| /* | 
 |  *  Kernel Probes (KProbes) | 
 |  *  arch/i386/kernel/kprobes.c | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
 |  * | 
 |  * Copyright (C) IBM Corporation, 2002, 2004 | 
 |  * | 
 |  * 2002-Oct	Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel | 
 |  *		Probes initial implementation ( includes contributions from | 
 |  *		Rusty Russell). | 
 |  * 2004-July	Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes | 
 |  *		interface to access function arguments. | 
 |  * 2005-May	Hien Nguyen <hien@us.ibm.com>, Jim Keniston | 
 |  *		<jkenisto@us.ibm.com> and Prasanna S Panchamukhi | 
 |  *		<prasanna@in.ibm.com> added function-return probes. | 
 |  */ | 
 |  | 
 | #include <linux/kprobes.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/preempt.h> | 
 | #include <asm/cacheflush.h> | 
 | #include <asm/kdebug.h> | 
 | #include <asm/desc.h> | 
 | #include <asm/uaccess.h> | 
 |  | 
 | void jprobe_return_end(void); | 
 |  | 
 | DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; | 
 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
 |  | 
 | /* insert a jmp code */ | 
 | static __always_inline void set_jmp_op(void *from, void *to) | 
 | { | 
 | 	struct __arch_jmp_op { | 
 | 		char op; | 
 | 		long raddr; | 
 | 	} __attribute__((packed)) *jop; | 
 | 	jop = (struct __arch_jmp_op *)from; | 
 | 	jop->raddr = (long)(to) - ((long)(from) + 5); | 
 | 	jop->op = RELATIVEJUMP_INSTRUCTION; | 
 | } | 
 |  | 
 | /* | 
 |  * returns non-zero if opcodes can be boosted. | 
 |  */ | 
 | static __always_inline int can_boost(kprobe_opcode_t *opcodes) | 
 | { | 
 | #define W(row,b0,b1,b2,b3,b4,b5,b6,b7,b8,b9,ba,bb,bc,bd,be,bf)		      \ | 
 | 	(((b0##UL << 0x0)|(b1##UL << 0x1)|(b2##UL << 0x2)|(b3##UL << 0x3) |   \ | 
 | 	  (b4##UL << 0x4)|(b5##UL << 0x5)|(b6##UL << 0x6)|(b7##UL << 0x7) |   \ | 
 | 	  (b8##UL << 0x8)|(b9##UL << 0x9)|(ba##UL << 0xa)|(bb##UL << 0xb) |   \ | 
 | 	  (bc##UL << 0xc)|(bd##UL << 0xd)|(be##UL << 0xe)|(bf##UL << 0xf))    \ | 
 | 	 << (row % 32)) | 
 | 	/* | 
 | 	 * Undefined/reserved opcodes, conditional jump, Opcode Extension | 
 | 	 * Groups, and some special opcodes can not be boost. | 
 | 	 */ | 
 | 	static const unsigned long twobyte_is_boostable[256 / 32] = { | 
 | 		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */ | 
 | 		/*      -------------------------------         */ | 
 | 		W(0x00, 0,0,1,1,0,0,1,0,1,1,0,0,0,0,0,0)| /* 00 */ | 
 | 		W(0x10, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 10 */ | 
 | 		W(0x20, 1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0)| /* 20 */ | 
 | 		W(0x30, 0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 30 */ | 
 | 		W(0x40, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1)| /* 40 */ | 
 | 		W(0x50, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), /* 50 */ | 
 | 		W(0x60, 1,1,1,1,1,1,1,1,1,1,1,1,0,0,1,1)| /* 60 */ | 
 | 		W(0x70, 0,0,0,0,1,1,1,1,0,0,0,0,0,0,1,1), /* 70 */ | 
 | 		W(0x80, 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)| /* 80 */ | 
 | 		W(0x90, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1), /* 90 */ | 
 | 		W(0xa0, 1,1,0,1,1,1,0,0,1,1,0,1,1,1,0,1)| /* a0 */ | 
 | 		W(0xb0, 1,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1), /* b0 */ | 
 | 		W(0xc0, 1,1,0,0,0,0,0,0,1,1,1,1,1,1,1,1)| /* c0 */ | 
 | 		W(0xd0, 0,1,1,1,0,1,0,0,1,1,0,1,1,1,0,1), /* d0 */ | 
 | 		W(0xe0, 0,1,1,0,0,1,0,0,1,1,0,1,1,1,0,1)| /* e0 */ | 
 | 		W(0xf0, 0,1,1,1,0,1,0,0,1,1,1,0,1,1,1,0)  /* f0 */ | 
 | 		/*      -------------------------------         */ | 
 | 		/*      0 1 2 3 4 5 6 7 8 9 a b c d e f         */ | 
 | 	}; | 
 | #undef W | 
 | 	kprobe_opcode_t opcode; | 
 | 	kprobe_opcode_t *orig_opcodes = opcodes; | 
 | retry: | 
 | 	if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) | 
 | 		return 0; | 
 | 	opcode = *(opcodes++); | 
 |  | 
 | 	/* 2nd-byte opcode */ | 
 | 	if (opcode == 0x0f) { | 
 | 		if (opcodes - orig_opcodes > MAX_INSN_SIZE - 1) | 
 | 			return 0; | 
 | 		return test_bit(*opcodes, twobyte_is_boostable); | 
 | 	} | 
 |  | 
 | 	switch (opcode & 0xf0) { | 
 | 	case 0x60: | 
 | 		if (0x63 < opcode && opcode < 0x67) | 
 | 			goto retry; /* prefixes */ | 
 | 		/* can't boost Address-size override and bound */ | 
 | 		return (opcode != 0x62 && opcode != 0x67); | 
 | 	case 0x70: | 
 | 		return 0; /* can't boost conditional jump */ | 
 | 	case 0xc0: | 
 | 		/* can't boost software-interruptions */ | 
 | 		return (0xc1 < opcode && opcode < 0xcc) || opcode == 0xcf; | 
 | 	case 0xd0: | 
 | 		/* can boost AA* and XLAT */ | 
 | 		return (opcode == 0xd4 || opcode == 0xd5 || opcode == 0xd7); | 
 | 	case 0xe0: | 
 | 		/* can boost in/out and absolute jmps */ | 
 | 		return ((opcode & 0x04) || opcode == 0xea); | 
 | 	case 0xf0: | 
 | 		if ((opcode & 0x0c) == 0 && opcode != 0xf1) | 
 | 			goto retry; /* lock/rep(ne) prefix */ | 
 | 		/* clear and set flags can be boost */ | 
 | 		return (opcode == 0xf5 || (0xf7 < opcode && opcode < 0xfe)); | 
 | 	default: | 
 | 		if (opcode == 0x26 || opcode == 0x36 || opcode == 0x3e) | 
 | 			goto retry; /* prefixes */ | 
 | 		/* can't boost CS override and call */ | 
 | 		return (opcode != 0x2e && opcode != 0x9a); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * returns non-zero if opcode modifies the interrupt flag. | 
 |  */ | 
 | static int __kprobes is_IF_modifier(kprobe_opcode_t opcode) | 
 | { | 
 | 	switch (opcode) { | 
 | 	case 0xfa:		/* cli */ | 
 | 	case 0xfb:		/* sti */ | 
 | 	case 0xcf:		/* iret/iretd */ | 
 | 	case 0x9d:		/* popf/popfd */ | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
 | { | 
 | 	/* insn: must be on special executable page on i386. */ | 
 | 	p->ainsn.insn = get_insn_slot(); | 
 | 	if (!p->ainsn.insn) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t)); | 
 | 	p->opcode = *p->addr; | 
 | 	if (can_boost(p->addr)) { | 
 | 		p->ainsn.boostable = 0; | 
 | 	} else { | 
 | 		p->ainsn.boostable = -1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
 | { | 
 | 	*p->addr = BREAKPOINT_INSTRUCTION; | 
 | 	flush_icache_range((unsigned long) p->addr, | 
 | 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t)); | 
 | } | 
 |  | 
 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
 | { | 
 | 	*p->addr = p->opcode; | 
 | 	flush_icache_range((unsigned long) p->addr, | 
 | 			   (unsigned long) p->addr + sizeof(kprobe_opcode_t)); | 
 | } | 
 |  | 
 | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
 | { | 
 | 	mutex_lock(&kprobe_mutex); | 
 | 	free_insn_slot(p->ainsn.insn, (p->ainsn.boostable == 1)); | 
 | 	mutex_unlock(&kprobe_mutex); | 
 | } | 
 |  | 
 | static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	kcb->prev_kprobe.kp = kprobe_running(); | 
 | 	kcb->prev_kprobe.status = kcb->kprobe_status; | 
 | 	kcb->prev_kprobe.old_eflags = kcb->kprobe_old_eflags; | 
 | 	kcb->prev_kprobe.saved_eflags = kcb->kprobe_saved_eflags; | 
 | } | 
 |  | 
 | static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | 
 | 	kcb->kprobe_status = kcb->prev_kprobe.status; | 
 | 	kcb->kprobe_old_eflags = kcb->prev_kprobe.old_eflags; | 
 | 	kcb->kprobe_saved_eflags = kcb->prev_kprobe.saved_eflags; | 
 | } | 
 |  | 
 | static void __kprobes set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
 | 				struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	__get_cpu_var(current_kprobe) = p; | 
 | 	kcb->kprobe_saved_eflags = kcb->kprobe_old_eflags | 
 | 		= (regs->eflags & (TF_MASK | IF_MASK)); | 
 | 	if (is_IF_modifier(p->opcode)) | 
 | 		kcb->kprobe_saved_eflags &= ~IF_MASK; | 
 | } | 
 |  | 
 | static void __kprobes prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	regs->eflags |= TF_MASK; | 
 | 	regs->eflags &= ~IF_MASK; | 
 | 	/*single step inline if the instruction is an int3*/ | 
 | 	if (p->opcode == BREAKPOINT_INSTRUCTION) | 
 | 		regs->eip = (unsigned long)p->addr; | 
 | 	else | 
 | 		regs->eip = (unsigned long)p->ainsn.insn; | 
 | } | 
 |  | 
 | /* Called with kretprobe_lock held */ | 
 | void __kprobes arch_prepare_kretprobe(struct kretprobe *rp, | 
 | 				      struct pt_regs *regs) | 
 | { | 
 | 	unsigned long *sara = (unsigned long *)®s->esp; | 
 |  | 
 | 	struct kretprobe_instance *ri; | 
 |  | 
 | 	if ((ri = get_free_rp_inst(rp)) != NULL) { | 
 | 		ri->rp = rp; | 
 | 		ri->task = current; | 
 | 		ri->ret_addr = (kprobe_opcode_t *) *sara; | 
 |  | 
 | 		/* Replace the return addr with trampoline addr */ | 
 | 		*sara = (unsigned long) &kretprobe_trampoline; | 
 | 		add_rp_inst(ri); | 
 | 	} else { | 
 | 		rp->nmissed++; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupts are disabled on entry as trap3 is an interrupt gate and they | 
 |  * remain disabled thorough out this function. | 
 |  */ | 
 | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *p; | 
 | 	int ret = 0; | 
 | 	kprobe_opcode_t *addr; | 
 | 	struct kprobe_ctlblk *kcb; | 
 |  | 
 | 	addr = (kprobe_opcode_t *)(regs->eip - sizeof(kprobe_opcode_t)); | 
 |  | 
 | 	/* | 
 | 	 * We don't want to be preempted for the entire | 
 | 	 * duration of kprobe processing | 
 | 	 */ | 
 | 	preempt_disable(); | 
 | 	kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	/* Check we're not actually recursing */ | 
 | 	if (kprobe_running()) { | 
 | 		p = get_kprobe(addr); | 
 | 		if (p) { | 
 | 			if (kcb->kprobe_status == KPROBE_HIT_SS && | 
 | 				*p->ainsn.insn == BREAKPOINT_INSTRUCTION) { | 
 | 				regs->eflags &= ~TF_MASK; | 
 | 				regs->eflags |= kcb->kprobe_saved_eflags; | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			/* We have reentered the kprobe_handler(), since | 
 | 			 * another probe was hit while within the handler. | 
 | 			 * We here save the original kprobes variables and | 
 | 			 * just single step on the instruction of the new probe | 
 | 			 * without calling any user handlers. | 
 | 			 */ | 
 | 			save_previous_kprobe(kcb); | 
 | 			set_current_kprobe(p, regs, kcb); | 
 | 			kprobes_inc_nmissed_count(p); | 
 | 			prepare_singlestep(p, regs); | 
 | 			kcb->kprobe_status = KPROBE_REENTER; | 
 | 			return 1; | 
 | 		} else { | 
 | 			if (*addr != BREAKPOINT_INSTRUCTION) { | 
 | 			/* The breakpoint instruction was removed by | 
 | 			 * another cpu right after we hit, no further | 
 | 			 * handling of this interrupt is appropriate | 
 | 			 */ | 
 | 				regs->eip -= sizeof(kprobe_opcode_t); | 
 | 				ret = 1; | 
 | 				goto no_kprobe; | 
 | 			} | 
 | 			p = __get_cpu_var(current_kprobe); | 
 | 			if (p->break_handler && p->break_handler(p, regs)) { | 
 | 				goto ss_probe; | 
 | 			} | 
 | 		} | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	p = get_kprobe(addr); | 
 | 	if (!p) { | 
 | 		if (*addr != BREAKPOINT_INSTRUCTION) { | 
 | 			/* | 
 | 			 * The breakpoint instruction was removed right | 
 | 			 * after we hit it.  Another cpu has removed | 
 | 			 * either a probepoint or a debugger breakpoint | 
 | 			 * at this address.  In either case, no further | 
 | 			 * handling of this interrupt is appropriate. | 
 | 			 * Back up over the (now missing) int3 and run | 
 | 			 * the original instruction. | 
 | 			 */ | 
 | 			regs->eip -= sizeof(kprobe_opcode_t); | 
 | 			ret = 1; | 
 | 		} | 
 | 		/* Not one of ours: let kernel handle it */ | 
 | 		goto no_kprobe; | 
 | 	} | 
 |  | 
 | 	set_current_kprobe(p, regs, kcb); | 
 | 	kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
 |  | 
 | 	if (p->pre_handler && p->pre_handler(p, regs)) | 
 | 		/* handler has already set things up, so skip ss setup */ | 
 | 		return 1; | 
 |  | 
 | ss_probe: | 
 | #if !defined(CONFIG_PREEMPT) || defined(CONFIG_PM) | 
 | 	if (p->ainsn.boostable == 1 && !p->post_handler){ | 
 | 		/* Boost up -- we can execute copied instructions directly */ | 
 | 		reset_current_kprobe(); | 
 | 		regs->eip = (unsigned long)p->ainsn.insn; | 
 | 		preempt_enable_no_resched(); | 
 | 		return 1; | 
 | 	} | 
 | #endif | 
 | 	prepare_singlestep(p, regs); | 
 | 	kcb->kprobe_status = KPROBE_HIT_SS; | 
 | 	return 1; | 
 |  | 
 | no_kprobe: | 
 | 	preempt_enable_no_resched(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * For function-return probes, init_kprobes() establishes a probepoint | 
 |  * here. When a retprobed function returns, this probe is hit and | 
 |  * trampoline_probe_handler() runs, calling the kretprobe's handler. | 
 |  */ | 
 |  void __kprobes kretprobe_trampoline_holder(void) | 
 |  { | 
 | 	asm volatile ( ".global kretprobe_trampoline\n" | 
 | 			"kretprobe_trampoline: \n" | 
 | 			"	pushf\n" | 
 | 			/* skip cs, eip, orig_eax */ | 
 | 			"	subl $12, %esp\n" | 
 | 			"	pushl %gs\n" | 
 | 			"	pushl %ds\n" | 
 | 			"	pushl %es\n" | 
 | 			"	pushl %eax\n" | 
 | 			"	pushl %ebp\n" | 
 | 			"	pushl %edi\n" | 
 | 			"	pushl %esi\n" | 
 | 			"	pushl %edx\n" | 
 | 			"	pushl %ecx\n" | 
 | 			"	pushl %ebx\n" | 
 | 			"	movl %esp, %eax\n" | 
 | 			"	call trampoline_handler\n" | 
 | 			/* move eflags to cs */ | 
 | 			"	movl 52(%esp), %edx\n" | 
 | 			"	movl %edx, 48(%esp)\n" | 
 | 			/* save true return address on eflags */ | 
 | 			"	movl %eax, 52(%esp)\n" | 
 | 			"	popl %ebx\n" | 
 | 			"	popl %ecx\n" | 
 | 			"	popl %edx\n" | 
 | 			"	popl %esi\n" | 
 | 			"	popl %edi\n" | 
 | 			"	popl %ebp\n" | 
 | 			"	popl %eax\n" | 
 | 			/* skip eip, orig_eax, es, ds, gs */ | 
 | 			"	addl $20, %esp\n" | 
 | 			"	popf\n" | 
 | 			"	ret\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * Called from kretprobe_trampoline | 
 |  */ | 
 | fastcall void *__kprobes trampoline_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kretprobe_instance *ri = NULL; | 
 | 	struct hlist_head *head, empty_rp; | 
 | 	struct hlist_node *node, *tmp; | 
 | 	unsigned long flags, orig_ret_address = 0; | 
 | 	unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline; | 
 |  | 
 | 	INIT_HLIST_HEAD(&empty_rp); | 
 | 	spin_lock_irqsave(&kretprobe_lock, flags); | 
 | 	head = kretprobe_inst_table_head(current); | 
 | 	/* fixup registers */ | 
 | 	regs->xcs = __KERNEL_CS; | 
 | 	regs->eip = trampoline_address; | 
 | 	regs->orig_eax = 0xffffffff; | 
 |  | 
 | 	/* | 
 | 	 * It is possible to have multiple instances associated with a given | 
 | 	 * task either because an multiple functions in the call path | 
 | 	 * have a return probe installed on them, and/or more then one return | 
 | 	 * return probe was registered for a target function. | 
 | 	 * | 
 | 	 * We can handle this because: | 
 | 	 *     - instances are always inserted at the head of the list | 
 | 	 *     - when multiple return probes are registered for the same | 
 | 	 *       function, the first instance's ret_addr will point to the | 
 | 	 *       real return address, and all the rest will point to | 
 | 	 *       kretprobe_trampoline | 
 | 	 */ | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
 | 		if (ri->task != current) | 
 | 			/* another task is sharing our hash bucket */ | 
 | 			continue; | 
 |  | 
 | 		if (ri->rp && ri->rp->handler){ | 
 | 			__get_cpu_var(current_kprobe) = &ri->rp->kp; | 
 | 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; | 
 | 			ri->rp->handler(ri, regs); | 
 | 			__get_cpu_var(current_kprobe) = NULL; | 
 | 		} | 
 |  | 
 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 		recycle_rp_inst(ri, &empty_rp); | 
 |  | 
 | 		if (orig_ret_address != trampoline_address) | 
 | 			/* | 
 | 			 * This is the real return address. Any other | 
 | 			 * instances associated with this task are for | 
 | 			 * other calls deeper on the call stack | 
 | 			 */ | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address)); | 
 |  | 
 | 	spin_unlock_irqrestore(&kretprobe_lock, flags); | 
 |  | 
 | 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | 
 | 		hlist_del(&ri->hlist); | 
 | 		kfree(ri); | 
 | 	} | 
 | 	return (void*)orig_ret_address; | 
 | } | 
 |  | 
 | /* | 
 |  * Called after single-stepping.  p->addr is the address of the | 
 |  * instruction whose first byte has been replaced by the "int 3" | 
 |  * instruction.  To avoid the SMP problems that can occur when we | 
 |  * temporarily put back the original opcode to single-step, we | 
 |  * single-stepped a copy of the instruction.  The address of this | 
 |  * copy is p->ainsn.insn. | 
 |  * | 
 |  * This function prepares to return from the post-single-step | 
 |  * interrupt.  We have to fix up the stack as follows: | 
 |  * | 
 |  * 0) Except in the case of absolute or indirect jump or call instructions, | 
 |  * the new eip is relative to the copied instruction.  We need to make | 
 |  * it relative to the original instruction. | 
 |  * | 
 |  * 1) If the single-stepped instruction was pushfl, then the TF and IF | 
 |  * flags are set in the just-pushed eflags, and may need to be cleared. | 
 |  * | 
 |  * 2) If the single-stepped instruction was a call, the return address | 
 |  * that is atop the stack is the address following the copied instruction. | 
 |  * We need to make it the address following the original instruction. | 
 |  * | 
 |  * This function also checks instruction size for preparing direct execution. | 
 |  */ | 
 | static void __kprobes resume_execution(struct kprobe *p, | 
 | 		struct pt_regs *regs, struct kprobe_ctlblk *kcb) | 
 | { | 
 | 	unsigned long *tos = (unsigned long *)®s->esp; | 
 | 	unsigned long copy_eip = (unsigned long)p->ainsn.insn; | 
 | 	unsigned long orig_eip = (unsigned long)p->addr; | 
 |  | 
 | 	regs->eflags &= ~TF_MASK; | 
 | 	switch (p->ainsn.insn[0]) { | 
 | 	case 0x9c:		/* pushfl */ | 
 | 		*tos &= ~(TF_MASK | IF_MASK); | 
 | 		*tos |= kcb->kprobe_old_eflags; | 
 | 		break; | 
 | 	case 0xc2:		/* iret/ret/lret */ | 
 | 	case 0xc3: | 
 | 	case 0xca: | 
 | 	case 0xcb: | 
 | 	case 0xcf: | 
 | 	case 0xea:		/* jmp absolute -- eip is correct */ | 
 | 		/* eip is already adjusted, no more changes required */ | 
 | 		p->ainsn.boostable = 1; | 
 | 		goto no_change; | 
 | 	case 0xe8:		/* call relative - Fix return addr */ | 
 | 		*tos = orig_eip + (*tos - copy_eip); | 
 | 		break; | 
 | 	case 0x9a:		/* call absolute -- same as call absolute, indirect */ | 
 | 		*tos = orig_eip + (*tos - copy_eip); | 
 | 		goto no_change; | 
 | 	case 0xff: | 
 | 		if ((p->ainsn.insn[1] & 0x30) == 0x10) { | 
 | 			/* | 
 | 			 * call absolute, indirect | 
 | 			 * Fix return addr; eip is correct. | 
 | 			 * But this is not boostable | 
 | 			 */ | 
 | 			*tos = orig_eip + (*tos - copy_eip); | 
 | 			goto no_change; | 
 | 		} else if (((p->ainsn.insn[1] & 0x31) == 0x20) ||	/* jmp near, absolute indirect */ | 
 | 			   ((p->ainsn.insn[1] & 0x31) == 0x21)) {	/* jmp far, absolute indirect */ | 
 | 			/* eip is correct. And this is boostable */ | 
 | 			p->ainsn.boostable = 1; | 
 | 			goto no_change; | 
 | 		} | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	if (p->ainsn.boostable == 0) { | 
 | 		if ((regs->eip > copy_eip) && | 
 | 		    (regs->eip - copy_eip) + 5 < MAX_INSN_SIZE) { | 
 | 			/* | 
 | 			 * These instructions can be executed directly if it | 
 | 			 * jumps back to correct address. | 
 | 			 */ | 
 | 			set_jmp_op((void *)regs->eip, | 
 | 				   (void *)orig_eip + (regs->eip - copy_eip)); | 
 | 			p->ainsn.boostable = 1; | 
 | 		} else { | 
 | 			p->ainsn.boostable = -1; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	regs->eip = orig_eip + (regs->eip - copy_eip); | 
 |  | 
 | no_change: | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupts are disabled on entry as trap1 is an interrupt gate and they | 
 |  * remain disabled thoroughout this function. | 
 |  */ | 
 | static int __kprobes post_kprobe_handler(struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	if (!cur) | 
 | 		return 0; | 
 |  | 
 | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
 | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
 | 		cur->post_handler(cur, regs, 0); | 
 | 	} | 
 |  | 
 | 	resume_execution(cur, regs, kcb); | 
 | 	regs->eflags |= kcb->kprobe_saved_eflags; | 
 |  | 
 | 	/*Restore back the original saved kprobes variables and continue. */ | 
 | 	if (kcb->kprobe_status == KPROBE_REENTER) { | 
 | 		restore_previous_kprobe(kcb); | 
 | 		goto out; | 
 | 	} | 
 | 	reset_current_kprobe(); | 
 | out: | 
 | 	preempt_enable_no_resched(); | 
 |  | 
 | 	/* | 
 | 	 * if somebody else is singlestepping across a probe point, eflags | 
 | 	 * will have TF set, in which case, continue the remaining processing | 
 | 	 * of do_debug, as if this is not a probe hit. | 
 | 	 */ | 
 | 	if (regs->eflags & TF_MASK) | 
 | 		return 0; | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int __kprobes kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
 | { | 
 | 	struct kprobe *cur = kprobe_running(); | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	switch(kcb->kprobe_status) { | 
 | 	case KPROBE_HIT_SS: | 
 | 	case KPROBE_REENTER: | 
 | 		/* | 
 | 		 * We are here because the instruction being single | 
 | 		 * stepped caused a page fault. We reset the current | 
 | 		 * kprobe and the eip points back to the probe address | 
 | 		 * and allow the page fault handler to continue as a | 
 | 		 * normal page fault. | 
 | 		 */ | 
 | 		regs->eip = (unsigned long)cur->addr; | 
 | 		regs->eflags |= kcb->kprobe_old_eflags; | 
 | 		if (kcb->kprobe_status == KPROBE_REENTER) | 
 | 			restore_previous_kprobe(kcb); | 
 | 		else | 
 | 			reset_current_kprobe(); | 
 | 		preempt_enable_no_resched(); | 
 | 		break; | 
 | 	case KPROBE_HIT_ACTIVE: | 
 | 	case KPROBE_HIT_SSDONE: | 
 | 		/* | 
 | 		 * We increment the nmissed count for accounting, | 
 | 		 * we can also use npre/npostfault count for accouting | 
 | 		 * these specific fault cases. | 
 | 		 */ | 
 | 		kprobes_inc_nmissed_count(cur); | 
 |  | 
 | 		/* | 
 | 		 * We come here because instructions in the pre/post | 
 | 		 * handler caused the page_fault, this could happen | 
 | 		 * if handler tries to access user space by | 
 | 		 * copy_from_user(), get_user() etc. Let the | 
 | 		 * user-specified handler try to fix it first. | 
 | 		 */ | 
 | 		if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * In case the user-specified fault handler returned | 
 | 		 * zero, try to fix up. | 
 | 		 */ | 
 | 		if (fixup_exception(regs)) | 
 | 			return 1; | 
 |  | 
 | 		/* | 
 | 		 * fixup_exception() could not handle it, | 
 | 		 * Let do_page_fault() fix it. | 
 | 		 */ | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Wrapper routine to for handling exceptions. | 
 |  */ | 
 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
 | 				       unsigned long val, void *data) | 
 | { | 
 | 	struct die_args *args = (struct die_args *)data; | 
 | 	int ret = NOTIFY_DONE; | 
 |  | 
 | 	if (args->regs && user_mode_vm(args->regs)) | 
 | 		return ret; | 
 |  | 
 | 	switch (val) { | 
 | 	case DIE_INT3: | 
 | 		if (kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_DEBUG: | 
 | 		if (post_kprobe_handler(args->regs)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		break; | 
 | 	case DIE_GPF: | 
 | 	case DIE_PAGE_FAULT: | 
 | 		/* kprobe_running() needs smp_processor_id() */ | 
 | 		preempt_disable(); | 
 | 		if (kprobe_running() && | 
 | 		    kprobe_fault_handler(args->regs, args->trapnr)) | 
 | 			ret = NOTIFY_STOP; | 
 | 		preempt_enable(); | 
 | 		break; | 
 | 	default: | 
 | 		break; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 | 	unsigned long addr; | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	kcb->jprobe_saved_regs = *regs; | 
 | 	kcb->jprobe_saved_esp = ®s->esp; | 
 | 	addr = (unsigned long)(kcb->jprobe_saved_esp); | 
 |  | 
 | 	/* | 
 | 	 * TBD: As Linus pointed out, gcc assumes that the callee | 
 | 	 * owns the argument space and could overwrite it, e.g. | 
 | 	 * tailcall optimization. So, to be absolutely safe | 
 | 	 * we also save and restore enough stack bytes to cover | 
 | 	 * the argument area. | 
 | 	 */ | 
 | 	memcpy(kcb->jprobes_stack, (kprobe_opcode_t *)addr, | 
 | 			MIN_STACK_SIZE(addr)); | 
 | 	regs->eflags &= ~IF_MASK; | 
 | 	regs->eip = (unsigned long)(jp->entry); | 
 | 	return 1; | 
 | } | 
 |  | 
 | void __kprobes jprobe_return(void) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 |  | 
 | 	asm volatile ("       xchgl   %%ebx,%%esp     \n" | 
 | 		      "       int3			\n" | 
 | 		      "       .globl jprobe_return_end	\n" | 
 | 		      "       jprobe_return_end:	\n" | 
 | 		      "       nop			\n"::"b" | 
 | 		      (kcb->jprobe_saved_esp):"memory"); | 
 | } | 
 |  | 
 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
 | { | 
 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 	u8 *addr = (u8 *) (regs->eip - 1); | 
 | 	unsigned long stack_addr = (unsigned long)(kcb->jprobe_saved_esp); | 
 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 |  | 
 | 	if ((addr > (u8 *) jprobe_return) && (addr < (u8 *) jprobe_return_end)) { | 
 | 		if (®s->esp != kcb->jprobe_saved_esp) { | 
 | 			struct pt_regs *saved_regs = | 
 | 			    container_of(kcb->jprobe_saved_esp, | 
 | 					    struct pt_regs, esp); | 
 | 			printk("current esp %p does not match saved esp %p\n", | 
 | 			       ®s->esp, kcb->jprobe_saved_esp); | 
 | 			printk("Saved registers for jprobe %p\n", jp); | 
 | 			show_registers(saved_regs); | 
 | 			printk("Current registers\n"); | 
 | 			show_registers(regs); | 
 | 			BUG(); | 
 | 		} | 
 | 		*regs = kcb->jprobe_saved_regs; | 
 | 		memcpy((kprobe_opcode_t *) stack_addr, kcb->jprobes_stack, | 
 | 		       MIN_STACK_SIZE(stack_addr)); | 
 | 		preempt_enable_no_resched(); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | int __init arch_init_kprobes(void) | 
 | { | 
 | 	return 0; | 
 | } |