|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <netinet/in.h> | 
|  | #include <unistd.h> | 
|  | #include <sys/types.h> | 
|  | #include <sys/stat.h> | 
|  | #include <string.h> | 
|  | #include <elf.h> | 
|  |  | 
|  | #define ElfHeaderSize  (64 * 1024) | 
|  | #define ElfPages  (ElfHeaderSize / 4096) | 
|  | #define KERNELBASE (0xc000000000000000) | 
|  | #define _ALIGN_UP(addr,size)	(((addr)+((size)-1))&(~((size)-1))) | 
|  |  | 
|  | struct addr_range { | 
|  | unsigned long long addr; | 
|  | unsigned long memsize; | 
|  | unsigned long offset; | 
|  | }; | 
|  |  | 
|  | static int check_elf64(void *p, int size, struct addr_range *r) | 
|  | { | 
|  | Elf64_Ehdr *elf64 = p; | 
|  | Elf64_Phdr *elf64ph; | 
|  |  | 
|  | if (elf64->e_ident[EI_MAG0] != ELFMAG0 || | 
|  | elf64->e_ident[EI_MAG1] != ELFMAG1 || | 
|  | elf64->e_ident[EI_MAG2] != ELFMAG2 || | 
|  | elf64->e_ident[EI_MAG3] != ELFMAG3 || | 
|  | elf64->e_ident[EI_CLASS] != ELFCLASS64 || | 
|  | elf64->e_ident[EI_DATA] != ELFDATA2MSB || | 
|  | elf64->e_type != ET_EXEC || elf64->e_machine != EM_PPC64) | 
|  | return 0; | 
|  |  | 
|  | if ((elf64->e_phoff + sizeof(Elf64_Phdr)) > size) | 
|  | return 0; | 
|  |  | 
|  | elf64ph = (Elf64_Phdr *) ((unsigned long)elf64 + | 
|  | (unsigned long)elf64->e_phoff); | 
|  |  | 
|  | r->memsize = (unsigned long)elf64ph->p_memsz; | 
|  | r->offset = (unsigned long)elf64ph->p_offset; | 
|  | r->addr = (unsigned long long)elf64ph->p_vaddr; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | printf("PPC64 ELF file, ph:\n"); | 
|  | printf("p_type   0x%08x\n", elf64ph->p_type); | 
|  | printf("p_flags  0x%08x\n", elf64ph->p_flags); | 
|  | printf("p_offset 0x%016llx\n", elf64ph->p_offset); | 
|  | printf("p_vaddr  0x%016llx\n", elf64ph->p_vaddr); | 
|  | printf("p_paddr  0x%016llx\n", elf64ph->p_paddr); | 
|  | printf("p_filesz 0x%016llx\n", elf64ph->p_filesz); | 
|  | printf("p_memsz  0x%016llx\n", elf64ph->p_memsz); | 
|  | printf("p_align  0x%016llx\n", elf64ph->p_align); | 
|  | printf("... skipping 0x%08lx bytes of ELF header\n", | 
|  | (unsigned long)elf64ph->p_offset); | 
|  | #endif | 
|  |  | 
|  | return 64; | 
|  | } | 
|  | void get4k(FILE *file, char *buf ) | 
|  | { | 
|  | unsigned j; | 
|  | unsigned num = fread(buf, 1, 4096, file); | 
|  | for ( j=num; j<4096; ++j ) | 
|  | buf[j] = 0; | 
|  | } | 
|  |  | 
|  | void put4k(FILE *file, char *buf ) | 
|  | { | 
|  | fwrite(buf, 1, 4096, file); | 
|  | } | 
|  |  | 
|  | void death(const char *msg, FILE *fdesc, const char *fname) | 
|  | { | 
|  | fprintf(stderr, msg); | 
|  | fclose(fdesc); | 
|  | unlink(fname); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | int main(int argc, char **argv) | 
|  | { | 
|  | char inbuf[4096]; | 
|  | struct addr_range vmlinux; | 
|  | FILE *ramDisk; | 
|  | FILE *inputVmlinux; | 
|  | FILE *outputVmlinux; | 
|  |  | 
|  | char *rd_name, *lx_name, *out_name; | 
|  |  | 
|  | size_t i; | 
|  | unsigned long ramFileLen; | 
|  | unsigned long ramLen; | 
|  | unsigned long roundR; | 
|  | unsigned long offset_end; | 
|  |  | 
|  | unsigned long kernelLen; | 
|  | unsigned long actualKernelLen; | 
|  | unsigned long round; | 
|  | unsigned long roundedKernelLen; | 
|  | unsigned long ramStartOffs; | 
|  | unsigned long ramPages; | 
|  | unsigned long roundedKernelPages; | 
|  | unsigned long hvReleaseData; | 
|  | u_int32_t eyeCatcher = 0xc8a5d9c4; | 
|  | unsigned long naca; | 
|  | unsigned long xRamDisk; | 
|  | unsigned long xRamDiskSize; | 
|  | long padPages; | 
|  |  | 
|  |  | 
|  | if (argc < 2) { | 
|  | fprintf(stderr, "Name of RAM disk file missing.\n"); | 
|  | exit(1); | 
|  | } | 
|  | rd_name = argv[1]; | 
|  |  | 
|  | if (argc < 3) { | 
|  | fprintf(stderr, "Name of vmlinux file missing.\n"); | 
|  | exit(1); | 
|  | } | 
|  | lx_name = argv[2]; | 
|  |  | 
|  | if (argc < 4) { | 
|  | fprintf(stderr, "Name of vmlinux output file missing.\n"); | 
|  | exit(1); | 
|  | } | 
|  | out_name = argv[3]; | 
|  |  | 
|  |  | 
|  | ramDisk = fopen(rd_name, "r"); | 
|  | if ( ! ramDisk ) { | 
|  | fprintf(stderr, "RAM disk file \"%s\" failed to open.\n", rd_name); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | inputVmlinux = fopen(lx_name, "r"); | 
|  | if ( ! inputVmlinux ) { | 
|  | fprintf(stderr, "vmlinux file \"%s\" failed to open.\n", lx_name); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | outputVmlinux = fopen(out_name, "w+"); | 
|  | if ( ! outputVmlinux ) { | 
|  | fprintf(stderr, "output vmlinux file \"%s\" failed to open.\n", out_name); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | i = fread(inbuf, 1, sizeof(inbuf), inputVmlinux); | 
|  | if (i != sizeof(inbuf)) { | 
|  | fprintf(stderr, "can not read vmlinux file %s: %u\n", lx_name, i); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | i = check_elf64(inbuf, sizeof(inbuf), &vmlinux); | 
|  | if (i == 0) { | 
|  | fprintf(stderr, "You must have a linux kernel specified as argv[2]\n"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* Input Vmlinux file */ | 
|  | fseek(inputVmlinux, 0, SEEK_END); | 
|  | kernelLen = ftell(inputVmlinux); | 
|  | fseek(inputVmlinux, 0, SEEK_SET); | 
|  | printf("kernel file size = %lu\n", kernelLen); | 
|  |  | 
|  | actualKernelLen = kernelLen - ElfHeaderSize; | 
|  |  | 
|  | printf("actual kernel length (minus ELF header) = %lu\n", actualKernelLen); | 
|  |  | 
|  | round = actualKernelLen % 4096; | 
|  | roundedKernelLen = actualKernelLen; | 
|  | if ( round ) | 
|  | roundedKernelLen += (4096 - round); | 
|  | printf("Vmlinux length rounded up to a 4k multiple = %ld/0x%lx \n", roundedKernelLen, roundedKernelLen); | 
|  | roundedKernelPages = roundedKernelLen / 4096; | 
|  | printf("Vmlinux pages to copy = %ld/0x%lx \n", roundedKernelPages, roundedKernelPages); | 
|  |  | 
|  | offset_end = _ALIGN_UP(vmlinux.memsize, 4096); | 
|  | /* calc how many pages we need to insert between the vmlinux and the start of the ram disk */ | 
|  | padPages = offset_end/4096 - roundedKernelPages; | 
|  |  | 
|  | /* Check and see if the vmlinux is already larger than _end in System.map */ | 
|  | if (padPages < 0) { | 
|  | /* vmlinux is larger than _end - adjust the offset to the start of the embedded ram disk */ | 
|  | offset_end = roundedKernelLen; | 
|  | printf("vmlinux is larger than _end indicates it needs to be - offset_end = %lx \n", offset_end); | 
|  | padPages = 0; | 
|  | printf("will insert %lx pages between the vmlinux and the start of the ram disk \n", padPages); | 
|  | } | 
|  | else { | 
|  | /* _end is larger than vmlinux - use the offset to _end that we calculated from the system map */ | 
|  | printf("vmlinux is smaller than _end indicates is needed - offset_end = %lx \n", offset_end); | 
|  | printf("will insert %lx pages between the vmlinux and the start of the ram disk \n", padPages); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Input Ram Disk file */ | 
|  | // Set the offset that the ram disk will be started at. | 
|  | ramStartOffs = offset_end;  /* determined from the input vmlinux file and the system map */ | 
|  | printf("Ram Disk will start at offset = 0x%lx \n", ramStartOffs); | 
|  |  | 
|  | fseek(ramDisk, 0, SEEK_END); | 
|  | ramFileLen = ftell(ramDisk); | 
|  | fseek(ramDisk, 0, SEEK_SET); | 
|  | printf("%s file size = %ld/0x%lx \n", rd_name, ramFileLen, ramFileLen); | 
|  |  | 
|  | ramLen = ramFileLen; | 
|  |  | 
|  | roundR = 4096 - (ramLen % 4096); | 
|  | if ( roundR ) { | 
|  | printf("Rounding RAM disk file up to a multiple of 4096, adding %ld/0x%lx \n", roundR, roundR); | 
|  | ramLen += roundR; | 
|  | } | 
|  |  | 
|  | printf("Rounded RAM disk size is %ld/0x%lx \n", ramLen, ramLen); | 
|  | ramPages = ramLen / 4096; | 
|  | printf("RAM disk pages to copy = %ld/0x%lx\n", ramPages, ramPages); | 
|  |  | 
|  |  | 
|  |  | 
|  | // Copy 64K ELF header | 
|  | for (i=0; i<(ElfPages); ++i) { | 
|  | get4k( inputVmlinux, inbuf ); | 
|  | put4k( outputVmlinux, inbuf ); | 
|  | } | 
|  |  | 
|  | /* Copy the vmlinux (as full pages). */ | 
|  | fseek(inputVmlinux, ElfHeaderSize, SEEK_SET); | 
|  | for ( i=0; i<roundedKernelPages; ++i ) { | 
|  | get4k( inputVmlinux, inbuf ); | 
|  | put4k( outputVmlinux, inbuf ); | 
|  | } | 
|  |  | 
|  | /* Insert pad pages (if appropriate) that are needed between */ | 
|  | /* | the end of the vmlinux and the ram disk. */ | 
|  | for (i=0; i<padPages; ++i) { | 
|  | memset(inbuf, 0, 4096); | 
|  | put4k(outputVmlinux, inbuf); | 
|  | } | 
|  |  | 
|  | /* Copy the ram disk (as full pages). */ | 
|  | for ( i=0; i<ramPages; ++i ) { | 
|  | get4k( ramDisk, inbuf ); | 
|  | put4k( outputVmlinux, inbuf ); | 
|  | } | 
|  |  | 
|  | /* Close the input files */ | 
|  | fclose(ramDisk); | 
|  | fclose(inputVmlinux); | 
|  | /* And flush the written output file */ | 
|  | fflush(outputVmlinux); | 
|  |  | 
|  |  | 
|  |  | 
|  | /* Fixup the new vmlinux to contain the ram disk starting offset (xRamDisk) and the ram disk size (xRamDiskSize) */ | 
|  | /* fseek to the hvReleaseData pointer */ | 
|  | fseek(outputVmlinux, ElfHeaderSize + 0x24, SEEK_SET); | 
|  | if (fread(&hvReleaseData, 4, 1, outputVmlinux) != 1) { | 
|  | death("Could not read hvReleaseData pointer\n", outputVmlinux, out_name); | 
|  | } | 
|  | hvReleaseData = ntohl(hvReleaseData); /* Convert to native int */ | 
|  | printf("hvReleaseData is at %08lx\n", hvReleaseData); | 
|  |  | 
|  | /* fseek to the hvReleaseData */ | 
|  | fseek(outputVmlinux, ElfHeaderSize + hvReleaseData, SEEK_SET); | 
|  | if (fread(inbuf, 0x40, 1, outputVmlinux) != 1) { | 
|  | death("Could not read hvReleaseData\n", outputVmlinux, out_name); | 
|  | } | 
|  | /* Check hvReleaseData sanity */ | 
|  | if (memcmp(inbuf, &eyeCatcher, 4) != 0) { | 
|  | death("hvReleaseData is invalid\n", outputVmlinux, out_name); | 
|  | } | 
|  | /* Get the naca pointer */ | 
|  | naca = ntohl(*((u_int32_t*) &inbuf[0x0C])) - KERNELBASE; | 
|  | printf("Naca is at offset 0x%lx \n", naca); | 
|  |  | 
|  | /* fseek to the naca */ | 
|  | fseek(outputVmlinux, ElfHeaderSize + naca, SEEK_SET); | 
|  | if (fread(inbuf, 0x18, 1, outputVmlinux) != 1) { | 
|  | death("Could not read naca\n", outputVmlinux, out_name); | 
|  | } | 
|  | xRamDisk = ntohl(*((u_int32_t *) &inbuf[0x0c])); | 
|  | xRamDiskSize = ntohl(*((u_int32_t *) &inbuf[0x14])); | 
|  | /* Make sure a RAM disk isn't already present */ | 
|  | if ((xRamDisk != 0) || (xRamDiskSize != 0)) { | 
|  | death("RAM disk is already attached to this kernel\n", outputVmlinux, out_name); | 
|  | } | 
|  | /* Fill in the values */ | 
|  | *((u_int32_t *) &inbuf[0x0c]) = htonl(ramStartOffs); | 
|  | *((u_int32_t *) &inbuf[0x14]) = htonl(ramPages); | 
|  |  | 
|  | /* Write out the new naca */ | 
|  | fflush(outputVmlinux); | 
|  | fseek(outputVmlinux, ElfHeaderSize + naca, SEEK_SET); | 
|  | if (fwrite(inbuf, 0x18, 1, outputVmlinux) != 1) { | 
|  | death("Could not write naca\n", outputVmlinux, out_name); | 
|  | } | 
|  | printf("Ram Disk of 0x%lx pages is attached to the kernel at offset 0x%08lx\n", | 
|  | ramPages, ramStartOffs); | 
|  |  | 
|  | /* Done */ | 
|  | fclose(outputVmlinux); | 
|  | /* Set permission to executable */ | 
|  | chmod(out_name, S_IRUSR|S_IWUSR|S_IXUSR|S_IRGRP|S_IXGRP|S_IROTH|S_IXOTH); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  |