| /* mpihelp-mul.c  -  MPI helper functions | 
 |  * Copyright (C) 1994, 1996, 1998, 1999, | 
 |  *               2000 Free Software Foundation, Inc. | 
 |  * | 
 |  * This file is part of GnuPG. | 
 |  * | 
 |  * GnuPG is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * GnuPG is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA | 
 |  * | 
 |  * Note: This code is heavily based on the GNU MP Library. | 
 |  *	 Actually it's the same code with only minor changes in the | 
 |  *	 way the data is stored; this is to support the abstraction | 
 |  *	 of an optional secure memory allocation which may be used | 
 |  *	 to avoid revealing of sensitive data due to paging etc. | 
 |  *	 The GNU MP Library itself is published under the LGPL; | 
 |  *	 however I decided to publish this code under the plain GPL. | 
 |  */ | 
 |  | 
 | #include <linux/string.h> | 
 | #include "mpi-internal.h" | 
 | #include "longlong.h" | 
 |  | 
 | #define MPN_MUL_N_RECURSE(prodp, up, vp, size, tspace)		\ | 
 | 	do {							\ | 
 | 		if ((size) < KARATSUBA_THRESHOLD)		\ | 
 | 			mul_n_basecase(prodp, up, vp, size);	\ | 
 | 		else						\ | 
 | 			mul_n(prodp, up, vp, size, tspace);	\ | 
 | 	} while (0); | 
 |  | 
 | #define MPN_SQR_N_RECURSE(prodp, up, size, tspace)		\ | 
 | 	do {							\ | 
 | 		if ((size) < KARATSUBA_THRESHOLD)		\ | 
 | 			mpih_sqr_n_basecase(prodp, up, size);	\ | 
 | 		else						\ | 
 | 			mpih_sqr_n(prodp, up, size, tspace);	\ | 
 | 	} while (0); | 
 |  | 
 | /* Multiply the natural numbers u (pointed to by UP) and v (pointed to by VP), | 
 |  * both with SIZE limbs, and store the result at PRODP.  2 * SIZE limbs are | 
 |  * always stored.  Return the most significant limb. | 
 |  * | 
 |  * Argument constraints: | 
 |  * 1. PRODP != UP and PRODP != VP, i.e. the destination | 
 |  *    must be distinct from the multiplier and the multiplicand. | 
 |  * | 
 |  * | 
 |  * Handle simple cases with traditional multiplication. | 
 |  * | 
 |  * This is the most critical code of multiplication.  All multiplies rely | 
 |  * on this, both small and huge.  Small ones arrive here immediately.  Huge | 
 |  * ones arrive here as this is the base case for Karatsuba's recursive | 
 |  * algorithm below. | 
 |  */ | 
 |  | 
 | static mpi_limb_t | 
 | mul_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, mpi_size_t size) | 
 | { | 
 | 	mpi_size_t i; | 
 | 	mpi_limb_t cy; | 
 | 	mpi_limb_t v_limb; | 
 |  | 
 | 	/* Multiply by the first limb in V separately, as the result can be | 
 | 	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
 | 	v_limb = vp[0]; | 
 | 	if (v_limb <= 1) { | 
 | 		if (v_limb == 1) | 
 | 			MPN_COPY(prodp, up, size); | 
 | 		else | 
 | 			MPN_ZERO(prodp, size); | 
 | 		cy = 0; | 
 | 	} else | 
 | 		cy = mpihelp_mul_1(prodp, up, size, v_limb); | 
 |  | 
 | 	prodp[size] = cy; | 
 | 	prodp++; | 
 |  | 
 | 	/* For each iteration in the outer loop, multiply one limb from | 
 | 	 * U with one limb from V, and add it to PROD.  */ | 
 | 	for (i = 1; i < size; i++) { | 
 | 		v_limb = vp[i]; | 
 | 		if (v_limb <= 1) { | 
 | 			cy = 0; | 
 | 			if (v_limb == 1) | 
 | 				cy = mpihelp_add_n(prodp, prodp, up, size); | 
 | 		} else | 
 | 			cy = mpihelp_addmul_1(prodp, up, size, v_limb); | 
 |  | 
 | 		prodp[size] = cy; | 
 | 		prodp++; | 
 | 	} | 
 |  | 
 | 	return cy; | 
 | } | 
 |  | 
 | static void | 
 | mul_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_ptr_t vp, | 
 | 		mpi_size_t size, mpi_ptr_t tspace) | 
 | { | 
 | 	if (size & 1) { | 
 | 		/* The size is odd, and the code below doesn't handle that. | 
 | 		 * Multiply the least significant (size - 1) limbs with a recursive | 
 | 		 * call, and handle the most significant limb of S1 and S2 | 
 | 		 * separately. | 
 | 		 * A slightly faster way to do this would be to make the Karatsuba | 
 | 		 * code below behave as if the size were even, and let it check for | 
 | 		 * odd size in the end.  I.e., in essence move this code to the end. | 
 | 		 * Doing so would save us a recursive call, and potentially make the | 
 | 		 * stack grow a lot less. | 
 | 		 */ | 
 | 		mpi_size_t esize = size - 1;	/* even size */ | 
 | 		mpi_limb_t cy_limb; | 
 |  | 
 | 		MPN_MUL_N_RECURSE(prodp, up, vp, esize, tspace); | 
 | 		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, vp[esize]); | 
 | 		prodp[esize + esize] = cy_limb; | 
 | 		cy_limb = mpihelp_addmul_1(prodp + esize, vp, size, up[esize]); | 
 | 		prodp[esize + size] = cy_limb; | 
 | 	} else { | 
 | 		/* Anatolij Alekseevich Karatsuba's divide-and-conquer algorithm. | 
 | 		 * | 
 | 		 * Split U in two pieces, U1 and U0, such that | 
 | 		 * U = U0 + U1*(B**n), | 
 | 		 * and V in V1 and V0, such that | 
 | 		 * V = V0 + V1*(B**n). | 
 | 		 * | 
 | 		 * UV is then computed recursively using the identity | 
 | 		 * | 
 | 		 *        2n   n          n                     n | 
 | 		 * UV = (B  + B )U V  +  B (U -U )(V -V )  +  (B + 1)U V | 
 | 		 *                1 1        1  0   0  1              0 0 | 
 | 		 * | 
 | 		 * Where B = 2**BITS_PER_MP_LIMB. | 
 | 		 */ | 
 | 		mpi_size_t hsize = size >> 1; | 
 | 		mpi_limb_t cy; | 
 | 		int negflg; | 
 |  | 
 | 		/* Product H.      ________________  ________________ | 
 | 		 *                |_____U1 x V1____||____U0 x V0_____| | 
 | 		 * Put result in upper part of PROD and pass low part of TSPACE | 
 | 		 * as new TSPACE. | 
 | 		 */ | 
 | 		MPN_MUL_N_RECURSE(prodp + size, up + hsize, vp + hsize, hsize, | 
 | 				  tspace); | 
 |  | 
 | 		/* Product M.      ________________ | 
 | 		 *                |_(U1-U0)(V0-V1)_| | 
 | 		 */ | 
 | 		if (mpihelp_cmp(up + hsize, up, hsize) >= 0) { | 
 | 			mpihelp_sub_n(prodp, up + hsize, up, hsize); | 
 | 			negflg = 0; | 
 | 		} else { | 
 | 			mpihelp_sub_n(prodp, up, up + hsize, hsize); | 
 | 			negflg = 1; | 
 | 		} | 
 | 		if (mpihelp_cmp(vp + hsize, vp, hsize) >= 0) { | 
 | 			mpihelp_sub_n(prodp + hsize, vp + hsize, vp, hsize); | 
 | 			negflg ^= 1; | 
 | 		} else { | 
 | 			mpihelp_sub_n(prodp + hsize, vp, vp + hsize, hsize); | 
 | 			/* No change of NEGFLG.  */ | 
 | 		} | 
 | 		/* Read temporary operands from low part of PROD. | 
 | 		 * Put result in low part of TSPACE using upper part of TSPACE | 
 | 		 * as new TSPACE. | 
 | 		 */ | 
 | 		MPN_MUL_N_RECURSE(tspace, prodp, prodp + hsize, hsize, | 
 | 				  tspace + size); | 
 |  | 
 | 		/* Add/copy product H. */ | 
 | 		MPN_COPY(prodp + hsize, prodp + size, hsize); | 
 | 		cy = mpihelp_add_n(prodp + size, prodp + size, | 
 | 				   prodp + size + hsize, hsize); | 
 |  | 
 | 		/* Add product M (if NEGFLG M is a negative number) */ | 
 | 		if (negflg) | 
 | 			cy -= | 
 | 			    mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, | 
 | 					  size); | 
 | 		else | 
 | 			cy += | 
 | 			    mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, | 
 | 					  size); | 
 |  | 
 | 		/* Product L.      ________________  ________________ | 
 | 		 *                |________________||____U0 x V0_____| | 
 | 		 * Read temporary operands from low part of PROD. | 
 | 		 * Put result in low part of TSPACE using upper part of TSPACE | 
 | 		 * as new TSPACE. | 
 | 		 */ | 
 | 		MPN_MUL_N_RECURSE(tspace, up, vp, hsize, tspace + size); | 
 |  | 
 | 		/* Add/copy Product L (twice) */ | 
 |  | 
 | 		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); | 
 | 		if (cy) | 
 | 			mpihelp_add_1(prodp + hsize + size, | 
 | 				      prodp + hsize + size, hsize, cy); | 
 |  | 
 | 		MPN_COPY(prodp, tspace, hsize); | 
 | 		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, | 
 | 				   hsize); | 
 | 		if (cy) | 
 | 			mpihelp_add_1(prodp + size, prodp + size, size, 1); | 
 | 	} | 
 | } | 
 |  | 
 | void mpih_sqr_n_basecase(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size) | 
 | { | 
 | 	mpi_size_t i; | 
 | 	mpi_limb_t cy_limb; | 
 | 	mpi_limb_t v_limb; | 
 |  | 
 | 	/* Multiply by the first limb in V separately, as the result can be | 
 | 	 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
 | 	v_limb = up[0]; | 
 | 	if (v_limb <= 1) { | 
 | 		if (v_limb == 1) | 
 | 			MPN_COPY(prodp, up, size); | 
 | 		else | 
 | 			MPN_ZERO(prodp, size); | 
 | 		cy_limb = 0; | 
 | 	} else | 
 | 		cy_limb = mpihelp_mul_1(prodp, up, size, v_limb); | 
 |  | 
 | 	prodp[size] = cy_limb; | 
 | 	prodp++; | 
 |  | 
 | 	/* For each iteration in the outer loop, multiply one limb from | 
 | 	 * U with one limb from V, and add it to PROD.  */ | 
 | 	for (i = 1; i < size; i++) { | 
 | 		v_limb = up[i]; | 
 | 		if (v_limb <= 1) { | 
 | 			cy_limb = 0; | 
 | 			if (v_limb == 1) | 
 | 				cy_limb = mpihelp_add_n(prodp, prodp, up, size); | 
 | 		} else | 
 | 			cy_limb = mpihelp_addmul_1(prodp, up, size, v_limb); | 
 |  | 
 | 		prodp[size] = cy_limb; | 
 | 		prodp++; | 
 | 	} | 
 | } | 
 |  | 
 | void | 
 | mpih_sqr_n(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t size, mpi_ptr_t tspace) | 
 | { | 
 | 	if (size & 1) { | 
 | 		/* The size is odd, and the code below doesn't handle that. | 
 | 		 * Multiply the least significant (size - 1) limbs with a recursive | 
 | 		 * call, and handle the most significant limb of S1 and S2 | 
 | 		 * separately. | 
 | 		 * A slightly faster way to do this would be to make the Karatsuba | 
 | 		 * code below behave as if the size were even, and let it check for | 
 | 		 * odd size in the end.  I.e., in essence move this code to the end. | 
 | 		 * Doing so would save us a recursive call, and potentially make the | 
 | 		 * stack grow a lot less. | 
 | 		 */ | 
 | 		mpi_size_t esize = size - 1;	/* even size */ | 
 | 		mpi_limb_t cy_limb; | 
 |  | 
 | 		MPN_SQR_N_RECURSE(prodp, up, esize, tspace); | 
 | 		cy_limb = mpihelp_addmul_1(prodp + esize, up, esize, up[esize]); | 
 | 		prodp[esize + esize] = cy_limb; | 
 | 		cy_limb = mpihelp_addmul_1(prodp + esize, up, size, up[esize]); | 
 |  | 
 | 		prodp[esize + size] = cy_limb; | 
 | 	} else { | 
 | 		mpi_size_t hsize = size >> 1; | 
 | 		mpi_limb_t cy; | 
 |  | 
 | 		/* Product H.      ________________  ________________ | 
 | 		 *                |_____U1 x U1____||____U0 x U0_____| | 
 | 		 * Put result in upper part of PROD and pass low part of TSPACE | 
 | 		 * as new TSPACE. | 
 | 		 */ | 
 | 		MPN_SQR_N_RECURSE(prodp + size, up + hsize, hsize, tspace); | 
 |  | 
 | 		/* Product M.      ________________ | 
 | 		 *                |_(U1-U0)(U0-U1)_| | 
 | 		 */ | 
 | 		if (mpihelp_cmp(up + hsize, up, hsize) >= 0) | 
 | 			mpihelp_sub_n(prodp, up + hsize, up, hsize); | 
 | 		else | 
 | 			mpihelp_sub_n(prodp, up, up + hsize, hsize); | 
 |  | 
 | 		/* Read temporary operands from low part of PROD. | 
 | 		 * Put result in low part of TSPACE using upper part of TSPACE | 
 | 		 * as new TSPACE.  */ | 
 | 		MPN_SQR_N_RECURSE(tspace, prodp, hsize, tspace + size); | 
 |  | 
 | 		/* Add/copy product H  */ | 
 | 		MPN_COPY(prodp + hsize, prodp + size, hsize); | 
 | 		cy = mpihelp_add_n(prodp + size, prodp + size, | 
 | 				   prodp + size + hsize, hsize); | 
 |  | 
 | 		/* Add product M (if NEGFLG M is a negative number).  */ | 
 | 		cy -= mpihelp_sub_n(prodp + hsize, prodp + hsize, tspace, size); | 
 |  | 
 | 		/* Product L.      ________________  ________________ | 
 | 		 *                |________________||____U0 x U0_____| | 
 | 		 * Read temporary operands from low part of PROD. | 
 | 		 * Put result in low part of TSPACE using upper part of TSPACE | 
 | 		 * as new TSPACE.  */ | 
 | 		MPN_SQR_N_RECURSE(tspace, up, hsize, tspace + size); | 
 |  | 
 | 		/* Add/copy Product L (twice).  */ | 
 | 		cy += mpihelp_add_n(prodp + hsize, prodp + hsize, tspace, size); | 
 | 		if (cy) | 
 | 			mpihelp_add_1(prodp + hsize + size, | 
 | 				      prodp + hsize + size, hsize, cy); | 
 |  | 
 | 		MPN_COPY(prodp, tspace, hsize); | 
 | 		cy = mpihelp_add_n(prodp + hsize, prodp + hsize, tspace + hsize, | 
 | 				   hsize); | 
 | 		if (cy) | 
 | 			mpihelp_add_1(prodp + size, prodp + size, size, 1); | 
 | 	} | 
 | } | 
 |  | 
 | int | 
 | mpihelp_mul_karatsuba_case(mpi_ptr_t prodp, | 
 | 			   mpi_ptr_t up, mpi_size_t usize, | 
 | 			   mpi_ptr_t vp, mpi_size_t vsize, | 
 | 			   struct karatsuba_ctx *ctx) | 
 | { | 
 | 	mpi_limb_t cy; | 
 |  | 
 | 	if (!ctx->tspace || ctx->tspace_size < vsize) { | 
 | 		if (ctx->tspace) | 
 | 			mpi_free_limb_space(ctx->tspace); | 
 | 		ctx->tspace = mpi_alloc_limb_space(2 * vsize); | 
 | 		if (!ctx->tspace) | 
 | 			return -ENOMEM; | 
 | 		ctx->tspace_size = vsize; | 
 | 	} | 
 |  | 
 | 	MPN_MUL_N_RECURSE(prodp, up, vp, vsize, ctx->tspace); | 
 |  | 
 | 	prodp += vsize; | 
 | 	up += vsize; | 
 | 	usize -= vsize; | 
 | 	if (usize >= vsize) { | 
 | 		if (!ctx->tp || ctx->tp_size < vsize) { | 
 | 			if (ctx->tp) | 
 | 				mpi_free_limb_space(ctx->tp); | 
 | 			ctx->tp = mpi_alloc_limb_space(2 * vsize); | 
 | 			if (!ctx->tp) { | 
 | 				if (ctx->tspace) | 
 | 					mpi_free_limb_space(ctx->tspace); | 
 | 				ctx->tspace = NULL; | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 			ctx->tp_size = vsize; | 
 | 		} | 
 |  | 
 | 		do { | 
 | 			MPN_MUL_N_RECURSE(ctx->tp, up, vp, vsize, ctx->tspace); | 
 | 			cy = mpihelp_add_n(prodp, prodp, ctx->tp, vsize); | 
 | 			mpihelp_add_1(prodp + vsize, ctx->tp + vsize, vsize, | 
 | 				      cy); | 
 | 			prodp += vsize; | 
 | 			up += vsize; | 
 | 			usize -= vsize; | 
 | 		} while (usize >= vsize); | 
 | 	} | 
 |  | 
 | 	if (usize) { | 
 | 		if (usize < KARATSUBA_THRESHOLD) { | 
 | 			mpi_limb_t tmp; | 
 | 			if (mpihelp_mul(ctx->tspace, vp, vsize, up, usize, &tmp) | 
 | 			    < 0) | 
 | 				return -ENOMEM; | 
 | 		} else { | 
 | 			if (!ctx->next) { | 
 | 				ctx->next = kzalloc(sizeof *ctx, GFP_KERNEL); | 
 | 				if (!ctx->next) | 
 | 					return -ENOMEM; | 
 | 			} | 
 | 			if (mpihelp_mul_karatsuba_case(ctx->tspace, | 
 | 						       vp, vsize, | 
 | 						       up, usize, | 
 | 						       ctx->next) < 0) | 
 | 				return -ENOMEM; | 
 | 		} | 
 |  | 
 | 		cy = mpihelp_add_n(prodp, prodp, ctx->tspace, vsize); | 
 | 		mpihelp_add_1(prodp + vsize, ctx->tspace + vsize, usize, cy); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | void mpihelp_release_karatsuba_ctx(struct karatsuba_ctx *ctx) | 
 | { | 
 | 	struct karatsuba_ctx *ctx2; | 
 |  | 
 | 	if (ctx->tp) | 
 | 		mpi_free_limb_space(ctx->tp); | 
 | 	if (ctx->tspace) | 
 | 		mpi_free_limb_space(ctx->tspace); | 
 | 	for (ctx = ctx->next; ctx; ctx = ctx2) { | 
 | 		ctx2 = ctx->next; | 
 | 		if (ctx->tp) | 
 | 			mpi_free_limb_space(ctx->tp); | 
 | 		if (ctx->tspace) | 
 | 			mpi_free_limb_space(ctx->tspace); | 
 | 		kfree(ctx); | 
 | 	} | 
 | } | 
 |  | 
 | /* Multiply the natural numbers u (pointed to by UP, with USIZE limbs) | 
 |  * and v (pointed to by VP, with VSIZE limbs), and store the result at | 
 |  * PRODP.  USIZE + VSIZE limbs are always stored, but if the input | 
 |  * operands are normalized.  Return the most significant limb of the | 
 |  * result. | 
 |  * | 
 |  * NOTE: The space pointed to by PRODP is overwritten before finished | 
 |  * with U and V, so overlap is an error. | 
 |  * | 
 |  * Argument constraints: | 
 |  * 1. USIZE >= VSIZE. | 
 |  * 2. PRODP != UP and PRODP != VP, i.e. the destination | 
 |  *    must be distinct from the multiplier and the multiplicand. | 
 |  */ | 
 |  | 
 | int | 
 | mpihelp_mul(mpi_ptr_t prodp, mpi_ptr_t up, mpi_size_t usize, | 
 | 	    mpi_ptr_t vp, mpi_size_t vsize, mpi_limb_t *_result) | 
 | { | 
 | 	mpi_ptr_t prod_endp = prodp + usize + vsize - 1; | 
 | 	mpi_limb_t cy; | 
 | 	struct karatsuba_ctx ctx; | 
 |  | 
 | 	if (vsize < KARATSUBA_THRESHOLD) { | 
 | 		mpi_size_t i; | 
 | 		mpi_limb_t v_limb; | 
 |  | 
 | 		if (!vsize) { | 
 | 			*_result = 0; | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		/* Multiply by the first limb in V separately, as the result can be | 
 | 		 * stored (not added) to PROD.  We also avoid a loop for zeroing.  */ | 
 | 		v_limb = vp[0]; | 
 | 		if (v_limb <= 1) { | 
 | 			if (v_limb == 1) | 
 | 				MPN_COPY(prodp, up, usize); | 
 | 			else | 
 | 				MPN_ZERO(prodp, usize); | 
 | 			cy = 0; | 
 | 		} else | 
 | 			cy = mpihelp_mul_1(prodp, up, usize, v_limb); | 
 |  | 
 | 		prodp[usize] = cy; | 
 | 		prodp++; | 
 |  | 
 | 		/* For each iteration in the outer loop, multiply one limb from | 
 | 		 * U with one limb from V, and add it to PROD.  */ | 
 | 		for (i = 1; i < vsize; i++) { | 
 | 			v_limb = vp[i]; | 
 | 			if (v_limb <= 1) { | 
 | 				cy = 0; | 
 | 				if (v_limb == 1) | 
 | 					cy = mpihelp_add_n(prodp, prodp, up, | 
 | 							   usize); | 
 | 			} else | 
 | 				cy = mpihelp_addmul_1(prodp, up, usize, v_limb); | 
 |  | 
 | 			prodp[usize] = cy; | 
 | 			prodp++; | 
 | 		} | 
 |  | 
 | 		*_result = cy; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	memset(&ctx, 0, sizeof ctx); | 
 | 	if (mpihelp_mul_karatsuba_case(prodp, up, usize, vp, vsize, &ctx) < 0) | 
 | 		return -ENOMEM; | 
 | 	mpihelp_release_karatsuba_ctx(&ctx); | 
 | 	*_result = *prod_endp; | 
 | 	return 0; | 
 | } |