|  | /* | 
|  | * Copyright (C) 2000 - 2007 Jeff Dike (jdike@{addtoit,linux.intel}.com) | 
|  | * Licensed under the GPL | 
|  | */ | 
|  |  | 
|  | #include <stdio.h> | 
|  | #include <stdlib.h> | 
|  | #include <unistd.h> | 
|  | #include <errno.h> | 
|  | #include <signal.h> | 
|  | #include <string.h> | 
|  | #include <sys/resource.h> | 
|  | #include "as-layout.h" | 
|  | #include "init.h" | 
|  | #include "kern_constants.h" | 
|  | #include "kern_util.h" | 
|  | #include "os.h" | 
|  | #include "um_malloc.h" | 
|  |  | 
|  | #define PGD_BOUND (4 * 1024 * 1024) | 
|  | #define STACKSIZE (8 * 1024 * 1024) | 
|  | #define THREAD_NAME_LEN (256) | 
|  |  | 
|  | static void set_stklim(void) | 
|  | { | 
|  | struct rlimit lim; | 
|  |  | 
|  | if (getrlimit(RLIMIT_STACK, &lim) < 0) { | 
|  | perror("getrlimit"); | 
|  | exit(1); | 
|  | } | 
|  | if ((lim.rlim_cur == RLIM_INFINITY) || (lim.rlim_cur > STACKSIZE)) { | 
|  | lim.rlim_cur = STACKSIZE; | 
|  | if (setrlimit(RLIMIT_STACK, &lim) < 0) { | 
|  | perror("setrlimit"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static __init void do_uml_initcalls(void) | 
|  | { | 
|  | initcall_t *call; | 
|  |  | 
|  | call = &__uml_initcall_start; | 
|  | while (call < &__uml_initcall_end) { | 
|  | (*call)(); | 
|  | call++; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void last_ditch_exit(int sig) | 
|  | { | 
|  | uml_cleanup(); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | static void install_fatal_handler(int sig) | 
|  | { | 
|  | struct sigaction action; | 
|  |  | 
|  | /* All signals are enabled in this handler ... */ | 
|  | sigemptyset(&action.sa_mask); | 
|  |  | 
|  | /* | 
|  | * ... including the signal being handled, plus we want the | 
|  | * handler reset to the default behavior, so that if an exit | 
|  | * handler is hanging for some reason, the UML will just die | 
|  | * after this signal is sent a second time. | 
|  | */ | 
|  | action.sa_flags = SA_RESETHAND | SA_NODEFER; | 
|  | action.sa_restorer = NULL; | 
|  | action.sa_handler = last_ditch_exit; | 
|  | if (sigaction(sig, &action, NULL) < 0) { | 
|  | printf("failed to install handler for signal %d - errno = %d\n", | 
|  | sig, errno); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | #define UML_LIB_PATH	":/usr/lib/uml" | 
|  |  | 
|  | static void setup_env_path(void) | 
|  | { | 
|  | char *new_path = NULL; | 
|  | char *old_path = NULL; | 
|  | int path_len = 0; | 
|  |  | 
|  | old_path = getenv("PATH"); | 
|  | /* | 
|  | * if no PATH variable is set or it has an empty value | 
|  | * just use the default + /usr/lib/uml | 
|  | */ | 
|  | if (!old_path || (path_len = strlen(old_path)) == 0) { | 
|  | if (putenv("PATH=:/bin:/usr/bin/" UML_LIB_PATH)) | 
|  | perror("couldn't putenv"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* append /usr/lib/uml to the existing path */ | 
|  | path_len += strlen("PATH=" UML_LIB_PATH) + 1; | 
|  | new_path = malloc(path_len); | 
|  | if (!new_path) { | 
|  | perror("couldn't malloc to set a new PATH"); | 
|  | return; | 
|  | } | 
|  | snprintf(new_path, path_len, "PATH=%s" UML_LIB_PATH, old_path); | 
|  | if (putenv(new_path)) { | 
|  | perror("couldn't putenv to set a new PATH"); | 
|  | free(new_path); | 
|  | } | 
|  | } | 
|  |  | 
|  | extern void scan_elf_aux( char **envp); | 
|  |  | 
|  | int __init main(int argc, char **argv, char **envp) | 
|  | { | 
|  | char **new_argv; | 
|  | int ret, i, err; | 
|  |  | 
|  | set_stklim(); | 
|  |  | 
|  | setup_env_path(); | 
|  |  | 
|  | new_argv = malloc((argc + 1) * sizeof(char *)); | 
|  | if (new_argv == NULL) { | 
|  | perror("Mallocing argv"); | 
|  | exit(1); | 
|  | } | 
|  | for (i = 0; i < argc; i++) { | 
|  | new_argv[i] = strdup(argv[i]); | 
|  | if (new_argv[i] == NULL) { | 
|  | perror("Mallocing an arg"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | new_argv[argc] = NULL; | 
|  |  | 
|  | /* | 
|  | * Allow these signals to bring down a UML if all other | 
|  | * methods of control fail. | 
|  | */ | 
|  | install_fatal_handler(SIGINT); | 
|  | install_fatal_handler(SIGTERM); | 
|  | install_fatal_handler(SIGHUP); | 
|  |  | 
|  | scan_elf_aux(envp); | 
|  |  | 
|  | do_uml_initcalls(); | 
|  | ret = linux_main(argc, argv); | 
|  |  | 
|  | /* | 
|  | * Disable SIGPROF - I have no idea why libc doesn't do this or turn | 
|  | * off the profiling time, but UML dies with a SIGPROF just before | 
|  | * exiting when profiling is active. | 
|  | */ | 
|  | change_sig(SIGPROF, 0); | 
|  |  | 
|  | /* | 
|  | * This signal stuff used to be in the reboot case.  However, | 
|  | * sometimes a SIGVTALRM can come in when we're halting (reproducably | 
|  | * when writing out gcov information, presumably because that takes | 
|  | * some time) and cause a segfault. | 
|  | */ | 
|  |  | 
|  | /* stop timers and set SIGVTALRM to be ignored */ | 
|  | disable_timer(); | 
|  |  | 
|  | /* disable SIGIO for the fds and set SIGIO to be ignored */ | 
|  | err = deactivate_all_fds(); | 
|  | if (err) | 
|  | printf("deactivate_all_fds failed, errno = %d\n", -err); | 
|  |  | 
|  | /* | 
|  | * Let any pending signals fire now.  This ensures | 
|  | * that they won't be delivered after the exec, when | 
|  | * they are definitely not expected. | 
|  | */ | 
|  | unblock_signals(); | 
|  |  | 
|  | /* Reboot */ | 
|  | if (ret) { | 
|  | printf("\n"); | 
|  | execvp(new_argv[0], new_argv); | 
|  | perror("Failed to exec kernel"); | 
|  | ret = 1; | 
|  | } | 
|  | printf("\n"); | 
|  | return uml_exitcode; | 
|  | } | 
|  |  | 
|  | extern void *__real_malloc(int); | 
|  |  | 
|  | void *__wrap_malloc(int size) | 
|  | { | 
|  | void *ret; | 
|  |  | 
|  | if (!kmalloc_ok) | 
|  | return __real_malloc(size); | 
|  | else if (size <= UM_KERN_PAGE_SIZE) | 
|  | /* finding contiguous pages can be hard*/ | 
|  | ret = uml_kmalloc(size, UM_GFP_KERNEL); | 
|  | else ret = vmalloc(size); | 
|  |  | 
|  | /* | 
|  | * glibc people insist that if malloc fails, errno should be | 
|  | * set by malloc as well. So we do. | 
|  | */ | 
|  | if (ret == NULL) | 
|  | errno = ENOMEM; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void *__wrap_calloc(int n, int size) | 
|  | { | 
|  | void *ptr = __wrap_malloc(n * size); | 
|  |  | 
|  | if (ptr == NULL) | 
|  | return NULL; | 
|  | memset(ptr, 0, n * size); | 
|  | return ptr; | 
|  | } | 
|  |  | 
|  | extern void __real_free(void *); | 
|  |  | 
|  | extern unsigned long high_physmem; | 
|  |  | 
|  | void __wrap_free(void *ptr) | 
|  | { | 
|  | unsigned long addr = (unsigned long) ptr; | 
|  |  | 
|  | /* | 
|  | * We need to know how the allocation happened, so it can be correctly | 
|  | * freed.  This is done by seeing what region of memory the pointer is | 
|  | * in - | 
|  | * 	physical memory - kmalloc/kfree | 
|  | *	kernel virtual memory - vmalloc/vfree | 
|  | * 	anywhere else - malloc/free | 
|  | * If kmalloc is not yet possible, then either high_physmem and/or | 
|  | * end_vm are still 0 (as at startup), in which case we call free, or | 
|  | * we have set them, but anyway addr has not been allocated from those | 
|  | * areas. So, in both cases __real_free is called. | 
|  | * | 
|  | * CAN_KMALLOC is checked because it would be bad to free a buffer | 
|  | * with kmalloc/vmalloc after they have been turned off during | 
|  | * shutdown. | 
|  | * XXX: However, we sometimes shutdown CAN_KMALLOC temporarily, so | 
|  | * there is a possibility for memory leaks. | 
|  | */ | 
|  |  | 
|  | if ((addr >= uml_physmem) && (addr < high_physmem)) { | 
|  | if (kmalloc_ok) | 
|  | kfree(ptr); | 
|  | } | 
|  | else if ((addr >= start_vm) && (addr < end_vm)) { | 
|  | if (kmalloc_ok) | 
|  | vfree(ptr); | 
|  | } | 
|  | else __real_free(ptr); | 
|  | } |