|  | /* | 
|  | * Core of Xen paravirt_ops implementation. | 
|  | * | 
|  | * This file contains the xen_paravirt_ops structure itself, and the | 
|  | * implementations for: | 
|  | * - privileged instructions | 
|  | * - interrupt flags | 
|  | * - segment operations | 
|  | * - booting and setup | 
|  | * | 
|  | * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007 | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/preempt.h> | 
|  | #include <linux/hardirq.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/start_kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/page-flags.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/console.h> | 
|  |  | 
|  | #include <xen/interface/xen.h> | 
|  | #include <xen/interface/version.h> | 
|  | #include <xen/interface/physdev.h> | 
|  | #include <xen/interface/vcpu.h> | 
|  | #include <xen/features.h> | 
|  | #include <xen/page.h> | 
|  | #include <xen/hvc-console.h> | 
|  |  | 
|  | #include <asm/paravirt.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/xen/hypercall.h> | 
|  | #include <asm/xen/hypervisor.h> | 
|  | #include <asm/fixmap.h> | 
|  | #include <asm/processor.h> | 
|  | #include <asm/msr-index.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/desc.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/reboot.h> | 
|  |  | 
|  | #include "xen-ops.h" | 
|  | #include "mmu.h" | 
|  | #include "multicalls.h" | 
|  |  | 
|  | EXPORT_SYMBOL_GPL(hypercall_page); | 
|  |  | 
|  | DEFINE_PER_CPU(struct vcpu_info *, xen_vcpu); | 
|  | DEFINE_PER_CPU(struct vcpu_info, xen_vcpu_info); | 
|  |  | 
|  | enum xen_domain_type xen_domain_type = XEN_NATIVE; | 
|  | EXPORT_SYMBOL_GPL(xen_domain_type); | 
|  |  | 
|  | /* | 
|  | * Identity map, in addition to plain kernel map.  This needs to be | 
|  | * large enough to allocate page table pages to allocate the rest. | 
|  | * Each page can map 2MB. | 
|  | */ | 
|  | static pte_t level1_ident_pgt[PTRS_PER_PTE * 4] __page_aligned_bss; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* l3 pud for userspace vsyscall mapping */ | 
|  | static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss; | 
|  | #endif /* CONFIG_X86_64 */ | 
|  |  | 
|  | /* | 
|  | * Note about cr3 (pagetable base) values: | 
|  | * | 
|  | * xen_cr3 contains the current logical cr3 value; it contains the | 
|  | * last set cr3.  This may not be the current effective cr3, because | 
|  | * its update may be being lazily deferred.  However, a vcpu looking | 
|  | * at its own cr3 can use this value knowing that it everything will | 
|  | * be self-consistent. | 
|  | * | 
|  | * xen_current_cr3 contains the actual vcpu cr3; it is set once the | 
|  | * hypercall to set the vcpu cr3 is complete (so it may be a little | 
|  | * out of date, but it will never be set early).  If one vcpu is | 
|  | * looking at another vcpu's cr3 value, it should use this variable. | 
|  | */ | 
|  | DEFINE_PER_CPU(unsigned long, xen_cr3);	 /* cr3 stored as physaddr */ | 
|  | DEFINE_PER_CPU(unsigned long, xen_current_cr3);	 /* actual vcpu cr3 */ | 
|  |  | 
|  | struct start_info *xen_start_info; | 
|  | EXPORT_SYMBOL_GPL(xen_start_info); | 
|  |  | 
|  | struct shared_info xen_dummy_shared_info; | 
|  |  | 
|  | /* | 
|  | * Point at some empty memory to start with. We map the real shared_info | 
|  | * page as soon as fixmap is up and running. | 
|  | */ | 
|  | struct shared_info *HYPERVISOR_shared_info = (void *)&xen_dummy_shared_info; | 
|  |  | 
|  | /* | 
|  | * Flag to determine whether vcpu info placement is available on all | 
|  | * VCPUs.  We assume it is to start with, and then set it to zero on | 
|  | * the first failure.  This is because it can succeed on some VCPUs | 
|  | * and not others, since it can involve hypervisor memory allocation, | 
|  | * or because the guest failed to guarantee all the appropriate | 
|  | * constraints on all VCPUs (ie buffer can't cross a page boundary). | 
|  | * | 
|  | * Note that any particular CPU may be using a placed vcpu structure, | 
|  | * but we can only optimise if the all are. | 
|  | * | 
|  | * 0: not available, 1: available | 
|  | */ | 
|  | static int have_vcpu_info_placement = | 
|  | #ifdef CONFIG_X86_32 | 
|  | 1 | 
|  | #else | 
|  | 0 | 
|  | #endif | 
|  | ; | 
|  |  | 
|  |  | 
|  | static void xen_vcpu_setup(int cpu) | 
|  | { | 
|  | struct vcpu_register_vcpu_info info; | 
|  | int err; | 
|  | struct vcpu_info *vcpup; | 
|  |  | 
|  | BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info); | 
|  | per_cpu(xen_vcpu, cpu) = &HYPERVISOR_shared_info->vcpu_info[cpu]; | 
|  |  | 
|  | if (!have_vcpu_info_placement) | 
|  | return;		/* already tested, not available */ | 
|  |  | 
|  | vcpup = &per_cpu(xen_vcpu_info, cpu); | 
|  |  | 
|  | info.mfn = virt_to_mfn(vcpup); | 
|  | info.offset = offset_in_page(vcpup); | 
|  |  | 
|  | printk(KERN_DEBUG "trying to map vcpu_info %d at %p, mfn %llx, offset %d\n", | 
|  | cpu, vcpup, info.mfn, info.offset); | 
|  |  | 
|  | /* Check to see if the hypervisor will put the vcpu_info | 
|  | structure where we want it, which allows direct access via | 
|  | a percpu-variable. */ | 
|  | err = HYPERVISOR_vcpu_op(VCPUOP_register_vcpu_info, cpu, &info); | 
|  |  | 
|  | if (err) { | 
|  | printk(KERN_DEBUG "register_vcpu_info failed: err=%d\n", err); | 
|  | have_vcpu_info_placement = 0; | 
|  | } else { | 
|  | /* This cpu is using the registered vcpu info, even if | 
|  | later ones fail to. */ | 
|  | per_cpu(xen_vcpu, cpu) = vcpup; | 
|  |  | 
|  | printk(KERN_DEBUG "cpu %d using vcpu_info at %p\n", | 
|  | cpu, vcpup); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * On restore, set the vcpu placement up again. | 
|  | * If it fails, then we're in a bad state, since | 
|  | * we can't back out from using it... | 
|  | */ | 
|  | void xen_vcpu_restore(void) | 
|  | { | 
|  | if (have_vcpu_info_placement) { | 
|  | int cpu; | 
|  |  | 
|  | for_each_online_cpu(cpu) { | 
|  | bool other_cpu = (cpu != smp_processor_id()); | 
|  |  | 
|  | if (other_cpu && | 
|  | HYPERVISOR_vcpu_op(VCPUOP_down, cpu, NULL)) | 
|  | BUG(); | 
|  |  | 
|  | xen_vcpu_setup(cpu); | 
|  |  | 
|  | if (other_cpu && | 
|  | HYPERVISOR_vcpu_op(VCPUOP_up, cpu, NULL)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | BUG_ON(!have_vcpu_info_placement); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init xen_banner(void) | 
|  | { | 
|  | unsigned version = HYPERVISOR_xen_version(XENVER_version, NULL); | 
|  | struct xen_extraversion extra; | 
|  | HYPERVISOR_xen_version(XENVER_extraversion, &extra); | 
|  |  | 
|  | printk(KERN_INFO "Booting paravirtualized kernel on %s\n", | 
|  | pv_info.name); | 
|  | printk(KERN_INFO "Xen version: %d.%d%s%s\n", | 
|  | version >> 16, version & 0xffff, extra.extraversion, | 
|  | xen_feature(XENFEAT_mmu_pt_update_preserve_ad) ? " (preserve-AD)" : ""); | 
|  | } | 
|  |  | 
|  | static void xen_cpuid(unsigned int *ax, unsigned int *bx, | 
|  | unsigned int *cx, unsigned int *dx) | 
|  | { | 
|  | unsigned maskedx = ~0; | 
|  |  | 
|  | /* | 
|  | * Mask out inconvenient features, to try and disable as many | 
|  | * unsupported kernel subsystems as possible. | 
|  | */ | 
|  | if (*ax == 1) | 
|  | maskedx = ~((1 << X86_FEATURE_APIC) |  /* disable APIC */ | 
|  | (1 << X86_FEATURE_ACPI) |  /* disable ACPI */ | 
|  | (1 << X86_FEATURE_MCE)  |  /* disable MCE */ | 
|  | (1 << X86_FEATURE_MCA)  |  /* disable MCA */ | 
|  | (1 << X86_FEATURE_ACC));   /* thermal monitoring */ | 
|  |  | 
|  | asm(XEN_EMULATE_PREFIX "cpuid" | 
|  | : "=a" (*ax), | 
|  | "=b" (*bx), | 
|  | "=c" (*cx), | 
|  | "=d" (*dx) | 
|  | : "0" (*ax), "2" (*cx)); | 
|  | *dx &= maskedx; | 
|  | } | 
|  |  | 
|  | static void xen_set_debugreg(int reg, unsigned long val) | 
|  | { | 
|  | HYPERVISOR_set_debugreg(reg, val); | 
|  | } | 
|  |  | 
|  | static unsigned long xen_get_debugreg(int reg) | 
|  | { | 
|  | return HYPERVISOR_get_debugreg(reg); | 
|  | } | 
|  |  | 
|  | static void xen_leave_lazy(void) | 
|  | { | 
|  | paravirt_leave_lazy(paravirt_get_lazy_mode()); | 
|  | xen_mc_flush(); | 
|  | } | 
|  |  | 
|  | static unsigned long xen_store_tr(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the page permissions for a particular virtual address.  If the | 
|  | * address is a vmalloc mapping (or other non-linear mapping), then | 
|  | * find the linear mapping of the page and also set its protections to | 
|  | * match. | 
|  | */ | 
|  | static void set_aliased_prot(void *v, pgprot_t prot) | 
|  | { | 
|  | int level; | 
|  | pte_t *ptep; | 
|  | pte_t pte; | 
|  | unsigned long pfn; | 
|  | struct page *page; | 
|  |  | 
|  | ptep = lookup_address((unsigned long)v, &level); | 
|  | BUG_ON(ptep == NULL); | 
|  |  | 
|  | pfn = pte_pfn(*ptep); | 
|  | page = pfn_to_page(pfn); | 
|  |  | 
|  | pte = pfn_pte(pfn, prot); | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping((unsigned long)v, pte, 0)) | 
|  | BUG(); | 
|  |  | 
|  | if (!PageHighMem(page)) { | 
|  | void *av = __va(PFN_PHYS(pfn)); | 
|  |  | 
|  | if (av != v) | 
|  | if (HYPERVISOR_update_va_mapping((unsigned long)av, pte, 0)) | 
|  | BUG(); | 
|  | } else | 
|  | kmap_flush_unused(); | 
|  | } | 
|  |  | 
|  | static void xen_alloc_ldt(struct desc_struct *ldt, unsigned entries) | 
|  | { | 
|  | const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < entries; i += entries_per_page) | 
|  | set_aliased_prot(ldt + i, PAGE_KERNEL_RO); | 
|  | } | 
|  |  | 
|  | static void xen_free_ldt(struct desc_struct *ldt, unsigned entries) | 
|  | { | 
|  | const unsigned entries_per_page = PAGE_SIZE / LDT_ENTRY_SIZE; | 
|  | int i; | 
|  |  | 
|  | for(i = 0; i < entries; i += entries_per_page) | 
|  | set_aliased_prot(ldt + i, PAGE_KERNEL); | 
|  | } | 
|  |  | 
|  | static void xen_set_ldt(const void *addr, unsigned entries) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs = xen_mc_entry(sizeof(*op)); | 
|  |  | 
|  | op = mcs.args; | 
|  | op->cmd = MMUEXT_SET_LDT; | 
|  | op->arg1.linear_addr = (unsigned long)addr; | 
|  | op->arg2.nr_ents = entries; | 
|  |  | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | static void xen_load_gdt(const struct desc_ptr *dtr) | 
|  | { | 
|  | unsigned long *frames; | 
|  | unsigned long va = dtr->address; | 
|  | unsigned int size = dtr->size + 1; | 
|  | unsigned pages = (size + PAGE_SIZE - 1) / PAGE_SIZE; | 
|  | int f; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | /* A GDT can be up to 64k in size, which corresponds to 8192 | 
|  | 8-byte entries, or 16 4k pages.. */ | 
|  |  | 
|  | BUG_ON(size > 65536); | 
|  | BUG_ON(va & ~PAGE_MASK); | 
|  |  | 
|  | mcs = xen_mc_entry(sizeof(*frames) * pages); | 
|  | frames = mcs.args; | 
|  |  | 
|  | for (f = 0; va < dtr->address + size; va += PAGE_SIZE, f++) { | 
|  | frames[f] = virt_to_mfn(va); | 
|  | make_lowmem_page_readonly((void *)va); | 
|  | } | 
|  |  | 
|  | MULTI_set_gdt(mcs.mc, frames, size / sizeof(struct desc_struct)); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | static void load_TLS_descriptor(struct thread_struct *t, | 
|  | unsigned int cpu, unsigned int i) | 
|  | { | 
|  | struct desc_struct *gdt = get_cpu_gdt_table(cpu); | 
|  | xmaddr_t maddr = virt_to_machine(&gdt[GDT_ENTRY_TLS_MIN+i]); | 
|  | struct multicall_space mc = __xen_mc_entry(0); | 
|  |  | 
|  | MULTI_update_descriptor(mc.mc, maddr.maddr, t->tls_array[i]); | 
|  | } | 
|  |  | 
|  | static void xen_load_tls(struct thread_struct *t, unsigned int cpu) | 
|  | { | 
|  | /* | 
|  | * XXX sleazy hack: If we're being called in a lazy-cpu zone, | 
|  | * it means we're in a context switch, and %gs has just been | 
|  | * saved.  This means we can zero it out to prevent faults on | 
|  | * exit from the hypervisor if the next process has no %gs. | 
|  | * Either way, it has been saved, and the new value will get | 
|  | * loaded properly.  This will go away as soon as Xen has been | 
|  | * modified to not save/restore %gs for normal hypercalls. | 
|  | * | 
|  | * On x86_64, this hack is not used for %gs, because gs points | 
|  | * to KERNEL_GS_BASE (and uses it for PDA references), so we | 
|  | * must not zero %gs on x86_64 | 
|  | * | 
|  | * For x86_64, we need to zero %fs, otherwise we may get an | 
|  | * exception between the new %fs descriptor being loaded and | 
|  | * %fs being effectively cleared at __switch_to(). | 
|  | */ | 
|  | if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_CPU) { | 
|  | #ifdef CONFIG_X86_32 | 
|  | loadsegment(gs, 0); | 
|  | #else | 
|  | loadsegment(fs, 0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | xen_mc_batch(); | 
|  |  | 
|  | load_TLS_descriptor(t, cpu, 0); | 
|  | load_TLS_descriptor(t, cpu, 1); | 
|  | load_TLS_descriptor(t, cpu, 2); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static void xen_load_gs_index(unsigned int idx) | 
|  | { | 
|  | if (HYPERVISOR_set_segment_base(SEGBASE_GS_USER_SEL, idx)) | 
|  | BUG(); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static void xen_write_ldt_entry(struct desc_struct *dt, int entrynum, | 
|  | const void *ptr) | 
|  | { | 
|  | xmaddr_t mach_lp = arbitrary_virt_to_machine(&dt[entrynum]); | 
|  | u64 entry = *(u64 *)ptr; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | xen_mc_flush(); | 
|  | if (HYPERVISOR_update_descriptor(mach_lp.maddr, entry)) | 
|  | BUG(); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static int cvt_gate_to_trap(int vector, const gate_desc *val, | 
|  | struct trap_info *info) | 
|  | { | 
|  | if (val->type != 0xf && val->type != 0xe) | 
|  | return 0; | 
|  |  | 
|  | info->vector = vector; | 
|  | info->address = gate_offset(*val); | 
|  | info->cs = gate_segment(*val); | 
|  | info->flags = val->dpl; | 
|  | /* interrupt gates clear IF */ | 
|  | if (val->type == 0xe) | 
|  | info->flags |= 4; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Locations of each CPU's IDT */ | 
|  | static DEFINE_PER_CPU(struct desc_ptr, idt_desc); | 
|  |  | 
|  | /* Set an IDT entry.  If the entry is part of the current IDT, then | 
|  | also update Xen. */ | 
|  | static void xen_write_idt_entry(gate_desc *dt, int entrynum, const gate_desc *g) | 
|  | { | 
|  | unsigned long p = (unsigned long)&dt[entrynum]; | 
|  | unsigned long start, end; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | start = __get_cpu_var(idt_desc).address; | 
|  | end = start + __get_cpu_var(idt_desc).size + 1; | 
|  |  | 
|  | xen_mc_flush(); | 
|  |  | 
|  | native_write_idt_entry(dt, entrynum, g); | 
|  |  | 
|  | if (p >= start && (p + 8) <= end) { | 
|  | struct trap_info info[2]; | 
|  |  | 
|  | info[1].address = 0; | 
|  |  | 
|  | if (cvt_gate_to_trap(entrynum, g, &info[0])) | 
|  | if (HYPERVISOR_set_trap_table(info)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_convert_trap_info(const struct desc_ptr *desc, | 
|  | struct trap_info *traps) | 
|  | { | 
|  | unsigned in, out, count; | 
|  |  | 
|  | count = (desc->size+1) / sizeof(gate_desc); | 
|  | BUG_ON(count > 256); | 
|  |  | 
|  | for (in = out = 0; in < count; in++) { | 
|  | gate_desc *entry = (gate_desc*)(desc->address) + in; | 
|  |  | 
|  | if (cvt_gate_to_trap(in, entry, &traps[out])) | 
|  | out++; | 
|  | } | 
|  | traps[out].address = 0; | 
|  | } | 
|  |  | 
|  | void xen_copy_trap_info(struct trap_info *traps) | 
|  | { | 
|  | const struct desc_ptr *desc = &__get_cpu_var(idt_desc); | 
|  |  | 
|  | xen_convert_trap_info(desc, traps); | 
|  | } | 
|  |  | 
|  | /* Load a new IDT into Xen.  In principle this can be per-CPU, so we | 
|  | hold a spinlock to protect the static traps[] array (static because | 
|  | it avoids allocation, and saves stack space). */ | 
|  | static void xen_load_idt(const struct desc_ptr *desc) | 
|  | { | 
|  | static DEFINE_SPINLOCK(lock); | 
|  | static struct trap_info traps[257]; | 
|  |  | 
|  | spin_lock(&lock); | 
|  |  | 
|  | __get_cpu_var(idt_desc) = *desc; | 
|  |  | 
|  | xen_convert_trap_info(desc, traps); | 
|  |  | 
|  | xen_mc_flush(); | 
|  | if (HYPERVISOR_set_trap_table(traps)) | 
|  | BUG(); | 
|  |  | 
|  | spin_unlock(&lock); | 
|  | } | 
|  |  | 
|  | /* Write a GDT descriptor entry.  Ignore LDT descriptors, since | 
|  | they're handled differently. */ | 
|  | static void xen_write_gdt_entry(struct desc_struct *dt, int entry, | 
|  | const void *desc, int type) | 
|  | { | 
|  | preempt_disable(); | 
|  |  | 
|  | switch (type) { | 
|  | case DESC_LDT: | 
|  | case DESC_TSS: | 
|  | /* ignore */ | 
|  | break; | 
|  |  | 
|  | default: { | 
|  | xmaddr_t maddr = virt_to_machine(&dt[entry]); | 
|  |  | 
|  | xen_mc_flush(); | 
|  | if (HYPERVISOR_update_descriptor(maddr.maddr, *(u64 *)desc)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_load_sp0(struct tss_struct *tss, | 
|  | struct thread_struct *thread) | 
|  | { | 
|  | struct multicall_space mcs = xen_mc_entry(0); | 
|  | MULTI_stack_switch(mcs.mc, __KERNEL_DS, thread->sp0); | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | static void xen_set_iopl_mask(unsigned mask) | 
|  | { | 
|  | struct physdev_set_iopl set_iopl; | 
|  |  | 
|  | /* Force the change at ring 0. */ | 
|  | set_iopl.iopl = (mask == 0) ? 1 : (mask >> 12) & 3; | 
|  | HYPERVISOR_physdev_op(PHYSDEVOP_set_iopl, &set_iopl); | 
|  | } | 
|  |  | 
|  | static void xen_io_delay(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | static u32 xen_apic_read(u32 reg) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xen_apic_write(u32 reg, u32 val) | 
|  | { | 
|  | /* Warn to see if there's any stray references */ | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | static u64 xen_apic_icr_read(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void xen_apic_icr_write(u32 low, u32 id) | 
|  | { | 
|  | /* Warn to see if there's any stray references */ | 
|  | WARN_ON(1); | 
|  | } | 
|  |  | 
|  | static void xen_apic_wait_icr_idle(void) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | static u32 xen_safe_apic_wait_icr_idle(void) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct apic_ops xen_basic_apic_ops = { | 
|  | .read = xen_apic_read, | 
|  | .write = xen_apic_write, | 
|  | .icr_read = xen_apic_icr_read, | 
|  | .icr_write = xen_apic_icr_write, | 
|  | .wait_icr_idle = xen_apic_wait_icr_idle, | 
|  | .safe_wait_icr_idle = xen_safe_apic_wait_icr_idle, | 
|  | }; | 
|  |  | 
|  | #endif | 
|  |  | 
|  | static void xen_flush_tlb(void) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | mcs = xen_mc_entry(sizeof(*op)); | 
|  |  | 
|  | op = mcs.args; | 
|  | op->cmd = MMUEXT_TLB_FLUSH_LOCAL; | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_flush_tlb_single(unsigned long addr) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | preempt_disable(); | 
|  |  | 
|  | mcs = xen_mc_entry(sizeof(*op)); | 
|  | op = mcs.args; | 
|  | op->cmd = MMUEXT_INVLPG_LOCAL; | 
|  | op->arg1.linear_addr = addr & PAGE_MASK; | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  |  | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | static void xen_flush_tlb_others(const cpumask_t *cpus, struct mm_struct *mm, | 
|  | unsigned long va) | 
|  | { | 
|  | struct { | 
|  | struct mmuext_op op; | 
|  | cpumask_t mask; | 
|  | } *args; | 
|  | cpumask_t cpumask = *cpus; | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | /* | 
|  | * A couple of (to be removed) sanity checks: | 
|  | * | 
|  | * - current CPU must not be in mask | 
|  | * - mask must exist :) | 
|  | */ | 
|  | BUG_ON(cpus_empty(cpumask)); | 
|  | BUG_ON(cpu_isset(smp_processor_id(), cpumask)); | 
|  | BUG_ON(!mm); | 
|  |  | 
|  | /* If a CPU which we ran on has gone down, OK. */ | 
|  | cpus_and(cpumask, cpumask, cpu_online_map); | 
|  | if (cpus_empty(cpumask)) | 
|  | return; | 
|  |  | 
|  | mcs = xen_mc_entry(sizeof(*args)); | 
|  | args = mcs.args; | 
|  | args->mask = cpumask; | 
|  | args->op.arg2.vcpumask = &args->mask; | 
|  |  | 
|  | if (va == TLB_FLUSH_ALL) { | 
|  | args->op.cmd = MMUEXT_TLB_FLUSH_MULTI; | 
|  | } else { | 
|  | args->op.cmd = MMUEXT_INVLPG_MULTI; | 
|  | args->op.arg1.linear_addr = va; | 
|  | } | 
|  |  | 
|  | MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_MMU); | 
|  | } | 
|  |  | 
|  | static void xen_clts(void) | 
|  | { | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | mcs = xen_mc_entry(0); | 
|  |  | 
|  | MULTI_fpu_taskswitch(mcs.mc, 0); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | static void xen_write_cr0(unsigned long cr0) | 
|  | { | 
|  | struct multicall_space mcs; | 
|  |  | 
|  | /* Only pay attention to cr0.TS; everything else is | 
|  | ignored. */ | 
|  | mcs = xen_mc_entry(0); | 
|  |  | 
|  | MULTI_fpu_taskswitch(mcs.mc, (cr0 & X86_CR0_TS) != 0); | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  | } | 
|  |  | 
|  | static void xen_write_cr2(unsigned long cr2) | 
|  | { | 
|  | x86_read_percpu(xen_vcpu)->arch.cr2 = cr2; | 
|  | } | 
|  |  | 
|  | static unsigned long xen_read_cr2(void) | 
|  | { | 
|  | return x86_read_percpu(xen_vcpu)->arch.cr2; | 
|  | } | 
|  |  | 
|  | static unsigned long xen_read_cr2_direct(void) | 
|  | { | 
|  | return x86_read_percpu(xen_vcpu_info.arch.cr2); | 
|  | } | 
|  |  | 
|  | static void xen_write_cr4(unsigned long cr4) | 
|  | { | 
|  | cr4 &= ~X86_CR4_PGE; | 
|  | cr4 &= ~X86_CR4_PSE; | 
|  |  | 
|  | native_write_cr4(cr4); | 
|  | } | 
|  |  | 
|  | static unsigned long xen_read_cr3(void) | 
|  | { | 
|  | return x86_read_percpu(xen_cr3); | 
|  | } | 
|  |  | 
|  | static void set_current_cr3(void *v) | 
|  | { | 
|  | x86_write_percpu(xen_current_cr3, (unsigned long)v); | 
|  | } | 
|  |  | 
|  | static void __xen_write_cr3(bool kernel, unsigned long cr3) | 
|  | { | 
|  | struct mmuext_op *op; | 
|  | struct multicall_space mcs; | 
|  | unsigned long mfn; | 
|  |  | 
|  | if (cr3) | 
|  | mfn = pfn_to_mfn(PFN_DOWN(cr3)); | 
|  | else | 
|  | mfn = 0; | 
|  |  | 
|  | WARN_ON(mfn == 0 && kernel); | 
|  |  | 
|  | mcs = __xen_mc_entry(sizeof(*op)); | 
|  |  | 
|  | op = mcs.args; | 
|  | op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR; | 
|  | op->arg1.mfn = mfn; | 
|  |  | 
|  | MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF); | 
|  |  | 
|  | if (kernel) { | 
|  | x86_write_percpu(xen_cr3, cr3); | 
|  |  | 
|  | /* Update xen_current_cr3 once the batch has actually | 
|  | been submitted. */ | 
|  | xen_mc_callback(set_current_cr3, (void *)cr3); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_write_cr3(unsigned long cr3) | 
|  | { | 
|  | BUG_ON(preemptible()); | 
|  |  | 
|  | xen_mc_batch();  /* disables interrupts */ | 
|  |  | 
|  | /* Update while interrupts are disabled, so its atomic with | 
|  | respect to ipis */ | 
|  | x86_write_percpu(xen_cr3, cr3); | 
|  |  | 
|  | __xen_write_cr3(true, cr3); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | { | 
|  | pgd_t *user_pgd = xen_get_user_pgd(__va(cr3)); | 
|  | if (user_pgd) | 
|  | __xen_write_cr3(false, __pa(user_pgd)); | 
|  | else | 
|  | __xen_write_cr3(false, 0); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU);  /* interrupts restored */ | 
|  | } | 
|  |  | 
|  | static int xen_write_msr_safe(unsigned int msr, unsigned low, unsigned high) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | switch (msr) { | 
|  | #ifdef CONFIG_X86_64 | 
|  | unsigned which; | 
|  | u64 base; | 
|  |  | 
|  | case MSR_FS_BASE:		which = SEGBASE_FS; goto set; | 
|  | case MSR_KERNEL_GS_BASE:	which = SEGBASE_GS_USER; goto set; | 
|  | case MSR_GS_BASE:		which = SEGBASE_GS_KERNEL; goto set; | 
|  |  | 
|  | set: | 
|  | base = ((u64)high << 32) | low; | 
|  | if (HYPERVISOR_set_segment_base(which, base) != 0) | 
|  | ret = -EFAULT; | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | case MSR_STAR: | 
|  | case MSR_CSTAR: | 
|  | case MSR_LSTAR: | 
|  | case MSR_SYSCALL_MASK: | 
|  | case MSR_IA32_SYSENTER_CS: | 
|  | case MSR_IA32_SYSENTER_ESP: | 
|  | case MSR_IA32_SYSENTER_EIP: | 
|  | /* Fast syscall setup is all done in hypercalls, so | 
|  | these are all ignored.  Stub them out here to stop | 
|  | Xen console noise. */ | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ret = native_write_msr_safe(msr, low, high); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Early in boot, while setting up the initial pagetable, assume | 
|  | everything is pinned. */ | 
|  | static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | #ifdef CONFIG_FLATMEM | 
|  | BUG_ON(mem_map);	/* should only be used early */ | 
|  | #endif | 
|  | make_lowmem_page_readonly(__va(PFN_PHYS(pfn))); | 
|  | } | 
|  |  | 
|  | /* Early release_pte assumes that all pts are pinned, since there's | 
|  | only init_mm and anything attached to that is pinned. */ | 
|  | static void xen_release_pte_init(unsigned long pfn) | 
|  | { | 
|  | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
|  | } | 
|  |  | 
|  | static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn) | 
|  | { | 
|  | struct mmuext_op op; | 
|  | op.cmd = cmd; | 
|  | op.arg1.mfn = pfn_to_mfn(pfn); | 
|  | if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* This needs to make sure the new pte page is pinned iff its being | 
|  | attached to a pinned pagetable. */ | 
|  | static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level) | 
|  | { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | if (PagePinned(virt_to_page(mm->pgd))) { | 
|  | SetPagePinned(page); | 
|  |  | 
|  | vm_unmap_aliases(); | 
|  | if (!PageHighMem(page)) { | 
|  | make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn))); | 
|  | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | 
|  | pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn); | 
|  | } else { | 
|  | /* make sure there are no stray mappings of | 
|  | this page */ | 
|  | kmap_flush_unused(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | xen_alloc_ptpage(mm, pfn, PT_PTE); | 
|  | } | 
|  |  | 
|  | static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | xen_alloc_ptpage(mm, pfn, PT_PMD); | 
|  | } | 
|  |  | 
|  | static int xen_pgd_alloc(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *pgd = mm->pgd; | 
|  | int ret = 0; | 
|  |  | 
|  | BUG_ON(PagePinned(virt_to_page(pgd))); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | { | 
|  | struct page *page = virt_to_page(pgd); | 
|  | pgd_t *user_pgd; | 
|  |  | 
|  | BUG_ON(page->private != 0); | 
|  |  | 
|  | ret = -ENOMEM; | 
|  |  | 
|  | user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO); | 
|  | page->private = (unsigned long)user_pgd; | 
|  |  | 
|  | if (user_pgd != NULL) { | 
|  | user_pgd[pgd_index(VSYSCALL_START)] = | 
|  | __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE); | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd)))); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | pgd_t *user_pgd = xen_get_user_pgd(pgd); | 
|  |  | 
|  | if (user_pgd) | 
|  | free_page((unsigned long)user_pgd); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* This should never happen until we're OK to use struct page */ | 
|  | static void xen_release_ptpage(unsigned long pfn, unsigned level) | 
|  | { | 
|  | struct page *page = pfn_to_page(pfn); | 
|  |  | 
|  | if (PagePinned(page)) { | 
|  | if (!PageHighMem(page)) { | 
|  | if (level == PT_PTE && USE_SPLIT_PTLOCKS) | 
|  | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn); | 
|  | make_lowmem_page_readwrite(__va(PFN_PHYS(pfn))); | 
|  | } | 
|  | ClearPagePinned(page); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void xen_release_pte(unsigned long pfn) | 
|  | { | 
|  | xen_release_ptpage(pfn, PT_PTE); | 
|  | } | 
|  |  | 
|  | static void xen_release_pmd(unsigned long pfn) | 
|  | { | 
|  | xen_release_ptpage(pfn, PT_PMD); | 
|  | } | 
|  |  | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn) | 
|  | { | 
|  | xen_alloc_ptpage(mm, pfn, PT_PUD); | 
|  | } | 
|  |  | 
|  | static void xen_release_pud(unsigned long pfn) | 
|  | { | 
|  | xen_release_ptpage(pfn, PT_PUD); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_HIGHPTE | 
|  | static void *xen_kmap_atomic_pte(struct page *page, enum km_type type) | 
|  | { | 
|  | pgprot_t prot = PAGE_KERNEL; | 
|  |  | 
|  | if (PagePinned(page)) | 
|  | prot = PAGE_KERNEL_RO; | 
|  |  | 
|  | if (0 && PageHighMem(page)) | 
|  | printk("mapping highpte %lx type %d prot %s\n", | 
|  | page_to_pfn(page), type, | 
|  | (unsigned long)pgprot_val(prot) & _PAGE_RW ? "WRITE" : "READ"); | 
|  |  | 
|  | return kmap_atomic_prot(page, type, prot); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte) | 
|  | { | 
|  | /* If there's an existing pte, then don't allow _PAGE_RW to be set */ | 
|  | if (pte_val_ma(*ptep) & _PAGE_PRESENT) | 
|  | pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) & | 
|  | pte_val_ma(pte)); | 
|  |  | 
|  | return pte; | 
|  | } | 
|  |  | 
|  | /* Init-time set_pte while constructing initial pagetables, which | 
|  | doesn't allow RO pagetable pages to be remapped RW */ | 
|  | static __init void xen_set_pte_init(pte_t *ptep, pte_t pte) | 
|  | { | 
|  | pte = mask_rw_pte(ptep, pte); | 
|  |  | 
|  | xen_set_pte(ptep, pte); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static __init void xen_pagetable_setup_start(pgd_t *base) | 
|  | { | 
|  | } | 
|  |  | 
|  | void xen_setup_shared_info(void) | 
|  | { | 
|  | if (!xen_feature(XENFEAT_auto_translated_physmap)) { | 
|  | set_fixmap(FIX_PARAVIRT_BOOTMAP, | 
|  | xen_start_info->shared_info); | 
|  |  | 
|  | HYPERVISOR_shared_info = | 
|  | (struct shared_info *)fix_to_virt(FIX_PARAVIRT_BOOTMAP); | 
|  | } else | 
|  | HYPERVISOR_shared_info = | 
|  | (struct shared_info *)__va(xen_start_info->shared_info); | 
|  |  | 
|  | #ifndef CONFIG_SMP | 
|  | /* In UP this is as good a place as any to set up shared info */ | 
|  | xen_setup_vcpu_info_placement(); | 
|  | #endif | 
|  |  | 
|  | xen_setup_mfn_list_list(); | 
|  | } | 
|  |  | 
|  | static __init void xen_pagetable_setup_done(pgd_t *base) | 
|  | { | 
|  | xen_setup_shared_info(); | 
|  | } | 
|  |  | 
|  | static __init void xen_post_allocator_init(void) | 
|  | { | 
|  | pv_mmu_ops.set_pte = xen_set_pte; | 
|  | pv_mmu_ops.set_pmd = xen_set_pmd; | 
|  | pv_mmu_ops.set_pud = xen_set_pud; | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | pv_mmu_ops.set_pgd = xen_set_pgd; | 
|  | #endif | 
|  |  | 
|  | /* This will work as long as patching hasn't happened yet | 
|  | (which it hasn't) */ | 
|  | pv_mmu_ops.alloc_pte = xen_alloc_pte; | 
|  | pv_mmu_ops.alloc_pmd = xen_alloc_pmd; | 
|  | pv_mmu_ops.release_pte = xen_release_pte; | 
|  | pv_mmu_ops.release_pmd = xen_release_pmd; | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | pv_mmu_ops.alloc_pud = xen_alloc_pud; | 
|  | pv_mmu_ops.release_pud = xen_release_pud; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | SetPagePinned(virt_to_page(level3_user_vsyscall)); | 
|  | #endif | 
|  | xen_mark_init_mm_pinned(); | 
|  | } | 
|  |  | 
|  | /* This is called once we have the cpu_possible_map */ | 
|  | void xen_setup_vcpu_info_placement(void) | 
|  | { | 
|  | int cpu; | 
|  |  | 
|  | for_each_possible_cpu(cpu) | 
|  | xen_vcpu_setup(cpu); | 
|  |  | 
|  | /* xen_vcpu_setup managed to place the vcpu_info within the | 
|  | percpu area for all cpus, so make use of it */ | 
|  | if (have_vcpu_info_placement) { | 
|  | printk(KERN_INFO "Xen: using vcpu_info placement\n"); | 
|  |  | 
|  | pv_irq_ops.save_fl = xen_save_fl_direct; | 
|  | pv_irq_ops.restore_fl = xen_restore_fl_direct; | 
|  | pv_irq_ops.irq_disable = xen_irq_disable_direct; | 
|  | pv_irq_ops.irq_enable = xen_irq_enable_direct; | 
|  | pv_mmu_ops.read_cr2 = xen_read_cr2_direct; | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned xen_patch(u8 type, u16 clobbers, void *insnbuf, | 
|  | unsigned long addr, unsigned len) | 
|  | { | 
|  | char *start, *end, *reloc; | 
|  | unsigned ret; | 
|  |  | 
|  | start = end = reloc = NULL; | 
|  |  | 
|  | #define SITE(op, x)							\ | 
|  | case PARAVIRT_PATCH(op.x):					\ | 
|  | if (have_vcpu_info_placement) {					\ | 
|  | start = (char *)xen_##x##_direct;			\ | 
|  | end = xen_##x##_direct_end;				\ | 
|  | reloc = xen_##x##_direct_reloc;				\ | 
|  | }								\ | 
|  | goto patch_site | 
|  |  | 
|  | switch (type) { | 
|  | SITE(pv_irq_ops, irq_enable); | 
|  | SITE(pv_irq_ops, irq_disable); | 
|  | SITE(pv_irq_ops, save_fl); | 
|  | SITE(pv_irq_ops, restore_fl); | 
|  | #undef SITE | 
|  |  | 
|  | patch_site: | 
|  | if (start == NULL || (end-start) > len) | 
|  | goto default_patch; | 
|  |  | 
|  | ret = paravirt_patch_insns(insnbuf, len, start, end); | 
|  |  | 
|  | /* Note: because reloc is assigned from something that | 
|  | appears to be an array, gcc assumes it's non-null, | 
|  | but doesn't know its relationship with start and | 
|  | end. */ | 
|  | if (reloc > start && reloc < end) { | 
|  | int reloc_off = reloc - start; | 
|  | long *relocp = (long *)(insnbuf + reloc_off); | 
|  | long delta = start - (char *)addr; | 
|  |  | 
|  | *relocp += delta; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default_patch: | 
|  | default: | 
|  | ret = paravirt_patch_default(type, clobbers, insnbuf, | 
|  | addr, len); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void xen_set_fixmap(unsigned idx, unsigned long phys, pgprot_t prot) | 
|  | { | 
|  | pte_t pte; | 
|  |  | 
|  | phys >>= PAGE_SHIFT; | 
|  |  | 
|  | switch (idx) { | 
|  | case FIX_BTMAP_END ... FIX_BTMAP_BEGIN: | 
|  | #ifdef CONFIG_X86_F00F_BUG | 
|  | case FIX_F00F_IDT: | 
|  | #endif | 
|  | #ifdef CONFIG_X86_32 | 
|  | case FIX_WP_TEST: | 
|  | case FIX_VDSO: | 
|  | # ifdef CONFIG_HIGHMEM | 
|  | case FIX_KMAP_BEGIN ... FIX_KMAP_END: | 
|  | # endif | 
|  | #else | 
|  | case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE: | 
|  | #endif | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | case FIX_APIC_BASE:	/* maps dummy local APIC */ | 
|  | #endif | 
|  | pte = pfn_pte(phys, prot); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | pte = mfn_pte(phys, prot); | 
|  | break; | 
|  | } | 
|  |  | 
|  | __native_set_fixmap(idx, pte); | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* Replicate changes to map the vsyscall page into the user | 
|  | pagetable vsyscall mapping. */ | 
|  | if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) { | 
|  | unsigned long vaddr = __fix_to_virt(idx); | 
|  | set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte); | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static const struct pv_info xen_info __initdata = { | 
|  | .paravirt_enabled = 1, | 
|  | .shared_kernel_pmd = 0, | 
|  |  | 
|  | .name = "Xen", | 
|  | }; | 
|  |  | 
|  | static const struct pv_init_ops xen_init_ops __initdata = { | 
|  | .patch = xen_patch, | 
|  |  | 
|  | .banner = xen_banner, | 
|  | .memory_setup = xen_memory_setup, | 
|  | .arch_setup = xen_arch_setup, | 
|  | .post_allocator_init = xen_post_allocator_init, | 
|  | }; | 
|  |  | 
|  | static const struct pv_time_ops xen_time_ops __initdata = { | 
|  | .time_init = xen_time_init, | 
|  |  | 
|  | .set_wallclock = xen_set_wallclock, | 
|  | .get_wallclock = xen_get_wallclock, | 
|  | .get_tsc_khz = xen_tsc_khz, | 
|  | .sched_clock = xen_sched_clock, | 
|  | }; | 
|  |  | 
|  | static const struct pv_cpu_ops xen_cpu_ops __initdata = { | 
|  | .cpuid = xen_cpuid, | 
|  |  | 
|  | .set_debugreg = xen_set_debugreg, | 
|  | .get_debugreg = xen_get_debugreg, | 
|  |  | 
|  | .clts = xen_clts, | 
|  |  | 
|  | .read_cr0 = native_read_cr0, | 
|  | .write_cr0 = xen_write_cr0, | 
|  |  | 
|  | .read_cr4 = native_read_cr4, | 
|  | .read_cr4_safe = native_read_cr4_safe, | 
|  | .write_cr4 = xen_write_cr4, | 
|  |  | 
|  | .wbinvd = native_wbinvd, | 
|  |  | 
|  | .read_msr = native_read_msr_safe, | 
|  | .write_msr = xen_write_msr_safe, | 
|  | .read_tsc = native_read_tsc, | 
|  | .read_pmc = native_read_pmc, | 
|  |  | 
|  | .iret = xen_iret, | 
|  | .irq_enable_sysexit = xen_sysexit, | 
|  | #ifdef CONFIG_X86_64 | 
|  | .usergs_sysret32 = xen_sysret32, | 
|  | .usergs_sysret64 = xen_sysret64, | 
|  | #endif | 
|  |  | 
|  | .load_tr_desc = paravirt_nop, | 
|  | .set_ldt = xen_set_ldt, | 
|  | .load_gdt = xen_load_gdt, | 
|  | .load_idt = xen_load_idt, | 
|  | .load_tls = xen_load_tls, | 
|  | #ifdef CONFIG_X86_64 | 
|  | .load_gs_index = xen_load_gs_index, | 
|  | #endif | 
|  |  | 
|  | .alloc_ldt = xen_alloc_ldt, | 
|  | .free_ldt = xen_free_ldt, | 
|  |  | 
|  | .store_gdt = native_store_gdt, | 
|  | .store_idt = native_store_idt, | 
|  | .store_tr = xen_store_tr, | 
|  |  | 
|  | .write_ldt_entry = xen_write_ldt_entry, | 
|  | .write_gdt_entry = xen_write_gdt_entry, | 
|  | .write_idt_entry = xen_write_idt_entry, | 
|  | .load_sp0 = xen_load_sp0, | 
|  |  | 
|  | .set_iopl_mask = xen_set_iopl_mask, | 
|  | .io_delay = xen_io_delay, | 
|  |  | 
|  | /* Xen takes care of %gs when switching to usermode for us */ | 
|  | .swapgs = paravirt_nop, | 
|  |  | 
|  | .lazy_mode = { | 
|  | .enter = paravirt_enter_lazy_cpu, | 
|  | .leave = xen_leave_lazy, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const struct pv_apic_ops xen_apic_ops __initdata = { | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | .setup_boot_clock = paravirt_nop, | 
|  | .setup_secondary_clock = paravirt_nop, | 
|  | .startup_ipi_hook = paravirt_nop, | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | static const struct pv_mmu_ops xen_mmu_ops __initdata = { | 
|  | .pagetable_setup_start = xen_pagetable_setup_start, | 
|  | .pagetable_setup_done = xen_pagetable_setup_done, | 
|  |  | 
|  | .read_cr2 = xen_read_cr2, | 
|  | .write_cr2 = xen_write_cr2, | 
|  |  | 
|  | .read_cr3 = xen_read_cr3, | 
|  | .write_cr3 = xen_write_cr3, | 
|  |  | 
|  | .flush_tlb_user = xen_flush_tlb, | 
|  | .flush_tlb_kernel = xen_flush_tlb, | 
|  | .flush_tlb_single = xen_flush_tlb_single, | 
|  | .flush_tlb_others = xen_flush_tlb_others, | 
|  |  | 
|  | .pte_update = paravirt_nop, | 
|  | .pte_update_defer = paravirt_nop, | 
|  |  | 
|  | .pgd_alloc = xen_pgd_alloc, | 
|  | .pgd_free = xen_pgd_free, | 
|  |  | 
|  | .alloc_pte = xen_alloc_pte_init, | 
|  | .release_pte = xen_release_pte_init, | 
|  | .alloc_pmd = xen_alloc_pte_init, | 
|  | .alloc_pmd_clone = paravirt_nop, | 
|  | .release_pmd = xen_release_pte_init, | 
|  |  | 
|  | #ifdef CONFIG_HIGHPTE | 
|  | .kmap_atomic_pte = xen_kmap_atomic_pte, | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | .set_pte = xen_set_pte, | 
|  | #else | 
|  | .set_pte = xen_set_pte_init, | 
|  | #endif | 
|  | .set_pte_at = xen_set_pte_at, | 
|  | .set_pmd = xen_set_pmd_hyper, | 
|  |  | 
|  | .ptep_modify_prot_start = __ptep_modify_prot_start, | 
|  | .ptep_modify_prot_commit = __ptep_modify_prot_commit, | 
|  |  | 
|  | .pte_val = xen_pte_val, | 
|  | .pte_flags = native_pte_flags, | 
|  | .pgd_val = xen_pgd_val, | 
|  |  | 
|  | .make_pte = xen_make_pte, | 
|  | .make_pgd = xen_make_pgd, | 
|  |  | 
|  | #ifdef CONFIG_X86_PAE | 
|  | .set_pte_atomic = xen_set_pte_atomic, | 
|  | .set_pte_present = xen_set_pte_at, | 
|  | .pte_clear = xen_pte_clear, | 
|  | .pmd_clear = xen_pmd_clear, | 
|  | #endif	/* CONFIG_X86_PAE */ | 
|  | .set_pud = xen_set_pud_hyper, | 
|  |  | 
|  | .make_pmd = xen_make_pmd, | 
|  | .pmd_val = xen_pmd_val, | 
|  |  | 
|  | #if PAGETABLE_LEVELS == 4 | 
|  | .pud_val = xen_pud_val, | 
|  | .make_pud = xen_make_pud, | 
|  | .set_pgd = xen_set_pgd_hyper, | 
|  |  | 
|  | .alloc_pud = xen_alloc_pte_init, | 
|  | .release_pud = xen_release_pte_init, | 
|  | #endif	/* PAGETABLE_LEVELS == 4 */ | 
|  |  | 
|  | .activate_mm = xen_activate_mm, | 
|  | .dup_mmap = xen_dup_mmap, | 
|  | .exit_mmap = xen_exit_mmap, | 
|  |  | 
|  | .lazy_mode = { | 
|  | .enter = paravirt_enter_lazy_mmu, | 
|  | .leave = xen_leave_lazy, | 
|  | }, | 
|  |  | 
|  | .set_fixmap = xen_set_fixmap, | 
|  | }; | 
|  |  | 
|  | static void xen_reboot(int reason) | 
|  | { | 
|  | struct sched_shutdown r = { .reason = reason }; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | smp_send_stop(); | 
|  | #endif | 
|  |  | 
|  | if (HYPERVISOR_sched_op(SCHEDOP_shutdown, &r)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static void xen_restart(char *msg) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_reboot); | 
|  | } | 
|  |  | 
|  | static void xen_emergency_restart(void) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_reboot); | 
|  | } | 
|  |  | 
|  | static void xen_machine_halt(void) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_poweroff); | 
|  | } | 
|  |  | 
|  | static void xen_crash_shutdown(struct pt_regs *regs) | 
|  | { | 
|  | xen_reboot(SHUTDOWN_crash); | 
|  | } | 
|  |  | 
|  | static const struct machine_ops __initdata xen_machine_ops = { | 
|  | .restart = xen_restart, | 
|  | .halt = xen_machine_halt, | 
|  | .power_off = xen_machine_halt, | 
|  | .shutdown = xen_machine_halt, | 
|  | .crash_shutdown = xen_crash_shutdown, | 
|  | .emergency_restart = xen_emergency_restart, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static void __init xen_reserve_top(void) | 
|  | { | 
|  | #ifdef CONFIG_X86_32 | 
|  | unsigned long top = HYPERVISOR_VIRT_START; | 
|  | struct xen_platform_parameters pp; | 
|  |  | 
|  | if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0) | 
|  | top = pp.virt_start; | 
|  |  | 
|  | reserve_top_address(-top); | 
|  | #endif	/* CONFIG_X86_32 */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like __va(), but returns address in the kernel mapping (which is | 
|  | * all we have until the physical memory mapping has been set up. | 
|  | */ | 
|  | static void *__ka(phys_addr_t paddr) | 
|  | { | 
|  | #ifdef CONFIG_X86_64 | 
|  | return (void *)(paddr + __START_KERNEL_map); | 
|  | #else | 
|  | return __va(paddr); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Convert a machine address to physical address */ | 
|  | static unsigned long m2p(phys_addr_t maddr) | 
|  | { | 
|  | phys_addr_t paddr; | 
|  |  | 
|  | maddr &= PTE_PFN_MASK; | 
|  | paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT; | 
|  |  | 
|  | return paddr; | 
|  | } | 
|  |  | 
|  | /* Convert a machine address to kernel virtual */ | 
|  | static void *m2v(phys_addr_t maddr) | 
|  | { | 
|  | return __ka(m2p(maddr)); | 
|  | } | 
|  |  | 
|  | static void set_page_prot(void *addr, pgprot_t prot) | 
|  | { | 
|  | unsigned long pfn = __pa(addr) >> PAGE_SHIFT; | 
|  | pte_t pte = pfn_pte(pfn, prot); | 
|  |  | 
|  | if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0)) | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn) | 
|  | { | 
|  | unsigned pmdidx, pteidx; | 
|  | unsigned ident_pte; | 
|  | unsigned long pfn; | 
|  |  | 
|  | ident_pte = 0; | 
|  | pfn = 0; | 
|  | for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) { | 
|  | pte_t *pte_page; | 
|  |  | 
|  | /* Reuse or allocate a page of ptes */ | 
|  | if (pmd_present(pmd[pmdidx])) | 
|  | pte_page = m2v(pmd[pmdidx].pmd); | 
|  | else { | 
|  | /* Check for free pte pages */ | 
|  | if (ident_pte == ARRAY_SIZE(level1_ident_pgt)) | 
|  | break; | 
|  |  | 
|  | pte_page = &level1_ident_pgt[ident_pte]; | 
|  | ident_pte += PTRS_PER_PTE; | 
|  |  | 
|  | pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE); | 
|  | } | 
|  |  | 
|  | /* Install mappings */ | 
|  | for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) { | 
|  | pte_t pte; | 
|  |  | 
|  | if (pfn > max_pfn_mapped) | 
|  | max_pfn_mapped = pfn; | 
|  |  | 
|  | if (!pte_none(pte_page[pteidx])) | 
|  | continue; | 
|  |  | 
|  | pte = pfn_pte(pfn, PAGE_KERNEL_EXEC); | 
|  | pte_page[pteidx] = pte; | 
|  | } | 
|  | } | 
|  |  | 
|  | for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE) | 
|  | set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO); | 
|  |  | 
|  | set_page_prot(pmd, PAGE_KERNEL_RO); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | static void convert_pfn_mfn(void *v) | 
|  | { | 
|  | pte_t *pte = v; | 
|  | int i; | 
|  |  | 
|  | /* All levels are converted the same way, so just treat them | 
|  | as ptes. */ | 
|  | for (i = 0; i < PTRS_PER_PTE; i++) | 
|  | pte[i] = xen_make_pte(pte[i].pte); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set up the inital kernel pagetable. | 
|  | * | 
|  | * We can construct this by grafting the Xen provided pagetable into | 
|  | * head_64.S's preconstructed pagetables.  We copy the Xen L2's into | 
|  | * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt.  This | 
|  | * means that only the kernel has a physical mapping to start with - | 
|  | * but that's enough to get __va working.  We need to fill in the rest | 
|  | * of the physical mapping once some sort of allocator has been set | 
|  | * up. | 
|  | */ | 
|  | static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | 
|  | unsigned long max_pfn) | 
|  | { | 
|  | pud_t *l3; | 
|  | pmd_t *l2; | 
|  |  | 
|  | /* Zap identity mapping */ | 
|  | init_level4_pgt[0] = __pgd(0); | 
|  |  | 
|  | /* Pre-constructed entries are in pfn, so convert to mfn */ | 
|  | convert_pfn_mfn(init_level4_pgt); | 
|  | convert_pfn_mfn(level3_ident_pgt); | 
|  | convert_pfn_mfn(level3_kernel_pgt); | 
|  |  | 
|  | l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd); | 
|  | l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud); | 
|  |  | 
|  | memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
|  | memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd); | 
|  | l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud); | 
|  | memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | /* Set up identity map */ | 
|  | xen_map_identity_early(level2_ident_pgt, max_pfn); | 
|  |  | 
|  | /* Make pagetable pieces RO */ | 
|  | set_page_prot(init_level4_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO); | 
|  | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO); | 
|  |  | 
|  | /* Pin down new L4 */ | 
|  | pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE, | 
|  | PFN_DOWN(__pa_symbol(init_level4_pgt))); | 
|  |  | 
|  | /* Unpin Xen-provided one */ | 
|  | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
|  |  | 
|  | /* Switch over */ | 
|  | pgd = init_level4_pgt; | 
|  |  | 
|  | /* | 
|  | * At this stage there can be no user pgd, and no page | 
|  | * structure to attach it to, so make sure we just set kernel | 
|  | * pgd. | 
|  | */ | 
|  | xen_mc_batch(); | 
|  | __xen_write_cr3(true, __pa(pgd)); | 
|  | xen_mc_issue(PARAVIRT_LAZY_CPU); | 
|  |  | 
|  | reserve_early(__pa(xen_start_info->pt_base), | 
|  | __pa(xen_start_info->pt_base + | 
|  | xen_start_info->nr_pt_frames * PAGE_SIZE), | 
|  | "XEN PAGETABLES"); | 
|  |  | 
|  | return pgd; | 
|  | } | 
|  | #else	/* !CONFIG_X86_64 */ | 
|  | static pmd_t level2_kernel_pgt[PTRS_PER_PMD] __page_aligned_bss; | 
|  |  | 
|  | static __init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd, | 
|  | unsigned long max_pfn) | 
|  | { | 
|  | pmd_t *kernel_pmd; | 
|  |  | 
|  | init_pg_tables_start = __pa(pgd); | 
|  | init_pg_tables_end = __pa(pgd) + xen_start_info->nr_pt_frames*PAGE_SIZE; | 
|  | max_pfn_mapped = PFN_DOWN(init_pg_tables_end + 512*1024); | 
|  |  | 
|  | kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd); | 
|  | memcpy(level2_kernel_pgt, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD); | 
|  |  | 
|  | xen_map_identity_early(level2_kernel_pgt, max_pfn); | 
|  |  | 
|  | memcpy(swapper_pg_dir, pgd, sizeof(pgd_t) * PTRS_PER_PGD); | 
|  | set_pgd(&swapper_pg_dir[KERNEL_PGD_BOUNDARY], | 
|  | __pgd(__pa(level2_kernel_pgt) | _PAGE_PRESENT)); | 
|  |  | 
|  | set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO); | 
|  | set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO); | 
|  | set_page_prot(empty_zero_page, PAGE_KERNEL_RO); | 
|  |  | 
|  | pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd))); | 
|  |  | 
|  | xen_write_cr3(__pa(swapper_pg_dir)); | 
|  |  | 
|  | pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(swapper_pg_dir))); | 
|  |  | 
|  | return swapper_pg_dir; | 
|  | } | 
|  | #endif	/* CONFIG_X86_64 */ | 
|  |  | 
|  | /* First C function to be called on Xen boot */ | 
|  | asmlinkage void __init xen_start_kernel(void) | 
|  | { | 
|  | pgd_t *pgd; | 
|  |  | 
|  | if (!xen_start_info) | 
|  | return; | 
|  |  | 
|  | xen_domain_type = XEN_PV_DOMAIN; | 
|  |  | 
|  | BUG_ON(memcmp(xen_start_info->magic, "xen-3", 5) != 0); | 
|  |  | 
|  | xen_setup_features(); | 
|  |  | 
|  | /* Install Xen paravirt ops */ | 
|  | pv_info = xen_info; | 
|  | pv_init_ops = xen_init_ops; | 
|  | pv_time_ops = xen_time_ops; | 
|  | pv_cpu_ops = xen_cpu_ops; | 
|  | pv_apic_ops = xen_apic_ops; | 
|  | pv_mmu_ops = xen_mmu_ops; | 
|  |  | 
|  | xen_init_irq_ops(); | 
|  |  | 
|  | #ifdef CONFIG_X86_LOCAL_APIC | 
|  | /* | 
|  | * set up the basic apic ops. | 
|  | */ | 
|  | apic_ops = &xen_basic_apic_ops; | 
|  | #endif | 
|  |  | 
|  | if (xen_feature(XENFEAT_mmu_pt_update_preserve_ad)) { | 
|  | pv_mmu_ops.ptep_modify_prot_start = xen_ptep_modify_prot_start; | 
|  | pv_mmu_ops.ptep_modify_prot_commit = xen_ptep_modify_prot_commit; | 
|  | } | 
|  |  | 
|  | machine_ops = xen_machine_ops; | 
|  |  | 
|  | #ifdef CONFIG_X86_64 | 
|  | /* Disable until direct per-cpu data access. */ | 
|  | have_vcpu_info_placement = 0; | 
|  | x86_64_init_pda(); | 
|  | #endif | 
|  |  | 
|  | xen_smp_init(); | 
|  |  | 
|  | /* Get mfn list */ | 
|  | if (!xen_feature(XENFEAT_auto_translated_physmap)) | 
|  | xen_build_dynamic_phys_to_machine(); | 
|  |  | 
|  | pgd = (pgd_t *)xen_start_info->pt_base; | 
|  |  | 
|  | /* Prevent unwanted bits from being set in PTEs. */ | 
|  | __supported_pte_mask &= ~_PAGE_GLOBAL; | 
|  | if (!xen_initial_domain()) | 
|  | __supported_pte_mask &= ~(_PAGE_PWT | _PAGE_PCD); | 
|  |  | 
|  | /* Don't do the full vcpu_info placement stuff until we have a | 
|  | possible map and a non-dummy shared_info. */ | 
|  | per_cpu(xen_vcpu, 0) = &HYPERVISOR_shared_info->vcpu_info[0]; | 
|  |  | 
|  | xen_raw_console_write("mapping kernel into physical memory\n"); | 
|  | pgd = xen_setup_kernel_pagetable(pgd, xen_start_info->nr_pages); | 
|  |  | 
|  | init_mm.pgd = pgd; | 
|  |  | 
|  | /* keep using Xen gdt for now; no urgent need to change it */ | 
|  |  | 
|  | pv_info.kernel_rpl = 1; | 
|  | if (xen_feature(XENFEAT_supervisor_mode_kernel)) | 
|  | pv_info.kernel_rpl = 0; | 
|  |  | 
|  | /* set the limit of our address space */ | 
|  | xen_reserve_top(); | 
|  |  | 
|  | #ifdef CONFIG_X86_32 | 
|  | /* set up basic CPUID stuff */ | 
|  | cpu_detect(&new_cpu_data); | 
|  | new_cpu_data.hard_math = 1; | 
|  | new_cpu_data.x86_capability[0] = cpuid_edx(1); | 
|  | #endif | 
|  |  | 
|  | /* Poke various useful things into boot_params */ | 
|  | boot_params.hdr.type_of_loader = (9 << 4) | 0; | 
|  | boot_params.hdr.ramdisk_image = xen_start_info->mod_start | 
|  | ? __pa(xen_start_info->mod_start) : 0; | 
|  | boot_params.hdr.ramdisk_size = xen_start_info->mod_len; | 
|  | boot_params.hdr.cmd_line_ptr = __pa(xen_start_info->cmd_line); | 
|  |  | 
|  | if (!xen_initial_domain()) { | 
|  | add_preferred_console("xenboot", 0, NULL); | 
|  | add_preferred_console("tty", 0, NULL); | 
|  | add_preferred_console("hvc", 0, NULL); | 
|  | } | 
|  |  | 
|  | xen_raw_console_write("about to get started...\n"); | 
|  |  | 
|  | /* Start the world */ | 
|  | #ifdef CONFIG_X86_32 | 
|  | i386_start_kernel(); | 
|  | #else | 
|  | x86_64_start_reservations((char *)__pa_symbol(&boot_params)); | 
|  | #endif | 
|  | } |