|  | /* | 
|  | * Copyright 2010 Tilera Corporation. All Rights Reserved. | 
|  | * | 
|  | *   This program is free software; you can redistribute it and/or | 
|  | *   modify it under the terms of the GNU General Public License | 
|  | *   as published by the Free Software Foundation, version 2. | 
|  | * | 
|  | *   This program is distributed in the hope that it will be useful, but | 
|  | *   WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or | 
|  | *   NON INFRINGEMENT.  See the GNU General Public License for | 
|  | *   more details. | 
|  | * | 
|  | * From i386 code copyright (C) 1995  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/tty.h> | 
|  | #include <linux/vt_kern.h>		/* For unblank_screen() */ | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kprobes.h> | 
|  | #include <linux/hugetlb.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/uaccess.h> | 
|  |  | 
|  | #include <asm/system.h> | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/traps.h> | 
|  | #include <asm/syscalls.h> | 
|  |  | 
|  | #include <arch/interrupts.h> | 
|  |  | 
|  | static noinline void force_sig_info_fault(int si_signo, int si_code, | 
|  | unsigned long address, int fault_num, struct task_struct *tsk) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | if (unlikely(tsk->pid < 2)) { | 
|  | panic("Signal %d (code %d) at %#lx sent to %s!", | 
|  | si_signo, si_code & 0xffff, address, | 
|  | tsk->pid ? "init" : "the idle task"); | 
|  | } | 
|  |  | 
|  | info.si_signo = si_signo; | 
|  | info.si_errno = 0; | 
|  | info.si_code = si_code; | 
|  | info.si_addr = (void __user *)address; | 
|  | info.si_trapno = fault_num; | 
|  | force_sig_info(si_signo, &info, tsk); | 
|  | } | 
|  |  | 
|  | #ifndef __tilegx__ | 
|  | /* | 
|  | * Synthesize the fault a PL0 process would get by doing a word-load of | 
|  | * an unaligned address or a high kernel address. | 
|  | */ | 
|  | SYSCALL_DEFINE2(cmpxchg_badaddr, unsigned long, address, | 
|  | struct pt_regs *, regs) | 
|  | { | 
|  | if (address >= PAGE_OFFSET) | 
|  | force_sig_info_fault(SIGSEGV, SEGV_MAPERR, address, | 
|  | INT_DTLB_MISS, current); | 
|  | else | 
|  | force_sig_info_fault(SIGBUS, BUS_ADRALN, address, | 
|  | INT_UNALIGN_DATA, current); | 
|  |  | 
|  | /* | 
|  | * Adjust pc to point at the actual instruction, which is unusual | 
|  | * for syscalls normally, but is appropriate when we are claiming | 
|  | * that a syscall swint1 caused a page fault or bus error. | 
|  | */ | 
|  | regs->pc -= 8; | 
|  |  | 
|  | /* | 
|  | * Mark this as a caller-save interrupt, like a normal page fault, | 
|  | * so that when we go through the signal handler path we will | 
|  | * properly restore r0, r1, and r2 for the signal handler arguments. | 
|  | */ | 
|  | regs->flags |= PT_FLAGS_CALLER_SAVES; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | unsigned index = pgd_index(address); | 
|  | pgd_t *pgd_k; | 
|  | pud_t *pud, *pud_k; | 
|  | pmd_t *pmd, *pmd_k; | 
|  |  | 
|  | pgd += index; | 
|  | pgd_k = init_mm.pgd + index; | 
|  |  | 
|  | if (!pgd_present(*pgd_k)) | 
|  | return NULL; | 
|  |  | 
|  | pud = pud_offset(pgd, address); | 
|  | pud_k = pud_offset(pgd_k, address); | 
|  | if (!pud_present(*pud_k)) | 
|  | return NULL; | 
|  |  | 
|  | pmd = pmd_offset(pud, address); | 
|  | pmd_k = pmd_offset(pud_k, address); | 
|  | if (!pmd_present(*pmd_k)) | 
|  | return NULL; | 
|  | if (!pmd_present(*pmd)) { | 
|  | set_pmd(pmd, *pmd_k); | 
|  | arch_flush_lazy_mmu_mode(); | 
|  | } else | 
|  | BUG_ON(pmd_ptfn(*pmd) != pmd_ptfn(*pmd_k)); | 
|  | return pmd_k; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a fault on the vmalloc or module mapping area | 
|  | */ | 
|  | static inline int vmalloc_fault(pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | pmd_t *pmd_k; | 
|  | pte_t *pte_k; | 
|  |  | 
|  | /* Make sure we are in vmalloc area */ | 
|  | if (!(address >= VMALLOC_START && address < VMALLOC_END)) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * Synchronize this task's top level page-table | 
|  | * with the 'reference' page table. | 
|  | */ | 
|  | pmd_k = vmalloc_sync_one(pgd, address); | 
|  | if (!pmd_k) | 
|  | return -1; | 
|  | if (pmd_huge(*pmd_k)) | 
|  | return 0;   /* support TILE huge_vmap() API */ | 
|  | pte_k = pte_offset_kernel(pmd_k, address); | 
|  | if (!pte_present(*pte_k)) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Wait until this PTE has completed migration. */ | 
|  | static void wait_for_migration(pte_t *pte) | 
|  | { | 
|  | if (pte_migrating(*pte)) { | 
|  | /* | 
|  | * Wait until the migrater fixes up this pte. | 
|  | * We scale the loop count by the clock rate so we'll wait for | 
|  | * a few seconds here. | 
|  | */ | 
|  | int retries = 0; | 
|  | int bound = get_clock_rate(); | 
|  | while (pte_migrating(*pte)) { | 
|  | barrier(); | 
|  | if (++retries > bound) | 
|  | panic("Hit migrating PTE (%#llx) and" | 
|  | " page PFN %#lx still migrating", | 
|  | pte->val, pte_pfn(*pte)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * It's not generally safe to use "current" to get the page table pointer, | 
|  | * since we might be running an oprofile interrupt in the middle of a | 
|  | * task switch. | 
|  | */ | 
|  | static pgd_t *get_current_pgd(void) | 
|  | { | 
|  | HV_Context ctx = hv_inquire_context(); | 
|  | unsigned long pgd_pfn = ctx.page_table >> PAGE_SHIFT; | 
|  | struct page *pgd_page = pfn_to_page(pgd_pfn); | 
|  | BUG_ON(PageHighMem(pgd_page));   /* oops, HIGHPTE? */ | 
|  | return (pgd_t *) __va(ctx.page_table); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can receive a page fault from a migrating PTE at any time. | 
|  | * Handle it by just waiting until the fault resolves. | 
|  | * | 
|  | * It's also possible to get a migrating kernel PTE that resolves | 
|  | * itself during the downcall from hypervisor to Linux.  We just check | 
|  | * here to see if the PTE seems valid, and if so we retry it. | 
|  | * | 
|  | * NOTE! We MUST NOT take any locks for this case.  We may be in an | 
|  | * interrupt or a critical region, and must do as little as possible. | 
|  | * Similarly, we can't use atomic ops here, since we may be handling a | 
|  | * fault caused by an atomic op access. | 
|  | */ | 
|  | static int handle_migrating_pte(pgd_t *pgd, int fault_num, | 
|  | unsigned long address, | 
|  | int is_kernel_mode, int write) | 
|  | { | 
|  | pud_t *pud; | 
|  | pmd_t *pmd; | 
|  | pte_t *pte; | 
|  | pte_t pteval; | 
|  |  | 
|  | if (pgd_addr_invalid(address)) | 
|  | return 0; | 
|  |  | 
|  | pgd += pgd_index(address); | 
|  | pud = pud_offset(pgd, address); | 
|  | if (!pud || !pud_present(*pud)) | 
|  | return 0; | 
|  | pmd = pmd_offset(pud, address); | 
|  | if (!pmd || !pmd_present(*pmd)) | 
|  | return 0; | 
|  | pte = pmd_huge_page(*pmd) ? ((pte_t *)pmd) : | 
|  | pte_offset_kernel(pmd, address); | 
|  | pteval = *pte; | 
|  | if (pte_migrating(pteval)) { | 
|  | wait_for_migration(pte); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!is_kernel_mode || !pte_present(pteval)) | 
|  | return 0; | 
|  | if (fault_num == INT_ITLB_MISS) { | 
|  | if (pte_exec(pteval)) | 
|  | return 1; | 
|  | } else if (write) { | 
|  | if (pte_write(pteval)) | 
|  | return 1; | 
|  | } else { | 
|  | if (pte_read(pteval)) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is responsible for faulting in user pages. | 
|  | * It passes the work off to one of the appropriate routines. | 
|  | * It returns true if the fault was successfully handled. | 
|  | */ | 
|  | static int handle_page_fault(struct pt_regs *regs, | 
|  | int fault_num, | 
|  | int is_page_fault, | 
|  | unsigned long address, | 
|  | int write) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct *mm; | 
|  | struct vm_area_struct *vma; | 
|  | unsigned long stack_offset; | 
|  | int fault; | 
|  | int si_code; | 
|  | int is_kernel_mode; | 
|  | pgd_t *pgd; | 
|  |  | 
|  | /* on TILE, protection faults are always writes */ | 
|  | if (!is_page_fault) | 
|  | write = 1; | 
|  |  | 
|  | is_kernel_mode = (EX1_PL(regs->ex1) != USER_PL); | 
|  |  | 
|  | tsk = validate_current(); | 
|  |  | 
|  | /* | 
|  | * Check to see if we might be overwriting the stack, and bail | 
|  | * out if so.  The page fault code is a relatively likely | 
|  | * place to get trapped in an infinite regress, and once we | 
|  | * overwrite the whole stack, it becomes very hard to recover. | 
|  | */ | 
|  | stack_offset = stack_pointer & (THREAD_SIZE-1); | 
|  | if (stack_offset < THREAD_SIZE / 8) { | 
|  | pr_alert("Potential stack overrun: sp %#lx\n", | 
|  | stack_pointer); | 
|  | show_regs(regs); | 
|  | pr_alert("Killing current process %d/%s\n", | 
|  | tsk->pid, tsk->comm); | 
|  | do_group_exit(SIGKILL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Early on, we need to check for migrating PTE entries; | 
|  | * see homecache.c.  If we find a migrating PTE, we wait until | 
|  | * the backing page claims to be done migrating, then we procede. | 
|  | * For kernel PTEs, we rewrite the PTE and return and retry. | 
|  | * Otherwise, we treat the fault like a normal "no PTE" fault, | 
|  | * rather than trying to patch up the existing PTE. | 
|  | */ | 
|  | pgd = get_current_pgd(); | 
|  | if (handle_migrating_pte(pgd, fault_num, address, | 
|  | is_kernel_mode, write)) | 
|  | return 1; | 
|  |  | 
|  | si_code = SEGV_MAPERR; | 
|  |  | 
|  | /* | 
|  | * We fault-in kernel-space virtual memory on-demand. The | 
|  | * 'reference' page table is init_mm.pgd. | 
|  | * | 
|  | * NOTE! We MUST NOT take any locks for this case. We may | 
|  | * be in an interrupt or a critical region, and should | 
|  | * only copy the information from the master page table, | 
|  | * nothing more. | 
|  | * | 
|  | * This verifies that the fault happens in kernel space | 
|  | * and that the fault was not a protection fault. | 
|  | */ | 
|  | if (unlikely(address >= TASK_SIZE && | 
|  | !is_arch_mappable_range(address, 0))) { | 
|  | if (is_kernel_mode && is_page_fault && | 
|  | vmalloc_fault(pgd, address) >= 0) | 
|  | return 1; | 
|  | /* | 
|  | * Don't take the mm semaphore here. If we fixup a prefetch | 
|  | * fault we could otherwise deadlock. | 
|  | */ | 
|  | mm = NULL;  /* happy compiler */ | 
|  | vma = NULL; | 
|  | goto bad_area_nosemaphore; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're trying to touch user-space addresses, we must | 
|  | * be either at PL0, or else with interrupts enabled in the | 
|  | * kernel, so either way we can re-enable interrupts here. | 
|  | */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | mm = tsk->mm; | 
|  |  | 
|  | /* | 
|  | * If we're in an interrupt, have no user context or are running in an | 
|  | * atomic region then we must not take the fault. | 
|  | */ | 
|  | if (in_atomic() || !mm) { | 
|  | vma = NULL;  /* happy compiler */ | 
|  | goto bad_area_nosemaphore; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When running in the kernel we expect faults to occur only to | 
|  | * addresses in user space.  All other faults represent errors in the | 
|  | * kernel and should generate an OOPS.  Unfortunately, in the case of an | 
|  | * erroneous fault occurring in a code path which already holds mmap_sem | 
|  | * we will deadlock attempting to validate the fault against the | 
|  | * address space.  Luckily the kernel only validly references user | 
|  | * space from well defined areas of code, which are listed in the | 
|  | * exceptions table. | 
|  | * | 
|  | * As the vast majority of faults will be valid we will only perform | 
|  | * the source reference check when there is a possibility of a deadlock. | 
|  | * Attempt to lock the address space, if we cannot we then validate the | 
|  | * source.  If this is invalid we can skip the address space check, | 
|  | * thus avoiding the deadlock. | 
|  | */ | 
|  | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | if (is_kernel_mode && | 
|  | !search_exception_tables(regs->pc)) { | 
|  | vma = NULL;  /* happy compiler */ | 
|  | goto bad_area_nosemaphore; | 
|  | } | 
|  | down_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | vma = find_vma(mm, address); | 
|  | if (!vma) | 
|  | goto bad_area; | 
|  | if (vma->vm_start <= address) | 
|  | goto good_area; | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | goto bad_area; | 
|  | if (regs->sp < PAGE_OFFSET) { | 
|  | /* | 
|  | * accessing the stack below sp is always a bug. | 
|  | */ | 
|  | if (address < regs->sp) | 
|  | goto bad_area; | 
|  | } | 
|  | if (expand_stack(vma, address)) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * Ok, we have a good vm_area for this memory access, so | 
|  | * we can handle it.. | 
|  | */ | 
|  | good_area: | 
|  | si_code = SEGV_ACCERR; | 
|  | if (fault_num == INT_ITLB_MISS) { | 
|  | if (!(vma->vm_flags & VM_EXEC)) | 
|  | goto bad_area; | 
|  | } else if (write) { | 
|  | #ifdef TEST_VERIFY_AREA | 
|  | if (!is_page_fault && regs->cs == KERNEL_CS) | 
|  | pr_err("WP fault at "REGFMT"\n", regs->eip); | 
|  | #endif | 
|  | if (!(vma->vm_flags & VM_WRITE)) | 
|  | goto bad_area; | 
|  | } else { | 
|  | if (!is_page_fault || !(vma->vm_flags & VM_READ)) | 
|  | goto bad_area; | 
|  | } | 
|  |  | 
|  | survive: | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, | 
|  | * make sure we exit gracefully rather than endlessly redo | 
|  | * the fault. | 
|  | */ | 
|  | fault = handle_mm_fault(mm, vma, address, write); | 
|  | if (unlikely(fault & VM_FAULT_ERROR)) { | 
|  | if (fault & VM_FAULT_OOM) | 
|  | goto out_of_memory; | 
|  | else if (fault & VM_FAULT_SIGBUS) | 
|  | goto do_sigbus; | 
|  | BUG(); | 
|  | } | 
|  | if (fault & VM_FAULT_MAJOR) | 
|  | tsk->maj_flt++; | 
|  | else | 
|  | tsk->min_flt++; | 
|  |  | 
|  | #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() | 
|  | /* | 
|  | * If this was an asynchronous fault, | 
|  | * restart the appropriate engine. | 
|  | */ | 
|  | switch (fault_num) { | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | case INT_DMATLB_MISS: | 
|  | case INT_DMATLB_MISS_DWNCL: | 
|  | case INT_DMATLB_ACCESS: | 
|  | case INT_DMATLB_ACCESS_DWNCL: | 
|  | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__REQUEST_MASK); | 
|  | break; | 
|  | #endif | 
|  | #if CHIP_HAS_SN_PROC() | 
|  | case INT_SNITLB_MISS: | 
|  | case INT_SNITLB_MISS_DWNCL: | 
|  | __insn_mtspr(SPR_SNCTL, | 
|  | __insn_mfspr(SPR_SNCTL) & | 
|  | ~SPR_SNCTL__FRZPROC_MASK); | 
|  | break; | 
|  | #endif | 
|  | } | 
|  | #endif | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | return 1; | 
|  |  | 
|  | /* | 
|  | * Something tried to access memory that isn't in our memory map.. | 
|  | * Fix it, but check if it's kernel or user first.. | 
|  | */ | 
|  | bad_area: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | bad_area_nosemaphore: | 
|  | /* User mode accesses just cause a SIGSEGV */ | 
|  | if (!is_kernel_mode) { | 
|  | /* | 
|  | * It's possible to have interrupts off here. | 
|  | */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | force_sig_info_fault(SIGSEGV, si_code, address, | 
|  | fault_num, tsk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | no_context: | 
|  | /* Are we prepared to handle this kernel fault?  */ | 
|  | if (fixup_exception(regs)) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Oops. The kernel tried to access some bad page. We'll have to | 
|  | * terminate things with extreme prejudice. | 
|  | */ | 
|  |  | 
|  | bust_spinlocks(1); | 
|  |  | 
|  | /* FIXME: no lookup_address() yet */ | 
|  | #ifdef SUPPORT_LOOKUP_ADDRESS | 
|  | if (fault_num == INT_ITLB_MISS) { | 
|  | pte_t *pte = lookup_address(address); | 
|  |  | 
|  | if (pte && pte_present(*pte) && !pte_exec_kernel(*pte)) | 
|  | pr_crit("kernel tried to execute" | 
|  | " non-executable page - exploit attempt?" | 
|  | " (uid: %d)\n", current->uid); | 
|  | } | 
|  | #endif | 
|  | if (address < PAGE_SIZE) | 
|  | pr_alert("Unable to handle kernel NULL pointer dereference\n"); | 
|  | else | 
|  | pr_alert("Unable to handle kernel paging request\n"); | 
|  | pr_alert(" at virtual address "REGFMT", pc "REGFMT"\n", | 
|  | address, regs->pc); | 
|  |  | 
|  | show_regs(regs); | 
|  |  | 
|  | if (unlikely(tsk->pid < 2)) { | 
|  | panic("Kernel page fault running %s!", | 
|  | tsk->pid ? "init" : "the idle task"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * More FIXME: we should probably copy the i386 here and | 
|  | * implement a generic die() routine.  Not today. | 
|  | */ | 
|  | #ifdef SUPPORT_DIE | 
|  | die("Oops", regs); | 
|  | #endif | 
|  | bust_spinlocks(1); | 
|  |  | 
|  | do_group_exit(SIGKILL); | 
|  |  | 
|  | /* | 
|  | * We ran out of memory, or some other thing happened to us that made | 
|  | * us unable to handle the page fault gracefully. | 
|  | */ | 
|  | out_of_memory: | 
|  | up_read(&mm->mmap_sem); | 
|  | if (is_global_init(tsk)) { | 
|  | yield(); | 
|  | down_read(&mm->mmap_sem); | 
|  | goto survive; | 
|  | } | 
|  | pr_alert("VM: killing process %s\n", tsk->comm); | 
|  | if (!is_kernel_mode) | 
|  | do_group_exit(SIGKILL); | 
|  | goto no_context; | 
|  |  | 
|  | do_sigbus: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | /* Kernel mode? Handle exceptions or die */ | 
|  | if (is_kernel_mode) | 
|  | goto no_context; | 
|  |  | 
|  | force_sig_info_fault(SIGBUS, BUS_ADRERR, address, fault_num, tsk); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifndef __tilegx__ | 
|  |  | 
|  | /* We must release ICS before panicking or we won't get anywhere. */ | 
|  | #define ics_panic(fmt, ...) do { \ | 
|  | __insn_mtspr(SPR_INTERRUPT_CRITICAL_SECTION, 0); \ | 
|  | panic(fmt, __VA_ARGS__); \ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * When we take an ITLB or DTLB fault or access violation in the | 
|  | * supervisor while the critical section bit is set, the hypervisor is | 
|  | * reluctant to write new values into the EX_CONTEXT_K_x registers, | 
|  | * since that might indicate we have not yet squirreled the SPR | 
|  | * contents away and can thus safely take a recursive interrupt. | 
|  | * Accordingly, the hypervisor passes us the PC via SYSTEM_SAVE_K_2. | 
|  | * | 
|  | * Note that this routine is called before homecache_tlb_defer_enter(), | 
|  | * which means that we can properly unlock any atomics that might | 
|  | * be used there (good), but also means we must be very sensitive | 
|  | * to not touch any data structures that might be located in memory | 
|  | * that could migrate, as we could be entering the kernel on a dataplane | 
|  | * cpu that has been deferring kernel TLB updates.  This means, for | 
|  | * example, that we can't migrate init_mm or its pgd. | 
|  | */ | 
|  | struct intvec_state do_page_fault_ics(struct pt_regs *regs, int fault_num, | 
|  | unsigned long address, | 
|  | unsigned long info) | 
|  | { | 
|  | unsigned long pc = info & ~1; | 
|  | int write = info & 1; | 
|  | pgd_t *pgd = get_current_pgd(); | 
|  |  | 
|  | /* Retval is 1 at first since we will handle the fault fully. */ | 
|  | struct intvec_state state = { | 
|  | do_page_fault, fault_num, address, write, 1 | 
|  | }; | 
|  |  | 
|  | /* Validate that we are plausibly in the right routine. */ | 
|  | if ((pc & 0x7) != 0 || pc < PAGE_OFFSET || | 
|  | (fault_num != INT_DTLB_MISS && | 
|  | fault_num != INT_DTLB_ACCESS)) { | 
|  | unsigned long old_pc = regs->pc; | 
|  | regs->pc = pc; | 
|  | ics_panic("Bad ICS page fault args:" | 
|  | " old PC %#lx, fault %d/%d at %#lx\n", | 
|  | old_pc, fault_num, write, address); | 
|  | } | 
|  |  | 
|  | /* We might be faulting on a vmalloc page, so check that first. */ | 
|  | if (fault_num != INT_DTLB_ACCESS && vmalloc_fault(pgd, address) >= 0) | 
|  | return state; | 
|  |  | 
|  | /* | 
|  | * If we faulted with ICS set in sys_cmpxchg, we are providing | 
|  | * a user syscall service that should generate a signal on | 
|  | * fault.  We didn't set up a kernel stack on initial entry to | 
|  | * sys_cmpxchg, but instead had one set up by the fault, which | 
|  | * (because sys_cmpxchg never releases ICS) came to us via the | 
|  | * SYSTEM_SAVE_K_2 mechanism, and thus EX_CONTEXT_K_[01] are | 
|  | * still referencing the original user code.  We release the | 
|  | * atomic lock and rewrite pt_regs so that it appears that we | 
|  | * came from user-space directly, and after we finish the | 
|  | * fault we'll go back to user space and re-issue the swint. | 
|  | * This way the backtrace information is correct if we need to | 
|  | * emit a stack dump at any point while handling this. | 
|  | * | 
|  | * Must match register use in sys_cmpxchg(). | 
|  | */ | 
|  | if (pc >= (unsigned long) sys_cmpxchg && | 
|  | pc < (unsigned long) __sys_cmpxchg_end) { | 
|  | #ifdef CONFIG_SMP | 
|  | /* Don't unlock before we could have locked. */ | 
|  | if (pc >= (unsigned long)__sys_cmpxchg_grab_lock) { | 
|  | int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]); | 
|  | __atomic_fault_unlock(lock_ptr); | 
|  | } | 
|  | #endif | 
|  | regs->sp = regs->regs[27]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can also fault in the atomic assembly, in which | 
|  | * case we use the exception table to do the first-level fixup. | 
|  | * We may re-fixup again in the real fault handler if it | 
|  | * turns out the faulting address is just bad, and not, | 
|  | * for example, migrating. | 
|  | */ | 
|  | else if (pc >= (unsigned long) __start_atomic_asm_code && | 
|  | pc < (unsigned long) __end_atomic_asm_code) { | 
|  | const struct exception_table_entry *fixup; | 
|  | #ifdef CONFIG_SMP | 
|  | /* Unlock the atomic lock. */ | 
|  | int *lock_ptr = (int *)(regs->regs[ATOMIC_LOCK_REG]); | 
|  | __atomic_fault_unlock(lock_ptr); | 
|  | #endif | 
|  | fixup = search_exception_tables(pc); | 
|  | if (!fixup) | 
|  | ics_panic("ICS atomic fault not in table:" | 
|  | " PC %#lx, fault %d", pc, fault_num); | 
|  | regs->pc = fixup->fixup; | 
|  | regs->ex1 = PL_ICS_EX1(KERNEL_PL, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NOTE: the one other type of access that might bring us here | 
|  | * are the memory ops in __tns_atomic_acquire/__tns_atomic_release, | 
|  | * but we don't have to check specially for them since we can | 
|  | * always safely return to the address of the fault and retry, | 
|  | * since no separate atomic locks are involved. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Now that we have released the atomic lock (if necessary), | 
|  | * it's safe to spin if the PTE that caused the fault was migrating. | 
|  | */ | 
|  | if (fault_num == INT_DTLB_ACCESS) | 
|  | write = 1; | 
|  | if (handle_migrating_pte(pgd, fault_num, address, 1, write)) | 
|  | return state; | 
|  |  | 
|  | /* Return zero so that we continue on with normal fault handling. */ | 
|  | state.retval = 0; | 
|  | return state; | 
|  | } | 
|  |  | 
|  | #endif /* !__tilegx__ */ | 
|  |  | 
|  | /* | 
|  | * This routine handles page faults.  It determines the address, and the | 
|  | * problem, and then passes it handle_page_fault() for normal DTLB and | 
|  | * ITLB issues, and for DMA or SN processor faults when we are in user | 
|  | * space.  For the latter, if we're in kernel mode, we just save the | 
|  | * interrupt away appropriately and return immediately.  We can't do | 
|  | * page faults for user code while in kernel mode. | 
|  | */ | 
|  | void do_page_fault(struct pt_regs *regs, int fault_num, | 
|  | unsigned long address, unsigned long write) | 
|  | { | 
|  | int is_page_fault; | 
|  |  | 
|  | /* This case should have been handled by do_page_fault_ics(). */ | 
|  | BUG_ON(write & ~1); | 
|  |  | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | /* | 
|  | * If it's a DMA fault, suspend the transfer while we're | 
|  | * handling the miss; we'll restart after it's handled.  If we | 
|  | * don't suspend, it's possible that this process could swap | 
|  | * out and back in, and restart the engine since the DMA is | 
|  | * still 'running'. | 
|  | */ | 
|  | if (fault_num == INT_DMATLB_MISS || | 
|  | fault_num == INT_DMATLB_ACCESS || | 
|  | fault_num == INT_DMATLB_MISS_DWNCL || | 
|  | fault_num == INT_DMATLB_ACCESS_DWNCL) { | 
|  | __insn_mtspr(SPR_DMA_CTR, SPR_DMA_CTR__SUSPEND_MASK); | 
|  | while (__insn_mfspr(SPR_DMA_USER_STATUS) & | 
|  | SPR_DMA_STATUS__BUSY_MASK) | 
|  | ; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Validate fault num and decide if this is a first-time page fault. */ | 
|  | switch (fault_num) { | 
|  | case INT_ITLB_MISS: | 
|  | case INT_DTLB_MISS: | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | case INT_DMATLB_MISS: | 
|  | case INT_DMATLB_MISS_DWNCL: | 
|  | #endif | 
|  | #if CHIP_HAS_SN_PROC() | 
|  | case INT_SNITLB_MISS: | 
|  | case INT_SNITLB_MISS_DWNCL: | 
|  | #endif | 
|  | is_page_fault = 1; | 
|  | break; | 
|  |  | 
|  | case INT_DTLB_ACCESS: | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | case INT_DMATLB_ACCESS: | 
|  | case INT_DMATLB_ACCESS_DWNCL: | 
|  | #endif | 
|  | is_page_fault = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | panic("Bad fault number %d in do_page_fault", fault_num); | 
|  | } | 
|  |  | 
|  | if (EX1_PL(regs->ex1) != USER_PL) { | 
|  | struct async_tlb *async; | 
|  | switch (fault_num) { | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | case INT_DMATLB_MISS: | 
|  | case INT_DMATLB_ACCESS: | 
|  | case INT_DMATLB_MISS_DWNCL: | 
|  | case INT_DMATLB_ACCESS_DWNCL: | 
|  | async = ¤t->thread.dma_async_tlb; | 
|  | break; | 
|  | #endif | 
|  | #if CHIP_HAS_SN_PROC() | 
|  | case INT_SNITLB_MISS: | 
|  | case INT_SNITLB_MISS_DWNCL: | 
|  | async = ¤t->thread.sn_async_tlb; | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | async = NULL; | 
|  | } | 
|  | if (async) { | 
|  |  | 
|  | /* | 
|  | * No vmalloc check required, so we can allow | 
|  | * interrupts immediately at this point. | 
|  | */ | 
|  | local_irq_enable(); | 
|  |  | 
|  | set_thread_flag(TIF_ASYNC_TLB); | 
|  | if (async->fault_num != 0) { | 
|  | panic("Second async fault %d;" | 
|  | " old fault was %d (%#lx/%ld)", | 
|  | fault_num, async->fault_num, | 
|  | address, write); | 
|  | } | 
|  | BUG_ON(fault_num == 0); | 
|  | async->fault_num = fault_num; | 
|  | async->is_fault = is_page_fault; | 
|  | async->is_write = write; | 
|  | async->address = address; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | handle_page_fault(regs, fault_num, is_page_fault, address, write); | 
|  | } | 
|  |  | 
|  |  | 
|  | #if CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() | 
|  | /* | 
|  | * Check an async_tlb structure to see if a deferred fault is waiting, | 
|  | * and if so pass it to the page-fault code. | 
|  | */ | 
|  | static void handle_async_page_fault(struct pt_regs *regs, | 
|  | struct async_tlb *async) | 
|  | { | 
|  | if (async->fault_num) { | 
|  | /* | 
|  | * Clear async->fault_num before calling the page-fault | 
|  | * handler so that if we re-interrupt before returning | 
|  | * from the function we have somewhere to put the | 
|  | * information from the new interrupt. | 
|  | */ | 
|  | int fault_num = async->fault_num; | 
|  | async->fault_num = 0; | 
|  | handle_page_fault(regs, fault_num, async->is_fault, | 
|  | async->address, async->is_write); | 
|  | } | 
|  | } | 
|  | #endif /* CHIP_HAS_TILE_DMA() || CHIP_HAS_SN_PROC() */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This routine effectively re-issues asynchronous page faults | 
|  | * when we are returning to user space. | 
|  | */ | 
|  | void do_async_page_fault(struct pt_regs *regs) | 
|  | { | 
|  | /* | 
|  | * Clear thread flag early.  If we re-interrupt while processing | 
|  | * code here, we will reset it and recall this routine before | 
|  | * returning to user space. | 
|  | */ | 
|  | clear_thread_flag(TIF_ASYNC_TLB); | 
|  |  | 
|  | #if CHIP_HAS_TILE_DMA() | 
|  | handle_async_page_fault(regs, ¤t->thread.dma_async_tlb); | 
|  | #endif | 
|  | #if CHIP_HAS_SN_PROC() | 
|  | handle_async_page_fault(regs, ¤t->thread.sn_async_tlb); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | void vmalloc_sync_all(void) | 
|  | { | 
|  | #ifdef __tilegx__ | 
|  | /* Currently all L1 kernel pmd's are static and shared. */ | 
|  | BUG_ON(pgd_index(VMALLOC_END) != pgd_index(VMALLOC_START)); | 
|  | #else | 
|  | /* | 
|  | * Note that races in the updates of insync and start aren't | 
|  | * problematic: insync can only get set bits added, and updates to | 
|  | * start are only improving performance (without affecting correctness | 
|  | * if undone). | 
|  | */ | 
|  | static DECLARE_BITMAP(insync, PTRS_PER_PGD); | 
|  | static unsigned long start = PAGE_OFFSET; | 
|  | unsigned long address; | 
|  |  | 
|  | BUILD_BUG_ON(PAGE_OFFSET & ~PGDIR_MASK); | 
|  | for (address = start; address >= PAGE_OFFSET; address += PGDIR_SIZE) { | 
|  | if (!test_bit(pgd_index(address), insync)) { | 
|  | unsigned long flags; | 
|  | struct list_head *pos; | 
|  |  | 
|  | spin_lock_irqsave(&pgd_lock, flags); | 
|  | list_for_each(pos, &pgd_list) | 
|  | if (!vmalloc_sync_one(list_to_pgd(pos), | 
|  | address)) { | 
|  | /* Must be at first entry in list. */ | 
|  | BUG_ON(pos != pgd_list.next); | 
|  | break; | 
|  | } | 
|  | spin_unlock_irqrestore(&pgd_lock, flags); | 
|  | if (pos != pgd_list.next) | 
|  | set_bit(pgd_index(address), insync); | 
|  | } | 
|  | if (address == start && test_bit(pgd_index(address), insync)) | 
|  | start = address + PGDIR_SIZE; | 
|  | } | 
|  | #endif | 
|  | } |