 	- we need to protect against CPU concurrency (spin_lock) | 
|  | * 	- we need to protect against PMU overflow interrupts (local_irq_disable) | 
|  | * in UP: | 
|  | * 	- we need to protect against PMU overflow interrupts (local_irq_disable) | 
|  | * | 
|  | * spin_lock_irqsave()/spin_unlock_irqrestore(): | 
|  | * 	in SMP: local_irq_disable + spin_lock | 
|  | * 	in UP : local_irq_disable | 
|  | * | 
|  | * spin_lock()/spin_lock(): | 
|  | * 	in UP : removed automatically | 
|  | * 	in SMP: protect against context accesses from other CPU. interrupts | 
|  | * 	        are not masked. This is useful for the PMU interrupt handler | 
|  | * 	        because we know we will not get PMU concurrency in that code. | 
|  | */ | 
|  | #define PROTECT_CTX(c, f) \ | 
|  | do {  \ | 
|  | DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \ | 
|  | spin_lock_irqsave(&(c)->ctx_lock, f); \ | 
|  | DPRINT(("spinlocked ctx %p  by [%d]\n", c, task_pid_nr(current))); \ | 
|  | } while(0) | 
|  |  | 
|  | #define UNPROTECT_CTX(c, f) \ | 
|  | do { \ | 
|  | DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \ | 
|  | spin_unlock_irqrestore(&(c)->ctx_lock, f); \ | 
|  | } while(0) | 
|  |  | 
|  | #define PROTECT_CTX_NOPRINT(c, f) \ | 
|  | do {  \ | 
|  | spin_lock_irqsave(&(c)->ctx_lock, f); \ | 
|  | } while(0) | 
|  |  | 
|  |  | 
|  | #define UNPROTECT_CTX_NOPRINT(c, f) \ | 
|  | do { \ | 
|  | spin_unlock_irqrestore(&(c)->ctx_lock, f); \ | 
|  | } while(0) | 
|  |  | 
|  |  | 
|  | #define PROTECT_CTX_NOIRQ(c) \ | 
|  | do {  \ | 
|  | spin_lock(&(c)->ctx_lock); \ | 
|  | } while(0) | 
|  |  | 
|  | #define UNPROTECT_CTX_NOIRQ(c) \ | 
|  | do { \ | 
|  | spin_unlock(&(c)->ctx_lock); \ | 
|  | } while(0) | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | #define GET_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number) | 
|  | #define INC_ACTIVATION()	pfm_get_cpu_var(pmu_activation_number)++ | 
|  | #define SET_ACTIVATION(c)	(c)->ctx_last_activation = GET_ACTIVATION() | 
|  |  | 
|  | #else /* !CONFIG_SMP */ | 
|  | #define SET_ACTIVATION(t) 	do {} while(0) | 
|  | #define GET_ACTIVATION(t) 	do {} while(0) | 
|  | #define INC_ACTIVATION(t) 	do {} while(0) | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #define SET_PMU_OWNER(t, c)	do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0) | 
|  | #define GET_PMU_OWNER()		pfm_get_cpu_var(pmu_owner) | 
|  | #define GET_PMU_CTX()		pfm_get_cpu_var(pmu_ctx) | 
|  |  | 
|  | #define LOCK_PFS(g)	    	spin_lock_irqsave(&pfm_sessions.pfs_lock, g) | 
|  | #define UNLOCK_PFS(g)	    	spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g) | 
|  |  | 
|  | #define PFM_REG_RETFLAG_SET(flags, val)	do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0) | 
|  |  | 
|  | /* | 
|  | * cmp0 must be the value of pmc0 | 
|  | */ | 
|  | #define PMC0_HAS_OVFL(cmp0)  (cmp0 & ~0x1UL) | 
|  |  | 
|  | #define PFMFS_MAGIC 0xa0b4d889 | 
|  |  | 
|  | /* | 
|  | * debugging | 
|  | */ | 
|  | #define PFM_DEBUGGING 1 | 
|  | #ifdef PFM_DEBUGGING | 
|  | #define DPRINT(a) \ | 
|  | do { \ | 
|  | if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \ | 
|  | } while (0) | 
|  |  | 
|  | #define DPRINT_ovfl(a) \ | 
|  | do { \ | 
|  | if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \ | 
|  | } while (0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * 64-bit software counter structure | 
|  | * | 
|  | * the next_reset_type is applied to the next call to pfm_reset_regs() | 
|  | */ | 
|  | typedef struct { | 
|  | unsigned long	val;		/* virtual 64bit counter value */ | 
|  | unsigned long	lval;		/* last reset value */ | 
|  | unsigned long	long_reset;	/* reset value on sampling overflow */ | 
|  | unsigned long	short_reset;    /* reset value on overflow */ | 
|  | unsigned long	reset_pmds[4];  /* which other pmds to reset when this counter overflows */ | 
|  | unsigned long	smpl_pmds[4];   /* which pmds are accessed when counter overflow */ | 
|  | unsigned long	seed;		/* seed for random-number generator */ | 
|  | unsigned long	mask;		/* mask for random-number generator */ | 
|  | unsigned int 	flags;		/* notify/do not notify */ | 
|  | unsigned long	eventid;	/* overflow event identifier */ | 
|  | } pfm_counter_t; | 
|  |  | 
|  | /* | 
|  | * context flags | 
|  | */ | 
|  | typedef struct { | 
|  | unsigned int block:1;		/* when 1, task will blocked on user notifications */ | 
|  | unsigned int system:1;		/* do system wide monitoring */ | 
|  | unsigned int using_dbreg:1;	/* using range restrictions (debug registers) */ | 
|  | unsigned int is_sampling:1;	/* true if using a custom format */ | 
|  | unsigned int excl_idle:1;	/* exclude idle task in system wide session */ | 
|  | unsigned int going_zombie:1;	/* context is zombie (MASKED+blocking) */ | 
|  | unsigned int trap_reason:2;	/* reason for going into pfm_handle_work() */ | 
|  | unsigned int no_msg:1;		/* no message sent on overflow */ | 
|  | unsigned int can_restart:1;	/* allowed to issue a PFM_RESTART */ | 
|  | unsigned int reserved:22; | 
|  | } pfm_context_flags_t; | 
|  |  | 
|  | #define PFM_TRAP_REASON_NONE		0x0	/* default value */ | 
|  | #define PFM_TRAP_REASON_BLOCK		0x1	/* we need to block on overflow */ | 
|  | #define PFM_TRAP_REASON_RESET		0x2	/* we need to reset PMDs */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * perfmon context: encapsulates all the state of a monitoring session | 
|  | */ | 
|  |  | 
|  | typedef struct pfm_context { | 
|  | spinlock_t		ctx_lock;		/* context protection */ | 
|  |  | 
|  | pfm_context_flags_t	ctx_flags;		/* bitmask of flags  (block reason incl.) */ | 
|  | unsigned int		ctx_state;		/* state: active/inactive (no bitfield) */ | 
|  |  | 
|  | struct task_struct 	*ctx_task;		/* task to which context is attached */ | 
|  |  | 
|  | unsigned long		ctx_ovfl_regs[4];	/* which registers overflowed (notification) */ | 
|  |  | 
|  | struct completion	ctx_restart_done;  	/* use for blocking notification mode */ | 
|  |  | 
|  | unsigned long		ctx_used_pmds[4];	/* bitmask of PMD used            */ | 
|  | unsigned long		ctx_all_pmds[4];	/* bitmask of all accessible PMDs */ | 
|  | unsigned long		ctx_reload_pmds[4];	/* bitmask of force reload PMD on ctxsw in */ | 
|  |  | 
|  | unsigned long		ctx_all_pmcs[4];	/* bitmask of all accessible PMCs */ | 
|  | unsigned long		ctx_reload_pmcs[4];	/* bitmask of force reload PMC on ctxsw in */ | 
|  | unsigned long		ctx_used_monitors[4];	/* bitmask of monitor PMC being used */ | 
|  |  | 
|  | unsigned long		ctx_pmcs[PFM_NUM_PMC_REGS];	/*  saved copies of PMC values */ | 
|  |  | 
|  | unsigned int		ctx_used_ibrs[1];		/* bitmask of used IBR (speedup ctxsw in) */ | 
|  | unsigned int		ctx_used_dbrs[1];		/* bitmask of used DBR (speedup ctxsw in) */ | 
|  | unsigned long		ctx_dbrs[IA64_NUM_DBG_REGS];	/* DBR values (cache) when not loaded */ | 
|  | unsigned long		ctx_ibrs[IA64_NUM_DBG_REGS];	/* IBR values (cache) when not loaded */ | 
|  |  | 
|  | pfm_counter_t		ctx_pmds[PFM_NUM_PMD_REGS]; /* software state for PMDS */ | 
|  |  | 
|  | unsigned long		th_pmcs[PFM_NUM_PMC_REGS];	/* PMC thread save state */ | 
|  | unsigned long		th_pmds[PFM_NUM_PMD_REGS];	/* PMD thread save state */ | 
|  |  | 
|  | u64			ctx_saved_psr_up;	/* only contains psr.up value */ | 
|  |  | 
|  | unsigned long		ctx_last_activation;	/* context last activation number for last_cpu */ | 
|  | unsigned int		ctx_last_cpu;		/* CPU id of current or last CPU used (SMP only) */ | 
|  | unsigned int		ctx_cpu;		/* cpu to which perfmon is applied (system wide) */ | 
|  |  | 
|  | int			ctx_fd;			/* file descriptor used my this context */ | 
|  | pfm_ovfl_arg_t		ctx_ovfl_arg;		/* argument to custom buffer format handler */ | 
|  |  | 
|  | pfm_buffer_fmt_t	*ctx_buf_fmt;		/* buffer format callbacks */ | 
|  | void			*ctx_smpl_hdr;		/* points to sampling buffer header kernel vaddr */ | 
|  | unsigned long		ctx_smpl_size;		/* size of sampling buffer */ | 
|  | void			*ctx_smpl_vaddr;	/* user level virtual address of smpl buffer */ | 
|  |  | 
|  | wait_queue_head_t 	ctx_msgq_wait; | 
|  | pfm_msg_t		ctx_msgq[PFM_MAX_MSGS]; | 
|  | int			ctx_msgq_head; | 
|  | int			ctx_msgq_tail; | 
|  | struct fasync_struct	*ctx_async_queue; | 
|  |  | 
|  | wait_queue_head_t 	ctx_zombieq;		/* termination cleanup wait queue */ | 
|  | } pfm_context_t; | 
|  |  | 
|  | /* | 
|  | * magic number used to verify that structure is really | 
|  | * a perfmon context | 
|  | */ | 
|  | #define PFM_IS_FILE(f)		((f)->f_op == &pfm_file_ops) | 
|  |  | 
|  | #define PFM_GET_CTX(t)	 	((pfm_context_t *)(t)->thread.pfm_context) | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | #define SET_LAST_CPU(ctx, v)	(ctx)->ctx_last_cpu = (v) | 
|  | #define GET_LAST_CPU(ctx)	(ctx)->ctx_last_cpu | 
|  | #else | 
|  | #define SET_LAST_CPU(ctx, v)	do {} while(0) | 
|  | #define GET_LAST_CPU(ctx)	do {} while(0) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #define ctx_fl_block		ctx_flags.block | 
|  | #define ctx_fl_system		ctx_flags.system | 
|  | #define ctx_fl_using_dbreg	ctx_flags.using_dbreg | 
|  | #define ctx_fl_is_sampling	ctx_flags.is_sampling | 
|  | #define ctx_fl_excl_idle	ctx_flags.excl_idle | 
|  | #define ctx_fl_going_zombie	ctx_flags.going_zombie | 
|  | #define ctx_fl_trap_reason	ctx_flags.trap_reason | 
|  | #define ctx_fl_no_msg		ctx_flags.no_msg | 
|  | #define ctx_fl_can_restart	ctx_flags.can_restart | 
|  |  | 
|  | #define PFM_SET_WORK_PENDING(t, v)	do { (t)->thread.pfm_needs_checking = v; } while(0); | 
|  | #define PFM_GET_WORK_PENDING(t)		(t)->thread.pfm_needs_checking | 
|  |  | 
|  | /* | 
|  | * global information about all sessions | 
|  | * mostly used to synchronize between system wide and per-process | 
|  | */ | 
|  | typedef struct { | 
|  | spinlock_t		pfs_lock;		   /* lock the structure */ | 
|  |  | 
|  | unsigned int		pfs_task_sessions;	   /* number of per task sessions */ | 
|  | unsigned int		pfs_sys_sessions;	   /* number of per system wide sessions */ | 
|  | unsigned int		pfs_sys_use_dbregs;	   /* incremented when a system wide session uses debug regs */ | 
|  | unsigned int		pfs_ptrace_use_dbregs;	   /* incremented when a process uses debug regs */ | 
|  | struct task_struct	*pfs_sys_session[NR_CPUS]; /* point to task owning a system-wide session */ | 
|  | } pfm_session_t; | 
|  |  | 
|  | /* | 
|  | * information about a PMC or PMD. | 
|  | * dep_pmd[]: a bitmask of dependent PMD registers | 
|  | * dep_pmc[]: a bitmask of dependent PMC registers | 
|  | */ | 
|  | typedef int (*pfm_reg_check_t)(struct task_struct *task, pfm_context_t *ctx, unsigned int cnum, unsigned long *val, struct pt_regs *regs); | 
|  | typedef struct { | 
|  | unsigned int		type; | 
|  | int			pm_pos; | 
|  | unsigned long		default_value;	/* power-on default value */ | 
|  | unsigned long		reserved_mask;	/* bitmask of reserved bits */ | 
|  | pfm_reg_check_t		read_check; | 
|  | pfm_reg_check_t		write_check; | 
|  | unsigned long		dep_pmd[4]; | 
|  | unsigned long		dep_pmc[4]; | 
|  | } pfm_reg_desc_t; | 
|  |  | 
|  | /* assume cnum is a valid monitor */ | 
|  | #define PMC_PM(cnum, val)	(((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1) | 
|  |  | 
|  | /* | 
|  | * This structure is initialized at boot time and contains | 
|  | * a description of the PMU main characteristics. | 
|  | * | 
|  | * If the probe function is defined, detection is based | 
|  | * on its return value: | 
|  | * 	- 0 means recognized PMU | 
|  | * 	- anything else means not supported | 
|  | * When the probe function is not defined, then the pmu_family field | 
|  | * is used and it must match the host CPU family such that: | 
|  | * 	- cpu->family & config->pmu_family != 0 | 
|  | */ | 
|  | typedef struct { | 
|  | unsigned long  ovfl_val;	/* overflow value for counters */ | 
|  |  | 
|  | pfm_reg_desc_t *pmc_desc;	/* detailed PMC register dependencies descriptions */ | 
|  | pfm_reg_desc_t *pmd_desc;	/* detailed PMD register dependencies descriptions */ | 
|  |  | 
|  | unsigned int   num_pmcs;	/* number of PMCS: computed at init time */ | 
|  | unsigned int   num_pmds;	/* number of PMDS: computed at init time */ | 
|  | unsigned long  impl_pmcs[4];	/* bitmask of implemented PMCS */ | 
|  | unsigned long  impl_pmds[4];	/* bitmask of implemented PMDS */ | 
|  |  | 
|  | char	      *pmu_name;	/* PMU family name */ | 
|  | unsigned int  pmu_family;	/* cpuid family pattern used to identify pmu */ | 
|  | unsigned int  flags;		/* pmu specific flags */ | 
|  | unsigned int  num_ibrs;		/* number of IBRS: computed at init time */ | 
|  | unsigned int  num_dbrs;		/* number of DBRS: computed at init time */ | 
|  | unsigned int  num_counters;	/* PMC/PMD counting pairs : computed at init time */ | 
|  | int           (*probe)(void);   /* customized probe routine */ | 
|  | unsigned int  use_rr_dbregs:1;	/* set if debug registers used for range restriction */ | 
|  | } pmu_config_t; | 
|  | /* | 
|  | * PMU specific flags | 
|  | */ | 
|  | #define PFM_PMU_IRQ_RESEND	1	/* PMU needs explicit IRQ resend */ | 
|  |  | 
|  | /* | 
|  | * debug register related type definitions | 
|  | */ | 
|  | typedef struct { | 
|  | unsigned long ibr_mask:56; | 
|  | unsigned long ibr_plm:4; | 
|  | unsigned long ibr_ig:3; | 
|  | unsigned long ibr_x:1; | 
|  | } ibr_mask_reg_t; | 
|  |  | 
|  | typedef struct { | 
|  | unsigned long dbr_mask:56; | 
|  | unsigned long dbr_plm:4; | 
|  | unsigned long dbr_ig:2; | 
|  | unsigned long dbr_w:1; | 
|  | unsigned long dbr_r:1; | 
|  | } dbr_mask_reg_t; | 
|  |  | 
|  | typedef union { | 
|  | unsigned long  val; | 
|  | ibr_mask_reg_t ibr; | 
|  | dbr_mask_reg_t dbr; | 
|  | } dbreg_t; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * perfmon command descriptions | 
|  | */ | 
|  | typedef struct { | 
|  | int		(*cmd_func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); | 
|  | char		*cmd_name; | 
|  | int		cmd_flags; | 
|  | unsigned int	cmd_narg; | 
|  | size_t		cmd_argsize; | 
|  | int		(*cmd_getsize)(void *arg, size_t *sz); | 
|  | } pfm_cmd_desc_t; | 
|  |  | 
|  | #define PFM_CMD_FD		0x01	/* command requires a file descriptor */ | 
|  | #define PFM_CMD_ARG_READ	0x02	/* command must read argument(s) */ | 
|  | #define PFM_CMD_ARG_RW		0x04	/* command must read/write argument(s) */ | 
|  | #define PFM_CMD_STOP		0x08	/* command does not work on zombie context */ | 
|  |  | 
|  |  | 
|  | #define PFM_CMD_NAME(cmd)	pfm_cmd_tab[(cmd)].cmd_name | 
|  | #define PFM_CMD_READ_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ) | 
|  | #define PFM_CMD_RW_ARG(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW) | 
|  | #define PFM_CMD_USE_FD(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD) | 
|  | #define PFM_CMD_STOPPED(cmd)	(pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP) | 
|  |  | 
|  | #define PFM_CMD_ARG_MANY	-1 /* cannot be zero */ | 
|  |  | 
|  | typedef struct { | 
|  | unsigned long pfm_spurious_ovfl_intr_count;	/* keep track of spurious ovfl interrupts */ | 
|  | unsigned long pfm_replay_ovfl_intr_count;	/* keep track of replayed ovfl interrupts */ | 
|  | unsigned long pfm_ovfl_intr_count; 		/* keep track of ovfl interrupts */ | 
|  | unsigned long pfm_ovfl_intr_cycles;		/* cycles spent processing ovfl interrupts */ | 
|  | unsigned long pfm_ovfl_intr_cycles_min;		/* min cycles spent processing ovfl interrupts */ | 
|  | unsigned long pfm_ovfl_intr_cycles_max;		/* max cycles spent processing ovfl interrupts */ | 
|  | unsigned long pfm_smpl_handler_calls; | 
|  | unsigned long pfm_smpl_handler_cycles; | 
|  | char pad[SMP_CACHE_BYTES] ____cacheline_aligned; | 
|  | } pfm_stats_t; | 
|  |  | 
|  | /* | 
|  | * perfmon internal variables | 
|  | */ | 
|  | static pfm_stats_t		pfm_stats[NR_CPUS]; | 
|  | static pfm_session_t		pfm_sessions;	/* global sessions information */ | 
|  |  | 
|  | static DEFINE_SPINLOCK(pfm_alt_install_check); | 
|  | static pfm_intr_handler_desc_t  *pfm_alt_intr_handler; | 
|  |  | 
|  | static struct proc_dir_entry 	*perfmon_dir; | 
|  | static pfm_uuid_t		pfm_null_uuid = {0,}; | 
|  |  | 
|  | static spinlock_t		pfm_buffer_fmt_lock; | 
|  | static LIST_HEAD(pfm_buffer_fmt_list); | 
|  |  | 
|  | static pmu_config_t		*pmu_conf; | 
|  |  | 
|  | /* sysctl() controls */ | 
|  | pfm_sysctl_t pfm_sysctl; | 
|  | EXPORT_SYMBOL(pfm_sysctl); | 
|  |  | 
|  | static ctl_table pfm_ctl_table[]={ | 
|  | { | 
|  | .ctl_name	= CTL_UNNUMBERED, | 
|  | .procname	= "debug", | 
|  | .data		= &pfm_sysctl.debug, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0666, | 
|  | .proc_handler	= &proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .ctl_name	= CTL_UNNUMBERED, | 
|  | .procname	= "debug_ovfl", | 
|  | .data		= &pfm_sysctl.debug_ovfl, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0666, | 
|  | .proc_handler	= &proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .ctl_name	= CTL_UNNUMBERED, | 
|  | .procname	= "fastctxsw", | 
|  | .data		= &pfm_sysctl.fastctxsw, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0600, | 
|  | .proc_handler	=  &proc_dointvec, | 
|  | }, | 
|  | { | 
|  | .ctl_name	= CTL_UNNUMBERED, | 
|  | .procname	= "expert_mode", | 
|  | .data		= &pfm_sysctl.expert_mode, | 
|  | .maxlen		= sizeof(int), | 
|  | .mode		= 0600, | 
|  | .proc_handler	= &proc_dointvec, | 
|  | }, | 
|  | {} | 
|  | }; | 
|  | static ctl_table pfm_sysctl_dir[] = { | 
|  | { | 
|  | .ctl_name	= CTL_UNNUMBERED, | 
|  | .procname	= "perfmon", | 
|  | .mode		= 0555, | 
|  | .child		= pfm_ctl_table, | 
|  | }, | 
|  | {} | 
|  | }; | 
|  | static ctl_table pfm_sysctl_root[] = { | 
|  | { | 
|  | .ctl_name	= CTL_KERN, | 
|  | .procname	= "kernel", | 
|  | .mode		= 0555, | 
|  | .child		= pfm_sysctl_dir, | 
|  | }, | 
|  | {} | 
|  | }; | 
|  | static struct ctl_table_header *pfm_sysctl_header; | 
|  |  | 
|  | static int pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); | 
|  |  | 
|  | #define pfm_get_cpu_var(v)		__ia64_per_cpu_var(v) | 
|  | #define pfm_get_cpu_data(a,b)		per_cpu(a, b) | 
|  |  | 
|  | static inline void | 
|  | pfm_put_task(struct task_struct *task) | 
|  | { | 
|  | if (task != current) put_task_struct(task); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_reserve_page(unsigned long a) | 
|  | { | 
|  | SetPageReserved(vmalloc_to_page((void *)a)); | 
|  | } | 
|  | static inline void | 
|  | pfm_unreserve_page(unsigned long a) | 
|  | { | 
|  | ClearPageReserved(vmalloc_to_page((void*)a)); | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | pfm_protect_ctx_ctxsw(pfm_context_t *x) | 
|  | { | 
|  | spin_lock(&(x)->ctx_lock); | 
|  | return 0UL; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_unprotect_ctx_ctxsw(pfm_context_t *x, unsigned long f) | 
|  | { | 
|  | spin_unlock(&(x)->ctx_lock); | 
|  | } | 
|  |  | 
|  | static inline unsigned int | 
|  | pfm_do_munmap(struct mm_struct *mm, unsigned long addr, size_t len, int acct) | 
|  | { | 
|  | return do_munmap(mm, addr, len); | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | pfm_get_unmapped_area(struct file *file, unsigned long addr, unsigned long len, unsigned long pgoff, unsigned long flags, unsigned long exec) | 
|  | { | 
|  | return get_unmapped_area(file, addr, len, pgoff, flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | pfmfs_get_sb(struct file_system_type *fs_type, int flags, const char *dev_name, void *data, | 
|  | struct vfsmount *mnt) | 
|  | { | 
|  | return get_sb_pseudo(fs_type, "pfm:", NULL, PFMFS_MAGIC, mnt); | 
|  | } | 
|  |  | 
|  | static struct file_system_type pfm_fs_type = { | 
|  | .name     = "pfmfs", | 
|  | .get_sb   = pfmfs_get_sb, | 
|  | .kill_sb  = kill_anon_super, | 
|  | }; | 
|  |  | 
|  | DEFINE_PER_CPU(unsigned long, pfm_syst_info); | 
|  | DEFINE_PER_CPU(struct task_struct *, pmu_owner); | 
|  | DEFINE_PER_CPU(pfm_context_t  *, pmu_ctx); | 
|  | DEFINE_PER_CPU(unsigned long, pmu_activation_number); | 
|  | EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info); | 
|  |  | 
|  |  | 
|  | /* forward declaration */ | 
|  | static const struct file_operations pfm_file_ops; | 
|  |  | 
|  | /* | 
|  | * forward declarations | 
|  | */ | 
|  | #ifndef CONFIG_SMP | 
|  | static void pfm_lazy_save_regs (struct task_struct *ta); | 
|  | #endif | 
|  |  | 
|  | void dump_pmu_state(const char *); | 
|  | static int pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); | 
|  |  | 
|  | #include "perfmon_itanium.h" | 
|  | #include "perfmon_mckinley.h" | 
|  | #include "perfmon_montecito.h" | 
|  | #include "perfmon_generic.h" | 
|  |  | 
|  | static pmu_config_t *pmu_confs[]={ | 
|  | &pmu_conf_mont, | 
|  | &pmu_conf_mck, | 
|  | &pmu_conf_ita, | 
|  | &pmu_conf_gen, /* must be last */ | 
|  | NULL | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int pfm_end_notify_user(pfm_context_t *ctx); | 
|  |  | 
|  | static inline void | 
|  | pfm_clear_psr_pp(void) | 
|  | { | 
|  | ia64_rsm(IA64_PSR_PP); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_set_psr_pp(void) | 
|  | { | 
|  | ia64_ssm(IA64_PSR_PP); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_clear_psr_up(void) | 
|  | { | 
|  | ia64_rsm(IA64_PSR_UP); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_set_psr_up(void) | 
|  | { | 
|  | ia64_ssm(IA64_PSR_UP); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | pfm_get_psr(void) | 
|  | { | 
|  | unsigned long tmp; | 
|  | tmp = ia64_getreg(_IA64_REG_PSR); | 
|  | ia64_srlz_i(); | 
|  | return tmp; | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_set_psr_l(unsigned long val) | 
|  | { | 
|  | ia64_setreg(_IA64_REG_PSR_L, val); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_freeze_pmu(void) | 
|  | { | 
|  | ia64_set_pmc(0,1UL); | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_unfreeze_pmu(void) | 
|  | { | 
|  | ia64_set_pmc(0,0UL); | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_restore_ibrs(unsigned long *ibrs, unsigned int nibrs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i=0; i < nibrs; i++) { | 
|  | ia64_set_ibr(i, ibrs[i]); | 
|  | ia64_dv_serialize_instruction(); | 
|  | } | 
|  | ia64_srlz_i(); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_restore_dbrs(unsigned long *dbrs, unsigned int ndbrs) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i=0; i < ndbrs; i++) { | 
|  | ia64_set_dbr(i, dbrs[i]); | 
|  | ia64_dv_serialize_data(); | 
|  | } | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PMD[i] must be a counter. no check is made | 
|  | */ | 
|  | static inline unsigned long | 
|  | pfm_read_soft_counter(pfm_context_t *ctx, int i) | 
|  | { | 
|  | return ctx->ctx_pmds[i].val + (ia64_get_pmd(i) & pmu_conf->ovfl_val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PMD[i] must be a counter. no check is made | 
|  | */ | 
|  | static inline void | 
|  | pfm_write_soft_counter(pfm_context_t *ctx, int i, unsigned long val) | 
|  | { | 
|  | unsigned long ovfl_val = pmu_conf->ovfl_val; | 
|  |  | 
|  | ctx->ctx_pmds[i].val = val  & ~ovfl_val; | 
|  | /* | 
|  | * writing to unimplemented part is ignore, so we do not need to | 
|  | * mask off top part | 
|  | */ | 
|  | ia64_set_pmd(i, val & ovfl_val); | 
|  | } | 
|  |  | 
|  | static pfm_msg_t * | 
|  | pfm_get_new_msg(pfm_context_t *ctx) | 
|  | { | 
|  | int idx, next; | 
|  |  | 
|  | next = (ctx->ctx_msgq_tail+1) % PFM_MAX_MSGS; | 
|  |  | 
|  | DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); | 
|  | if (next == ctx->ctx_msgq_head) return NULL; | 
|  |  | 
|  | idx = 	ctx->ctx_msgq_tail; | 
|  | ctx->ctx_msgq_tail = next; | 
|  |  | 
|  | DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, idx)); | 
|  |  | 
|  | return ctx->ctx_msgq+idx; | 
|  | } | 
|  |  | 
|  | static pfm_msg_t * | 
|  | pfm_get_next_msg(pfm_context_t *ctx) | 
|  | { | 
|  | pfm_msg_t *msg; | 
|  |  | 
|  | DPRINT(("ctx=%p head=%d tail=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); | 
|  |  | 
|  | if (PFM_CTXQ_EMPTY(ctx)) return NULL; | 
|  |  | 
|  | /* | 
|  | * get oldest message | 
|  | */ | 
|  | msg = ctx->ctx_msgq+ctx->ctx_msgq_head; | 
|  |  | 
|  | /* | 
|  | * and move forward | 
|  | */ | 
|  | ctx->ctx_msgq_head = (ctx->ctx_msgq_head+1) % PFM_MAX_MSGS; | 
|  |  | 
|  | DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx, ctx->ctx_msgq_head, ctx->ctx_msgq_tail, msg->pfm_gen_msg.msg_type)); | 
|  |  | 
|  | return msg; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_reset_msgq(pfm_context_t *ctx) | 
|  | { | 
|  | ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; | 
|  | DPRINT(("ctx=%p msgq reset\n", ctx)); | 
|  | } | 
|  |  | 
|  | static void * | 
|  | pfm_rvmalloc(unsigned long size) | 
|  | { | 
|  | void *mem; | 
|  | unsigned long addr; | 
|  |  | 
|  | size = PAGE_ALIGN(size); | 
|  | mem  = vmalloc(size); | 
|  | if (mem) { | 
|  | //printk("perfmon: CPU%d pfm_rvmalloc(%ld)=%p\n", smp_processor_id(), size, mem); | 
|  | memset(mem, 0, size); | 
|  | addr = (unsigned long)mem; | 
|  | while (size > 0) { | 
|  | pfm_reserve_page(addr); | 
|  | addr+=PAGE_SIZE; | 
|  | size-=PAGE_SIZE; | 
|  | } | 
|  | } | 
|  | return mem; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_rvfree(void *mem, unsigned long size) | 
|  | { | 
|  | unsigned long addr; | 
|  |  | 
|  | if (mem) { | 
|  | DPRINT(("freeing physical buffer @%p size=%lu\n", mem, size)); | 
|  | addr = (unsigned long) mem; | 
|  | while ((long) size > 0) { | 
|  | pfm_unreserve_page(addr); | 
|  | addr+=PAGE_SIZE; | 
|  | size-=PAGE_SIZE; | 
|  | } | 
|  | vfree(mem); | 
|  | } | 
|  | return; | 
|  | } | 
|  |  | 
|  | static pfm_context_t * | 
|  | pfm_context_alloc(int ctx_flags) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  |  | 
|  | /* | 
|  | * allocate context descriptor | 
|  | * must be able to free with interrupts disabled | 
|  | */ | 
|  | ctx = kzalloc(sizeof(pfm_context_t), GFP_KERNEL); | 
|  | if (ctx) { | 
|  | DPRINT(("alloc ctx @%p\n", ctx)); | 
|  |  | 
|  | /* | 
|  | * init context protection lock | 
|  | */ | 
|  | spin_lock_init(&ctx->ctx_lock); | 
|  |  | 
|  | /* | 
|  | * context is unloaded | 
|  | */ | 
|  | ctx->ctx_state = PFM_CTX_UNLOADED; | 
|  |  | 
|  | /* | 
|  | * initialization of context's flags | 
|  | */ | 
|  | ctx->ctx_fl_block       = (ctx_flags & PFM_FL_NOTIFY_BLOCK) ? 1 : 0; | 
|  | ctx->ctx_fl_system      = (ctx_flags & PFM_FL_SYSTEM_WIDE) ? 1: 0; | 
|  | ctx->ctx_fl_no_msg      = (ctx_flags & PFM_FL_OVFL_NO_MSG) ? 1: 0; | 
|  | /* | 
|  | * will move to set properties | 
|  | * ctx->ctx_fl_excl_idle   = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0; | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * init restart semaphore to locked | 
|  | */ | 
|  | init_completion(&ctx->ctx_restart_done); | 
|  |  | 
|  | /* | 
|  | * activation is used in SMP only | 
|  | */ | 
|  | ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; | 
|  | SET_LAST_CPU(ctx, -1); | 
|  |  | 
|  | /* | 
|  | * initialize notification message queue | 
|  | */ | 
|  | ctx->ctx_msgq_head = ctx->ctx_msgq_tail = 0; | 
|  | init_waitqueue_head(&ctx->ctx_msgq_wait); | 
|  | init_waitqueue_head(&ctx->ctx_zombieq); | 
|  |  | 
|  | } | 
|  | return ctx; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_context_free(pfm_context_t *ctx) | 
|  | { | 
|  | if (ctx) { | 
|  | DPRINT(("free ctx @%p\n", ctx)); | 
|  | kfree(ctx); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_mask_monitoring(struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx = PFM_GET_CTX(task); | 
|  | unsigned long mask, val, ovfl_mask; | 
|  | int i; | 
|  |  | 
|  | DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task))); | 
|  |  | 
|  | ovfl_mask = pmu_conf->ovfl_val; | 
|  | /* | 
|  | * monitoring can only be masked as a result of a valid | 
|  | * counter overflow. In UP, it means that the PMU still | 
|  | * has an owner. Note that the owner can be different | 
|  | * from the current task. However the PMU state belongs | 
|  | * to the owner. | 
|  | * In SMP, a valid overflow only happens when task is | 
|  | * current. Therefore if we come here, we know that | 
|  | * the PMU state belongs to the current task, therefore | 
|  | * we can access the live registers. | 
|  | * | 
|  | * So in both cases, the live register contains the owner's | 
|  | * state. We can ONLY touch the PMU registers and NOT the PSR. | 
|  | * | 
|  | * As a consequence to this call, the ctx->th_pmds[] array | 
|  | * contains stale information which must be ignored | 
|  | * when context is reloaded AND monitoring is active (see | 
|  | * pfm_restart). | 
|  | */ | 
|  | mask = ctx->ctx_used_pmds[0]; | 
|  | for (i = 0; mask; i++, mask>>=1) { | 
|  | /* skip non used pmds */ | 
|  | if ((mask & 0x1) == 0) continue; | 
|  | val = ia64_get_pmd(i); | 
|  |  | 
|  | if (PMD_IS_COUNTING(i)) { | 
|  | /* | 
|  | * we rebuild the full 64 bit value of the counter | 
|  | */ | 
|  | ctx->ctx_pmds[i].val += (val & ovfl_mask); | 
|  | } else { | 
|  | ctx->ctx_pmds[i].val = val; | 
|  | } | 
|  | DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", | 
|  | i, | 
|  | ctx->ctx_pmds[i].val, | 
|  | val & ovfl_mask)); | 
|  | } | 
|  | /* | 
|  | * mask monitoring by setting the privilege level to 0 | 
|  | * we cannot use psr.pp/psr.up for this, it is controlled by | 
|  | * the user | 
|  | * | 
|  | * if task is current, modify actual registers, otherwise modify | 
|  | * thread save state, i.e., what will be restored in pfm_load_regs() | 
|  | */ | 
|  | mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; | 
|  | for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { | 
|  | if ((mask & 0x1) == 0UL) continue; | 
|  | ia64_set_pmc(i, ctx->th_pmcs[i] & ~0xfUL); | 
|  | ctx->th_pmcs[i] &= ~0xfUL; | 
|  | DPRINT_ovfl(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i])); | 
|  | } | 
|  | /* | 
|  | * make all of this visible | 
|  | */ | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * must always be done with task == current | 
|  | * | 
|  | * context must be in MASKED state when calling | 
|  | */ | 
|  | static void | 
|  | pfm_restore_monitoring(struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx = PFM_GET_CTX(task); | 
|  | unsigned long mask, ovfl_mask; | 
|  | unsigned long psr, val; | 
|  | int i, is_system; | 
|  |  | 
|  | is_system = ctx->ctx_fl_system; | 
|  | ovfl_mask = pmu_conf->ovfl_val; | 
|  |  | 
|  | if (task != current) { | 
|  | printk(KERN_ERR "perfmon.%d: invalid task[%d] current[%d]\n", __LINE__, task_pid_nr(task), task_pid_nr(current)); | 
|  | return; | 
|  | } | 
|  | if (ctx->ctx_state != PFM_CTX_MASKED) { | 
|  | printk(KERN_ERR "perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__, | 
|  | task_pid_nr(task), task_pid_nr(current), ctx->ctx_state); | 
|  | return; | 
|  | } | 
|  | psr = pfm_get_psr(); | 
|  | /* | 
|  | * monitoring is masked via the PMC. | 
|  | * As we restore their value, we do not want each counter to | 
|  | * restart right away. We stop monitoring using the PSR, | 
|  | * restore the PMC (and PMD) and then re-establish the psr | 
|  | * as it was. Note that there can be no pending overflow at | 
|  | * this point, because monitoring was MASKED. | 
|  | * | 
|  | * system-wide session are pinned and self-monitoring | 
|  | */ | 
|  | if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { | 
|  | /* disable dcr pp */ | 
|  | ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); | 
|  | pfm_clear_psr_pp(); | 
|  | } else { | 
|  | pfm_clear_psr_up(); | 
|  | } | 
|  | /* | 
|  | * first, we restore the PMD | 
|  | */ | 
|  | mask = ctx->ctx_used_pmds[0]; | 
|  | for (i = 0; mask; i++, mask>>=1) { | 
|  | /* skip non used pmds */ | 
|  | if ((mask & 0x1) == 0) continue; | 
|  |  | 
|  | if (PMD_IS_COUNTING(i)) { | 
|  | /* | 
|  | * we split the 64bit value according to | 
|  | * counter width | 
|  | */ | 
|  | val = ctx->ctx_pmds[i].val & ovfl_mask; | 
|  | ctx->ctx_pmds[i].val &= ~ovfl_mask; | 
|  | } else { | 
|  | val = ctx->ctx_pmds[i].val; | 
|  | } | 
|  | ia64_set_pmd(i, val); | 
|  |  | 
|  | DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n", | 
|  | i, | 
|  | ctx->ctx_pmds[i].val, | 
|  | val)); | 
|  | } | 
|  | /* | 
|  | * restore the PMCs | 
|  | */ | 
|  | mask = ctx->ctx_used_monitors[0] >> PMU_FIRST_COUNTER; | 
|  | for(i= PMU_FIRST_COUNTER; mask; i++, mask>>=1) { | 
|  | if ((mask & 0x1) == 0UL) continue; | 
|  | ctx->th_pmcs[i] = ctx->ctx_pmcs[i]; | 
|  | ia64_set_pmc(i, ctx->th_pmcs[i]); | 
|  | DPRINT(("[%d] pmc[%d]=0x%lx\n", | 
|  | task_pid_nr(task), i, ctx->th_pmcs[i])); | 
|  | } | 
|  | ia64_srlz_d(); | 
|  |  | 
|  | /* | 
|  | * must restore DBR/IBR because could be modified while masked | 
|  | * XXX: need to optimize | 
|  | */ | 
|  | if (ctx->ctx_fl_using_dbreg) { | 
|  | pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); | 
|  | pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * now restore PSR | 
|  | */ | 
|  | if (is_system && (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP)) { | 
|  | /* enable dcr pp */ | 
|  | ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  | pfm_set_psr_l(psr); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | pfm_save_pmds(unsigned long *pmds, unsigned long mask) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | ia64_srlz_d(); | 
|  |  | 
|  | for (i=0; mask; i++, mask>>=1) { | 
|  | if (mask & 0x1) pmds[i] = ia64_get_pmd(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * reload from thread state (used for ctxw only) | 
|  | */ | 
|  | static inline void | 
|  | pfm_restore_pmds(unsigned long *pmds, unsigned long mask) | 
|  | { | 
|  | int i; | 
|  | unsigned long val, ovfl_val = pmu_conf->ovfl_val; | 
|  |  | 
|  | for (i=0; mask; i++, mask>>=1) { | 
|  | if ((mask & 0x1) == 0) continue; | 
|  | val = PMD_IS_COUNTING(i) ? pmds[i] & ovfl_val : pmds[i]; | 
|  | ia64_set_pmd(i, val); | 
|  | } | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * propagate PMD from context to thread-state | 
|  | */ | 
|  | static inline void | 
|  | pfm_copy_pmds(struct task_struct *task, pfm_context_t *ctx) | 
|  | { | 
|  | unsigned long ovfl_val = pmu_conf->ovfl_val; | 
|  | unsigned long mask = ctx->ctx_all_pmds[0]; | 
|  | unsigned long val; | 
|  | int i; | 
|  |  | 
|  | DPRINT(("mask=0x%lx\n", mask)); | 
|  |  | 
|  | for (i=0; mask; i++, mask>>=1) { | 
|  |  | 
|  | val = ctx->ctx_pmds[i].val; | 
|  |  | 
|  | /* | 
|  | * We break up the 64 bit value into 2 pieces | 
|  | * the lower bits go to the machine state in the | 
|  | * thread (will be reloaded on ctxsw in). | 
|  | * The upper part stays in the soft-counter. | 
|  | */ | 
|  | if (PMD_IS_COUNTING(i)) { | 
|  | ctx->ctx_pmds[i].val = val & ~ovfl_val; | 
|  | val &= ovfl_val; | 
|  | } | 
|  | ctx->th_pmds[i] = val; | 
|  |  | 
|  | DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n", | 
|  | i, | 
|  | ctx->th_pmds[i], | 
|  | ctx->ctx_pmds[i].val)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * propagate PMC from context to thread-state | 
|  | */ | 
|  | static inline void | 
|  | pfm_copy_pmcs(struct task_struct *task, pfm_context_t *ctx) | 
|  | { | 
|  | unsigned long mask = ctx->ctx_all_pmcs[0]; | 
|  | int i; | 
|  |  | 
|  | DPRINT(("mask=0x%lx\n", mask)); | 
|  |  | 
|  | for (i=0; mask; i++, mask>>=1) { | 
|  | /* masking 0 with ovfl_val yields 0 */ | 
|  | ctx->th_pmcs[i] = ctx->ctx_pmcs[i]; | 
|  | DPRINT(("pmc[%d]=0x%lx\n", i, ctx->th_pmcs[i])); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static inline void | 
|  | pfm_restore_pmcs(unsigned long *pmcs, unsigned long mask) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i=0; mask; i++, mask>>=1) { | 
|  | if ((mask & 0x1) == 0) continue; | 
|  | ia64_set_pmc(i, pmcs[i]); | 
|  | } | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | pfm_uuid_cmp(pfm_uuid_t a, pfm_uuid_t b) | 
|  | { | 
|  | return memcmp(a, b, sizeof(pfm_uuid_t)); | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | pfm_buf_fmt_exit(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, struct pt_regs *regs) | 
|  | { | 
|  | int ret = 0; | 
|  | if (fmt->fmt_exit) ret = (*fmt->fmt_exit)(task, buf, regs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | pfm_buf_fmt_getsize(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, int cpu, void *arg, unsigned long *size) | 
|  | { | 
|  | int ret = 0; | 
|  | if (fmt->fmt_getsize) ret = (*fmt->fmt_getsize)(task, flags, cpu, arg, size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline int | 
|  | pfm_buf_fmt_validate(pfm_buffer_fmt_t *fmt, struct task_struct *task, unsigned int flags, | 
|  | int cpu, void *arg) | 
|  | { | 
|  | int ret = 0; | 
|  | if (fmt->fmt_validate) ret = (*fmt->fmt_validate)(task, flags, cpu, arg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | pfm_buf_fmt_init(pfm_buffer_fmt_t *fmt, struct task_struct *task, void *buf, unsigned int flags, | 
|  | int cpu, void *arg) | 
|  | { | 
|  | int ret = 0; | 
|  | if (fmt->fmt_init) ret = (*fmt->fmt_init)(task, buf, flags, cpu, arg); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | pfm_buf_fmt_restart(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) | 
|  | { | 
|  | int ret = 0; | 
|  | if (fmt->fmt_restart) ret = (*fmt->fmt_restart)(task, ctrl, buf, regs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | pfm_buf_fmt_restart_active(pfm_buffer_fmt_t *fmt, struct task_struct *task, pfm_ovfl_ctrl_t *ctrl, void *buf, struct pt_regs *regs) | 
|  | { | 
|  | int ret = 0; | 
|  | if (fmt->fmt_restart_active) ret = (*fmt->fmt_restart_active)(task, ctrl, buf, regs); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static pfm_buffer_fmt_t * | 
|  | __pfm_find_buffer_fmt(pfm_uuid_t uuid) | 
|  | { | 
|  | struct list_head * pos; | 
|  | pfm_buffer_fmt_t * entry; | 
|  |  | 
|  | list_for_each(pos, &pfm_buffer_fmt_list) { | 
|  | entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); | 
|  | if (pfm_uuid_cmp(uuid, entry->fmt_uuid) == 0) | 
|  | return entry; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * find a buffer format based on its uuid | 
|  | */ | 
|  | static pfm_buffer_fmt_t * | 
|  | pfm_find_buffer_fmt(pfm_uuid_t uuid) | 
|  | { | 
|  | pfm_buffer_fmt_t * fmt; | 
|  | spin_lock(&pfm_buffer_fmt_lock); | 
|  | fmt = __pfm_find_buffer_fmt(uuid); | 
|  | spin_unlock(&pfm_buffer_fmt_lock); | 
|  | return fmt; | 
|  | } | 
|  |  | 
|  | int | 
|  | pfm_register_buffer_fmt(pfm_buffer_fmt_t *fmt) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | /* some sanity checks */ | 
|  | if (fmt == NULL || fmt->fmt_name == NULL) return -EINVAL; | 
|  |  | 
|  | /* we need at least a handler */ | 
|  | if (fmt->fmt_handler == NULL) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * XXX: need check validity of fmt_arg_size | 
|  | */ | 
|  |  | 
|  | spin_lock(&pfm_buffer_fmt_lock); | 
|  |  | 
|  | if (__pfm_find_buffer_fmt(fmt->fmt_uuid)) { | 
|  | printk(KERN_ERR "perfmon: duplicate sampling format: %s\n", fmt->fmt_name); | 
|  | ret = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  | list_add(&fmt->fmt_list, &pfm_buffer_fmt_list); | 
|  | printk(KERN_INFO "perfmon: added sampling format %s\n", fmt->fmt_name); | 
|  |  | 
|  | out: | 
|  | spin_unlock(&pfm_buffer_fmt_lock); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(pfm_register_buffer_fmt); | 
|  |  | 
|  | int | 
|  | pfm_unregister_buffer_fmt(pfm_uuid_t uuid) | 
|  | { | 
|  | pfm_buffer_fmt_t *fmt; | 
|  | int ret = 0; | 
|  |  | 
|  | spin_lock(&pfm_buffer_fmt_lock); | 
|  |  | 
|  | fmt = __pfm_find_buffer_fmt(uuid); | 
|  | if (!fmt) { | 
|  | printk(KERN_ERR "perfmon: cannot unregister format, not found\n"); | 
|  | ret = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  | list_del_init(&fmt->fmt_list); | 
|  | printk(KERN_INFO "perfmon: removed sampling format: %s\n", fmt->fmt_name); | 
|  |  | 
|  | out: | 
|  | spin_unlock(&pfm_buffer_fmt_lock); | 
|  | return ret; | 
|  |  | 
|  | } | 
|  | EXPORT_SYMBOL(pfm_unregister_buffer_fmt); | 
|  |  | 
|  | extern void update_pal_halt_status(int); | 
|  |  | 
|  | static int | 
|  | pfm_reserve_session(struct task_struct *task, int is_syswide, unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | /* | 
|  | * validity checks on cpu_mask have been done upstream | 
|  | */ | 
|  | LOCK_PFS(flags); | 
|  |  | 
|  | DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", | 
|  | pfm_sessions.pfs_sys_sessions, | 
|  | pfm_sessions.pfs_task_sessions, | 
|  | pfm_sessions.pfs_sys_use_dbregs, | 
|  | is_syswide, | 
|  | cpu)); | 
|  |  | 
|  | if (is_syswide) { | 
|  | /* | 
|  | * cannot mix system wide and per-task sessions | 
|  | */ | 
|  | if (pfm_sessions.pfs_task_sessions > 0UL) { | 
|  | DPRINT(("system wide not possible, %u conflicting task_sessions\n", | 
|  | pfm_sessions.pfs_task_sessions)); | 
|  | goto abort; | 
|  | } | 
|  |  | 
|  | if (pfm_sessions.pfs_sys_session[cpu]) goto error_conflict; | 
|  |  | 
|  | DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu, smp_processor_id())); | 
|  |  | 
|  | pfm_sessions.pfs_sys_session[cpu] = task; | 
|  |  | 
|  | pfm_sessions.pfs_sys_sessions++ ; | 
|  |  | 
|  | } else { | 
|  | if (pfm_sessions.pfs_sys_sessions) goto abort; | 
|  | pfm_sessions.pfs_task_sessions++; | 
|  | } | 
|  |  | 
|  | DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", | 
|  | pfm_sessions.pfs_sys_sessions, | 
|  | pfm_sessions.pfs_task_sessions, | 
|  | pfm_sessions.pfs_sys_use_dbregs, | 
|  | is_syswide, | 
|  | cpu)); | 
|  |  | 
|  | /* | 
|  | * disable default_idle() to go to PAL_HALT | 
|  | */ | 
|  | update_pal_halt_status(0); | 
|  |  | 
|  | UNLOCK_PFS(flags); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error_conflict: | 
|  | DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n", | 
|  | task_pid_nr(pfm_sessions.pfs_sys_session[cpu]), | 
|  | cpu)); | 
|  | abort: | 
|  | UNLOCK_PFS(flags); | 
|  |  | 
|  | return -EBUSY; | 
|  |  | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_unreserve_session(pfm_context_t *ctx, int is_syswide, unsigned int cpu) | 
|  | { | 
|  | unsigned long flags; | 
|  | /* | 
|  | * validity checks on cpu_mask have been done upstream | 
|  | */ | 
|  | LOCK_PFS(flags); | 
|  |  | 
|  | DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", | 
|  | pfm_sessions.pfs_sys_sessions, | 
|  | pfm_sessions.pfs_task_sessions, | 
|  | pfm_sessions.pfs_sys_use_dbregs, | 
|  | is_syswide, | 
|  | cpu)); | 
|  |  | 
|  |  | 
|  | if (is_syswide) { | 
|  | pfm_sessions.pfs_sys_session[cpu] = NULL; | 
|  | /* | 
|  | * would not work with perfmon+more than one bit in cpu_mask | 
|  | */ | 
|  | if (ctx && ctx->ctx_fl_using_dbreg) { | 
|  | if (pfm_sessions.pfs_sys_use_dbregs == 0) { | 
|  | printk(KERN_ERR "perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx); | 
|  | } else { | 
|  | pfm_sessions.pfs_sys_use_dbregs--; | 
|  | } | 
|  | } | 
|  | pfm_sessions.pfs_sys_sessions--; | 
|  | } else { | 
|  | pfm_sessions.pfs_task_sessions--; | 
|  | } | 
|  | DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n", | 
|  | pfm_sessions.pfs_sys_sessions, | 
|  | pfm_sessions.pfs_task_sessions, | 
|  | pfm_sessions.pfs_sys_use_dbregs, | 
|  | is_syswide, | 
|  | cpu)); | 
|  |  | 
|  | /* | 
|  | * if possible, enable default_idle() to go into PAL_HALT | 
|  | */ | 
|  | if (pfm_sessions.pfs_task_sessions == 0 && pfm_sessions.pfs_sys_sessions == 0) | 
|  | update_pal_halt_status(1); | 
|  |  | 
|  | UNLOCK_PFS(flags); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * removes virtual mapping of the sampling buffer. | 
|  | * IMPORTANT: cannot be called with interrupts disable, e.g. inside | 
|  | * a PROTECT_CTX() section. | 
|  | */ | 
|  | static int | 
|  | pfm_remove_smpl_mapping(struct task_struct *task, void *vaddr, unsigned long size) | 
|  | { | 
|  | int r; | 
|  |  | 
|  | /* sanity checks */ | 
|  | if (task->mm == NULL || size == 0UL || vaddr == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task), task->mm); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr, size)); | 
|  |  | 
|  | /* | 
|  | * does the actual unmapping | 
|  | */ | 
|  | down_write(&task->mm->mmap_sem); | 
|  |  | 
|  | DPRINT(("down_write done smpl_vaddr=%p size=%lu\n", vaddr, size)); | 
|  |  | 
|  | r = pfm_do_munmap(task->mm, (unsigned long)vaddr, size, 0); | 
|  |  | 
|  | up_write(&task->mm->mmap_sem); | 
|  | if (r !=0) { | 
|  | printk(KERN_ERR "perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task), vaddr, size); | 
|  | } | 
|  |  | 
|  | DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr, size, r)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * free actual physical storage used by sampling buffer | 
|  | */ | 
|  | #if 0 | 
|  | static int | 
|  | pfm_free_smpl_buffer(pfm_context_t *ctx) | 
|  | { | 
|  | pfm_buffer_fmt_t *fmt; | 
|  |  | 
|  | if (ctx->ctx_smpl_hdr == NULL) goto invalid_free; | 
|  |  | 
|  | /* | 
|  | * we won't use the buffer format anymore | 
|  | */ | 
|  | fmt = ctx->ctx_buf_fmt; | 
|  |  | 
|  | DPRINT(("sampling buffer @%p size %lu vaddr=%p\n", | 
|  | ctx->ctx_smpl_hdr, | 
|  | ctx->ctx_smpl_size, | 
|  | ctx->ctx_smpl_vaddr)); | 
|  |  | 
|  | pfm_buf_fmt_exit(fmt, current, NULL, NULL); | 
|  |  | 
|  | /* | 
|  | * free the buffer | 
|  | */ | 
|  | pfm_rvfree(ctx->ctx_smpl_hdr, ctx->ctx_smpl_size); | 
|  |  | 
|  | ctx->ctx_smpl_hdr  = NULL; | 
|  | ctx->ctx_smpl_size = 0UL; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | invalid_free: | 
|  | printk(KERN_ERR "perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current)); | 
|  | return -EINVAL; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline void | 
|  | pfm_exit_smpl_buffer(pfm_buffer_fmt_t *fmt) | 
|  | { | 
|  | if (fmt == NULL) return; | 
|  |  | 
|  | pfm_buf_fmt_exit(fmt, current, NULL, NULL); | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * pfmfs should _never_ be mounted by userland - too much of security hassle, | 
|  | * no real gain from having the whole whorehouse mounted. So we don't need | 
|  | * any operations on the root directory. However, we need a non-trivial | 
|  | * d_name - pfm: will go nicely and kill the special-casing in procfs. | 
|  | */ | 
|  | static struct vfsmount *pfmfs_mnt; | 
|  |  | 
|  | static int __init | 
|  | init_pfm_fs(void) | 
|  | { | 
|  | int err = register_filesystem(&pfm_fs_type); | 
|  | if (!err) { | 
|  | pfmfs_mnt = kern_mount(&pfm_fs_type); | 
|  | err = PTR_ERR(pfmfs_mnt); | 
|  | if (IS_ERR(pfmfs_mnt)) | 
|  | unregister_filesystem(&pfm_fs_type); | 
|  | else | 
|  | err = 0; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | pfm_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | pfm_msg_t *msg; | 
|  | ssize_t ret; | 
|  | unsigned long flags; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | if (PFM_IS_FILE(filp) == 0) { | 
|  | printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ctx = (pfm_context_t *)filp->private_data; | 
|  | if (ctx == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check even when there is no message | 
|  | */ | 
|  | if (size < sizeof(pfm_msg_t)) { | 
|  | DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx, sizeof(pfm_msg_t))); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * put ourselves on the wait queue | 
|  | */ | 
|  | add_wait_queue(&ctx->ctx_msgq_wait, &wait); | 
|  |  | 
|  |  | 
|  | for(;;) { | 
|  | /* | 
|  | * check wait queue | 
|  | */ | 
|  |  | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  |  | 
|  | DPRINT(("head=%d tail=%d\n", ctx->ctx_msgq_head, ctx->ctx_msgq_tail)); | 
|  |  | 
|  | ret = 0; | 
|  | if(PFM_CTXQ_EMPTY(ctx) == 0) break; | 
|  |  | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * check non-blocking read | 
|  | */ | 
|  | ret = -EAGAIN; | 
|  | if(filp->f_flags & O_NONBLOCK) break; | 
|  |  | 
|  | /* | 
|  | * check pending signals | 
|  | */ | 
|  | if(signal_pending(current)) { | 
|  | ret = -EINTR; | 
|  | break; | 
|  | } | 
|  | /* | 
|  | * no message, so wait | 
|  | */ | 
|  | schedule(); | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  | } | 
|  | DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current), ret)); | 
|  | set_current_state(TASK_RUNNING); | 
|  | remove_wait_queue(&ctx->ctx_msgq_wait, &wait); | 
|  |  | 
|  | if (ret < 0) goto abort; | 
|  |  | 
|  | ret = -EINVAL; | 
|  | msg = pfm_get_next_msg(ctx); | 
|  | if (msg == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx, task_pid_nr(current)); | 
|  | goto abort_locked; | 
|  | } | 
|  |  | 
|  | DPRINT(("fd=%d type=%d\n", msg->pfm_gen_msg.msg_ctx_fd, msg->pfm_gen_msg.msg_type)); | 
|  |  | 
|  | ret = -EFAULT; | 
|  | if(copy_to_user(buf, msg, sizeof(pfm_msg_t)) == 0) ret = sizeof(pfm_msg_t); | 
|  |  | 
|  | abort_locked: | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  | abort: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | pfm_write(struct file *file, const char __user *ubuf, | 
|  | size_t size, loff_t *ppos) | 
|  | { | 
|  | DPRINT(("pfm_write called\n")); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | static unsigned int | 
|  | pfm_poll(struct file *filp, poll_table * wait) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | unsigned long flags; | 
|  | unsigned int mask = 0; | 
|  |  | 
|  | if (PFM_IS_FILE(filp) == 0) { | 
|  | printk(KERN_ERR "perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ctx = (pfm_context_t *)filp->private_data; | 
|  | if (ctx == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx->ctx_fd)); | 
|  |  | 
|  | poll_wait(filp, &ctx->ctx_msgq_wait, wait); | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  | if (PFM_CTXQ_EMPTY(ctx) == 0) | 
|  | mask =  POLLIN | POLLRDNORM; | 
|  |  | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  |  | 
|  | DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx->ctx_fd, mask)); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_ioctl(struct inode *inode, struct file *file, unsigned int cmd, unsigned long arg) | 
|  | { | 
|  | DPRINT(("pfm_ioctl called\n")); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * interrupt cannot be masked when coming here | 
|  | */ | 
|  | static inline int | 
|  | pfm_do_fasync(int fd, struct file *filp, pfm_context_t *ctx, int on) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = fasync_helper (fd, filp, on, &ctx->ctx_async_queue); | 
|  |  | 
|  | DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n", | 
|  | task_pid_nr(current), | 
|  | fd, | 
|  | on, | 
|  | ctx->ctx_async_queue, ret)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_fasync(int fd, struct file *filp, int on) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | int ret; | 
|  |  | 
|  | if (PFM_IS_FILE(filp) == 0) { | 
|  | printk(KERN_ERR "perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current)); | 
|  | return -EBADF; | 
|  | } | 
|  |  | 
|  | ctx = (pfm_context_t *)filp->private_data; | 
|  | if (ctx == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current)); | 
|  | return -EBADF; | 
|  | } | 
|  | /* | 
|  | * we cannot mask interrupts during this call because this may | 
|  | * may go to sleep if memory is not readily avalaible. | 
|  | * | 
|  | * We are protected from the conetxt disappearing by the get_fd()/put_fd() | 
|  | * done in caller. Serialization of this function is ensured by caller. | 
|  | */ | 
|  | ret = pfm_do_fasync(fd, filp, ctx, on); | 
|  |  | 
|  |  | 
|  | DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n", | 
|  | fd, | 
|  | on, | 
|  | ctx->ctx_async_queue, ret)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * this function is exclusively called from pfm_close(). | 
|  | * The context is not protected at that time, nor are interrupts | 
|  | * on the remote CPU. That's necessary to avoid deadlocks. | 
|  | */ | 
|  | static void | 
|  | pfm_syswide_force_stop(void *info) | 
|  | { | 
|  | pfm_context_t   *ctx = (pfm_context_t *)info; | 
|  | struct pt_regs *regs = task_pt_regs(current); | 
|  | struct task_struct *owner; | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | if (ctx->ctx_cpu != smp_processor_id()) { | 
|  | printk(KERN_ERR "perfmon: pfm_syswide_force_stop for CPU%d  but on CPU%d\n", | 
|  | ctx->ctx_cpu, | 
|  | smp_processor_id()); | 
|  | return; | 
|  | } | 
|  | owner = GET_PMU_OWNER(); | 
|  | if (owner != ctx->ctx_task) { | 
|  | printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n", | 
|  | smp_processor_id(), | 
|  | task_pid_nr(owner), task_pid_nr(ctx->ctx_task)); | 
|  | return; | 
|  | } | 
|  | if (GET_PMU_CTX() != ctx) { | 
|  | printk(KERN_ERR "perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n", | 
|  | smp_processor_id(), | 
|  | GET_PMU_CTX(), ctx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx->ctx_task))); | 
|  | /* | 
|  | * the context is already protected in pfm_close(), we simply | 
|  | * need to mask interrupts to avoid a PMU interrupt race on | 
|  | * this CPU | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | ret = pfm_context_unload(ctx, NULL, 0, regs); | 
|  | if (ret) { | 
|  | DPRINT(("context_unload returned %d\n", ret)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * unmask interrupts, PMU interrupts are now spurious here | 
|  | */ | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_syswide_cleanup_other_cpu(pfm_context_t *ctx) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | DPRINT(("calling CPU%d for cleanup\n", ctx->ctx_cpu)); | 
|  | ret = smp_call_function_single(ctx->ctx_cpu, pfm_syswide_force_stop, ctx, 1); | 
|  | DPRINT(("called CPU%d for cleanup ret=%d\n", ctx->ctx_cpu, ret)); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * called for each close(). Partially free resources. | 
|  | * When caller is self-monitoring, the context is unloaded. | 
|  | */ | 
|  | static int | 
|  | pfm_flush(struct file *filp, fl_owner_t id) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | struct task_struct *task; | 
|  | struct pt_regs *regs; | 
|  | unsigned long flags; | 
|  | unsigned long smpl_buf_size = 0UL; | 
|  | void *smpl_buf_vaddr = NULL; | 
|  | int state, is_system; | 
|  |  | 
|  | if (PFM_IS_FILE(filp) == 0) { | 
|  | DPRINT(("bad magic for\n")); | 
|  | return -EBADF; | 
|  | } | 
|  |  | 
|  | ctx = (pfm_context_t *)filp->private_data; | 
|  | if (ctx == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current)); | 
|  | return -EBADF; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove our file from the async queue, if we use this mode. | 
|  | * This can be done without the context being protected. We come | 
|  | * here when the context has become unreachable by other tasks. | 
|  | * | 
|  | * We may still have active monitoring at this point and we may | 
|  | * end up in pfm_overflow_handler(). However, fasync_helper() | 
|  | * operates with interrupts disabled and it cleans up the | 
|  | * queue. If the PMU handler is called prior to entering | 
|  | * fasync_helper() then it will send a signal. If it is | 
|  | * invoked after, it will find an empty queue and no | 
|  | * signal will be sent. In both case, we are safe | 
|  | */ | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_system = ctx->ctx_fl_system; | 
|  |  | 
|  | task = PFM_CTX_TASK(ctx); | 
|  | regs = task_pt_regs(task); | 
|  |  | 
|  | DPRINT(("ctx_state=%d is_current=%d\n", | 
|  | state, | 
|  | task == current ? 1 : 0)); | 
|  |  | 
|  | /* | 
|  | * if state == UNLOADED, then task is NULL | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * we must stop and unload because we are losing access to the context. | 
|  | */ | 
|  | if (task == current) { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * the task IS the owner but it migrated to another CPU: that's bad | 
|  | * but we must handle this cleanly. Unfortunately, the kernel does | 
|  | * not provide a mechanism to block migration (while the context is loaded). | 
|  | * | 
|  | * We need to release the resource on the ORIGINAL cpu. | 
|  | */ | 
|  | if (is_system && ctx->ctx_cpu != smp_processor_id()) { | 
|  |  | 
|  | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); | 
|  | /* | 
|  | * keep context protected but unmask interrupt for IPI | 
|  | */ | 
|  | local_irq_restore(flags); | 
|  |  | 
|  | pfm_syswide_cleanup_other_cpu(ctx); | 
|  |  | 
|  | /* | 
|  | * restore interrupt masking | 
|  | */ | 
|  | local_irq_save(flags); | 
|  |  | 
|  | /* | 
|  | * context is unloaded at this point | 
|  | */ | 
|  | } else | 
|  | #endif /* CONFIG_SMP */ | 
|  | { | 
|  |  | 
|  | DPRINT(("forcing unload\n")); | 
|  | /* | 
|  | * stop and unload, returning with state UNLOADED | 
|  | * and session unreserved. | 
|  | */ | 
|  | pfm_context_unload(ctx, NULL, 0, regs); | 
|  |  | 
|  | DPRINT(("ctx_state=%d\n", ctx->ctx_state)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * remove virtual mapping, if any, for the calling task. | 
|  | * cannot reset ctx field until last user is calling close(). | 
|  | * | 
|  | * ctx_smpl_vaddr must never be cleared because it is needed | 
|  | * by every task with access to the context | 
|  | * | 
|  | * When called from do_exit(), the mm context is gone already, therefore | 
|  | * mm is NULL, i.e., the VMA is already gone  and we do not have to | 
|  | * do anything here | 
|  | */ | 
|  | if (ctx->ctx_smpl_vaddr && current->mm) { | 
|  | smpl_buf_vaddr = ctx->ctx_smpl_vaddr; | 
|  | smpl_buf_size  = ctx->ctx_smpl_size; | 
|  | } | 
|  |  | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * if there was a mapping, then we systematically remove it | 
|  | * at this point. Cannot be done inside critical section | 
|  | * because some VM function reenables interrupts. | 
|  | * | 
|  | */ | 
|  | if (smpl_buf_vaddr) pfm_remove_smpl_mapping(current, smpl_buf_vaddr, smpl_buf_size); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * called either on explicit close() or from exit_files(). | 
|  | * Only the LAST user of the file gets to this point, i.e., it is | 
|  | * called only ONCE. | 
|  | * | 
|  | * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero | 
|  | * (fput()),i.e, last task to access the file. Nobody else can access the | 
|  | * file at this point. | 
|  | * | 
|  | * When called from exit_files(), the VMA has been freed because exit_mm() | 
|  | * is executed before exit_files(). | 
|  | * | 
|  | * When called from exit_files(), the current task is not yet ZOMBIE but we | 
|  | * flush the PMU state to the context. | 
|  | */ | 
|  | static int | 
|  | pfm_close(struct inode *inode, struct file *filp) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | struct task_struct *task; | 
|  | struct pt_regs *regs; | 
|  | DECLARE_WAITQUEUE(wait, current); | 
|  | unsigned long flags; | 
|  | unsigned long smpl_buf_size = 0UL; | 
|  | void *smpl_buf_addr = NULL; | 
|  | int free_possible = 1; | 
|  | int state, is_system; | 
|  |  | 
|  | DPRINT(("pfm_close called private=%p\n", filp->private_data)); | 
|  |  | 
|  | if (PFM_IS_FILE(filp) == 0) { | 
|  | DPRINT(("bad magic\n")); | 
|  | return -EBADF; | 
|  | } | 
|  |  | 
|  | ctx = (pfm_context_t *)filp->private_data; | 
|  | if (ctx == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current)); | 
|  | return -EBADF; | 
|  | } | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_system = ctx->ctx_fl_system; | 
|  |  | 
|  | task = PFM_CTX_TASK(ctx); | 
|  | regs = task_pt_regs(task); | 
|  |  | 
|  | DPRINT(("ctx_state=%d is_current=%d\n", | 
|  | state, | 
|  | task == current ? 1 : 0)); | 
|  |  | 
|  | /* | 
|  | * if task == current, then pfm_flush() unloaded the context | 
|  | */ | 
|  | if (state == PFM_CTX_UNLOADED) goto doit; | 
|  |  | 
|  | /* | 
|  | * context is loaded/masked and task != current, we need to | 
|  | * either force an unload or go zombie | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The task is currently blocked or will block after an overflow. | 
|  | * we must force it to wakeup to get out of the | 
|  | * MASKED state and transition to the unloaded state by itself. | 
|  | * | 
|  | * This situation is only possible for per-task mode | 
|  | */ | 
|  | if (state == PFM_CTX_MASKED && CTX_OVFL_NOBLOCK(ctx) == 0) { | 
|  |  | 
|  | /* | 
|  | * set a "partial" zombie state to be checked | 
|  | * upon return from down() in pfm_handle_work(). | 
|  | * | 
|  | * We cannot use the ZOMBIE state, because it is checked | 
|  | * by pfm_load_regs() which is called upon wakeup from down(). | 
|  | * In such case, it would free the context and then we would | 
|  | * return to pfm_handle_work() which would access the | 
|  | * stale context. Instead, we set a flag invisible to pfm_load_regs() | 
|  | * but visible to pfm_handle_work(). | 
|  | * | 
|  | * For some window of time, we have a zombie context with | 
|  | * ctx_state = MASKED  and not ZOMBIE | 
|  | */ | 
|  | ctx->ctx_fl_going_zombie = 1; | 
|  |  | 
|  | /* | 
|  | * force task to wake up from MASKED state | 
|  | */ | 
|  | complete(&ctx->ctx_restart_done); | 
|  |  | 
|  | DPRINT(("waking up ctx_state=%d\n", state)); | 
|  |  | 
|  | /* | 
|  | * put ourself to sleep waiting for the other | 
|  | * task to report completion | 
|  | * | 
|  | * the context is protected by mutex, therefore there | 
|  | * is no risk of being notified of completion before | 
|  | * begin actually on the waitq. | 
|  | */ | 
|  | set_current_state(TASK_INTERRUPTIBLE); | 
|  | add_wait_queue(&ctx->ctx_zombieq, &wait); | 
|  |  | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * XXX: check for signals : | 
|  | * 	- ok for explicit close | 
|  | * 	- not ok when coming from exit_files() | 
|  | */ | 
|  | schedule(); | 
|  |  | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  |  | 
|  | remove_wait_queue(&ctx->ctx_zombieq, &wait); | 
|  | set_current_state(TASK_RUNNING); | 
|  |  | 
|  | /* | 
|  | * context is unloaded at this point | 
|  | */ | 
|  | DPRINT(("after zombie wakeup ctx_state=%d for\n", state)); | 
|  | } | 
|  | else if (task != current) { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * switch context to zombie state | 
|  | */ | 
|  | ctx->ctx_state = PFM_CTX_ZOMBIE; | 
|  |  | 
|  | DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task))); | 
|  | /* | 
|  | * cannot free the context on the spot. deferred until | 
|  | * the task notices the ZOMBIE state | 
|  | */ | 
|  | free_possible = 0; | 
|  | #else | 
|  | pfm_context_unload(ctx, NULL, 0, regs); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | doit: | 
|  | /* reload state, may have changed during  opening of critical section */ | 
|  | state = ctx->ctx_state; | 
|  |  | 
|  | /* | 
|  | * the context is still attached to a task (possibly current) | 
|  | * we cannot destroy it right now | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * we must free the sampling buffer right here because | 
|  | * we cannot rely on it being cleaned up later by the | 
|  | * monitored task. It is not possible to free vmalloc'ed | 
|  | * memory in pfm_load_regs(). Instead, we remove the buffer | 
|  | * now. should there be subsequent PMU overflow originally | 
|  | * meant for sampling, the will be converted to spurious | 
|  | * and that's fine because the monitoring tools is gone anyway. | 
|  | */ | 
|  | if (ctx->ctx_smpl_hdr) { | 
|  | smpl_buf_addr = ctx->ctx_smpl_hdr; | 
|  | smpl_buf_size = ctx->ctx_smpl_size; | 
|  | /* no more sampling */ | 
|  | ctx->ctx_smpl_hdr = NULL; | 
|  | ctx->ctx_fl_is_sampling = 0; | 
|  | } | 
|  |  | 
|  | DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n", | 
|  | state, | 
|  | free_possible, | 
|  | smpl_buf_addr, | 
|  | smpl_buf_size)); | 
|  |  | 
|  | if (smpl_buf_addr) pfm_exit_smpl_buffer(ctx->ctx_buf_fmt); | 
|  |  | 
|  | /* | 
|  | * UNLOADED that the session has already been unreserved. | 
|  | */ | 
|  | if (state == PFM_CTX_ZOMBIE) { | 
|  | pfm_unreserve_session(ctx, ctx->ctx_fl_system , ctx->ctx_cpu); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * disconnect file descriptor from context must be done | 
|  | * before we unlock. | 
|  | */ | 
|  | filp->private_data = NULL; | 
|  |  | 
|  | /* | 
|  | * if we free on the spot, the context is now completely unreachable | 
|  | * from the callers side. The monitored task side is also cut, so we | 
|  | * can freely cut. | 
|  | * | 
|  | * If we have a deferred free, only the caller side is disconnected. | 
|  | */ | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * All memory free operations (especially for vmalloc'ed memory) | 
|  | * MUST be done with interrupts ENABLED. | 
|  | */ | 
|  | if (smpl_buf_addr)  pfm_rvfree(smpl_buf_addr, smpl_buf_size); | 
|  |  | 
|  | /* | 
|  | * return the memory used by the context | 
|  | */ | 
|  | if (free_possible) pfm_context_free(ctx); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_no_open(struct inode *irrelevant, struct file *dontcare) | 
|  | { | 
|  | DPRINT(("pfm_no_open called\n")); | 
|  | return -ENXIO; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static const struct file_operations pfm_file_ops = { | 
|  | .llseek   = no_llseek, | 
|  | .read     = pfm_read, | 
|  | .write    = pfm_write, | 
|  | .poll     = pfm_poll, | 
|  | .ioctl    = pfm_ioctl, | 
|  | .open     = pfm_no_open,	/* special open code to disallow open via /proc */ | 
|  | .fasync   = pfm_fasync, | 
|  | .release  = pfm_close, | 
|  | .flush	  = pfm_flush | 
|  | }; | 
|  |  | 
|  | static int | 
|  | pfmfs_delete_dentry(struct dentry *dentry) | 
|  | { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static struct dentry_operations pfmfs_dentry_operations = { | 
|  | .d_delete = pfmfs_delete_dentry, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static struct file * | 
|  | pfm_alloc_file(pfm_context_t *ctx) | 
|  | { | 
|  | struct file *file; | 
|  | struct inode *inode; | 
|  | struct dentry *dentry; | 
|  | char name[32]; | 
|  | struct qstr this; | 
|  |  | 
|  | /* | 
|  | * allocate a new inode | 
|  | */ | 
|  | inode = new_inode(pfmfs_mnt->mnt_sb); | 
|  | if (!inode) | 
|  | return ERR_PTR(-ENOMEM); | 
|  |  | 
|  | DPRINT(("new inode ino=%ld @%p\n", inode->i_ino, inode)); | 
|  |  | 
|  | inode->i_mode = S_IFCHR|S_IRUGO; | 
|  | inode->i_uid  = current_fsuid(); | 
|  | inode->i_gid  = current_fsgid(); | 
|  |  | 
|  | sprintf(name, "[%lu]", inode->i_ino); | 
|  | this.name = name; | 
|  | this.len  = strlen(name); | 
|  | this.hash = inode->i_ino; | 
|  |  | 
|  | /* | 
|  | * allocate a new dcache entry | 
|  | */ | 
|  | dentry = d_alloc(pfmfs_mnt->mnt_sb->s_root, &this); | 
|  | if (!dentry) { | 
|  | iput(inode); | 
|  | return ERR_PTR(-ENOMEM); | 
|  | } | 
|  |  | 
|  | dentry->d_op = &pfmfs_dentry_operations; | 
|  | d_add(dentry, inode); | 
|  |  | 
|  | file = alloc_file(pfmfs_mnt, dentry, FMODE_READ, &pfm_file_ops); | 
|  | if (!file) { | 
|  | dput(dentry); | 
|  | return ERR_PTR(-ENFILE); | 
|  | } | 
|  |  | 
|  | file->f_flags = O_RDONLY; | 
|  | file->private_data = ctx; | 
|  |  | 
|  | return file; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_remap_buffer(struct vm_area_struct *vma, unsigned long buf, unsigned long addr, unsigned long size) | 
|  | { | 
|  | DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf, addr, size)); | 
|  |  | 
|  | while (size > 0) { | 
|  | unsigned long pfn = ia64_tpa(buf) >> PAGE_SHIFT; | 
|  |  | 
|  |  | 
|  | if (remap_pfn_range(vma, addr, pfn, PAGE_SIZE, PAGE_READONLY)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | addr  += PAGE_SIZE; | 
|  | buf   += PAGE_SIZE; | 
|  | size  -= PAGE_SIZE; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate a sampling buffer and remaps it into the user address space of the task | 
|  | */ | 
|  | static int | 
|  | pfm_smpl_buffer_alloc(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned long rsize, void **user_vaddr) | 
|  | { | 
|  | struct mm_struct *mm = task->mm; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | unsigned long size; | 
|  | void *smpl_buf; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * the fixed header + requested size and align to page boundary | 
|  | */ | 
|  | size = PAGE_ALIGN(rsize); | 
|  |  | 
|  | DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize, size)); | 
|  |  | 
|  | /* | 
|  | * check requested size to avoid Denial-of-service attacks | 
|  | * XXX: may have to refine this test | 
|  | * Check against address space limit. | 
|  | * | 
|  | * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur) | 
|  | * 	return -ENOMEM; | 
|  | */ | 
|  | if (size > task->signal->rlim[RLIMIT_MEMLOCK].rlim_cur) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * We do the easy to undo allocations first. | 
|  | * | 
|  | * pfm_rvmalloc(), clears the buffer, so there is no leak | 
|  | */ | 
|  | smpl_buf = pfm_rvmalloc(size); | 
|  | if (smpl_buf == NULL) { | 
|  | DPRINT(("Can't allocate sampling buffer\n")); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | DPRINT(("smpl_buf @%p\n", smpl_buf)); | 
|  |  | 
|  | /* allocate vma */ | 
|  | vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!vma) { | 
|  | DPRINT(("Cannot allocate vma\n")); | 
|  | goto error_kmem; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * partially initialize the vma for the sampling buffer | 
|  | */ | 
|  | vma->vm_mm	     = mm; | 
|  | vma->vm_file	     = filp; | 
|  | vma->vm_flags	     = VM_READ| VM_MAYREAD |VM_RESERVED; | 
|  | vma->vm_page_prot    = PAGE_READONLY; /* XXX may need to change */ | 
|  |  | 
|  | /* | 
|  | * Now we have everything we need and we can initialize | 
|  | * and connect all the data structures | 
|  | */ | 
|  |  | 
|  | ctx->ctx_smpl_hdr   = smpl_buf; | 
|  | ctx->ctx_smpl_size  = size; /* aligned size */ | 
|  |  | 
|  | /* | 
|  | * Let's do the difficult operations next. | 
|  | * | 
|  | * now we atomically find some area in the address space and | 
|  | * remap the buffer in it. | 
|  | */ | 
|  | down_write(&task->mm->mmap_sem); | 
|  |  | 
|  | /* find some free area in address space, must have mmap sem held */ | 
|  | vma->vm_start = pfm_get_unmapped_area(NULL, 0, size, 0, MAP_PRIVATE|MAP_ANONYMOUS, 0); | 
|  | if (vma->vm_start == 0UL) { | 
|  | DPRINT(("Cannot find unmapped area for size %ld\n", size)); | 
|  | up_write(&task->mm->mmap_sem); | 
|  | goto error; | 
|  | } | 
|  | vma->vm_end = vma->vm_start + size; | 
|  | vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT; | 
|  |  | 
|  | DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size, ctx->ctx_smpl_hdr, vma->vm_start)); | 
|  |  | 
|  | /* can only be applied to current task, need to have the mm semaphore held when called */ | 
|  | if (pfm_remap_buffer(vma, (unsigned long)smpl_buf, vma->vm_start, size)) { | 
|  | DPRINT(("Can't remap buffer\n")); | 
|  | up_write(&task->mm->mmap_sem); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | get_file(filp); | 
|  |  | 
|  | /* | 
|  | * now insert the vma in the vm list for the process, must be | 
|  | * done with mmap lock held | 
|  | */ | 
|  | insert_vm_struct(mm, vma); | 
|  |  | 
|  | mm->total_vm  += size >> PAGE_SHIFT; | 
|  | vm_stat_account(vma->vm_mm, vma->vm_flags, vma->vm_file, | 
|  | vma_pages(vma)); | 
|  | up_write(&task->mm->mmap_sem); | 
|  |  | 
|  | /* | 
|  | * keep track of user level virtual address | 
|  | */ | 
|  | ctx->ctx_smpl_vaddr = (void *)vma->vm_start; | 
|  | *(unsigned long *)user_vaddr = vma->vm_start; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | error_kmem: | 
|  | pfm_rvfree(smpl_buf, size); | 
|  |  | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX: do something better here | 
|  | */ | 
|  | static int | 
|  | pfm_bad_permissions(struct task_struct *task) | 
|  | { | 
|  | const struct cred *tcred; | 
|  | uid_t uid = current_uid(); | 
|  | gid_t gid = current_gid(); | 
|  | int ret; | 
|  |  | 
|  | rcu_read_lock(); | 
|  | tcred = __task_cred(task); | 
|  |  | 
|  | /* inspired by ptrace_attach() */ | 
|  | DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n", | 
|  | uid, | 
|  | gid, | 
|  | tcred->euid, | 
|  | tcred->suid, | 
|  | tcred->uid, | 
|  | tcred->egid, | 
|  | tcred->sgid)); | 
|  |  | 
|  | ret = ((uid != tcred->euid) | 
|  | || (uid != tcred->suid) | 
|  | || (uid != tcred->uid) | 
|  | || (gid != tcred->egid) | 
|  | || (gid != tcred->sgid) | 
|  | || (gid != tcred->gid)) && !capable(CAP_SYS_PTRACE); | 
|  |  | 
|  | rcu_read_unlock(); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfarg_is_sane(struct task_struct *task, pfarg_context_t *pfx) | 
|  | { | 
|  | int ctx_flags; | 
|  |  | 
|  | /* valid signal */ | 
|  |  | 
|  | ctx_flags = pfx->ctx_flags; | 
|  |  | 
|  | if (ctx_flags & PFM_FL_SYSTEM_WIDE) { | 
|  |  | 
|  | /* | 
|  | * cannot block in this mode | 
|  | */ | 
|  | if (ctx_flags & PFM_FL_NOTIFY_BLOCK) { | 
|  | DPRINT(("cannot use blocking mode when in system wide monitoring\n")); | 
|  | return -EINVAL; | 
|  | } | 
|  | } else { | 
|  | } | 
|  | /* probably more to add here */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_setup_buffer_fmt(struct task_struct *task, struct file *filp, pfm_context_t *ctx, unsigned int ctx_flags, | 
|  | unsigned int cpu, pfarg_context_t *arg) | 
|  | { | 
|  | pfm_buffer_fmt_t *fmt = NULL; | 
|  | unsigned long size = 0UL; | 
|  | void *uaddr = NULL; | 
|  | void *fmt_arg = NULL; | 
|  | int ret = 0; | 
|  | #define PFM_CTXARG_BUF_ARG(a)	(pfm_buffer_fmt_t *)(a+1) | 
|  |  | 
|  | /* invoke and lock buffer format, if found */ | 
|  | fmt = pfm_find_buffer_fmt(arg->ctx_smpl_buf_id); | 
|  | if (fmt == NULL) { | 
|  | DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task))); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * buffer argument MUST be contiguous to pfarg_context_t | 
|  | */ | 
|  | if (fmt->fmt_arg_size) fmt_arg = PFM_CTXARG_BUF_ARG(arg); | 
|  |  | 
|  | ret = pfm_buf_fmt_validate(fmt, task, ctx_flags, cpu, fmt_arg); | 
|  |  | 
|  | DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task), ctx_flags, cpu, fmt_arg, ret)); | 
|  |  | 
|  | if (ret) goto error; | 
|  |  | 
|  | /* link buffer format and context */ | 
|  | ctx->ctx_buf_fmt = fmt; | 
|  | ctx->ctx_fl_is_sampling = 1; /* assume record() is defined */ | 
|  |  | 
|  | /* | 
|  | * check if buffer format wants to use perfmon buffer allocation/mapping service | 
|  | */ | 
|  | ret = pfm_buf_fmt_getsize(fmt, task, ctx_flags, cpu, fmt_arg, &size); | 
|  | if (ret) goto error; | 
|  |  | 
|  | if (size) { | 
|  | /* | 
|  | * buffer is always remapped into the caller's address space | 
|  | */ | 
|  | ret = pfm_smpl_buffer_alloc(current, filp, ctx, size, &uaddr); | 
|  | if (ret) goto error; | 
|  |  | 
|  | /* keep track of user address of buffer */ | 
|  | arg->ctx_smpl_vaddr = uaddr; | 
|  | } | 
|  | ret = pfm_buf_fmt_init(fmt, task, ctx->ctx_smpl_hdr, ctx_flags, cpu, fmt_arg); | 
|  |  | 
|  | error: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_reset_pmu_state(pfm_context_t *ctx) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * install reset values for PMC. | 
|  | */ | 
|  | for (i=1; PMC_IS_LAST(i) == 0; i++) { | 
|  | if (PMC_IS_IMPL(i) == 0) continue; | 
|  | ctx->ctx_pmcs[i] = PMC_DFL_VAL(i); | 
|  | DPRINT(("pmc[%d]=0x%lx\n", i, ctx->ctx_pmcs[i])); | 
|  | } | 
|  | /* | 
|  | * PMD registers are set to 0UL when the context in memset() | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * On context switched restore, we must restore ALL pmc and ALL pmd even | 
|  | * when they are not actively used by the task. In UP, the incoming process | 
|  | * may otherwise pick up left over PMC, PMD state from the previous process. | 
|  | * As opposed to PMD, stale PMC can cause harm to the incoming | 
|  | * process because they may change what is being measured. | 
|  | * Therefore, we must systematically reinstall the entire | 
|  | * PMC state. In SMP, the same thing is possible on the | 
|  | * same CPU but also on between 2 CPUs. | 
|  | * | 
|  | * The problem with PMD is information leaking especially | 
|  | * to user level when psr.sp=0 | 
|  | * | 
|  | * There is unfortunately no easy way to avoid this problem | 
|  | * on either UP or SMP. This definitively slows down the | 
|  | * pfm_load_regs() function. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * bitmask of all PMCs accessible to this context | 
|  | * | 
|  | * PMC0 is treated differently. | 
|  | */ | 
|  | ctx->ctx_all_pmcs[0] = pmu_conf->impl_pmcs[0] & ~0x1; | 
|  |  | 
|  | /* | 
|  | * bitmask of all PMDs that are accessible to this context | 
|  | */ | 
|  | ctx->ctx_all_pmds[0] = pmu_conf->impl_pmds[0]; | 
|  |  | 
|  | DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx->ctx_fd, ctx->ctx_all_pmcs[0],ctx->ctx_all_pmds[0])); | 
|  |  | 
|  | /* | 
|  | * useful in case of re-enable after disable | 
|  | */ | 
|  | ctx->ctx_used_ibrs[0] = 0UL; | 
|  | ctx->ctx_used_dbrs[0] = 0UL; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_ctx_getsize(void *arg, size_t *sz) | 
|  | { | 
|  | pfarg_context_t *req = (pfarg_context_t *)arg; | 
|  | pfm_buffer_fmt_t *fmt; | 
|  |  | 
|  | *sz = 0; | 
|  |  | 
|  | if (!pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) return 0; | 
|  |  | 
|  | fmt = pfm_find_buffer_fmt(req->ctx_smpl_buf_id); | 
|  | if (fmt == NULL) { | 
|  | DPRINT(("cannot find buffer format\n")); | 
|  | return -EINVAL; | 
|  | } | 
|  | /* get just enough to copy in user parameters */ | 
|  | *sz = fmt->fmt_arg_size; | 
|  | DPRINT(("arg_size=%lu\n", *sz)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* | 
|  | * cannot attach if : | 
|  | * 	- kernel task | 
|  | * 	- task not owned by caller | 
|  | * 	- task incompatible with context mode | 
|  | */ | 
|  | static int | 
|  | pfm_task_incompatible(pfm_context_t *ctx, struct task_struct *task) | 
|  | { | 
|  | /* | 
|  | * no kernel task or task not owner by caller | 
|  | */ | 
|  | if (task->mm == NULL) { | 
|  | DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task))); | 
|  | return -EPERM; | 
|  | } | 
|  | if (pfm_bad_permissions(task)) { | 
|  | DPRINT(("no permission to attach to  [%d]\n", task_pid_nr(task))); | 
|  | return -EPERM; | 
|  | } | 
|  | /* | 
|  | * cannot block in self-monitoring mode | 
|  | */ | 
|  | if (CTX_OVFL_NOBLOCK(ctx) == 0 && task == current) { | 
|  | DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task))); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (task->exit_state == EXIT_ZOMBIE) { | 
|  | DPRINT(("cannot attach to  zombie task [%d]\n", task_pid_nr(task))); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * always ok for self | 
|  | */ | 
|  | if (task == current) return 0; | 
|  |  | 
|  | if (!task_is_stopped_or_traced(task)) { | 
|  | DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task), task->state)); | 
|  | return -EBUSY; | 
|  | } | 
|  | /* | 
|  | * make sure the task is off any CPU | 
|  | */ | 
|  | wait_task_inactive(task, 0); | 
|  |  | 
|  | /* more to come... */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_get_task(pfm_context_t *ctx, pid_t pid, struct task_struct **task) | 
|  | { | 
|  | struct task_struct *p = current; | 
|  | int ret; | 
|  |  | 
|  | /* XXX: need to add more checks here */ | 
|  | if (pid < 2) return -EPERM; | 
|  |  | 
|  | if (pid != task_pid_vnr(current)) { | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | p = find_task_by_vpid(pid); | 
|  |  | 
|  | /* make sure task cannot go away while we operate on it */ | 
|  | if (p) get_task_struct(p); | 
|  |  | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | if (p == NULL) return -ESRCH; | 
|  | } | 
|  |  | 
|  | ret = pfm_task_incompatible(ctx, p); | 
|  | if (ret == 0) { | 
|  | *task = p; | 
|  | } else if (p != current) { | 
|  | pfm_put_task(p); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | static int | 
|  | pfm_context_create(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | pfarg_context_t *req = (pfarg_context_t *)arg; | 
|  | struct file *filp; | 
|  | struct path path; | 
|  | int ctx_flags; | 
|  | int fd; | 
|  | int ret; | 
|  |  | 
|  | /* let's check the arguments first */ | 
|  | ret = pfarg_is_sane(current, req); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | ctx_flags = req->ctx_flags; | 
|  |  | 
|  | ret = -ENOMEM; | 
|  |  | 
|  | fd = get_unused_fd(); | 
|  | if (fd < 0) | 
|  | return fd; | 
|  |  | 
|  | ctx = pfm_context_alloc(ctx_flags); | 
|  | if (!ctx) | 
|  | goto error; | 
|  |  | 
|  | filp = pfm_alloc_file(ctx); | 
|  | if (IS_ERR(filp)) { | 
|  | ret = PTR_ERR(filp); | 
|  | goto error_file; | 
|  | } | 
|  |  | 
|  | req->ctx_fd = ctx->ctx_fd = fd; | 
|  |  | 
|  | /* | 
|  | * does the user want to sample? | 
|  | */ | 
|  | if (pfm_uuid_cmp(req->ctx_smpl_buf_id, pfm_null_uuid)) { | 
|  | ret = pfm_setup_buffer_fmt(current, filp, ctx, ctx_flags, 0, req); | 
|  | if (ret) | 
|  | goto buffer_error; | 
|  | } | 
|  |  | 
|  | DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d \n", | 
|  | ctx, | 
|  | ctx_flags, | 
|  | ctx->ctx_fl_system, | 
|  | ctx->ctx_fl_block, | 
|  | ctx->ctx_fl_excl_idle, | 
|  | ctx->ctx_fl_no_msg, | 
|  | ctx->ctx_fd)); | 
|  |  | 
|  | /* | 
|  | * initialize soft PMU state | 
|  | */ | 
|  | pfm_reset_pmu_state(ctx); | 
|  |  | 
|  | fd_install(fd, filp); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | buffer_error: | 
|  | path = filp->f_path; | 
|  | put_filp(filp); | 
|  | path_put(&path); | 
|  |  | 
|  | if (ctx->ctx_buf_fmt) { | 
|  | pfm_buf_fmt_exit(ctx->ctx_buf_fmt, current, NULL, regs); | 
|  | } | 
|  | error_file: | 
|  | pfm_context_free(ctx); | 
|  |  | 
|  | error: | 
|  | put_unused_fd(fd); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline unsigned long | 
|  | pfm_new_counter_value (pfm_counter_t *reg, int is_long_reset) | 
|  | { | 
|  | unsigned long val = is_long_reset ? reg->long_reset : reg->short_reset; | 
|  | unsigned long new_seed, old_seed = reg->seed, mask = reg->mask; | 
|  | extern unsigned long carta_random32 (unsigned long seed); | 
|  |  | 
|  | if (reg->flags & PFM_REGFL_RANDOM) { | 
|  | new_seed = carta_random32(old_seed); | 
|  | val -= (old_seed & mask);	/* counter values are negative numbers! */ | 
|  | if ((mask >> 32) != 0) | 
|  | /* construct a full 64-bit random value: */ | 
|  | new_seed |= carta_random32(old_seed >> 32) << 32; | 
|  | reg->seed = new_seed; | 
|  | } | 
|  | reg->lval = val; | 
|  | return val; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_reset_regs_masked(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) | 
|  | { | 
|  | unsigned long mask = ovfl_regs[0]; | 
|  | unsigned long reset_others = 0UL; | 
|  | unsigned long val; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * now restore reset value on sampling overflowed counters | 
|  | */ | 
|  | mask >>= PMU_FIRST_COUNTER; | 
|  | for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { | 
|  |  | 
|  | if ((mask & 0x1UL) == 0UL) continue; | 
|  |  | 
|  | ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); | 
|  | reset_others        |= ctx->ctx_pmds[i].reset_pmds[0]; | 
|  |  | 
|  | DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now take care of resetting the other registers | 
|  | */ | 
|  | for(i = 0; reset_others; i++, reset_others >>= 1) { | 
|  |  | 
|  | if ((reset_others & 0x1) == 0) continue; | 
|  |  | 
|  | ctx->ctx_pmds[i].val = val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); | 
|  |  | 
|  | DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", | 
|  | is_long_reset ? "long" : "short", i, val)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_reset_regs(pfm_context_t *ctx, unsigned long *ovfl_regs, int is_long_reset) | 
|  | { | 
|  | unsigned long mask = ovfl_regs[0]; | 
|  | unsigned long reset_others = 0UL; | 
|  | unsigned long val; | 
|  | int i; | 
|  |  | 
|  | DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs[0], is_long_reset)); | 
|  |  | 
|  | if (ctx->ctx_state == PFM_CTX_MASKED) { | 
|  | pfm_reset_regs_masked(ctx, ovfl_regs, is_long_reset); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * now restore reset value on sampling overflowed counters | 
|  | */ | 
|  | mask >>= PMU_FIRST_COUNTER; | 
|  | for(i = PMU_FIRST_COUNTER; mask; i++, mask >>= 1) { | 
|  |  | 
|  | if ((mask & 0x1UL) == 0UL) continue; | 
|  |  | 
|  | val           = pfm_new_counter_value(ctx->ctx_pmds+ i, is_long_reset); | 
|  | reset_others |= ctx->ctx_pmds[i].reset_pmds[0]; | 
|  |  | 
|  | DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset ? "long" : "short", i, val)); | 
|  |  | 
|  | pfm_write_soft_counter(ctx, i, val); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now take care of resetting the other registers | 
|  | */ | 
|  | for(i = 0; reset_others; i++, reset_others >>= 1) { | 
|  |  | 
|  | if ((reset_others & 0x1) == 0) continue; | 
|  |  | 
|  | val = pfm_new_counter_value(ctx->ctx_pmds + i, is_long_reset); | 
|  |  | 
|  | if (PMD_IS_COUNTING(i)) { | 
|  | pfm_write_soft_counter(ctx, i, val); | 
|  | } else { | 
|  | ia64_set_pmd(i, val); | 
|  | } | 
|  | DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n", | 
|  | is_long_reset ? "long" : "short", i, val)); | 
|  | } | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_write_pmcs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *task; | 
|  | pfarg_reg_t *req = (pfarg_reg_t *)arg; | 
|  | unsigned long value, pmc_pm; | 
|  | unsigned long smpl_pmds, reset_pmds, impl_pmds; | 
|  | unsigned int cnum, reg_flags, flags, pmc_type; | 
|  | int i, can_access_pmu = 0, is_loaded, is_system, expert_mode; | 
|  | int is_monitor, is_counting, state; | 
|  | int ret = -EINVAL; | 
|  | pfm_reg_check_t	wr_func; | 
|  | #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z)) | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_loaded = state == PFM_CTX_LOADED ? 1 : 0; | 
|  | is_system = ctx->ctx_fl_system; | 
|  | task      = ctx->ctx_task; | 
|  | impl_pmds = pmu_conf->impl_pmds[0]; | 
|  |  | 
|  | if (state == PFM_CTX_ZOMBIE) return -EINVAL; | 
|  |  | 
|  | if (is_loaded) { | 
|  | /* | 
|  | * In system wide and when the context is loaded, access can only happen | 
|  | * when the caller is running on the CPU being monitored by the session. | 
|  | * It does not have to be the owner (ctx_task) of the context per se. | 
|  | */ | 
|  | if (is_system && ctx->ctx_cpu != smp_processor_id()) { | 
|  | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); | 
|  | return -EBUSY; | 
|  | } | 
|  | can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; | 
|  | } | 
|  | expert_mode = pfm_sysctl.expert_mode; | 
|  |  | 
|  | for (i = 0; i < count; i++, req++) { | 
|  |  | 
|  | cnum       = req->reg_num; | 
|  | reg_flags  = req->reg_flags; | 
|  | value      = req->reg_value; | 
|  | smpl_pmds  = req->reg_smpl_pmds[0]; | 
|  | reset_pmds = req->reg_reset_pmds[0]; | 
|  | flags      = 0; | 
|  |  | 
|  |  | 
|  | if (cnum >= PMU_MAX_PMCS) { | 
|  | DPRINT(("pmc%u is invalid\n", cnum)); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | pmc_type   = pmu_conf->pmc_desc[cnum].type; | 
|  | pmc_pm     = (value >> pmu_conf->pmc_desc[cnum].pm_pos) & 0x1; | 
|  | is_counting = (pmc_type & PFM_REG_COUNTING) == PFM_REG_COUNTING ? 1 : 0; | 
|  | is_monitor  = (pmc_type & PFM_REG_MONITOR) == PFM_REG_MONITOR ? 1 : 0; | 
|  |  | 
|  | /* | 
|  | * we reject all non implemented PMC as well | 
|  | * as attempts to modify PMC[0-3] which are used | 
|  | * as status registers by the PMU | 
|  | */ | 
|  | if ((pmc_type & PFM_REG_IMPL) == 0 || (pmc_type & PFM_REG_CONTROL) == PFM_REG_CONTROL) { | 
|  | DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum, pmc_type)); | 
|  | goto error; | 
|  | } | 
|  | wr_func = pmu_conf->pmc_desc[cnum].write_check; | 
|  | /* | 
|  | * If the PMC is a monitor, then if the value is not the default: | 
|  | * 	- system-wide session: PMCx.pm=1 (privileged monitor) | 
|  | * 	- per-task           : PMCx.pm=0 (user monitor) | 
|  | */ | 
|  | if (is_monitor && value != PMC_DFL_VAL(cnum) && is_system ^ pmc_pm) { | 
|  | DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n", | 
|  | cnum, | 
|  | pmc_pm, | 
|  | is_system)); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | if (is_counting) { | 
|  | /* | 
|  | * enforce generation of overflow interrupt. Necessary on all | 
|  | * CPUs. | 
|  | */ | 
|  | value |= 1 << PMU_PMC_OI; | 
|  |  | 
|  | if (reg_flags & PFM_REGFL_OVFL_NOTIFY) { | 
|  | flags |= PFM_REGFL_OVFL_NOTIFY; | 
|  | } | 
|  |  | 
|  | if (reg_flags & PFM_REGFL_RANDOM) flags |= PFM_REGFL_RANDOM; | 
|  |  | 
|  | /* verify validity of smpl_pmds */ | 
|  | if ((smpl_pmds & impl_pmds) != smpl_pmds) { | 
|  | DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds, cnum)); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | /* verify validity of reset_pmds */ | 
|  | if ((reset_pmds & impl_pmds) != reset_pmds) { | 
|  | DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds, cnum)); | 
|  | goto error; | 
|  | } | 
|  | } else { | 
|  | if (reg_flags & (PFM_REGFL_OVFL_NOTIFY|PFM_REGFL_RANDOM)) { | 
|  | DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum)); | 
|  | goto error; | 
|  | } | 
|  | /* eventid on non-counting monitors are ignored */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * execute write checker, if any | 
|  | */ | 
|  | if (likely(expert_mode == 0 && wr_func)) { | 
|  | ret = (*wr_func)(task, ctx, cnum, &value, regs); | 
|  | if (ret) goto error; | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * no error on this register | 
|  | */ | 
|  | PFM_REG_RETFLAG_SET(req->reg_flags, 0); | 
|  |  | 
|  | /* | 
|  | * Now we commit the changes to the software state | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * update overflow information | 
|  | */ | 
|  | if (is_counting) { | 
|  | /* | 
|  | * full flag update each time a register is programmed | 
|  | */ | 
|  | ctx->ctx_pmds[cnum].flags = flags; | 
|  |  | 
|  | ctx->ctx_pmds[cnum].reset_pmds[0] = reset_pmds; | 
|  | ctx->ctx_pmds[cnum].smpl_pmds[0]  = smpl_pmds; | 
|  | ctx->ctx_pmds[cnum].eventid       = req->reg_smpl_eventid; | 
|  |  | 
|  | /* | 
|  | * Mark all PMDS to be accessed as used. | 
|  | * | 
|  | * We do not keep track of PMC because we have to | 
|  | * systematically restore ALL of them. | 
|  | * | 
|  | * We do not update the used_monitors mask, because | 
|  | * if we have not programmed them, then will be in | 
|  | * a quiescent state, therefore we will not need to | 
|  | * mask/restore then when context is MASKED. | 
|  | */ | 
|  | CTX_USED_PMD(ctx, reset_pmds); | 
|  | CTX_USED_PMD(ctx, smpl_pmds); | 
|  | /* | 
|  | * make sure we do not try to reset on | 
|  | * restart because we have established new values | 
|  | */ | 
|  | if (state == PFM_CTX_MASKED) ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; | 
|  | } | 
|  | /* | 
|  | * Needed in case the user does not initialize the equivalent | 
|  | * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no | 
|  | * possible leak here. | 
|  | */ | 
|  | CTX_USED_PMD(ctx, pmu_conf->pmc_desc[cnum].dep_pmd[0]); | 
|  |  | 
|  | /* | 
|  | * keep track of the monitor PMC that we are using. | 
|  | * we save the value of the pmc in ctx_pmcs[] and if | 
|  | * the monitoring is not stopped for the context we also | 
|  | * place it in the saved state area so that it will be | 
|  | * picked up later by the context switch code. | 
|  | * | 
|  | * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs(). | 
|  | * | 
|  | * The value in th_pmcs[] may be modified on overflow, i.e.,  when | 
|  | * monitoring needs to be stopped. | 
|  | */ | 
|  | if (is_monitor) CTX_USED_MONITOR(ctx, 1UL << cnum); | 
|  |  | 
|  | /* | 
|  | * update context state | 
|  | */ | 
|  | ctx->ctx_pmcs[cnum] = value; | 
|  |  | 
|  | if (is_loaded) { | 
|  | /* | 
|  | * write thread state | 
|  | */ | 
|  | if (is_system == 0) ctx->th_pmcs[cnum] = value; | 
|  |  | 
|  | /* | 
|  | * write hardware register if we can | 
|  | */ | 
|  | if (can_access_pmu) { | 
|  | ia64_set_pmc(cnum, value); | 
|  | } | 
|  | #ifdef CONFIG_SMP | 
|  | else { | 
|  | /* | 
|  | * per-task SMP only here | 
|  | * | 
|  | * we are guaranteed that the task is not running on the other CPU, | 
|  | * we indicate that this PMD will need to be reloaded if the task | 
|  | * is rescheduled on the CPU it ran last on. | 
|  | */ | 
|  | ctx->ctx_reload_pmcs[0] |= 1UL << cnum; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n", | 
|  | cnum, | 
|  | value, | 
|  | is_loaded, | 
|  | can_access_pmu, | 
|  | flags, | 
|  | ctx->ctx_all_pmcs[0], | 
|  | ctx->ctx_used_pmds[0], | 
|  | ctx->ctx_pmds[cnum].eventid, | 
|  | smpl_pmds, | 
|  | reset_pmds, | 
|  | ctx->ctx_reload_pmcs[0], | 
|  | ctx->ctx_used_monitors[0], | 
|  | ctx->ctx_ovfl_regs[0])); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make sure the changes are visible | 
|  | */ | 
|  | if (can_access_pmu) ia64_srlz_d(); | 
|  |  | 
|  | return 0; | 
|  | error: | 
|  | PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_write_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *task; | 
|  | pfarg_reg_t *req = (pfarg_reg_t *)arg; | 
|  | unsigned long value, hw_value, ovfl_mask; | 
|  | unsigned int cnum; | 
|  | int i, can_access_pmu = 0, state; | 
|  | int is_counting, is_loaded, is_system, expert_mode; | 
|  | int ret = -EINVAL; | 
|  | pfm_reg_check_t wr_func; | 
|  |  | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_loaded = state == PFM_CTX_LOADED ? 1 : 0; | 
|  | is_system = ctx->ctx_fl_system; | 
|  | ovfl_mask = pmu_conf->ovfl_val; | 
|  | task      = ctx->ctx_task; | 
|  |  | 
|  | if (unlikely(state == PFM_CTX_ZOMBIE)) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * on both UP and SMP, we can only write to the PMC when the task is | 
|  | * the owner of the local PMU. | 
|  | */ | 
|  | if (likely(is_loaded)) { | 
|  | /* | 
|  | * In system wide and when the context is loaded, access can only happen | 
|  | * when the caller is running on the CPU being monitored by the session. | 
|  | * It does not have to be the owner (ctx_task) of the context per se. | 
|  | */ | 
|  | if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { | 
|  | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); | 
|  | return -EBUSY; | 
|  | } | 
|  | can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; | 
|  | } | 
|  | expert_mode = pfm_sysctl.expert_mode; | 
|  |  | 
|  | for (i = 0; i < count; i++, req++) { | 
|  |  | 
|  | cnum  = req->reg_num; | 
|  | value = req->reg_value; | 
|  |  | 
|  | if (!PMD_IS_IMPL(cnum)) { | 
|  | DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum)); | 
|  | goto abort_mission; | 
|  | } | 
|  | is_counting = PMD_IS_COUNTING(cnum); | 
|  | wr_func     = pmu_conf->pmd_desc[cnum].write_check; | 
|  |  | 
|  | /* | 
|  | * execute write checker, if any | 
|  | */ | 
|  | if (unlikely(expert_mode == 0 && wr_func)) { | 
|  | unsigned long v = value; | 
|  |  | 
|  | ret = (*wr_func)(task, ctx, cnum, &v, regs); | 
|  | if (ret) goto abort_mission; | 
|  |  | 
|  | value = v; | 
|  | ret   = -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * no error on this register | 
|  | */ | 
|  | PFM_REG_RETFLAG_SET(req->reg_flags, 0); | 
|  |  | 
|  | /* | 
|  | * now commit changes to software state | 
|  | */ | 
|  | hw_value = value; | 
|  |  | 
|  | /* | 
|  | * update virtualized (64bits) counter | 
|  | */ | 
|  | if (is_counting) { | 
|  | /* | 
|  | * write context state | 
|  | */ | 
|  | ctx->ctx_pmds[cnum].lval = value; | 
|  |  | 
|  | /* | 
|  | * when context is load we use the split value | 
|  | */ | 
|  | if (is_loaded) { | 
|  | hw_value = value &  ovfl_mask; | 
|  | value    = value & ~ovfl_mask; | 
|  | } | 
|  | } | 
|  | /* | 
|  | * update reset values (not just for counters) | 
|  | */ | 
|  | ctx->ctx_pmds[cnum].long_reset  = req->reg_long_reset; | 
|  | ctx->ctx_pmds[cnum].short_reset = req->reg_short_reset; | 
|  |  | 
|  | /* | 
|  | * update randomization parameters (not just for counters) | 
|  | */ | 
|  | ctx->ctx_pmds[cnum].seed = req->reg_random_seed; | 
|  | ctx->ctx_pmds[cnum].mask = req->reg_random_mask; | 
|  |  | 
|  | /* | 
|  | * update context value | 
|  | */ | 
|  | ctx->ctx_pmds[cnum].val  = value; | 
|  |  | 
|  | /* | 
|  | * Keep track of what we use | 
|  | * | 
|  | * We do not keep track of PMC because we have to | 
|  | * systematically restore ALL of them. | 
|  | */ | 
|  | CTX_USED_PMD(ctx, PMD_PMD_DEP(cnum)); | 
|  |  | 
|  | /* | 
|  | * mark this PMD register used as well | 
|  | */ | 
|  | CTX_USED_PMD(ctx, RDEP(cnum)); | 
|  |  | 
|  | /* | 
|  | * make sure we do not try to reset on | 
|  | * restart because we have established new values | 
|  | */ | 
|  | if (is_counting && state == PFM_CTX_MASKED) { | 
|  | ctx->ctx_ovfl_regs[0] &= ~1UL << cnum; | 
|  | } | 
|  |  | 
|  | if (is_loaded) { | 
|  | /* | 
|  | * write thread state | 
|  | */ | 
|  | if (is_system == 0) ctx->th_pmds[cnum] = hw_value; | 
|  |  | 
|  | /* | 
|  | * write hardware register if we can | 
|  | */ | 
|  | if (can_access_pmu) { | 
|  | ia64_set_pmd(cnum, hw_value); | 
|  | } else { | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * we are guaranteed that the task is not running on the other CPU, | 
|  | * we indicate that this PMD will need to be reloaded if the task | 
|  | * is rescheduled on the CPU it ran last on. | 
|  | */ | 
|  | ctx->ctx_reload_pmds[0] |= 1UL << cnum; | 
|  | #endif | 
|  | } | 
|  | } | 
|  |  | 
|  | DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx  short_reset=0x%lx " | 
|  | "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n", | 
|  | cnum, | 
|  | value, | 
|  | is_loaded, | 
|  | can_access_pmu, | 
|  | hw_value, | 
|  | ctx->ctx_pmds[cnum].val, | 
|  | ctx->ctx_pmds[cnum].short_reset, | 
|  | ctx->ctx_pmds[cnum].long_reset, | 
|  | PMC_OVFL_NOTIFY(ctx, cnum) ? 'Y':'N', | 
|  | ctx->ctx_pmds[cnum].seed, | 
|  | ctx->ctx_pmds[cnum].mask, | 
|  | ctx->ctx_used_pmds[0], | 
|  | ctx->ctx_pmds[cnum].reset_pmds[0], | 
|  | ctx->ctx_reload_pmds[0], | 
|  | ctx->ctx_all_pmds[0], | 
|  | ctx->ctx_ovfl_regs[0])); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make changes visible | 
|  | */ | 
|  | if (can_access_pmu) ia64_srlz_d(); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | abort_mission: | 
|  | /* | 
|  | * for now, we have only one possibility for error | 
|  | */ | 
|  | PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function. | 
|  | * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an | 
|  | * interrupt is delivered during the call, it will be kept pending until we leave, making | 
|  | * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are | 
|  | * guaranteed to return consistent data to the user, it may simply be old. It is not | 
|  | * trivial to treat the overflow while inside the call because you may end up in | 
|  | * some module sampling buffer code causing deadlocks. | 
|  | */ | 
|  | static int | 
|  | pfm_read_pmds(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *task; | 
|  | unsigned long val = 0UL, lval, ovfl_mask, sval; | 
|  | pfarg_reg_t *req = (pfarg_reg_t *)arg; | 
|  | unsigned int cnum, reg_flags = 0; | 
|  | int i, can_access_pmu = 0, state; | 
|  | int is_loaded, is_system, is_counting, expert_mode; | 
|  | int ret = -EINVAL; | 
|  | pfm_reg_check_t rd_func; | 
|  |  | 
|  | /* | 
|  | * access is possible when loaded only for | 
|  | * self-monitoring tasks or in UP mode | 
|  | */ | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_loaded = state == PFM_CTX_LOADED ? 1 : 0; | 
|  | is_system = ctx->ctx_fl_system; | 
|  | ovfl_mask = pmu_conf->ovfl_val; | 
|  | task      = ctx->ctx_task; | 
|  |  | 
|  | if (state == PFM_CTX_ZOMBIE) return -EINVAL; | 
|  |  | 
|  | if (likely(is_loaded)) { | 
|  | /* | 
|  | * In system wide and when the context is loaded, access can only happen | 
|  | * when the caller is running on the CPU being monitored by the session. | 
|  | * It does not have to be the owner (ctx_task) of the context per se. | 
|  | */ | 
|  | if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { | 
|  | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); | 
|  | return -EBUSY; | 
|  | } | 
|  | /* | 
|  | * this can be true when not self-monitoring only in UP | 
|  | */ | 
|  | can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; | 
|  |  | 
|  | if (can_access_pmu) ia64_srlz_d(); | 
|  | } | 
|  | expert_mode = pfm_sysctl.expert_mode; | 
|  |  | 
|  | DPRINT(("ld=%d apmu=%d ctx_state=%d\n", | 
|  | is_loaded, | 
|  | can_access_pmu, | 
|  | state)); | 
|  |  | 
|  | /* | 
|  | * on both UP and SMP, we can only read the PMD from the hardware register when | 
|  | * the task is the owner of the local PMU. | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < count; i++, req++) { | 
|  |  | 
|  | cnum        = req->reg_num; | 
|  | reg_flags   = req->reg_flags; | 
|  |  | 
|  | if (unlikely(!PMD_IS_IMPL(cnum))) goto error; | 
|  | /* | 
|  | * we can only read the register that we use. That includes | 
|  | * the one we explicitly initialize AND the one we want included | 
|  | * in the sampling buffer (smpl_regs). | 
|  | * | 
|  | * Having this restriction allows optimization in the ctxsw routine | 
|  | * without compromising security (leaks) | 
|  | */ | 
|  | if (unlikely(!CTX_IS_USED_PMD(ctx, cnum))) goto error; | 
|  |  | 
|  | sval        = ctx->ctx_pmds[cnum].val; | 
|  | lval        = ctx->ctx_pmds[cnum].lval; | 
|  | is_counting = PMD_IS_COUNTING(cnum); | 
|  |  | 
|  | /* | 
|  | * If the task is not the current one, then we check if the | 
|  | * PMU state is still in the local live register due to lazy ctxsw. | 
|  | * If true, then we read directly from the registers. | 
|  | */ | 
|  | if (can_access_pmu){ | 
|  | val = ia64_get_pmd(cnum); | 
|  | } else { | 
|  | /* | 
|  | * context has been saved | 
|  | * if context is zombie, then task does not exist anymore. | 
|  | * In this case, we use the full value saved in the context (pfm_flush_regs()). | 
|  | */ | 
|  | val = is_loaded ? ctx->th_pmds[cnum] : 0UL; | 
|  | } | 
|  | rd_func = pmu_conf->pmd_desc[cnum].read_check; | 
|  |  | 
|  | if (is_counting) { | 
|  | /* | 
|  | * XXX: need to check for overflow when loaded | 
|  | */ | 
|  | val &= ovfl_mask; | 
|  | val += sval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * execute read checker, if any | 
|  | */ | 
|  | if (unlikely(expert_mode == 0 && rd_func)) { | 
|  | unsigned long v = val; | 
|  | ret = (*rd_func)(ctx->ctx_task, ctx, cnum, &v, regs); | 
|  | if (ret) goto error; | 
|  | val = v; | 
|  | ret = -EINVAL; | 
|  | } | 
|  |  | 
|  | PFM_REG_RETFLAG_SET(reg_flags, 0); | 
|  |  | 
|  | DPRINT(("pmd[%u]=0x%lx\n", cnum, val)); | 
|  |  | 
|  | /* | 
|  | * update register return value, abort all if problem during copy. | 
|  | * we only modify the reg_flags field. no check mode is fine because | 
|  | * access has been verified upfront in sys_perfmonctl(). | 
|  | */ | 
|  | req->reg_value            = val; | 
|  | req->reg_flags            = reg_flags; | 
|  | req->reg_last_reset_val   = lval; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | int | 
|  | pfm_mod_write_pmcs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  |  | 
|  | if (req == NULL) return -EINVAL; | 
|  |  | 
|  | ctx = GET_PMU_CTX(); | 
|  |  | 
|  | if (ctx == NULL) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * for now limit to current task, which is enough when calling | 
|  | * from overflow handler | 
|  | */ | 
|  | if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; | 
|  |  | 
|  | return pfm_write_pmcs(ctx, req, nreq, regs); | 
|  | } | 
|  | EXPORT_SYMBOL(pfm_mod_write_pmcs); | 
|  |  | 
|  | int | 
|  | pfm_mod_read_pmds(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  |  | 
|  | if (req == NULL) return -EINVAL; | 
|  |  | 
|  | ctx = GET_PMU_CTX(); | 
|  |  | 
|  | if (ctx == NULL) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * for now limit to current task, which is enough when calling | 
|  | * from overflow handler | 
|  | */ | 
|  | if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; | 
|  |  | 
|  | return pfm_read_pmds(ctx, req, nreq, regs); | 
|  | } | 
|  | EXPORT_SYMBOL(pfm_mod_read_pmds); | 
|  |  | 
|  | /* | 
|  | * Only call this function when a process it trying to | 
|  | * write the debug registers (reading is always allowed) | 
|  | */ | 
|  | int | 
|  | pfm_use_debug_registers(struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx = task->thread.pfm_context; | 
|  | unsigned long flags; | 
|  | int ret = 0; | 
|  |  | 
|  | if (pmu_conf->use_rr_dbregs == 0) return 0; | 
|  |  | 
|  | DPRINT(("called for [%d]\n", task_pid_nr(task))); | 
|  |  | 
|  | /* | 
|  | * do it only once | 
|  | */ | 
|  | if (task->thread.flags & IA64_THREAD_DBG_VALID) return 0; | 
|  |  | 
|  | /* | 
|  | * Even on SMP, we do not need to use an atomic here because | 
|  | * the only way in is via ptrace() and this is possible only when the | 
|  | * process is stopped. Even in the case where the ctxsw out is not totally | 
|  | * completed by the time we come here, there is no way the 'stopped' process | 
|  | * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine. | 
|  | * So this is always safe. | 
|  | */ | 
|  | if (ctx && ctx->ctx_fl_using_dbreg == 1) return -1; | 
|  |  | 
|  | LOCK_PFS(flags); | 
|  |  | 
|  | /* | 
|  | * We cannot allow setting breakpoints when system wide monitoring | 
|  | * sessions are using the debug registers. | 
|  | */ | 
|  | if (pfm_sessions.pfs_sys_use_dbregs> 0) | 
|  | ret = -1; | 
|  | else | 
|  | pfm_sessions.pfs_ptrace_use_dbregs++; | 
|  |  | 
|  | DPRINT(("ptrace_use_dbregs=%u  sys_use_dbregs=%u by [%d] ret = %d\n", | 
|  | pfm_sessions.pfs_ptrace_use_dbregs, | 
|  | pfm_sessions.pfs_sys_use_dbregs, | 
|  | task_pid_nr(task), ret)); | 
|  |  | 
|  | UNLOCK_PFS(flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function is called for every task that exits with the | 
|  | * IA64_THREAD_DBG_VALID set. This indicates a task which was | 
|  | * able to use the debug registers for debugging purposes via | 
|  | * ptrace(). Therefore we know it was not using them for | 
|  | * perfmormance monitoring, so we only decrement the number | 
|  | * of "ptraced" debug register users to keep the count up to date | 
|  | */ | 
|  | int | 
|  | pfm_release_debug_registers(struct task_struct *task) | 
|  | { | 
|  | unsigned long flags; | 
|  | int ret; | 
|  |  | 
|  | if (pmu_conf->use_rr_dbregs == 0) return 0; | 
|  |  | 
|  | LOCK_PFS(flags); | 
|  | if (pfm_sessions.pfs_ptrace_use_dbregs == 0) { | 
|  | printk(KERN_ERR "perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task)); | 
|  | ret = -1; | 
|  | }  else { | 
|  | pfm_sessions.pfs_ptrace_use_dbregs--; | 
|  | ret = 0; | 
|  | } | 
|  | UNLOCK_PFS(flags); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_restart(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *task; | 
|  | pfm_buffer_fmt_t *fmt; | 
|  | pfm_ovfl_ctrl_t rst_ctrl; | 
|  | int state, is_system; | 
|  | int ret = 0; | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | fmt       = ctx->ctx_buf_fmt; | 
|  | is_system = ctx->ctx_fl_system; | 
|  | task      = PFM_CTX_TASK(ctx); | 
|  |  | 
|  | switch(state) { | 
|  | case PFM_CTX_MASKED: | 
|  | break; | 
|  | case PFM_CTX_LOADED: | 
|  | if (CTX_HAS_SMPL(ctx) && fmt->fmt_restart_active) break; | 
|  | /* fall through */ | 
|  | case PFM_CTX_UNLOADED: | 
|  | case PFM_CTX_ZOMBIE: | 
|  | DPRINT(("invalid state=%d\n", state)); | 
|  | return -EBUSY; | 
|  | default: | 
|  | DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In system wide and when the context is loaded, access can only happen | 
|  | * when the caller is running on the CPU being monitored by the session. | 
|  | * It does not have to be the owner (ctx_task) of the context per se. | 
|  | */ | 
|  | if (is_system && ctx->ctx_cpu != smp_processor_id()) { | 
|  | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* sanity check */ | 
|  | if (unlikely(task == NULL)) { | 
|  | printk(KERN_ERR "perfmon: [%d] pfm_restart no task\n", task_pid_nr(current)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (task == current || is_system) { | 
|  |  | 
|  | fmt = ctx->ctx_buf_fmt; | 
|  |  | 
|  | DPRINT(("restarting self %d ovfl=0x%lx\n", | 
|  | task_pid_nr(task), | 
|  | ctx->ctx_ovfl_regs[0])); | 
|  |  | 
|  | if (CTX_HAS_SMPL(ctx)) { | 
|  |  | 
|  | prefetch(ctx->ctx_smpl_hdr); | 
|  |  | 
|  | rst_ctrl.bits.mask_monitoring = 0; | 
|  | rst_ctrl.bits.reset_ovfl_pmds = 0; | 
|  |  | 
|  | if (state == PFM_CTX_LOADED) | 
|  | ret = pfm_buf_fmt_restart_active(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); | 
|  | else | 
|  | ret = pfm_buf_fmt_restart(fmt, task, &rst_ctrl, ctx->ctx_smpl_hdr, regs); | 
|  | } else { | 
|  | rst_ctrl.bits.mask_monitoring = 0; | 
|  | rst_ctrl.bits.reset_ovfl_pmds = 1; | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | if (rst_ctrl.bits.reset_ovfl_pmds) | 
|  | pfm_reset_regs(ctx, ctx->ctx_ovfl_regs, PFM_PMD_LONG_RESET); | 
|  |  | 
|  | if (rst_ctrl.bits.mask_monitoring == 0) { | 
|  | DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task))); | 
|  |  | 
|  | if (state == PFM_CTX_MASKED) pfm_restore_monitoring(task); | 
|  | } else { | 
|  | DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task))); | 
|  |  | 
|  | // cannot use pfm_stop_monitoring(task, regs); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * clear overflowed PMD mask to remove any stale information | 
|  | */ | 
|  | ctx->ctx_ovfl_regs[0] = 0UL; | 
|  |  | 
|  | /* | 
|  | * back to LOADED state | 
|  | */ | 
|  | ctx->ctx_state = PFM_CTX_LOADED; | 
|  |  | 
|  | /* | 
|  | * XXX: not really useful for self monitoring | 
|  | */ | 
|  | ctx->ctx_fl_can_restart = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * restart another task | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * When PFM_CTX_MASKED, we cannot issue a restart before the previous | 
|  | * one is seen by the task. | 
|  | */ | 
|  | if (state == PFM_CTX_MASKED) { | 
|  | if (ctx->ctx_fl_can_restart == 0) return -EINVAL; | 
|  | /* | 
|  | * will prevent subsequent restart before this one is | 
|  | * seen by other task | 
|  | */ | 
|  | ctx->ctx_fl_can_restart = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e. | 
|  | * the task is blocked or on its way to block. That's the normal | 
|  | * restart path. If the monitoring is not masked, then the task | 
|  | * can be actively monitoring and we cannot directly intervene. | 
|  | * Therefore we use the trap mechanism to catch the task and | 
|  | * force it to reset the buffer/reset PMDs. | 
|  | * | 
|  | * if non-blocking, then we ensure that the task will go into | 
|  | * pfm_handle_work() before returning to user mode. | 
|  | * | 
|  | * We cannot explicitly reset another task, it MUST always | 
|  | * be done by the task itself. This works for system wide because | 
|  | * the tool that is controlling the session is logically doing | 
|  | * "self-monitoring". | 
|  | */ | 
|  | if (CTX_OVFL_NOBLOCK(ctx) == 0 && state == PFM_CTX_MASKED) { | 
|  | DPRINT(("unblocking [%d] \n", task_pid_nr(task))); | 
|  | complete(&ctx->ctx_restart_done); | 
|  | } else { | 
|  | DPRINT(("[%d] armed exit trap\n", task_pid_nr(task))); | 
|  |  | 
|  | ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_RESET; | 
|  |  | 
|  | PFM_SET_WORK_PENDING(task, 1); | 
|  |  | 
|  | set_notify_resume(task); | 
|  |  | 
|  | /* | 
|  | * XXX: send reschedule if task runs on another CPU | 
|  | */ | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_debug(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | unsigned int m = *(unsigned int *)arg; | 
|  |  | 
|  | pfm_sysctl.debug = m == 0 ? 0 : 1; | 
|  |  | 
|  | printk(KERN_INFO "perfmon debugging %s (timing reset)\n", pfm_sysctl.debug ? "on" : "off"); | 
|  |  | 
|  | if (m == 0) { | 
|  | memset(pfm_stats, 0, sizeof(pfm_stats)); | 
|  | for(m=0; m < NR_CPUS; m++) pfm_stats[m].pfm_ovfl_intr_cycles_min = ~0UL; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * arg can be NULL and count can be zero for this function | 
|  | */ | 
|  | static int | 
|  | pfm_write_ibr_dbr(int mode, pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct thread_struct *thread = NULL; | 
|  | struct task_struct *task; | 
|  | pfarg_dbreg_t *req = (pfarg_dbreg_t *)arg; | 
|  | unsigned long flags; | 
|  | dbreg_t dbreg; | 
|  | unsigned int rnum; | 
|  | int first_time; | 
|  | int ret = 0, state; | 
|  | int i, can_access_pmu = 0; | 
|  | int is_system, is_loaded; | 
|  |  | 
|  | if (pmu_conf->use_rr_dbregs == 0) return -EINVAL; | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_loaded = state == PFM_CTX_LOADED ? 1 : 0; | 
|  | is_system = ctx->ctx_fl_system; | 
|  | task      = ctx->ctx_task; | 
|  |  | 
|  | if (state == PFM_CTX_ZOMBIE) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * on both UP and SMP, we can only write to the PMC when the task is | 
|  | * the owner of the local PMU. | 
|  | */ | 
|  | if (is_loaded) { | 
|  | thread = &task->thread; | 
|  | /* | 
|  | * In system wide and when the context is loaded, access can only happen | 
|  | * when the caller is running on the CPU being monitored by the session. | 
|  | * It does not have to be the owner (ctx_task) of the context per se. | 
|  | */ | 
|  | if (unlikely(is_system && ctx->ctx_cpu != smp_processor_id())) { | 
|  | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); | 
|  | return -EBUSY; | 
|  | } | 
|  | can_access_pmu = GET_PMU_OWNER() == task || is_system ? 1 : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w | 
|  | * ensuring that no real breakpoint can be installed via this call. | 
|  | * | 
|  | * IMPORTANT: regs can be NULL in this function | 
|  | */ | 
|  |  | 
|  | first_time = ctx->ctx_fl_using_dbreg == 0; | 
|  |  | 
|  | /* | 
|  | * don't bother if we are loaded and task is being debugged | 
|  | */ | 
|  | if (is_loaded && (thread->flags & IA64_THREAD_DBG_VALID) != 0) { | 
|  | DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task))); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check for debug registers in system wide mode | 
|  | * | 
|  | * If though a check is done in pfm_context_load(), | 
|  | * we must repeat it here, in case the registers are | 
|  | * written after the context is loaded | 
|  | */ | 
|  | if (is_loaded) { | 
|  | LOCK_PFS(flags); | 
|  |  | 
|  | if (first_time && is_system) { | 
|  | if (pfm_sessions.pfs_ptrace_use_dbregs) | 
|  | ret = -EBUSY; | 
|  | else | 
|  | pfm_sessions.pfs_sys_use_dbregs++; | 
|  | } | 
|  | UNLOCK_PFS(flags); | 
|  | } | 
|  |  | 
|  | if (ret != 0) return ret; | 
|  |  | 
|  | /* | 
|  | * mark ourself as user of the debug registers for | 
|  | * perfmon purposes. | 
|  | */ | 
|  | ctx->ctx_fl_using_dbreg = 1; | 
|  |  | 
|  | /* | 
|  | * clear hardware registers to make sure we don't | 
|  | * pick up stale state. | 
|  | * | 
|  | * for a system wide session, we do not use | 
|  | * thread.dbr, thread.ibr because this process | 
|  | * never leaves the current CPU and the state | 
|  | * is shared by all processes running on it | 
|  | */ | 
|  | if (first_time && can_access_pmu) { | 
|  | DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task))); | 
|  | for (i=0; i < pmu_conf->num_ibrs; i++) { | 
|  | ia64_set_ibr(i, 0UL); | 
|  | ia64_dv_serialize_instruction(); | 
|  | } | 
|  | ia64_srlz_i(); | 
|  | for (i=0; i < pmu_conf->num_dbrs; i++) { | 
|  | ia64_set_dbr(i, 0UL); | 
|  | ia64_dv_serialize_data(); | 
|  | } | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now install the values into the registers | 
|  | */ | 
|  | for (i = 0; i < count; i++, req++) { | 
|  |  | 
|  | rnum      = req->dbreg_num; | 
|  | dbreg.val = req->dbreg_value; | 
|  |  | 
|  | ret = -EINVAL; | 
|  |  | 
|  | if ((mode == PFM_CODE_RR && rnum >= PFM_NUM_IBRS) || ((mode == PFM_DATA_RR) && rnum >= PFM_NUM_DBRS)) { | 
|  | DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n", | 
|  | rnum, dbreg.val, mode, i, count)); | 
|  |  | 
|  | goto abort_mission; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * make sure we do not install enabled breakpoint | 
|  | */ | 
|  | if (rnum & 0x1) { | 
|  | if (mode == PFM_CODE_RR) | 
|  | dbreg.ibr.ibr_x = 0; | 
|  | else | 
|  | dbreg.dbr.dbr_r = dbreg.dbr.dbr_w = 0; | 
|  | } | 
|  |  | 
|  | PFM_REG_RETFLAG_SET(req->dbreg_flags, 0); | 
|  |  | 
|  | /* | 
|  | * Debug registers, just like PMC, can only be modified | 
|  | * by a kernel call. Moreover, perfmon() access to those | 
|  | * registers are centralized in this routine. The hardware | 
|  | * does not modify the value of these registers, therefore, | 
|  | * if we save them as they are written, we can avoid having | 
|  | * to save them on context switch out. This is made possible | 
|  | * by the fact that when perfmon uses debug registers, ptrace() | 
|  | * won't be able to modify them concurrently. | 
|  | */ | 
|  | if (mode == PFM_CODE_RR) { | 
|  | CTX_USED_IBR(ctx, rnum); | 
|  |  | 
|  | if (can_access_pmu) { | 
|  | ia64_set_ibr(rnum, dbreg.val); | 
|  | ia64_dv_serialize_instruction(); | 
|  | } | 
|  |  | 
|  | ctx->ctx_ibrs[rnum] = dbreg.val; | 
|  |  | 
|  | DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n", | 
|  | rnum, dbreg.val, ctx->ctx_used_ibrs[0], is_loaded, can_access_pmu)); | 
|  | } else { | 
|  | CTX_USED_DBR(ctx, rnum); | 
|  |  | 
|  | if (can_access_pmu) { | 
|  | ia64_set_dbr(rnum, dbreg.val); | 
|  | ia64_dv_serialize_data(); | 
|  | } | 
|  | ctx->ctx_dbrs[rnum] = dbreg.val; | 
|  |  | 
|  | DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n", | 
|  | rnum, dbreg.val, ctx->ctx_used_dbrs[0], is_loaded, can_access_pmu)); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | abort_mission: | 
|  | /* | 
|  | * in case it was our first attempt, we undo the global modifications | 
|  | */ | 
|  | if (first_time) { | 
|  | LOCK_PFS(flags); | 
|  | if (ctx->ctx_fl_system) { | 
|  | pfm_sessions.pfs_sys_use_dbregs--; | 
|  | } | 
|  | UNLOCK_PFS(flags); | 
|  | ctx->ctx_fl_using_dbreg = 0; | 
|  | } | 
|  | /* | 
|  | * install error return flag | 
|  | */ | 
|  | PFM_REG_RETFLAG_SET(req->dbreg_flags, PFM_REG_RETFL_EINVAL); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_write_ibrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | return pfm_write_ibr_dbr(PFM_CODE_RR, ctx, arg, count, regs); | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_write_dbrs(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | return pfm_write_ibr_dbr(PFM_DATA_RR, ctx, arg, count, regs); | 
|  | } | 
|  |  | 
|  | int | 
|  | pfm_mod_write_ibrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  |  | 
|  | if (req == NULL) return -EINVAL; | 
|  |  | 
|  | ctx = GET_PMU_CTX(); | 
|  |  | 
|  | if (ctx == NULL) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * for now limit to current task, which is enough when calling | 
|  | * from overflow handler | 
|  | */ | 
|  | if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; | 
|  |  | 
|  | return pfm_write_ibrs(ctx, req, nreq, regs); | 
|  | } | 
|  | EXPORT_SYMBOL(pfm_mod_write_ibrs); | 
|  |  | 
|  | int | 
|  | pfm_mod_write_dbrs(struct task_struct *task, void *req, unsigned int nreq, struct pt_regs *regs) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  |  | 
|  | if (req == NULL) return -EINVAL; | 
|  |  | 
|  | ctx = GET_PMU_CTX(); | 
|  |  | 
|  | if (ctx == NULL) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * for now limit to current task, which is enough when calling | 
|  | * from overflow handler | 
|  | */ | 
|  | if (task != current && ctx->ctx_fl_system == 0) return -EBUSY; | 
|  |  | 
|  | return pfm_write_dbrs(ctx, req, nreq, regs); | 
|  | } | 
|  | EXPORT_SYMBOL(pfm_mod_write_dbrs); | 
|  |  | 
|  |  | 
|  | static int | 
|  | pfm_get_features(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | pfarg_features_t *req = (pfarg_features_t *)arg; | 
|  |  | 
|  | req->ft_version = PFM_VERSION; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_stop(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *tregs; | 
|  | struct task_struct *task = PFM_CTX_TASK(ctx); | 
|  | int state, is_system; | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_system = ctx->ctx_fl_system; | 
|  |  | 
|  | /* | 
|  | * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE) | 
|  | */ | 
|  | if (state == PFM_CTX_UNLOADED) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * In system wide and when the context is loaded, access can only happen | 
|  | * when the caller is running on the CPU being monitored by the session. | 
|  | * It does not have to be the owner (ctx_task) of the context per se. | 
|  | */ | 
|  | if (is_system && ctx->ctx_cpu != smp_processor_id()) { | 
|  | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); | 
|  | return -EBUSY; | 
|  | } | 
|  | DPRINT(("task [%d] ctx_state=%d is_system=%d\n", | 
|  | task_pid_nr(PFM_CTX_TASK(ctx)), | 
|  | state, | 
|  | is_system)); | 
|  | /* | 
|  | * in system mode, we need to update the PMU directly | 
|  | * and the user level state of the caller, which may not | 
|  | * necessarily be the creator of the context. | 
|  | */ | 
|  | if (is_system) { | 
|  | /* | 
|  | * Update local PMU first | 
|  | * | 
|  | * disable dcr pp | 
|  | */ | 
|  | ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) & ~IA64_DCR_PP); | 
|  | ia64_srlz_i(); | 
|  |  | 
|  | /* | 
|  | * update local cpuinfo | 
|  | */ | 
|  | PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); | 
|  |  | 
|  | /* | 
|  | * stop monitoring, does srlz.i | 
|  | */ | 
|  | pfm_clear_psr_pp(); | 
|  |  | 
|  | /* | 
|  | * stop monitoring in the caller | 
|  | */ | 
|  | ia64_psr(regs)->pp = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | /* | 
|  | * per-task mode | 
|  | */ | 
|  |  | 
|  | if (task == current) { | 
|  | /* stop monitoring  at kernel level */ | 
|  | pfm_clear_psr_up(); | 
|  |  | 
|  | /* | 
|  | * stop monitoring at the user level | 
|  | */ | 
|  | ia64_psr(regs)->up = 0; | 
|  | } else { | 
|  | tregs = task_pt_regs(task); | 
|  |  | 
|  | /* | 
|  | * stop monitoring at the user level | 
|  | */ | 
|  | ia64_psr(tregs)->up = 0; | 
|  |  | 
|  | /* | 
|  | * monitoring disabled in kernel at next reschedule | 
|  | */ | 
|  | ctx->ctx_saved_psr_up = 0; | 
|  | DPRINT(("task=[%d]\n", task_pid_nr(task))); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int | 
|  | pfm_start(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct pt_regs *tregs; | 
|  | int state, is_system; | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_system = ctx->ctx_fl_system; | 
|  |  | 
|  | if (state != PFM_CTX_LOADED) return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * In system wide and when the context is loaded, access can only happen | 
|  | * when the caller is running on the CPU being monitored by the session. | 
|  | * It does not have to be the owner (ctx_task) of the context per se. | 
|  | */ | 
|  | if (is_system && ctx->ctx_cpu != smp_processor_id()) { | 
|  | DPRINT(("should be running on CPU%d\n", ctx->ctx_cpu)); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * in system mode, we need to update the PMU directly | 
|  | * and the user level state of the caller, which may not | 
|  | * necessarily be the creator of the context. | 
|  | */ | 
|  | if (is_system) { | 
|  |  | 
|  | /* | 
|  | * set user level psr.pp for the caller | 
|  | */ | 
|  | ia64_psr(regs)->pp = 1; | 
|  |  | 
|  | /* | 
|  | * now update the local PMU and cpuinfo | 
|  | */ | 
|  | PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP); | 
|  |  | 
|  | /* | 
|  | * start monitoring at kernel level | 
|  | */ | 
|  | pfm_set_psr_pp(); | 
|  |  | 
|  | /* enable dcr pp */ | 
|  | ia64_setreg(_IA64_REG_CR_DCR, ia64_getreg(_IA64_REG_CR_DCR) | IA64_DCR_PP); | 
|  | ia64_srlz_i(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * per-process mode | 
|  | */ | 
|  |  | 
|  | if (ctx->ctx_task == current) { | 
|  |  | 
|  | /* start monitoring at kernel level */ | 
|  | pfm_set_psr_up(); | 
|  |  | 
|  | /* | 
|  | * activate monitoring at user level | 
|  | */ | 
|  | ia64_psr(regs)->up = 1; | 
|  |  | 
|  | } else { | 
|  | tregs = task_pt_regs(ctx->ctx_task); | 
|  |  | 
|  | /* | 
|  | * start monitoring at the kernel level the next | 
|  | * time the task is scheduled | 
|  | */ | 
|  | ctx->ctx_saved_psr_up = IA64_PSR_UP; | 
|  |  | 
|  | /* | 
|  | * activate monitoring at user level | 
|  | */ | 
|  | ia64_psr(tregs)->up = 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_get_pmc_reset(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | pfarg_reg_t *req = (pfarg_reg_t *)arg; | 
|  | unsigned int cnum; | 
|  | int i; | 
|  | int ret = -EINVAL; | 
|  |  | 
|  | for (i = 0; i < count; i++, req++) { | 
|  |  | 
|  | cnum = req->reg_num; | 
|  |  | 
|  | if (!PMC_IS_IMPL(cnum)) goto abort_mission; | 
|  |  | 
|  | req->reg_value = PMC_DFL_VAL(cnum); | 
|  |  | 
|  | PFM_REG_RETFLAG_SET(req->reg_flags, 0); | 
|  |  | 
|  | DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum, req->reg_value)); | 
|  | } | 
|  | return 0; | 
|  |  | 
|  | abort_mission: | 
|  | PFM_REG_RETFLAG_SET(req->reg_flags, PFM_REG_RETFL_EINVAL); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_check_task_exist(pfm_context_t *ctx) | 
|  | { | 
|  | struct task_struct *g, *t; | 
|  | int ret = -ESRCH; | 
|  |  | 
|  | read_lock(&tasklist_lock); | 
|  |  | 
|  | do_each_thread (g, t) { | 
|  | if (t->thread.pfm_context == ctx) { | 
|  | ret = 0; | 
|  | goto out; | 
|  | } | 
|  | } while_each_thread (g, t); | 
|  | out: | 
|  | read_unlock(&tasklist_lock); | 
|  |  | 
|  | DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret, ctx)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_context_load(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct thread_struct *thread; | 
|  | struct pfm_context_t *old; | 
|  | unsigned long flags; | 
|  | #ifndef CONFIG_SMP | 
|  | struct task_struct *owner_task = NULL; | 
|  | #endif | 
|  | pfarg_load_t *req = (pfarg_load_t *)arg; | 
|  | unsigned long *pmcs_source, *pmds_source; | 
|  | int the_cpu; | 
|  | int ret = 0; | 
|  | int state, is_system, set_dbregs = 0; | 
|  |  | 
|  | state     = ctx->ctx_state; | 
|  | is_system = ctx->ctx_fl_system; | 
|  | /* | 
|  | * can only load from unloaded or terminated state | 
|  | */ | 
|  | if (state != PFM_CTX_UNLOADED) { | 
|  | DPRINT(("cannot load to [%d], invalid ctx_state=%d\n", | 
|  | req->load_pid, | 
|  | ctx->ctx_state)); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | DPRINT(("load_pid [%d] using_dbreg=%d\n", req->load_pid, ctx->ctx_fl_using_dbreg)); | 
|  |  | 
|  | if (CTX_OVFL_NOBLOCK(ctx) == 0 && req->load_pid == current->pid) { | 
|  | DPRINT(("cannot use blocking mode on self\n")); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = pfm_get_task(ctx, req->load_pid, &task); | 
|  | if (ret) { | 
|  | DPRINT(("load_pid [%d] get_task=%d\n", req->load_pid, ret)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = -EINVAL; | 
|  |  | 
|  | /* | 
|  | * system wide is self monitoring only | 
|  | */ | 
|  | if (is_system && task != current) { | 
|  | DPRINT(("system wide is self monitoring only load_pid=%d\n", | 
|  | req->load_pid)); | 
|  | goto error; | 
|  | } | 
|  |  | 
|  | thread = &task->thread; | 
|  |  | 
|  | ret = 0; | 
|  | /* | 
|  | * cannot load a context which is using range restrictions, | 
|  | * into a task that is being debugged. | 
|  | */ | 
|  | if (ctx->ctx_fl_using_dbreg) { | 
|  | if (thread->flags & IA64_THREAD_DBG_VALID) { | 
|  | ret = -EBUSY; | 
|  | DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req->load_pid)); | 
|  | goto error; | 
|  | } | 
|  | LOCK_PFS(flags); | 
|  |  | 
|  | if (is_system) { | 
|  | if (pfm_sessions.pfs_ptrace_use_dbregs) { | 
|  | DPRINT(("cannot load [%d] dbregs in use\n", | 
|  | task_pid_nr(task))); | 
|  | ret = -EBUSY; | 
|  | } else { | 
|  | pfm_sessions.pfs_sys_use_dbregs++; | 
|  | DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task), pfm_sessions.pfs_sys_use_dbregs)); | 
|  | set_dbregs = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | UNLOCK_PFS(flags); | 
|  |  | 
|  | if (ret) goto error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SMP system-wide monitoring implies self-monitoring. | 
|  | * | 
|  | * The programming model expects the task to | 
|  | * be pinned on a CPU throughout the session. | 
|  | * Here we take note of the current CPU at the | 
|  | * time the context is loaded. No call from | 
|  | * another CPU will be allowed. | 
|  | * | 
|  | * The pinning via shed_setaffinity() | 
|  | * must be done by the calling task prior | 
|  | * to this call. | 
|  | * | 
|  | * systemwide: keep track of CPU this session is supposed to run on | 
|  | */ | 
|  | the_cpu = ctx->ctx_cpu = smp_processor_id(); | 
|  |  | 
|  | ret = -EBUSY; | 
|  | /* | 
|  | * now reserve the session | 
|  | */ | 
|  | ret = pfm_reserve_session(current, is_system, the_cpu); | 
|  | if (ret) goto error; | 
|  |  | 
|  | /* | 
|  | * task is necessarily stopped at this point. | 
|  | * | 
|  | * If the previous context was zombie, then it got removed in | 
|  | * pfm_save_regs(). Therefore we should not see it here. | 
|  | * If we see a context, then this is an active context | 
|  | * | 
|  | * XXX: needs to be atomic | 
|  | */ | 
|  | DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n", | 
|  | thread->pfm_context, ctx)); | 
|  |  | 
|  | ret = -EBUSY; | 
|  | old = ia64_cmpxchg(acq, &thread->pfm_context, NULL, ctx, sizeof(pfm_context_t *)); | 
|  | if (old != NULL) { | 
|  | DPRINT(("load_pid [%d] already has a context\n", req->load_pid)); | 
|  | goto error_unres; | 
|  | } | 
|  |  | 
|  | pfm_reset_msgq(ctx); | 
|  |  | 
|  | ctx->ctx_state = PFM_CTX_LOADED; | 
|  |  | 
|  | /* | 
|  | * link context to task | 
|  | */ | 
|  | ctx->ctx_task = task; | 
|  |  | 
|  | if (is_system) { | 
|  | /* | 
|  | * we load as stopped | 
|  | */ | 
|  | PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE); | 
|  | PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP); | 
|  |  | 
|  | if (ctx->ctx_fl_excl_idle) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE); | 
|  | } else { | 
|  | thread->flags |= IA64_THREAD_PM_VALID; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * propagate into thread-state | 
|  | */ | 
|  | pfm_copy_pmds(task, ctx); | 
|  | pfm_copy_pmcs(task, ctx); | 
|  |  | 
|  | pmcs_source = ctx->th_pmcs; | 
|  | pmds_source = ctx->th_pmds; | 
|  |  | 
|  | /* | 
|  | * always the case for system-wide | 
|  | */ | 
|  | if (task == current) { | 
|  |  | 
|  | if (is_system == 0) { | 
|  |  | 
|  | /* allow user level control */ | 
|  | ia64_psr(regs)->sp = 0; | 
|  | DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task))); | 
|  |  | 
|  | SET_LAST_CPU(ctx, smp_processor_id()); | 
|  | INC_ACTIVATION(); | 
|  | SET_ACTIVATION(ctx); | 
|  | #ifndef CONFIG_SMP | 
|  | /* | 
|  | * push the other task out, if any | 
|  | */ | 
|  | owner_task = GET_PMU_OWNER(); | 
|  | if (owner_task) pfm_lazy_save_regs(owner_task); | 
|  | #endif | 
|  | } | 
|  | /* | 
|  | * load all PMD from ctx to PMU (as opposed to thread state) | 
|  | * restore all PMC from ctx to PMU | 
|  | */ | 
|  | pfm_restore_pmds(pmds_source, ctx->ctx_all_pmds[0]); | 
|  | pfm_restore_pmcs(pmcs_source, ctx->ctx_all_pmcs[0]); | 
|  |  | 
|  | ctx->ctx_reload_pmcs[0] = 0UL; | 
|  | ctx->ctx_reload_pmds[0] = 0UL; | 
|  |  | 
|  | /* | 
|  | * guaranteed safe by earlier check against DBG_VALID | 
|  | */ | 
|  | if (ctx->ctx_fl_using_dbreg) { | 
|  | pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); | 
|  | pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); | 
|  | } | 
|  | /* | 
|  | * set new ownership | 
|  | */ | 
|  | SET_PMU_OWNER(task, ctx); | 
|  |  | 
|  | DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task))); | 
|  | } else { | 
|  | /* | 
|  | * when not current, task MUST be stopped, so this is safe | 
|  | */ | 
|  | regs = task_pt_regs(task); | 
|  |  | 
|  | /* force a full reload */ | 
|  | ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; | 
|  | SET_LAST_CPU(ctx, -1); | 
|  |  | 
|  | /* initial saved psr (stopped) */ | 
|  | ctx->ctx_saved_psr_up = 0UL; | 
|  | ia64_psr(regs)->up = ia64_psr(regs)->pp = 0; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | error_unres: | 
|  | if (ret) pfm_unreserve_session(ctx, ctx->ctx_fl_system, the_cpu); | 
|  | error: | 
|  | /* | 
|  | * we must undo the dbregs setting (for system-wide) | 
|  | */ | 
|  | if (ret && set_dbregs) { | 
|  | LOCK_PFS(flags); | 
|  | pfm_sessions.pfs_sys_use_dbregs--; | 
|  | UNLOCK_PFS(flags); | 
|  | } | 
|  | /* | 
|  | * release task, there is now a link with the context | 
|  | */ | 
|  | if (is_system == 0 && task != current) { | 
|  | pfm_put_task(task); | 
|  |  | 
|  | if (ret == 0) { | 
|  | ret = pfm_check_task_exist(ctx); | 
|  | if (ret) { | 
|  | ctx->ctx_state = PFM_CTX_UNLOADED; | 
|  | ctx->ctx_task  = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * in this function, we do not need to increase the use count | 
|  | * for the task via get_task_struct(), because we hold the | 
|  | * context lock. If the task were to disappear while having | 
|  | * a context attached, it would go through pfm_exit_thread() | 
|  | * which also grabs the context lock  and would therefore be blocked | 
|  | * until we are here. | 
|  | */ | 
|  | static void pfm_flush_pmds(struct task_struct *, pfm_context_t *ctx); | 
|  |  | 
|  | static int | 
|  | pfm_context_unload(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *task = PFM_CTX_TASK(ctx); | 
|  | struct pt_regs *tregs; | 
|  | int prev_state, is_system; | 
|  | int ret; | 
|  |  | 
|  | DPRINT(("ctx_state=%d task [%d]\n", ctx->ctx_state, task ? task_pid_nr(task) : -1)); | 
|  |  | 
|  | prev_state = ctx->ctx_state; | 
|  | is_system  = ctx->ctx_fl_system; | 
|  |  | 
|  | /* | 
|  | * unload only when necessary | 
|  | */ | 
|  | if (prev_state == PFM_CTX_UNLOADED) { | 
|  | DPRINT(("ctx_state=%d, nothing to do\n", prev_state)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * clear psr and dcr bits | 
|  | */ | 
|  | ret = pfm_stop(ctx, NULL, 0, regs); | 
|  | if (ret) return ret; | 
|  |  | 
|  | ctx->ctx_state = PFM_CTX_UNLOADED; | 
|  |  | 
|  | /* | 
|  | * in system mode, we need to update the PMU directly | 
|  | * and the user level state of the caller, which may not | 
|  | * necessarily be the creator of the context. | 
|  | */ | 
|  | if (is_system) { | 
|  |  | 
|  | /* | 
|  | * Update cpuinfo | 
|  | * | 
|  | * local PMU is taken care of in pfm_stop() | 
|  | */ | 
|  | PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE); | 
|  | PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE); | 
|  |  | 
|  | /* | 
|  | * save PMDs in context | 
|  | * release ownership | 
|  | */ | 
|  | pfm_flush_pmds(current, ctx); | 
|  |  | 
|  | /* | 
|  | * at this point we are done with the PMU | 
|  | * so we can unreserve the resource. | 
|  | */ | 
|  | if (prev_state != PFM_CTX_ZOMBIE) | 
|  | pfm_unreserve_session(ctx, 1 , ctx->ctx_cpu); | 
|  |  | 
|  | /* | 
|  | * disconnect context from task | 
|  | */ | 
|  | task->thread.pfm_context = NULL; | 
|  | /* | 
|  | * disconnect task from context | 
|  | */ | 
|  | ctx->ctx_task = NULL; | 
|  |  | 
|  | /* | 
|  | * There is nothing more to cleanup here. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * per-task mode | 
|  | */ | 
|  | tregs = task == current ? regs : task_pt_regs(task); | 
|  |  | 
|  | if (task == current) { | 
|  | /* | 
|  | * cancel user level control | 
|  | */ | 
|  | ia64_psr(regs)->sp = 1; | 
|  |  | 
|  | DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task))); | 
|  | } | 
|  | /* | 
|  | * save PMDs to context | 
|  | * release ownership | 
|  | */ | 
|  | pfm_flush_pmds(task, ctx); | 
|  |  | 
|  | /* | 
|  | * at this point we are done with the PMU | 
|  | * so we can unreserve the resource. | 
|  | * | 
|  | * when state was ZOMBIE, we have already unreserved. | 
|  | */ | 
|  | if (prev_state != PFM_CTX_ZOMBIE) | 
|  | pfm_unreserve_session(ctx, 0 , ctx->ctx_cpu); | 
|  |  | 
|  | /* | 
|  | * reset activation counter and psr | 
|  | */ | 
|  | ctx->ctx_last_activation = PFM_INVALID_ACTIVATION; | 
|  | SET_LAST_CPU(ctx, -1); | 
|  |  | 
|  | /* | 
|  | * PMU state will not be restored | 
|  | */ | 
|  | task->thread.flags &= ~IA64_THREAD_PM_VALID; | 
|  |  | 
|  | /* | 
|  | * break links between context and task | 
|  | */ | 
|  | task->thread.pfm_context  = NULL; | 
|  | ctx->ctx_task             = NULL; | 
|  |  | 
|  | PFM_SET_WORK_PENDING(task, 0); | 
|  |  | 
|  | ctx->ctx_fl_trap_reason  = PFM_TRAP_REASON_NONE; | 
|  | ctx->ctx_fl_can_restart  = 0; | 
|  | ctx->ctx_fl_going_zombie = 0; | 
|  |  | 
|  | DPRINT(("disconnected [%d] from context\n", task_pid_nr(task))); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * called only from exit_thread(): task == current | 
|  | * we come here only if current has a context attached (loaded or masked) | 
|  | */ | 
|  | void | 
|  | pfm_exit_thread(struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | unsigned long flags; | 
|  | struct pt_regs *regs = task_pt_regs(task); | 
|  | int ret, state; | 
|  | int free_ok = 0; | 
|  |  | 
|  | ctx = PFM_GET_CTX(task); | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  | DPRINT(("state=%d task [%d]\n", ctx->ctx_state, task_pid_nr(task))); | 
|  |  | 
|  | state = ctx->ctx_state; | 
|  | switch(state) { | 
|  | case PFM_CTX_UNLOADED: | 
|  | /* | 
|  | * only comes to this function if pfm_context is not NULL, i.e., cannot | 
|  | * be in unloaded state | 
|  | */ | 
|  | printk(KERN_ERR "perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task)); | 
|  | break; | 
|  | case PFM_CTX_LOADED: | 
|  | case PFM_CTX_MASKED: | 
|  | ret = pfm_context_unload(ctx, NULL, 0, regs); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret); | 
|  | } | 
|  | DPRINT(("ctx unloaded for current state was %d\n", state)); | 
|  |  | 
|  | pfm_end_notify_user(ctx); | 
|  | break; | 
|  | case PFM_CTX_ZOMBIE: | 
|  | ret = pfm_context_unload(ctx, NULL, 0, regs); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task), state, ret); | 
|  | } | 
|  | free_ok = 1; | 
|  | break; | 
|  | default: | 
|  | printk(KERN_ERR "perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task), state); | 
|  | break; | 
|  | } | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  |  | 
|  | { u64 psr = pfm_get_psr(); | 
|  | BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); | 
|  | BUG_ON(GET_PMU_OWNER()); | 
|  | BUG_ON(ia64_psr(regs)->up); | 
|  | BUG_ON(ia64_psr(regs)->pp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * All memory free operations (especially for vmalloc'ed memory) | 
|  | * MUST be done with interrupts ENABLED. | 
|  | */ | 
|  | if (free_ok) pfm_context_free(ctx); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * functions MUST be listed in the increasing order of their index (see permfon.h) | 
|  | */ | 
|  | #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz } | 
|  | #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL } | 
|  | #define PFM_CMD_PCLRWS	(PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP) | 
|  | #define PFM_CMD_PCLRW	(PFM_CMD_FD|PFM_CMD_ARG_RW) | 
|  | #define PFM_CMD_NONE	{ NULL, "no-cmd", 0, 0, 0, NULL} | 
|  |  | 
|  | static pfm_cmd_desc_t pfm_cmd_tab[]={ | 
|  | /* 0  */PFM_CMD_NONE, | 
|  | /* 1  */PFM_CMD(pfm_write_pmcs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), | 
|  | /* 2  */PFM_CMD(pfm_write_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), | 
|  | /* 3  */PFM_CMD(pfm_read_pmds, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), | 
|  | /* 4  */PFM_CMD_S(pfm_stop, PFM_CMD_PCLRWS), | 
|  | /* 5  */PFM_CMD_S(pfm_start, PFM_CMD_PCLRWS), | 
|  | /* 6  */PFM_CMD_NONE, | 
|  | /* 7  */PFM_CMD_NONE, | 
|  | /* 8  */PFM_CMD(pfm_context_create, PFM_CMD_ARG_RW, 1, pfarg_context_t, pfm_ctx_getsize), | 
|  | /* 9  */PFM_CMD_NONE, | 
|  | /* 10 */PFM_CMD_S(pfm_restart, PFM_CMD_PCLRW), | 
|  | /* 11 */PFM_CMD_NONE, | 
|  | /* 12 */PFM_CMD(pfm_get_features, PFM_CMD_ARG_RW, 1, pfarg_features_t, NULL), | 
|  | /* 13 */PFM_CMD(pfm_debug, 0, 1, unsigned int, NULL), | 
|  | /* 14 */PFM_CMD_NONE, | 
|  | /* 15 */PFM_CMD(pfm_get_pmc_reset, PFM_CMD_ARG_RW, PFM_CMD_ARG_MANY, pfarg_reg_t, NULL), | 
|  | /* 16 */PFM_CMD(pfm_context_load, PFM_CMD_PCLRWS, 1, pfarg_load_t, NULL), | 
|  | /* 17 */PFM_CMD_S(pfm_context_unload, PFM_CMD_PCLRWS), | 
|  | /* 18 */PFM_CMD_NONE, | 
|  | /* 19 */PFM_CMD_NONE, | 
|  | /* 20 */PFM_CMD_NONE, | 
|  | /* 21 */PFM_CMD_NONE, | 
|  | /* 22 */PFM_CMD_NONE, | 
|  | /* 23 */PFM_CMD_NONE, | 
|  | /* 24 */PFM_CMD_NONE, | 
|  | /* 25 */PFM_CMD_NONE, | 
|  | /* 26 */PFM_CMD_NONE, | 
|  | /* 27 */PFM_CMD_NONE, | 
|  | /* 28 */PFM_CMD_NONE, | 
|  | /* 29 */PFM_CMD_NONE, | 
|  | /* 30 */PFM_CMD_NONE, | 
|  | /* 31 */PFM_CMD_NONE, | 
|  | /* 32 */PFM_CMD(pfm_write_ibrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL), | 
|  | /* 33 */PFM_CMD(pfm_write_dbrs, PFM_CMD_PCLRWS, PFM_CMD_ARG_MANY, pfarg_dbreg_t, NULL) | 
|  | }; | 
|  | #define PFM_CMD_COUNT	(sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t)) | 
|  |  | 
|  | static int | 
|  | pfm_check_task_state(pfm_context_t *ctx, int cmd, unsigned long flags) | 
|  | { | 
|  | struct task_struct *task; | 
|  | int state, old_state; | 
|  |  | 
|  | recheck: | 
|  | state = ctx->ctx_state; | 
|  | task  = ctx->ctx_task; | 
|  |  | 
|  | if (task == NULL) { | 
|  | DPRINT(("context %d no task, state=%d\n", ctx->ctx_fd, state)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n", | 
|  | ctx->ctx_fd, | 
|  | state, | 
|  | task_pid_nr(task), | 
|  | task->state, PFM_CMD_STOPPED(cmd))); | 
|  |  | 
|  | /* | 
|  | * self-monitoring always ok. | 
|  | * | 
|  | * for system-wide the caller can either be the creator of the | 
|  | * context (to one to which the context is attached to) OR | 
|  | * a task running on the same CPU as the session. | 
|  | */ | 
|  | if (task == current || ctx->ctx_fl_system) return 0; | 
|  |  | 
|  | /* | 
|  | * we are monitoring another thread | 
|  | */ | 
|  | switch(state) { | 
|  | case PFM_CTX_UNLOADED: | 
|  | /* | 
|  | * if context is UNLOADED we are safe to go | 
|  | */ | 
|  | return 0; | 
|  | case PFM_CTX_ZOMBIE: | 
|  | /* | 
|  | * no command can operate on a zombie context | 
|  | */ | 
|  | DPRINT(("cmd %d state zombie cannot operate on context\n", cmd)); | 
|  | return -EINVAL; | 
|  | case PFM_CTX_MASKED: | 
|  | /* | 
|  | * PMU state has been saved to software even though | 
|  | * the thread may still be running. | 
|  | */ | 
|  | if (cmd != PFM_UNLOAD_CONTEXT) return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * context is LOADED or MASKED. Some commands may need to have | 
|  | * the task stopped. | 
|  | * | 
|  | * We could lift this restriction for UP but it would mean that | 
|  | * the user has no guarantee the task would not run between | 
|  | * two successive calls to perfmonctl(). That's probably OK. | 
|  | * If this user wants to ensure the task does not run, then | 
|  | * the task must be stopped. | 
|  | */ | 
|  | if (PFM_CMD_STOPPED(cmd)) { | 
|  | if (!task_is_stopped_or_traced(task)) { | 
|  | DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task))); | 
|  | return -EBUSY; | 
|  | } | 
|  | /* | 
|  | * task is now stopped, wait for ctxsw out | 
|  | * | 
|  | * This is an interesting point in the code. | 
|  | * We need to unprotect the context because | 
|  | * the pfm_save_regs() routines needs to grab | 
|  | * the same lock. There are danger in doing | 
|  | * this because it leaves a window open for | 
|  | * another task to get access to the context | 
|  | * and possibly change its state. The one thing | 
|  | * that is not possible is for the context to disappear | 
|  | * because we are protected by the VFS layer, i.e., | 
|  | * get_fd()/put_fd(). | 
|  | */ | 
|  | old_state = state; | 
|  |  | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  |  | 
|  | wait_task_inactive(task, 0); | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * we must recheck to verify if state has changed | 
|  | */ | 
|  | if (ctx->ctx_state != old_state) { | 
|  | DPRINT(("old_state=%d new_state=%d\n", old_state, ctx->ctx_state)); | 
|  | goto recheck; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * system-call entry point (must return long) | 
|  | */ | 
|  | asmlinkage long | 
|  | sys_perfmonctl (int fd, int cmd, void __user *arg, int count) | 
|  | { | 
|  | struct file *file = NULL; | 
|  | pfm_context_t *ctx = NULL; | 
|  | unsigned long flags = 0UL; | 
|  | void *args_k = NULL; | 
|  | long ret; /* will expand int return types */ | 
|  | size_t base_sz, sz, xtra_sz = 0; | 
|  | int narg, completed_args = 0, call_made = 0, cmd_flags; | 
|  | int (*func)(pfm_context_t *ctx, void *arg, int count, struct pt_regs *regs); | 
|  | int (*getsize)(void *arg, size_t *sz); | 
|  | #define PFM_MAX_ARGSIZE	4096 | 
|  |  | 
|  | /* | 
|  | * reject any call if perfmon was disabled at initialization | 
|  | */ | 
|  | if (unlikely(pmu_conf == NULL)) return -ENOSYS; | 
|  |  | 
|  | if (unlikely(cmd < 0 || cmd >= PFM_CMD_COUNT)) { | 
|  | DPRINT(("invalid cmd=%d\n", cmd)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | func      = pfm_cmd_tab[cmd].cmd_func; | 
|  | narg      = pfm_cmd_tab[cmd].cmd_narg; | 
|  | base_sz   = pfm_cmd_tab[cmd].cmd_argsize; | 
|  | getsize   = pfm_cmd_tab[cmd].cmd_getsize; | 
|  | cmd_flags = pfm_cmd_tab[cmd].cmd_flags; | 
|  |  | 
|  | if (unlikely(func == NULL)) { | 
|  | DPRINT(("invalid cmd=%d\n", cmd)); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n", | 
|  | PFM_CMD_NAME(cmd), | 
|  | cmd, | 
|  | narg, | 
|  | base_sz, | 
|  | count)); | 
|  |  | 
|  | /* | 
|  | * check if number of arguments matches what the command expects | 
|  | */ | 
|  | if (unlikely((narg == PFM_CMD_ARG_MANY && count <= 0) || (narg > 0 && narg != count))) | 
|  | return -EINVAL; | 
|  |  | 
|  | restart_args: | 
|  | sz = xtra_sz + base_sz*count; | 
|  | /* | 
|  | * limit abuse to min page size | 
|  | */ | 
|  | if (unlikely(sz > PFM_MAX_ARGSIZE)) { | 
|  | printk(KERN_ERR "perfmon: [%d] argument too big %lu\n", task_pid_nr(current), sz); | 
|  | return -E2BIG; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * allocate default-sized argument buffer | 
|  | */ | 
|  | if (likely(count && args_k == NULL)) { | 
|  | args_k = kmalloc(PFM_MAX_ARGSIZE, GFP_KERNEL); | 
|  | if (args_k == NULL) return -ENOMEM; | 
|  | } | 
|  |  | 
|  | ret = -EFAULT; | 
|  |  | 
|  | /* | 
|  | * copy arguments | 
|  | * | 
|  | * assume sz = 0 for command without parameters | 
|  | */ | 
|  | if (sz && copy_from_user(args_k, arg, sz)) { | 
|  | DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz, arg)); | 
|  | goto error_args; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * check if command supports extra parameters | 
|  | */ | 
|  | if (completed_args == 0 && getsize) { | 
|  | /* | 
|  | * get extra parameters size (based on main argument) | 
|  | */ | 
|  | ret = (*getsize)(args_k, &xtra_sz); | 
|  | if (ret) goto error_args; | 
|  |  | 
|  | completed_args = 1; | 
|  |  | 
|  | DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz, xtra_sz)); | 
|  |  | 
|  | /* retry if necessary */ | 
|  | if (likely(xtra_sz)) goto restart_args; | 
|  | } | 
|  |  | 
|  | if (unlikely((cmd_flags & PFM_CMD_FD) == 0)) goto skip_fd; | 
|  |  | 
|  | ret = -EBADF; | 
|  |  | 
|  | file = fget(fd); | 
|  | if (unlikely(file == NULL)) { | 
|  | DPRINT(("invalid fd %d\n", fd)); | 
|  | goto error_args; | 
|  | } | 
|  | if (unlikely(PFM_IS_FILE(file) == 0)) { | 
|  | DPRINT(("fd %d not related to perfmon\n", fd)); | 
|  | goto error_args; | 
|  | } | 
|  |  | 
|  | ctx = (pfm_context_t *)file->private_data; | 
|  | if (unlikely(ctx == NULL)) { | 
|  | DPRINT(("no context for fd %d\n", fd)); | 
|  | goto error_args; | 
|  | } | 
|  | prefetch(&ctx->ctx_state); | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * check task is stopped | 
|  | */ | 
|  | ret = pfm_check_task_state(ctx, cmd, flags); | 
|  | if (unlikely(ret)) goto abort_locked; | 
|  |  | 
|  | skip_fd: | 
|  | ret = (*func)(ctx, args_k, count, task_pt_regs(current)); | 
|  |  | 
|  | call_made = 1; | 
|  |  | 
|  | abort_locked: | 
|  | if (likely(ctx)) { | 
|  | DPRINT(("context unlocked\n")); | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  | } | 
|  |  | 
|  | /* copy argument back to user, if needed */ | 
|  | if (call_made && PFM_CMD_RW_ARG(cmd) && copy_to_user(arg, args_k, base_sz*count)) ret = -EFAULT; | 
|  |  | 
|  | error_args: | 
|  | if (file) | 
|  | fput(file); | 
|  |  | 
|  | kfree(args_k); | 
|  |  | 
|  | DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd), ret)); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_resume_after_ovfl(pfm_context_t *ctx, unsigned long ovfl_regs, struct pt_regs *regs) | 
|  | { | 
|  | pfm_buffer_fmt_t *fmt = ctx->ctx_buf_fmt; | 
|  | pfm_ovfl_ctrl_t rst_ctrl; | 
|  | int state; | 
|  | int ret = 0; | 
|  |  | 
|  | state = ctx->ctx_state; | 
|  | /* | 
|  | * Unlock sampling buffer and reset index atomically | 
|  | * XXX: not really needed when blocking | 
|  | */ | 
|  | if (CTX_HAS_SMPL(ctx)) { | 
|  |  | 
|  | rst_ctrl.bits.mask_monitoring = 0; | 
|  | rst_ctrl.bits.reset_ovfl_pmds = 0; | 
|  |  | 
|  | if (state == PFM_CTX_LOADED) | 
|  | ret = pfm_buf_fmt_restart_active(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); | 
|  | else | 
|  | ret = pfm_buf_fmt_restart(fmt, current, &rst_ctrl, ctx->ctx_smpl_hdr, regs); | 
|  | } else { | 
|  | rst_ctrl.bits.mask_monitoring = 0; | 
|  | rst_ctrl.bits.reset_ovfl_pmds = 1; | 
|  | } | 
|  |  | 
|  | if (ret == 0) { | 
|  | if (rst_ctrl.bits.reset_ovfl_pmds) { | 
|  | pfm_reset_regs(ctx, &ovfl_regs, PFM_PMD_LONG_RESET); | 
|  | } | 
|  | if (rst_ctrl.bits.mask_monitoring == 0) { | 
|  | DPRINT(("resuming monitoring\n")); | 
|  | if (ctx->ctx_state == PFM_CTX_MASKED) pfm_restore_monitoring(current); | 
|  | } else { | 
|  | DPRINT(("stopping monitoring\n")); | 
|  | //pfm_stop_monitoring(current, regs); | 
|  | } | 
|  | ctx->ctx_state = PFM_CTX_LOADED; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * context MUST BE LOCKED when calling | 
|  | * can only be called for current | 
|  | */ | 
|  | static void | 
|  | pfm_context_force_terminate(pfm_context_t *ctx, struct pt_regs *regs) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | DPRINT(("entering for [%d]\n", task_pid_nr(current))); | 
|  |  | 
|  | ret = pfm_context_unload(ctx, NULL, 0, regs); | 
|  | if (ret) { | 
|  | printk(KERN_ERR "pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current), ret); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * and wakeup controlling task, indicating we are now disconnected | 
|  | */ | 
|  | wake_up_interruptible(&ctx->ctx_zombieq); | 
|  |  | 
|  | /* | 
|  | * given that context is still locked, the controlling | 
|  | * task will only get access when we return from | 
|  | * pfm_handle_work(). | 
|  | */ | 
|  | } | 
|  |  | 
|  | static int pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds); | 
|  |  | 
|  | /* | 
|  | * pfm_handle_work() can be called with interrupts enabled | 
|  | * (TIF_NEED_RESCHED) or disabled. The down_interruptible | 
|  | * call may sleep, therefore we must re-enable interrupts | 
|  | * to avoid deadlocks. It is safe to do so because this function | 
|  | * is called ONLY when returning to user level (pUStk=1), in which case | 
|  | * there is no risk of kernel stack overflow due to deep | 
|  | * interrupt nesting. | 
|  | */ | 
|  | void | 
|  | pfm_handle_work(void) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | struct pt_regs *regs; | 
|  | unsigned long flags, dummy_flags; | 
|  | unsigned long ovfl_regs; | 
|  | unsigned int reason; | 
|  | int ret; | 
|  |  | 
|  | ctx = PFM_GET_CTX(current); | 
|  | if (ctx == NULL) { | 
|  | printk(KERN_ERR "perfmon: [%d] has no PFM context\n", | 
|  | task_pid_nr(current)); | 
|  | return; | 
|  | } | 
|  |  | 
|  | PROTECT_CTX(ctx, flags); | 
|  |  | 
|  | PFM_SET_WORK_PENDING(current, 0); | 
|  |  | 
|  | regs = task_pt_regs(current); | 
|  |  | 
|  | /* | 
|  | * extract reason for being here and clear | 
|  | */ | 
|  | reason = ctx->ctx_fl_trap_reason; | 
|  | ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_NONE; | 
|  | ovfl_regs = ctx->ctx_ovfl_regs[0]; | 
|  |  | 
|  | DPRINT(("reason=%d state=%d\n", reason, ctx->ctx_state)); | 
|  |  | 
|  | /* | 
|  | * must be done before we check for simple-reset mode | 
|  | */ | 
|  | if (ctx->ctx_fl_going_zombie || ctx->ctx_state == PFM_CTX_ZOMBIE) | 
|  | goto do_zombie; | 
|  |  | 
|  | //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking; | 
|  | if (reason == PFM_TRAP_REASON_RESET) | 
|  | goto skip_blocking; | 
|  |  | 
|  | /* | 
|  | * restore interrupt mask to what it was on entry. | 
|  | * Could be enabled/diasbled. | 
|  | */ | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * force interrupt enable because of down_interruptible() | 
|  | */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | DPRINT(("before block sleeping\n")); | 
|  |  | 
|  | /* | 
|  | * may go through without blocking on SMP systems | 
|  | * if restart has been received already by the time we call down() | 
|  | */ | 
|  | ret = wait_for_completion_interruptible(&ctx->ctx_restart_done); | 
|  |  | 
|  | DPRINT(("after block sleeping ret=%d\n", ret)); | 
|  |  | 
|  | /* | 
|  | * lock context and mask interrupts again | 
|  | * We save flags into a dummy because we may have | 
|  | * altered interrupts mask compared to entry in this | 
|  | * function. | 
|  | */ | 
|  | PROTECT_CTX(ctx, dummy_flags); | 
|  |  | 
|  | /* | 
|  | * we need to read the ovfl_regs only after wake-up | 
|  | * because we may have had pfm_write_pmds() in between | 
|  | * and that can changed PMD values and therefore | 
|  | * ovfl_regs is reset for these new PMD values. | 
|  | */ | 
|  | ovfl_regs = ctx->ctx_ovfl_regs[0]; | 
|  |  | 
|  | if (ctx->ctx_fl_going_zombie) { | 
|  | do_zombie: | 
|  | DPRINT(("context is zombie, bailing out\n")); | 
|  | pfm_context_force_terminate(ctx, regs); | 
|  | goto nothing_to_do; | 
|  | } | 
|  | /* | 
|  | * in case of interruption of down() we don't restart anything | 
|  | */ | 
|  | if (ret < 0) | 
|  | goto nothing_to_do; | 
|  |  | 
|  | skip_blocking: | 
|  | pfm_resume_after_ovfl(ctx, ovfl_regs, regs); | 
|  | ctx->ctx_ovfl_regs[0] = 0UL; | 
|  |  | 
|  | nothing_to_do: | 
|  | /* | 
|  | * restore flags as they were upon entry | 
|  | */ | 
|  | UNPROTECT_CTX(ctx, flags); | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_notify_user(pfm_context_t *ctx, pfm_msg_t *msg) | 
|  | { | 
|  | if (ctx->ctx_state == PFM_CTX_ZOMBIE) { | 
|  | DPRINT(("ignoring overflow notification, owner is zombie\n")); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | DPRINT(("waking up somebody\n")); | 
|  |  | 
|  | if (msg) wake_up_interruptible(&ctx->ctx_msgq_wait); | 
|  |  | 
|  | /* | 
|  | * safe, we are not in intr handler, nor in ctxsw when | 
|  | * we come here | 
|  | */ | 
|  | kill_fasync (&ctx->ctx_async_queue, SIGIO, POLL_IN); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_ovfl_notify_user(pfm_context_t *ctx, unsigned long ovfl_pmds) | 
|  | { | 
|  | pfm_msg_t *msg = NULL; | 
|  |  | 
|  | if (ctx->ctx_fl_no_msg == 0) { | 
|  | msg = pfm_get_new_msg(ctx); | 
|  | if (msg == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_ovfl_notify_user no more notification msgs\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | msg->pfm_ovfl_msg.msg_type         = PFM_MSG_OVFL; | 
|  | msg->pfm_ovfl_msg.msg_ctx_fd       = ctx->ctx_fd; | 
|  | msg->pfm_ovfl_msg.msg_active_set   = 0; | 
|  | msg->pfm_ovfl_msg.msg_ovfl_pmds[0] = ovfl_pmds; | 
|  | msg->pfm_ovfl_msg.msg_ovfl_pmds[1] = 0UL; | 
|  | msg->pfm_ovfl_msg.msg_ovfl_pmds[2] = 0UL; | 
|  | msg->pfm_ovfl_msg.msg_ovfl_pmds[3] = 0UL; | 
|  | msg->pfm_ovfl_msg.msg_tstamp       = 0UL; | 
|  | } | 
|  |  | 
|  | DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n", | 
|  | msg, | 
|  | ctx->ctx_fl_no_msg, | 
|  | ctx->ctx_fd, | 
|  | ovfl_pmds)); | 
|  |  | 
|  | return pfm_notify_user(ctx, msg); | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_end_notify_user(pfm_context_t *ctx) | 
|  | { | 
|  | pfm_msg_t *msg; | 
|  |  | 
|  | msg = pfm_get_new_msg(ctx); | 
|  | if (msg == NULL) { | 
|  | printk(KERN_ERR "perfmon: pfm_end_notify_user no more notification msgs\n"); | 
|  | return -1; | 
|  | } | 
|  | /* no leak */ | 
|  | memset(msg, 0, sizeof(*msg)); | 
|  |  | 
|  | msg->pfm_end_msg.msg_type    = PFM_MSG_END; | 
|  | msg->pfm_end_msg.msg_ctx_fd  = ctx->ctx_fd; | 
|  | msg->pfm_ovfl_msg.msg_tstamp = 0UL; | 
|  |  | 
|  | DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n", | 
|  | msg, | 
|  | ctx->ctx_fl_no_msg, | 
|  | ctx->ctx_fd)); | 
|  |  | 
|  | return pfm_notify_user(ctx, msg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * main overflow processing routine. | 
|  | * it can be called from the interrupt path or explicitly during the context switch code | 
|  | */ | 
|  | static void | 
|  | pfm_overflow_handler(struct task_struct *task, pfm_context_t *ctx, u64 pmc0, struct pt_regs *regs) | 
|  | { | 
|  | pfm_ovfl_arg_t *ovfl_arg; | 
|  | unsigned long mask; | 
|  | unsigned long old_val, ovfl_val, new_val; | 
|  | unsigned long ovfl_notify = 0UL, ovfl_pmds = 0UL, smpl_pmds = 0UL, reset_pmds; | 
|  | unsigned long tstamp; | 
|  | pfm_ovfl_ctrl_t	ovfl_ctrl; | 
|  | unsigned int i, has_smpl; | 
|  | int must_notify = 0; | 
|  |  | 
|  | if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) goto stop_monitoring; | 
|  |  | 
|  | /* | 
|  | * sanity test. Should never happen | 
|  | */ | 
|  | if (unlikely((pmc0 & 0x1) == 0)) goto sanity_check; | 
|  |  | 
|  | tstamp   = ia64_get_itc(); | 
|  | mask     = pmc0 >> PMU_FIRST_COUNTER; | 
|  | ovfl_val = pmu_conf->ovfl_val; | 
|  | has_smpl = CTX_HAS_SMPL(ctx); | 
|  |  | 
|  | DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s " | 
|  | "used_pmds=0x%lx\n", | 
|  | pmc0, | 
|  | task ? task_pid_nr(task): -1, | 
|  | (regs ? regs->cr_iip : 0), | 
|  | CTX_OVFL_NOBLOCK(ctx) ? "nonblocking" : "blocking", | 
|  | ctx->ctx_used_pmds[0])); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * first we update the virtual counters | 
|  | * assume there was a prior ia64_srlz_d() issued | 
|  | */ | 
|  | for (i = PMU_FIRST_COUNTER; mask ; i++, mask >>= 1) { | 
|  |  | 
|  | /* skip pmd which did not overflow */ | 
|  | if ((mask & 0x1) == 0) continue; | 
|  |  | 
|  | /* | 
|  | * Note that the pmd is not necessarily 0 at this point as qualified events | 
|  | * may have happened before the PMU was frozen. The residual count is not | 
|  | * taken into consideration here but will be with any read of the pmd via | 
|  | * pfm_read_pmds(). | 
|  | */ | 
|  | old_val              = new_val = ctx->ctx_pmds[i].val; | 
|  | new_val             += 1 + ovfl_val; | 
|  | ctx->ctx_pmds[i].val = new_val; | 
|  |  | 
|  | /* | 
|  | * check for overflow condition | 
|  | */ | 
|  | if (likely(old_val > new_val)) { | 
|  | ovfl_pmds |= 1UL << i; | 
|  | if (PMC_OVFL_NOTIFY(ctx, i)) ovfl_notify |= 1UL << i; | 
|  | } | 
|  |  | 
|  | DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n", | 
|  | i, | 
|  | new_val, | 
|  | old_val, | 
|  | ia64_get_pmd(i) & ovfl_val, | 
|  | ovfl_pmds, | 
|  | ovfl_notify)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * there was no 64-bit overflow, nothing else to do | 
|  | */ | 
|  | if (ovfl_pmds == 0UL) return; | 
|  |  | 
|  | /* | 
|  | * reset all control bits | 
|  | */ | 
|  | ovfl_ctrl.val = 0; | 
|  | reset_pmds    = 0UL; | 
|  |  | 
|  | /* | 
|  | * if a sampling format module exists, then we "cache" the overflow by | 
|  | * calling the module's handler() routine. | 
|  | */ | 
|  | if (has_smpl) { | 
|  | unsigned long start_cycles, end_cycles; | 
|  | unsigned long pmd_mask; | 
|  | int j, k, ret = 0; | 
|  | int this_cpu = smp_processor_id(); | 
|  |  | 
|  | pmd_mask = ovfl_pmds >> PMU_FIRST_COUNTER; | 
|  | ovfl_arg = &ctx->ctx_ovfl_arg; | 
|  |  | 
|  | prefetch(ctx->ctx_smpl_hdr); | 
|  |  | 
|  | for(i=PMU_FIRST_COUNTER; pmd_mask && ret == 0; i++, pmd_mask >>=1) { | 
|  |  | 
|  | mask = 1UL << i; | 
|  |  | 
|  | if ((pmd_mask & 0x1) == 0) continue; | 
|  |  | 
|  | ovfl_arg->ovfl_pmd      = (unsigned char )i; | 
|  | ovfl_arg->ovfl_notify   = ovfl_notify & mask ? 1 : 0; | 
|  | ovfl_arg->active_set    = 0; | 
|  | ovfl_arg->ovfl_ctrl.val = 0; /* module must fill in all fields */ | 
|  | ovfl_arg->smpl_pmds[0]  = smpl_pmds = ctx->ctx_pmds[i].smpl_pmds[0]; | 
|  |  | 
|  | ovfl_arg->pmd_value      = ctx->ctx_pmds[i].val; | 
|  | ovfl_arg->pmd_last_reset = ctx->ctx_pmds[i].lval; | 
|  | ovfl_arg->pmd_eventid    = ctx->ctx_pmds[i].eventid; | 
|  |  | 
|  | /* | 
|  | * copy values of pmds of interest. Sampling format may copy them | 
|  | * into sampling buffer. | 
|  | */ | 
|  | if (smpl_pmds) { | 
|  | for(j=0, k=0; smpl_pmds; j++, smpl_pmds >>=1) { | 
|  | if ((smpl_pmds & 0x1) == 0) continue; | 
|  | ovfl_arg->smpl_pmds_values[k++] = PMD_IS_COUNTING(j) ?  pfm_read_soft_counter(ctx, j) : ia64_get_pmd(j); | 
|  | DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k-1, j, ovfl_arg->smpl_pmds_values[k-1])); | 
|  | } | 
|  | } | 
|  |  | 
|  | pfm_stats[this_cpu].pfm_smpl_handler_calls++; | 
|  |  | 
|  | start_cycles = ia64_get_itc(); | 
|  |  | 
|  | /* | 
|  | * call custom buffer format record (handler) routine | 
|  | */ | 
|  | ret = (*ctx->ctx_buf_fmt->fmt_handler)(task, ctx->ctx_smpl_hdr, ovfl_arg, regs, tstamp); | 
|  |  | 
|  | end_cycles = ia64_get_itc(); | 
|  |  | 
|  | /* | 
|  | * For those controls, we take the union because they have | 
|  | * an all or nothing behavior. | 
|  | */ | 
|  | ovfl_ctrl.bits.notify_user     |= ovfl_arg->ovfl_ctrl.bits.notify_user; | 
|  | ovfl_ctrl.bits.block_task      |= ovfl_arg->ovfl_ctrl.bits.block_task; | 
|  | ovfl_ctrl.bits.mask_monitoring |= ovfl_arg->ovfl_ctrl.bits.mask_monitoring; | 
|  | /* | 
|  | * build the bitmask of pmds to reset now | 
|  | */ | 
|  | if (ovfl_arg->ovfl_ctrl.bits.reset_ovfl_pmds) reset_pmds |= mask; | 
|  |  | 
|  | pfm_stats[this_cpu].pfm_smpl_handler_cycles += end_cycles - start_cycles; | 
|  | } | 
|  | /* | 
|  | * when the module cannot handle the rest of the overflows, we abort right here | 
|  | */ | 
|  | if (ret && pmd_mask) { | 
|  | DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n", | 
|  | pmd_mask<<PMU_FIRST_COUNTER)); | 
|  | } | 
|  | /* | 
|  | * remove the pmds we reset now from the set of pmds to reset in pfm_restart() | 
|  | */ | 
|  | ovfl_pmds &= ~reset_pmds; | 
|  | } else { | 
|  | /* | 
|  | * when no sampling module is used, then the default | 
|  | * is to notify on overflow if requested by user | 
|  | */ | 
|  | ovfl_ctrl.bits.notify_user     = ovfl_notify ? 1 : 0; | 
|  | ovfl_ctrl.bits.block_task      = ovfl_notify ? 1 : 0; | 
|  | ovfl_ctrl.bits.mask_monitoring = ovfl_notify ? 1 : 0; /* XXX: change for saturation */ | 
|  | ovfl_ctrl.bits.reset_ovfl_pmds = ovfl_notify ? 0 : 1; | 
|  | /* | 
|  | * if needed, we reset all overflowed pmds | 
|  | */ | 
|  | if (ovfl_notify == 0) reset_pmds = ovfl_pmds; | 
|  | } | 
|  |  | 
|  | DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds, reset_pmds)); | 
|  |  | 
|  | /* | 
|  | * reset the requested PMD registers using the short reset values | 
|  | */ | 
|  | if (reset_pmds) { | 
|  | unsigned long bm = reset_pmds; | 
|  | pfm_reset_regs(ctx, &bm, PFM_PMD_SHORT_RESET); | 
|  | } | 
|  |  | 
|  | if (ovfl_notify && ovfl_ctrl.bits.notify_user) { | 
|  | /* | 
|  | * keep track of what to reset when unblocking | 
|  | */ | 
|  | ctx->ctx_ovfl_regs[0] = ovfl_pmds; | 
|  |  | 
|  | /* | 
|  | * check for blocking context | 
|  | */ | 
|  | if (CTX_OVFL_NOBLOCK(ctx) == 0 && ovfl_ctrl.bits.block_task) { | 
|  |  | 
|  | ctx->ctx_fl_trap_reason = PFM_TRAP_REASON_BLOCK; | 
|  |  | 
|  | /* | 
|  | * set the perfmon specific checking pending work for the task | 
|  | */ | 
|  | PFM_SET_WORK_PENDING(task, 1); | 
|  |  | 
|  | /* | 
|  | * when coming from ctxsw, current still points to the | 
|  | * previous task, therefore we must work with task and not current. | 
|  | */ | 
|  | set_notify_resume(task); | 
|  | } | 
|  | /* | 
|  | * defer until state is changed (shorten spin window). the context is locked | 
|  | * anyway, so the signal receiver would come spin for nothing. | 
|  | */ | 
|  | must_notify = 1; | 
|  | } | 
|  |  | 
|  | DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n", | 
|  | GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1, | 
|  | PFM_GET_WORK_PENDING(task), | 
|  | ctx->ctx_fl_trap_reason, | 
|  | ovfl_pmds, | 
|  | ovfl_notify, | 
|  | ovfl_ctrl.bits.mask_monitoring ? 1 : 0)); | 
|  | /* | 
|  | * in case monitoring must be stopped, we toggle the psr bits | 
|  | */ | 
|  | if (ovfl_ctrl.bits.mask_monitoring) { | 
|  | pfm_mask_monitoring(task); | 
|  | ctx->ctx_state = PFM_CTX_MASKED; | 
|  | ctx->ctx_fl_can_restart = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * send notification now | 
|  | */ | 
|  | if (must_notify) pfm_ovfl_notify_user(ctx, ovfl_notify); | 
|  |  | 
|  | return; | 
|  |  | 
|  | sanity_check: | 
|  | printk(KERN_ERR "perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n", | 
|  | smp_processor_id(), | 
|  | task ? task_pid_nr(task) : -1, | 
|  | pmc0); | 
|  | return; | 
|  |  | 
|  | stop_monitoring: | 
|  | /* | 
|  | * in SMP, zombie context is never restored but reclaimed in pfm_load_regs(). | 
|  | * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can | 
|  | * come here as zombie only if the task is the current task. In which case, we | 
|  | * can access the PMU  hardware directly. | 
|  | * | 
|  | * Note that zombies do have PM_VALID set. So here we do the minimal. | 
|  | * | 
|  | * In case the context was zombified it could not be reclaimed at the time | 
|  | * the monitoring program exited. At this point, the PMU reservation has been | 
|  | * returned, the sampiing buffer has been freed. We must convert this call | 
|  | * into a spurious interrupt. However, we must also avoid infinite overflows | 
|  | * by stopping monitoring for this task. We can only come here for a per-task | 
|  | * context. All we need to do is to stop monitoring using the psr bits which | 
|  | * are always task private. By re-enabling secure montioring, we ensure that | 
|  | * the monitored task will not be able to re-activate monitoring. | 
|  | * The task will eventually be context switched out, at which point the context | 
|  | * will be reclaimed (that includes releasing ownership of the PMU). | 
|  | * | 
|  | * So there might be a window of time where the number of per-task session is zero | 
|  | * yet one PMU might have a owner and get at most one overflow interrupt for a zombie | 
|  | * context. This is safe because if a per-task session comes in, it will push this one | 
|  | * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide | 
|  | * session is force on that CPU, given that we use task pinning, pfm_save_regs() will | 
|  | * also push our zombie context out. | 
|  | * | 
|  | * Overall pretty hairy stuff.... | 
|  | */ | 
|  | DPRINT(("ctx is zombie for [%d], converted to spurious\n", task ? task_pid_nr(task): -1)); | 
|  | pfm_clear_psr_up(); | 
|  | ia64_psr(regs)->up = 0; | 
|  | ia64_psr(regs)->sp = 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_do_interrupt_handler(void *arg, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *task; | 
|  | pfm_context_t *ctx; | 
|  | unsigned long flags; | 
|  | u64 pmc0; | 
|  | int this_cpu = smp_processor_id(); | 
|  | int retval = 0; | 
|  |  | 
|  | pfm_stats[this_cpu].pfm_ovfl_intr_count++; | 
|  |  | 
|  | /* | 
|  | * srlz.d done before arriving here | 
|  | */ | 
|  | pmc0 = ia64_get_pmc(0); | 
|  |  | 
|  | task = GET_PMU_OWNER(); | 
|  | ctx  = GET_PMU_CTX(); | 
|  |  | 
|  | /* | 
|  | * if we have some pending bits set | 
|  | * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1 | 
|  | */ | 
|  | if (PMC0_HAS_OVFL(pmc0) && task) { | 
|  | /* | 
|  | * we assume that pmc0.fr is always set here | 
|  | */ | 
|  |  | 
|  | /* sanity check */ | 
|  | if (!ctx) goto report_spurious1; | 
|  |  | 
|  | if (ctx->ctx_fl_system == 0 && (task->thread.flags & IA64_THREAD_PM_VALID) == 0) | 
|  | goto report_spurious2; | 
|  |  | 
|  | PROTECT_CTX_NOPRINT(ctx, flags); | 
|  |  | 
|  | pfm_overflow_handler(task, ctx, pmc0, regs); | 
|  |  | 
|  | UNPROTECT_CTX_NOPRINT(ctx, flags); | 
|  |  | 
|  | } else { | 
|  | pfm_stats[this_cpu].pfm_spurious_ovfl_intr_count++; | 
|  | retval = -1; | 
|  | } | 
|  | /* | 
|  | * keep it unfrozen at all times | 
|  | */ | 
|  | pfm_unfreeze_pmu(); | 
|  |  | 
|  | return retval; | 
|  |  | 
|  | report_spurious1: | 
|  | printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n", | 
|  | this_cpu, task_pid_nr(task)); | 
|  | pfm_unfreeze_pmu(); | 
|  | return -1; | 
|  | report_spurious2: | 
|  | printk(KERN_INFO "perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n", | 
|  | this_cpu, | 
|  | task_pid_nr(task)); | 
|  | pfm_unfreeze_pmu(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static irqreturn_t | 
|  | pfm_interrupt_handler(int irq, void *arg) | 
|  | { | 
|  | unsigned long start_cycles, total_cycles; | 
|  | unsigned long min, max; | 
|  | int this_cpu; | 
|  | int ret; | 
|  | struct pt_regs *regs = get_irq_regs(); | 
|  |  | 
|  | this_cpu = get_cpu(); | 
|  | if (likely(!pfm_alt_intr_handler)) { | 
|  | min = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min; | 
|  | max = pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max; | 
|  |  | 
|  | start_cycles = ia64_get_itc(); | 
|  |  | 
|  | ret = pfm_do_interrupt_handler(arg, regs); | 
|  |  | 
|  | total_cycles = ia64_get_itc(); | 
|  |  | 
|  | /* | 
|  | * don't measure spurious interrupts | 
|  | */ | 
|  | if (likely(ret == 0)) { | 
|  | total_cycles -= start_cycles; | 
|  |  | 
|  | if (total_cycles < min) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_min = total_cycles; | 
|  | if (total_cycles > max) pfm_stats[this_cpu].pfm_ovfl_intr_cycles_max = total_cycles; | 
|  |  | 
|  | pfm_stats[this_cpu].pfm_ovfl_intr_cycles += total_cycles; | 
|  | } | 
|  | } | 
|  | else { | 
|  | (*pfm_alt_intr_handler->handler)(irq, arg, regs); | 
|  | } | 
|  |  | 
|  | put_cpu_no_resched(); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * /proc/perfmon interface, for debug only | 
|  | */ | 
|  |  | 
|  | #define PFM_PROC_SHOW_HEADER	((void *)NR_CPUS+1) | 
|  |  | 
|  | static void * | 
|  | pfm_proc_start(struct seq_file *m, loff_t *pos) | 
|  | { | 
|  | if (*pos == 0) { | 
|  | return PFM_PROC_SHOW_HEADER; | 
|  | } | 
|  |  | 
|  | while (*pos <= NR_CPUS) { | 
|  | if (cpu_online(*pos - 1)) { | 
|  | return (void *)*pos; | 
|  | } | 
|  | ++*pos; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void * | 
|  | pfm_proc_next(struct seq_file *m, void *v, loff_t *pos) | 
|  | { | 
|  | ++*pos; | 
|  | return pfm_proc_start(m, pos); | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_proc_stop(struct seq_file *m, void *v) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_proc_show_header(struct seq_file *m) | 
|  | { | 
|  | struct list_head * pos; | 
|  | pfm_buffer_fmt_t * entry; | 
|  | unsigned long flags; | 
|  |  | 
|  | seq_printf(m, | 
|  | "perfmon version           : %u.%u\n" | 
|  | "model                     : %s\n" | 
|  | "fastctxsw                 : %s\n" | 
|  | "expert mode               : %s\n" | 
|  | "ovfl_mask                 : 0x%lx\n" | 
|  | "PMU flags                 : 0x%x\n", | 
|  | PFM_VERSION_MAJ, PFM_VERSION_MIN, | 
|  | pmu_conf->pmu_name, | 
|  | pfm_sysctl.fastctxsw > 0 ? "Yes": "No", | 
|  | pfm_sysctl.expert_mode > 0 ? "Yes": "No", | 
|  | pmu_conf->ovfl_val, | 
|  | pmu_conf->flags); | 
|  |  | 
|  | LOCK_PFS(flags); | 
|  |  | 
|  | seq_printf(m, | 
|  | "proc_sessions             : %u\n" | 
|  | "sys_sessions              : %u\n" | 
|  | "sys_use_dbregs            : %u\n" | 
|  | "ptrace_use_dbregs         : %u\n", | 
|  | pfm_sessions.pfs_task_sessions, | 
|  | pfm_sessions.pfs_sys_sessions, | 
|  | pfm_sessions.pfs_sys_use_dbregs, | 
|  | pfm_sessions.pfs_ptrace_use_dbregs); | 
|  |  | 
|  | UNLOCK_PFS(flags); | 
|  |  | 
|  | spin_lock(&pfm_buffer_fmt_lock); | 
|  |  | 
|  | list_for_each(pos, &pfm_buffer_fmt_list) { | 
|  | entry = list_entry(pos, pfm_buffer_fmt_t, fmt_list); | 
|  | seq_printf(m, "format                    : %02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x-%02x %s\n", | 
|  | entry->fmt_uuid[0], | 
|  | entry->fmt_uuid[1], | 
|  | entry->fmt_uuid[2], | 
|  | entry->fmt_uuid[3], | 
|  | entry->fmt_uuid[4], | 
|  | entry->fmt_uuid[5], | 
|  | entry->fmt_uuid[6], | 
|  | entry->fmt_uuid[7], | 
|  | entry->fmt_uuid[8], | 
|  | entry->fmt_uuid[9], | 
|  | entry->fmt_uuid[10], | 
|  | entry->fmt_uuid[11], | 
|  | entry->fmt_uuid[12], | 
|  | entry->fmt_uuid[13], | 
|  | entry->fmt_uuid[14], | 
|  | entry->fmt_uuid[15], | 
|  | entry->fmt_name); | 
|  | } | 
|  | spin_unlock(&pfm_buffer_fmt_lock); | 
|  |  | 
|  | } | 
|  |  | 
|  | static int | 
|  | pfm_proc_show(struct seq_file *m, void *v) | 
|  | { | 
|  | unsigned long psr; | 
|  | unsigned int i; | 
|  | int cpu; | 
|  |  | 
|  | if (v == PFM_PROC_SHOW_HEADER) { | 
|  | pfm_proc_show_header(m); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* show info for CPU (v - 1) */ | 
|  |  | 
|  | cpu = (long)v - 1; | 
|  | seq_printf(m, | 
|  | "CPU%-2d overflow intrs      : %lu\n" | 
|  | "CPU%-2d overflow cycles     : %lu\n" | 
|  | "CPU%-2d overflow min        : %lu\n" | 
|  | "CPU%-2d overflow max        : %lu\n" | 
|  | "CPU%-2d smpl handler calls  : %lu\n" | 
|  | "CPU%-2d smpl handler cycles : %lu\n" | 
|  | "CPU%-2d spurious intrs      : %lu\n" | 
|  | "CPU%-2d replay   intrs      : %lu\n" | 
|  | "CPU%-2d syst_wide           : %d\n" | 
|  | "CPU%-2d dcr_pp              : %d\n" | 
|  | "CPU%-2d exclude idle        : %d\n" | 
|  | "CPU%-2d owner               : %d\n" | 
|  | "CPU%-2d context             : %p\n" | 
|  | "CPU%-2d activations         : %lu\n", | 
|  | cpu, pfm_stats[cpu].pfm_ovfl_intr_count, | 
|  | cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles, | 
|  | cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_min, | 
|  | cpu, pfm_stats[cpu].pfm_ovfl_intr_cycles_max, | 
|  | cpu, pfm_stats[cpu].pfm_smpl_handler_calls, | 
|  | cpu, pfm_stats[cpu].pfm_smpl_handler_cycles, | 
|  | cpu, pfm_stats[cpu].pfm_spurious_ovfl_intr_count, | 
|  | cpu, pfm_stats[cpu].pfm_replay_ovfl_intr_count, | 
|  | cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_SYST_WIDE ? 1 : 0, | 
|  | cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_DCR_PP ? 1 : 0, | 
|  | cpu, pfm_get_cpu_data(pfm_syst_info, cpu) & PFM_CPUINFO_EXCL_IDLE ? 1 : 0, | 
|  | cpu, pfm_get_cpu_data(pmu_owner, cpu) ? pfm_get_cpu_data(pmu_owner, cpu)->pid: -1, | 
|  | cpu, pfm_get_cpu_data(pmu_ctx, cpu), | 
|  | cpu, pfm_get_cpu_data(pmu_activation_number, cpu)); | 
|  |  | 
|  | if (num_online_cpus() == 1 && pfm_sysctl.debug > 0) { | 
|  |  | 
|  | psr = pfm_get_psr(); | 
|  |  | 
|  | ia64_srlz_d(); | 
|  |  | 
|  | seq_printf(m, | 
|  | "CPU%-2d psr                 : 0x%lx\n" | 
|  | "CPU%-2d pmc0                : 0x%lx\n", | 
|  | cpu, psr, | 
|  | cpu, ia64_get_pmc(0)); | 
|  |  | 
|  | for (i=0; PMC_IS_LAST(i) == 0;  i++) { | 
|  | if (PMC_IS_COUNTING(i) == 0) continue; | 
|  | seq_printf(m, | 
|  | "CPU%-2d pmc%u                : 0x%lx\n" | 
|  | "CPU%-2d pmd%u                : 0x%lx\n", | 
|  | cpu, i, ia64_get_pmc(i), | 
|  | cpu, i, ia64_get_pmd(i)); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | const struct seq_operations pfm_seq_ops = { | 
|  | .start =	pfm_proc_start, | 
|  | .next =		pfm_proc_next, | 
|  | .stop =		pfm_proc_stop, | 
|  | .show =		pfm_proc_show | 
|  | }; | 
|  |  | 
|  | static int | 
|  | pfm_proc_open(struct inode *inode, struct file *file) | 
|  | { | 
|  | return seq_open(file, &pfm_seq_ops); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens | 
|  | * during pfm_enable() hence before pfm_start(). We cannot assume monitoring | 
|  | * is active or inactive based on mode. We must rely on the value in | 
|  | * local_cpu_data->pfm_syst_info | 
|  | */ | 
|  | void | 
|  | pfm_syst_wide_update_task(struct task_struct *task, unsigned long info, int is_ctxswin) | 
|  | { | 
|  | struct pt_regs *regs; | 
|  | unsigned long dcr; | 
|  | unsigned long dcr_pp; | 
|  |  | 
|  | dcr_pp = info & PFM_CPUINFO_DCR_PP ? 1 : 0; | 
|  |  | 
|  | /* | 
|  | * pid 0 is guaranteed to be the idle task. There is one such task with pid 0 | 
|  | * on every CPU, so we can rely on the pid to identify the idle task. | 
|  | */ | 
|  | if ((info & PFM_CPUINFO_EXCL_IDLE) == 0 || task->pid) { | 
|  | regs = task_pt_regs(task); | 
|  | ia64_psr(regs)->pp = is_ctxswin ? dcr_pp : 0; | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * if monitoring has started | 
|  | */ | 
|  | if (dcr_pp) { | 
|  | dcr = ia64_getreg(_IA64_REG_CR_DCR); | 
|  | /* | 
|  | * context switching in? | 
|  | */ | 
|  | if (is_ctxswin) { | 
|  | /* mask monitoring for the idle task */ | 
|  | ia64_setreg(_IA64_REG_CR_DCR, dcr & ~IA64_DCR_PP); | 
|  | pfm_clear_psr_pp(); | 
|  | ia64_srlz_i(); | 
|  | return; | 
|  | } | 
|  | /* | 
|  | * context switching out | 
|  | * restore monitoring for next task | 
|  | * | 
|  | * Due to inlining this odd if-then-else construction generates | 
|  | * better code. | 
|  | */ | 
|  | ia64_setreg(_IA64_REG_CR_DCR, dcr |IA64_DCR_PP); | 
|  | pfm_set_psr_pp(); | 
|  | ia64_srlz_i(); | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  |  | 
|  | static void | 
|  | pfm_force_cleanup(pfm_context_t *ctx, struct pt_regs *regs) | 
|  | { | 
|  | struct task_struct *task = ctx->ctx_task; | 
|  |  | 
|  | ia64_psr(regs)->up = 0; | 
|  | ia64_psr(regs)->sp = 1; | 
|  |  | 
|  | if (GET_PMU_OWNER() == task) { | 
|  | DPRINT(("cleared ownership for [%d]\n", | 
|  | task_pid_nr(ctx->ctx_task))); | 
|  | SET_PMU_OWNER(NULL, NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * disconnect the task from the context and vice-versa | 
|  | */ | 
|  | PFM_SET_WORK_PENDING(task, 0); | 
|  |  | 
|  | task->thread.pfm_context  = NULL; | 
|  | task->thread.flags       &= ~IA64_THREAD_PM_VALID; | 
|  |  | 
|  | DPRINT(("force cleanup for [%d]\n",  task_pid_nr(task))); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * in 2.6, interrupts are masked when we come here and the runqueue lock is held | 
|  | */ | 
|  | void | 
|  | pfm_save_regs(struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | unsigned long flags; | 
|  | u64 psr; | 
|  |  | 
|  |  | 
|  | ctx = PFM_GET_CTX(task); | 
|  | if (ctx == NULL) return; | 
|  |  | 
|  | /* | 
|  | * we always come here with interrupts ALREADY disabled by | 
|  | * the scheduler. So we simply need to protect against concurrent | 
|  | * access, not CPU concurrency. | 
|  | */ | 
|  | flags = pfm_protect_ctx_ctxsw(ctx); | 
|  |  | 
|  | if (ctx->ctx_state == PFM_CTX_ZOMBIE) { | 
|  | struct pt_regs *regs = task_pt_regs(task); | 
|  |  | 
|  | pfm_clear_psr_up(); | 
|  |  | 
|  | pfm_force_cleanup(ctx, regs); | 
|  |  | 
|  | BUG_ON(ctx->ctx_smpl_hdr); | 
|  |  | 
|  | pfm_unprotect_ctx_ctxsw(ctx, flags); | 
|  |  | 
|  | pfm_context_free(ctx); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * save current PSR: needed because we modify it | 
|  | */ | 
|  | ia64_srlz_d(); | 
|  | psr = pfm_get_psr(); | 
|  |  | 
|  | BUG_ON(psr & (IA64_PSR_I)); | 
|  |  | 
|  | /* | 
|  | * stop monitoring: | 
|  | * This is the last instruction which may generate an overflow | 
|  | * | 
|  | * We do not need to set psr.sp because, it is irrelevant in kernel. | 
|  | * It will be restored from ipsr when going back to user level | 
|  | */ | 
|  | pfm_clear_psr_up(); | 
|  |  | 
|  | /* | 
|  | * keep a copy of psr.up (for reload) | 
|  | */ | 
|  | ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; | 
|  |  | 
|  | /* | 
|  | * release ownership of this PMU. | 
|  | * PM interrupts are masked, so nothing | 
|  | * can happen. | 
|  | */ | 
|  | SET_PMU_OWNER(NULL, NULL); | 
|  |  | 
|  | /* | 
|  | * we systematically save the PMD as we have no | 
|  | * guarantee we will be schedule at that same | 
|  | * CPU again. | 
|  | */ | 
|  | pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]); | 
|  |  | 
|  | /* | 
|  | * save pmc0 ia64_srlz_d() done in pfm_save_pmds() | 
|  | * we will need it on the restore path to check | 
|  | * for pending overflow. | 
|  | */ | 
|  | ctx->th_pmcs[0] = ia64_get_pmc(0); | 
|  |  | 
|  | /* | 
|  | * unfreeze PMU if had pending overflows | 
|  | */ | 
|  | if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); | 
|  |  | 
|  | /* | 
|  | * finally, allow context access. | 
|  | * interrupts will still be masked after this call. | 
|  | */ | 
|  | pfm_unprotect_ctx_ctxsw(ctx, flags); | 
|  | } | 
|  |  | 
|  | #else /* !CONFIG_SMP */ | 
|  | void | 
|  | pfm_save_regs(struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | u64 psr; | 
|  |  | 
|  | ctx = PFM_GET_CTX(task); | 
|  | if (ctx == NULL) return; | 
|  |  | 
|  | /* | 
|  | * save current PSR: needed because we modify it | 
|  | */ | 
|  | psr = pfm_get_psr(); | 
|  |  | 
|  | BUG_ON(psr & (IA64_PSR_I)); | 
|  |  | 
|  | /* | 
|  | * stop monitoring: | 
|  | * This is the last instruction which may generate an overflow | 
|  | * | 
|  | * We do not need to set psr.sp because, it is irrelevant in kernel. | 
|  | * It will be restored from ipsr when going back to user level | 
|  | */ | 
|  | pfm_clear_psr_up(); | 
|  |  | 
|  | /* | 
|  | * keep a copy of psr.up (for reload) | 
|  | */ | 
|  | ctx->ctx_saved_psr_up = psr & IA64_PSR_UP; | 
|  | } | 
|  |  | 
|  | static void | 
|  | pfm_lazy_save_regs (struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | unsigned long flags; | 
|  |  | 
|  | { u64 psr  = pfm_get_psr(); | 
|  | BUG_ON(psr & IA64_PSR_UP); | 
|  | } | 
|  |  | 
|  | ctx = PFM_GET_CTX(task); | 
|  |  | 
|  | /* | 
|  | * we need to mask PMU overflow here to | 
|  | * make sure that we maintain pmc0 until | 
|  | * we save it. overflow interrupts are | 
|  | * treated as spurious if there is no | 
|  | * owner. | 
|  | * | 
|  | * XXX: I don't think this is necessary | 
|  | */ | 
|  | PROTECT_CTX(ctx,flags); | 
|  |  | 
|  | /* | 
|  | * release ownership of this PMU. | 
|  | * must be done before we save the registers. | 
|  | * | 
|  | * after this call any PMU interrupt is treated | 
|  | * as spurious. | 
|  | */ | 
|  | SET_PMU_OWNER(NULL, NULL); | 
|  |  | 
|  | /* | 
|  | * save all the pmds we use | 
|  | */ | 
|  | pfm_save_pmds(ctx->th_pmds, ctx->ctx_used_pmds[0]); | 
|  |  | 
|  | /* | 
|  | * save pmc0 ia64_srlz_d() done in pfm_save_pmds() | 
|  | * it is needed to check for pended overflow | 
|  | * on the restore path | 
|  | */ | 
|  | ctx->th_pmcs[0] = ia64_get_pmc(0); | 
|  |  | 
|  | /* | 
|  | * unfreeze PMU if had pending overflows | 
|  | */ | 
|  | if (ctx->th_pmcs[0] & ~0x1UL) pfm_unfreeze_pmu(); | 
|  |  | 
|  | /* | 
|  | * now get can unmask PMU interrupts, they will | 
|  | * be treated as purely spurious and we will not | 
|  | * lose any information | 
|  | */ | 
|  | UNPROTECT_CTX(ctx,flags); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * in 2.6, interrupts are masked when we come here and the runqueue lock is held | 
|  | */ | 
|  | void | 
|  | pfm_load_regs (struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | unsigned long pmc_mask = 0UL, pmd_mask = 0UL; | 
|  | unsigned long flags; | 
|  | u64 psr, psr_up; | 
|  | int need_irq_resend; | 
|  |  | 
|  | ctx = PFM_GET_CTX(task); | 
|  | if (unlikely(ctx == NULL)) return; | 
|  |  | 
|  | BUG_ON(GET_PMU_OWNER()); | 
|  |  | 
|  | /* | 
|  | * possible on unload | 
|  | */ | 
|  | if (unlikely((task->thread.flags & IA64_THREAD_PM_VALID) == 0)) return; | 
|  |  | 
|  | /* | 
|  | * we always come here with interrupts ALREADY disabled by | 
|  | * the scheduler. So we simply need to protect against concurrent | 
|  | * access, not CPU concurrency. | 
|  | */ | 
|  | flags = pfm_protect_ctx_ctxsw(ctx); | 
|  | psr   = pfm_get_psr(); | 
|  |  | 
|  | need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; | 
|  |  | 
|  | BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); | 
|  | BUG_ON(psr & IA64_PSR_I); | 
|  |  | 
|  | if (unlikely(ctx->ctx_state == PFM_CTX_ZOMBIE)) { | 
|  | struct pt_regs *regs = task_pt_regs(task); | 
|  |  | 
|  | BUG_ON(ctx->ctx_smpl_hdr); | 
|  |  | 
|  | pfm_force_cleanup(ctx, regs); | 
|  |  | 
|  | pfm_unprotect_ctx_ctxsw(ctx, flags); | 
|  |  | 
|  | /* | 
|  | * this one (kmalloc'ed) is fine with interrupts disabled | 
|  | */ | 
|  | pfm_context_free(ctx); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we restore ALL the debug registers to avoid picking up | 
|  | * stale state. | 
|  | */ | 
|  | if (ctx->ctx_fl_using_dbreg) { | 
|  | pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); | 
|  | pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); | 
|  | } | 
|  | /* | 
|  | * retrieve saved psr.up | 
|  | */ | 
|  | psr_up = ctx->ctx_saved_psr_up; | 
|  |  | 
|  | /* | 
|  | * if we were the last user of the PMU on that CPU, | 
|  | * then nothing to do except restore psr | 
|  | */ | 
|  | if (GET_LAST_CPU(ctx) == smp_processor_id() && ctx->ctx_last_activation == GET_ACTIVATION()) { | 
|  |  | 
|  | /* | 
|  | * retrieve partial reload masks (due to user modifications) | 
|  | */ | 
|  | pmc_mask = ctx->ctx_reload_pmcs[0]; | 
|  | pmd_mask = ctx->ctx_reload_pmds[0]; | 
|  |  | 
|  | } else { | 
|  | /* | 
|  | * To avoid leaking information to the user level when psr.sp=0, | 
|  | * we must reload ALL implemented pmds (even the ones we don't use). | 
|  | * In the kernel we only allow PFM_READ_PMDS on registers which | 
|  | * we initialized or requested (sampling) so there is no risk there. | 
|  | */ | 
|  | pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; | 
|  |  | 
|  | /* | 
|  | * ALL accessible PMCs are systematically reloaded, unused registers | 
|  | * get their default (from pfm_reset_pmu_state()) values to avoid picking | 
|  | * up stale configuration. | 
|  | * | 
|  | * PMC0 is never in the mask. It is always restored separately. | 
|  | */ | 
|  | pmc_mask = ctx->ctx_all_pmcs[0]; | 
|  | } | 
|  | /* | 
|  | * when context is MASKED, we will restore PMC with plm=0 | 
|  | * and PMD with stale information, but that's ok, nothing | 
|  | * will be captured. | 
|  | * | 
|  | * XXX: optimize here | 
|  | */ | 
|  | if (pmd_mask) pfm_restore_pmds(ctx->th_pmds, pmd_mask); | 
|  | if (pmc_mask) pfm_restore_pmcs(ctx->th_pmcs, pmc_mask); | 
|  |  | 
|  | /* | 
|  | * check for pending overflow at the time the state | 
|  | * was saved. | 
|  | */ | 
|  | if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) { | 
|  | /* | 
|  | * reload pmc0 with the overflow information | 
|  | * On McKinley PMU, this will trigger a PMU interrupt | 
|  | */ | 
|  | ia64_set_pmc(0, ctx->th_pmcs[0]); | 
|  | ia64_srlz_d(); | 
|  | ctx->th_pmcs[0] = 0UL; | 
|  |  | 
|  | /* | 
|  | * will replay the PMU interrupt | 
|  | */ | 
|  | if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR); | 
|  |  | 
|  | pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * we just did a reload, so we reset the partial reload fields | 
|  | */ | 
|  | ctx->ctx_reload_pmcs[0] = 0UL; | 
|  | ctx->ctx_reload_pmds[0] = 0UL; | 
|  |  | 
|  | SET_LAST_CPU(ctx, smp_processor_id()); | 
|  |  | 
|  | /* | 
|  | * dump activation value for this PMU | 
|  | */ | 
|  | INC_ACTIVATION(); | 
|  | /* | 
|  | * record current activation for this context | 
|  | */ | 
|  | SET_ACTIVATION(ctx); | 
|  |  | 
|  | /* | 
|  | * establish new ownership. | 
|  | */ | 
|  | SET_PMU_OWNER(task, ctx); | 
|  |  | 
|  | /* | 
|  | * restore the psr.up bit. measurement | 
|  | * is active again. | 
|  | * no PMU interrupt can happen at this point | 
|  | * because we still have interrupts disabled. | 
|  | */ | 
|  | if (likely(psr_up)) pfm_set_psr_up(); | 
|  |  | 
|  | /* | 
|  | * allow concurrent access to context | 
|  | */ | 
|  | pfm_unprotect_ctx_ctxsw(ctx, flags); | 
|  | } | 
|  | #else /*  !CONFIG_SMP */ | 
|  | /* | 
|  | * reload PMU state for UP kernels | 
|  | * in 2.5 we come here with interrupts disabled | 
|  | */ | 
|  | void | 
|  | pfm_load_regs (struct task_struct *task) | 
|  | { | 
|  | pfm_context_t *ctx; | 
|  | struct task_struct *owner; | 
|  | unsigned long pmd_mask, pmc_mask; | 
|  | u64 psr, psr_up; | 
|  | int need_irq_resend; | 
|  |  | 
|  | owner = GET_PMU_OWNER(); | 
|  | ctx   = PFM_GET_CTX(task); | 
|  | psr   = pfm_get_psr(); | 
|  |  | 
|  | BUG_ON(psr & (IA64_PSR_UP|IA64_PSR_PP)); | 
|  | BUG_ON(psr & IA64_PSR_I); | 
|  |  | 
|  | /* | 
|  | * we restore ALL the debug registers to avoid picking up | 
|  | * stale state. | 
|  | * | 
|  | * This must be done even when the task is still the owner | 
|  | * as the registers may have been modified via ptrace() | 
|  | * (not perfmon) by the previous task. | 
|  | */ | 
|  | if (ctx->ctx_fl_using_dbreg) { | 
|  | pfm_restore_ibrs(ctx->ctx_ibrs, pmu_conf->num_ibrs); | 
|  | pfm_restore_dbrs(ctx->ctx_dbrs, pmu_conf->num_dbrs); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * retrieved saved psr.up | 
|  | */ | 
|  | psr_up = ctx->ctx_saved_psr_up; | 
|  | need_irq_resend = pmu_conf->flags & PFM_PMU_IRQ_RESEND; | 
|  |  | 
|  | /* | 
|  | * short path, our state is still there, just | 
|  | * need to restore psr and we go | 
|  | * | 
|  | * we do not touch either PMC nor PMD. the psr is not touched | 
|  | * by the overflow_handler. So we are safe w.r.t. to interrupt | 
|  | * concurrency even without interrupt masking. | 
|  | */ | 
|  | if (likely(owner == task)) { | 
|  | if (likely(psr_up)) pfm_set_psr_up(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * someone else is still using the PMU, first push it out and | 
|  | * then we'll be able to install our stuff ! | 
|  | * | 
|  | * Upon return, there will be no owner for the current PMU | 
|  | */ | 
|  | if (owner) pfm_lazy_save_regs(owner); | 
|  |  | 
|  | /* | 
|  | * To avoid leaking information to the user level when psr.sp=0, | 
|  | * we must reload ALL implemented pmds (even the ones we don't use). | 
|  | * In the kernel we only allow PFM_READ_PMDS on registers which | 
|  | * we initialized or requested (sampling) so there is no risk there. | 
|  | */ | 
|  | pmd_mask = pfm_sysctl.fastctxsw ?  ctx->ctx_used_pmds[0] : ctx->ctx_all_pmds[0]; | 
|  |  | 
|  | /* | 
|  | * ALL accessible PMCs are systematically reloaded, unused registers | 
|  | * get their default (from pfm_reset_pmu_state()) values to avoid picking | 
|  | * up stale configuration. | 
|  | * | 
|  | * PMC0 is never in the mask. It is always restored separately | 
|  | */ | 
|  | pmc_mask = ctx->ctx_all_pmcs[0]; | 
|  |  | 
|  | pfm_restore_pmds(ctx->th_pmds, pmd_mask); | 
|  | pfm_restore_pmcs(ctx->th_pmcs, pmc_mask); | 
|  |  | 
|  | /* | 
|  | * check for pending overflow at the time the state | 
|  | * was saved. | 
|  | */ | 
|  | if (unlikely(PMC0_HAS_OVFL(ctx->th_pmcs[0]))) { | 
|  | /* | 
|  | * reload pmc0 with the overflow information | 
|  | * On McKinley PMU, this will trigger a PMU interrupt | 
|  | */ | 
|  | ia64_set_pmc(0, ctx->th_pmcs[0]); | 
|  | ia64_srlz_d(); | 
|  |  | 
|  | ctx->th_pmcs[0] = 0UL; | 
|  |  | 
|  | /* | 
|  | * will replay the PMU interrupt | 
|  | */ | 
|  | if (need_irq_resend) ia64_resend_irq(IA64_PERFMON_VECTOR); | 
|  |  | 
|  | pfm_stats[smp_processor_id()].pfm_replay_ovfl_intr_count++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * establish new ownership. | 
|  | */ | 
|  | SET_PMU_OWNER(task, ctx); | 
|  |  | 
|  | /* | 
|  | * restore the psr.up bit. measurement | 
|  | * is active again. | 
|  | * no PMU interrupt can happen at this point | 
|  | * because we still have interrupts disabled. | 
|  | */ | 
|  | if (likely(psr_up)) pfm_set_psr_up(); | 
|  | } | 
|  | #endif /* CONFIG_SMP */ | 
|  |  | 
|  | /* | 
|  | * this function assumes monitoring is stopped | 
|  | */ | 
|  | static void | 
|  | pfm_flush_pmds(struct task_struct *task, pfm_context_t *ctx) | 
|  | { | 
|  | u64 pmc0; | 
|  | unsigned long mask2, val, pmd_val, ovfl_val; | 
|  | int i, can_access_pmu = 0; | 
|  | int is_self; | 
|  |  | 
|  | /* | 
|  | * is the caller the task being monitored (or which initiated the | 
|  | * session for system wide measurements) | 
|  | */ | 
|  | is_self = ctx->ctx_task == task ? 1 : 0; | 
|  |  | 
|  | /* | 
|  | * can access PMU is task is the owner of the PMU state on the current CPU | 
|  | * or if we are running on the CPU bound to the context in system-wide mode | 
|  | * (that is not necessarily the task the context is attached to in this mode). | 
|  | * In system-wide we always have can_access_pmu true because a task running on an | 
|  | * invalid processor is flagged earlier in the call stack (see pfm_stop). | 
|  | */ | 
|  | can_access_pmu = (GET_PMU_OWNER() == task) || (ctx->ctx_fl_system && ctx->ctx_cpu == smp_processor_id()); | 
|  | if (can_access_pmu) { | 
|  | /* | 
|  | * Mark the PMU as not owned | 
|  | * This will cause the interrupt handler to do nothing in case an overflow | 
|  | * interrupt was in-flight | 
|  | * This also guarantees that pmc0 will contain the final state | 
|  | * It virtually gives us full control on overflow processing from that point | 
|  | * on. | 
|  | */ | 
|  | SET_PMU_OWNER(NULL, NULL); | 
|  | DPRINT(("releasing ownership\n")); | 
|  |  | 
|  | /* | 
|  | * read current overflow status: | 
|  | * | 
|  | * we are guaranteed to read the final stable state | 
|  | */ | 
|  | ia64_srlz_d(); | 
|  | pmc0 = ia64_get_pmc(0); /* slow */ | 
|  |  | 
|  | /* | 
|  | * reset freeze bit, overflow status information destroyed | 
|  | */ | 
|  | pfm_unfreeze_pmu(); | 
|  | } else { | 
|  | pmc0 = ctx->th_pmcs[0]; | 
|  | /* | 
|  | * clear whatever overflow status bits there were | 
|  | */ | 
|  | ctx->th_pmcs[0] = 0; | 
|  | } | 
|  | ovfl_val = pmu_conf->ovfl_val; | 
|  | /* | 
|  | * we save all the used pmds | 
|  | * we take care of overflows for counting PMDs | 
|  | * | 
|  | * XXX: sampling situation is not taken into account here | 
|  | */ | 
|  | mask2 = ctx->ctx_used_pmds[0]; | 
|  |  | 
|  | DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self, ovfl_val, mask2)); | 
|  |  | 
|  | for (i = 0; mask2; i++, mask2>>=1) { | 
|  |  | 
|  | /* skip non used pmds */ | 
|  | if ((mask2 & 0x1) == 0) continue; | 
|  |  | 
|  | /* | 
|  | * can access PMU always true in system wide mode | 
|  | */ | 
|  | val = pmd_val = can_access_pmu ? ia64_get_pmd(i) : ctx->th_pmds[i]; | 
|  |  | 
|  | if (PMD_IS_COUNTING(i)) { | 
|  | DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n", | 
|  | task_pid_nr(task), | 
|  | i, | 
|  | ctx->ctx_pmds[i].val, | 
|  | val & ovfl_val)); | 
|  |  | 
|  | /* | 
|  | * we rebuild the full 64 bit value of the counter | 
|  | */ | 
|  | val = ctx->ctx_pmds[i].val + (val & ovfl_val); | 
|  |  | 
|  | /* | 
|  | * now everything is in ctx_pmds[] and we need | 
|  | * to clear the saved context from save_regs() such that | 
|  | * pfm_read_pmds() gets the correct value | 
|  | */ | 
|  | pmd_val = 0UL; | 
|  |  | 
|  | /* | 
|  | * take care of overflow inline | 
|  | */ | 
|  | if (pmc0 & (1UL << i)) { | 
|  | val += 1 + ovfl_val; | 
|  | DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task), i)); | 
|  | } | 
|  | } | 
|  |  | 
|  | DPRINT(("[%d] ctx_pmd[%d]=0x%lx  pmd_val=0x%lx\n", task_pid_nr(task), i, val, pmd_val)); | 
|  |  | 
|  | if (is_self) ctx->th_pmds[i] = pmd_val; | 
|  |  | 
|  | ctx->ctx_pmds[i].val = val; | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct irqaction perfmon_irqaction = { | 
|  | .handler = pfm_interrupt_handler, | 
|  | .flags   = IRQF_DISABLED, | 
|  | .name    = "perfmon" | 
|  | }; | 
|  |  | 
|  | static void | 
|  | pfm_alt_save_pmu_state(void *data) | 
|  | { | 
|  | struct pt_regs *regs; | 
|  |  | 
|  | regs = task_pt_regs(current); | 
|  |  | 
|  | DPRINT(("called\n")); | 
|  |  | 
|  | /* | 
|  | * should not be necessary but | 
|  | * let's take not risk | 
|  | */ | 
|  | pfm_clear_psr_up(); | 
|  | pfm_clear_psr_pp(); | 
|  | ia64_psr(regs)->pp = 0; | 
|  |  | 
|  | /* | 
|  | * This call is required | 
|  | * May cause a spurious interrupt on some processors | 
|  | */ | 
|  | pfm_freeze_pmu(); | 
|  |  | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | void | 
|  | pfm_alt_restore_pmu_state(void *data) | 
|  | { | 
|  | struct pt_regs *regs; | 
|  |  | 
|  | regs = task_pt_regs(current); | 
|  |  | 
|  | DPRINT(("called\n")); | 
|  |  | 
|  | /* | 
|  | * put PMU back in state expected | 
|  | * by perfmon | 
|  | */ | 
|  | pfm_clear_psr_up(); | 
|  | pfm_clear_psr_pp(); | 
|  | ia64_psr(regs)->pp = 0; | 
|  |  | 
|  | /* | 
|  | * perfmon runs with PMU unfrozen at all times | 
|  | */ | 
|  | pfm_unfreeze_pmu(); | 
|  |  | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | int | 
|  | pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) | 
|  | { | 
|  | int ret, i; | 
|  | int reserve_cpu; | 
|  |  | 
|  | /* some sanity checks */ | 
|  | if (hdl == NULL || hdl->handler == NULL) return -EINVAL; | 
|  |  | 
|  | /* do the easy test first */ | 
|  | if (pfm_alt_intr_handler) return -EBUSY; | 
|  |  | 
|  | /* one at a time in the install or remove, just fail the others */ | 
|  | if (!spin_trylock(&pfm_alt_install_check)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* reserve our session */ | 
|  | for_each_online_cpu(reserve_cpu) { | 
|  | ret = pfm_reserve_session(NULL, 1, reserve_cpu); | 
|  | if (ret) goto cleanup_reserve; | 
|  | } | 
|  |  | 
|  | /* save the current system wide pmu states */ | 
|  | ret = on_each_cpu(pfm_alt_save_pmu_state, NULL, 1); | 
|  | if (ret) { | 
|  | DPRINT(("on_each_cpu() failed: %d\n", ret)); | 
|  | goto cleanup_reserve; | 
|  | } | 
|  |  | 
|  | /* officially change to the alternate interrupt handler */ | 
|  | pfm_alt_intr_handler = hdl; | 
|  |  | 
|  | spin_unlock(&pfm_alt_install_check); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | cleanup_reserve: | 
|  | for_each_online_cpu(i) { | 
|  | /* don't unreserve more than we reserved */ | 
|  | if (i >= reserve_cpu) break; | 
|  |  | 
|  | pfm_unreserve_session(NULL, 1, i); | 
|  | } | 
|  |  | 
|  | spin_unlock(&pfm_alt_install_check); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt); | 
|  |  | 
|  | int | 
|  | pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t *hdl) | 
|  | { | 
|  | int i; | 
|  | int ret; | 
|  |  | 
|  | if (hdl == NULL) return -EINVAL; | 
|  |  | 
|  | /* cannot remove someone else's handler! */ | 
|  | if (pfm_alt_intr_handler != hdl) return -EINVAL; | 
|  |  | 
|  | /* one at a time in the install or remove, just fail the others */ | 
|  | if (!spin_trylock(&pfm_alt_install_check)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | pfm_alt_intr_handler = NULL; | 
|  |  | 
|  | ret = on_each_cpu(pfm_alt_restore_pmu_state, NULL, 1); | 
|  | if (ret) { | 
|  | DPRINT(("on_each_cpu() failed: %d\n", ret)); | 
|  | } | 
|  |  | 
|  | for_each_online_cpu(i) { | 
|  | pfm_unreserve_session(NULL, 1, i); | 
|  | } | 
|  |  | 
|  | spin_unlock(&pfm_alt_install_check); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt); | 
|  |  | 
|  | /* | 
|  | * perfmon initialization routine, called from the initcall() table | 
|  | */ | 
|  | static int init_pfm_fs(void); | 
|  |  | 
|  | static int __init | 
|  | pfm_probe_pmu(void) | 
|  | { | 
|  | pmu_config_t **p; | 
|  | int family; | 
|  |  | 
|  | family = local_cpu_data->family; | 
|  | p      = pmu_confs; | 
|  |  | 
|  | while(*p) { | 
|  | if ((*p)->probe) { | 
|  | if ((*p)->probe() == 0) goto found; | 
|  | } else if ((*p)->pmu_family == family || (*p)->pmu_family == 0xff) { | 
|  | goto found; | 
|  | } | 
|  | p++; | 
|  | } | 
|  | return -1; | 
|  | found: | 
|  | pmu_conf = *p; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct file_operations pfm_proc_fops = { | 
|  | .open		= pfm_proc_open, | 
|  | .read		= seq_read, | 
|  | .llseek		= seq_lseek, | 
|  | .release	= seq_release, | 
|  | }; | 
|  |  | 
|  | int __init | 
|  | pfm_init(void) | 
|  | { | 
|  | unsigned int n, n_counters, i; | 
|  |  | 
|  | printk("perfmon: version %u.%u IRQ %u\n", | 
|  | PFM_VERSION_MAJ, | 
|  | PFM_VERSION_MIN, | 
|  | IA64_PERFMON_VECTOR); | 
|  |  | 
|  | if (pfm_probe_pmu()) { | 
|  | printk(KERN_INFO "perfmon: disabled, there is no support for processor family %d\n", | 
|  | local_cpu_data->family); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * compute the number of implemented PMD/PMC from the | 
|  | * description tables | 
|  | */ | 
|  | n = 0; | 
|  | for (i=0; PMC_IS_LAST(i) == 0;  i++) { | 
|  | if (PMC_IS_IMPL(i) == 0) continue; | 
|  | pmu_conf->impl_pmcs[i>>6] |= 1UL << (i&63); | 
|  | n++; | 
|  | } | 
|  | pmu_conf->num_pmcs = n; | 
|  |  | 
|  | n = 0; n_counters = 0; | 
|  | for (i=0; PMD_IS_LAST(i) == 0;  i++) { | 
|  | if (PMD_IS_IMPL(i) == 0) continue; | 
|  | pmu_conf->impl_pmds[i>>6] |= 1UL << (i&63); | 
|  | n++; | 
|  | if (PMD_IS_COUNTING(i)) n_counters++; | 
|  | } | 
|  | pmu_conf->num_pmds      = n; | 
|  | pmu_conf->num_counters  = n_counters; | 
|  |  | 
|  | /* | 
|  | * sanity checks on the number of debug registers | 
|  | */ | 
|  | if (pmu_conf->use_rr_dbregs) { | 
|  | if (pmu_conf->num_ibrs > IA64_NUM_DBG_REGS) { | 
|  | printk(KERN_INFO "perfmon: unsupported number of code debug registers (%u)\n", pmu_conf->num_ibrs); | 
|  | pmu_conf = NULL; | 
|  | return -1; | 
|  | } | 
|  | if (pmu_conf->num_dbrs > IA64_NUM_DBG_REGS) { | 
|  | printk(KERN_INFO "perfmon: unsupported number of data debug registers (%u)\n", pmu_conf->num_ibrs); | 
|  | pmu_conf = NULL; | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n", | 
|  | pmu_conf->pmu_name, | 
|  | pmu_conf->num_pmcs, | 
|  | pmu_conf->num_pmds, | 
|  | pmu_conf->num_counters, | 
|  | ffz(pmu_conf->ovfl_val)); | 
|  |  | 
|  | /* sanity check */ | 
|  | if (pmu_conf->num_pmds >= PFM_NUM_PMD_REGS || pmu_conf->num_pmcs >= PFM_NUM_PMC_REGS) { | 
|  | printk(KERN_ERR "perfmon: not enough pmc/pmd, perfmon disabled\n"); | 
|  | pmu_conf = NULL; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * create /proc/perfmon (mostly for debugging purposes) | 
|  | */ | 
|  | perfmon_dir = proc_create("perfmon", S_IRUGO, NULL, &pfm_proc_fops); | 
|  | if (perfmon_dir == NULL) { | 
|  | printk(KERN_ERR "perfmon: cannot create /proc entry, perfmon disabled\n"); | 
|  | pmu_conf = NULL; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * create /proc/sys/kernel/perfmon (for debugging purposes) | 
|  | */ | 
|  | pfm_sysctl_header = register_sysctl_table(pfm_sysctl_root); | 
|  |  | 
|  | /* | 
|  | * initialize all our spinlocks | 
|  | */ | 
|  | spin_lock_init(&pfm_sessions.pfs_lock); | 
|  | spin_lock_init(&pfm_buffer_fmt_lock); | 
|  |  | 
|  | init_pfm_fs(); | 
|  |  | 
|  | for(i=0; i < NR_CPUS; i++) pfm_stats[i].pfm_ovfl_intr_cycles_min = ~0UL; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __initcall(pfm_init); | 
|  |  | 
|  | /* | 
|  | * this function is called before pfm_init() | 
|  | */ | 
|  | void | 
|  | pfm_init_percpu (void) | 
|  | { | 
|  | static int first_time=1; | 
|  | /* | 
|  | * make sure no measurement is active | 
|  | * (may inherit programmed PMCs from EFI). | 
|  | */ | 
|  | pfm_clear_psr_pp(); | 
|  | pfm_clear_psr_up(); | 
|  |  | 
|  | /* | 
|  | * we run with the PMU not frozen at all times | 
|  | */ | 
|  | pfm_unfreeze_pmu(); | 
|  |  | 
|  | if (first_time) { | 
|  | register_percpu_irq(IA64_PERFMON_VECTOR, &perfmon_irqaction); | 
|  | first_time=0; | 
|  | } | 
|  |  | 
|  | ia64_setreg(_IA64_REG_CR_PMV, IA64_PERFMON_VECTOR); | 
|  | ia64_srlz_d(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * used for debug purposes only | 
|  | */ | 
|  | void | 
|  | dump_pmu_state(const char *from) | 
|  | { | 
|  | struct task_struct *task; | 
|  | struct pt_regs *regs; | 
|  | pfm_context_t *ctx; | 
|  | unsigned long psr, dcr, info, flags; | 
|  | int i, this_cpu; | 
|  |  | 
|  | local_irq_save(flags); | 
|  |  | 
|  | this_cpu = smp_processor_id(); | 
|  | regs     = task_pt_regs(current); | 
|  | info     = PFM_CPUINFO_GET(); | 
|  | dcr      = ia64_getreg(_IA64_REG_CR_DCR); | 
|  |  | 
|  | if (info == 0 && ia64_psr(regs)->pp == 0 && (dcr & IA64_DCR_PP) == 0) { | 
|  | local_irq_restore(flags); | 
|  | return; | 
|  | } | 
|  |  | 
|  | printk("CPU%d from %s() current [%d] iip=0x%lx %s\n", | 
|  | this_cpu, | 
|  | from, | 
|  | task_pid_nr(current), | 
|  | regs->cr_iip, | 
|  | current->comm); | 
|  |  | 
|  | task = GET_PMU_OWNER(); | 
|  | ctx  = GET_PMU_CTX(); | 
|  |  | 
|  | printk("->CPU%d owner [%d] ctx=%p\n", this_cpu, task ? task_pid_nr(task) : -1, ctx); | 
|  |  | 
|  | psr = pfm_get_psr(); | 
|  |  | 
|  | printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n", | 
|  | this_cpu, | 
|  | ia64_get_pmc(0), | 
|  | psr & IA64_PSR_PP ? 1 : 0, | 
|  | psr & IA64_PSR_UP ? 1 : 0, | 
|  | dcr & IA64_DCR_PP ? 1 : 0, | 
|  | info, | 
|  | ia64_psr(regs)->up, | 
|  | ia64_psr(regs)->pp); | 
|  |  | 
|  | ia64_psr(regs)->up = 0; | 
|  | ia64_psr(regs)->pp = 0; | 
|  |  | 
|  | for (i=1; PMC_IS_LAST(i) == 0; i++) { | 
|  | if (PMC_IS_IMPL(i) == 0) continue; | 
|  | printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu, i, ia64_get_pmc(i), i, ctx->th_pmcs[i]); | 
|  | } | 
|  |  | 
|  | for (i=1; PMD_IS_LAST(i) == 0; i++) { | 
|  | if (PMD_IS_IMPL(i) == 0) continue; | 
|  | printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu, i, ia64_get_pmd(i), i, ctx->th_pmds[i]); | 
|  | } | 
|  |  | 
|  | if (ctx) { | 
|  | printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n", | 
|  | this_cpu, | 
|  | ctx->ctx_state, | 
|  | ctx->ctx_smpl_vaddr, | 
|  | ctx->ctx_smpl_hdr, | 
|  | ctx->ctx_msgq_head, | 
|  | ctx->ctx_msgq_tail, | 
|  | ctx->ctx_saved_psr_up); | 
|  | } | 
|  | local_irq_restore(flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * called from process.c:copy_thread(). task is new child. | 
|  | */ | 
|  | void | 
|  | pfm_inherit(struct task_struct *task, struct pt_regs *regs) | 
|  | { | 
|  | struct thread_struct *thread; | 
|  |  | 
|  | DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task))); | 
|  |  | 
|  | thread = &task->thread; | 
|  |  | 
|  | /* | 
|  | * cut links inherited from parent (current) | 
|  | */ | 
|  | thread->pfm_context = NULL; | 
|  |  | 
|  | PFM_SET_WORK_PENDING(task, 0); | 
|  |  | 
|  | /* | 
|  | * the psr bits are already set properly in copy_threads() | 
|  | */ | 
|  | } | 
|  | #else  /* !CONFIG_PERFMON */ | 
|  | asmlinkage long | 
|  | sys_perfmonctl (int fd, int cmd, void *arg, int count) | 
|  | { | 
|  | return -ENOSYS; | 
|  | } | 
|  | #endif /* CONFIG_PERFMON */ |