|  | /* | 
|  | * ACPI 3.0 based NUMA setup | 
|  | * Copyright 2004 Andi Kleen, SuSE Labs. | 
|  | * | 
|  | * Reads the ACPI SRAT table to figure out what memory belongs to which CPUs. | 
|  | * | 
|  | * Called from acpi_numa_init while reading the SRAT and SLIT tables. | 
|  | * Assumes all memory regions belonging to a single proximity domain | 
|  | * are in one chunk. Holes between them will be included in the node. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/acpi.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/bitmap.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/topology.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/memblock.h> | 
|  | #include <linux/mm.h> | 
|  | #include <asm/proto.h> | 
|  | #include <asm/numa.h> | 
|  | #include <asm/e820.h> | 
|  | #include <asm/apic.h> | 
|  | #include <asm/uv/uv.h> | 
|  |  | 
|  | int acpi_numa __initdata; | 
|  |  | 
|  | static struct acpi_table_slit *acpi_slit; | 
|  |  | 
|  | static nodemask_t nodes_parsed __initdata; | 
|  | static nodemask_t cpu_nodes_parsed __initdata; | 
|  | static struct bootnode nodes[MAX_NUMNODES] __initdata; | 
|  | static struct bootnode nodes_add[MAX_NUMNODES]; | 
|  |  | 
|  | static int num_node_memblks __initdata; | 
|  | static struct bootnode node_memblk_range[NR_NODE_MEMBLKS] __initdata; | 
|  | static int memblk_nodeid[NR_NODE_MEMBLKS] __initdata; | 
|  |  | 
|  | static __init int setup_node(int pxm) | 
|  | { | 
|  | return acpi_map_pxm_to_node(pxm); | 
|  | } | 
|  |  | 
|  | static __init int conflicting_memblks(unsigned long start, unsigned long end) | 
|  | { | 
|  | int i; | 
|  | for (i = 0; i < num_node_memblks; i++) { | 
|  | struct bootnode *nd = &node_memblk_range[i]; | 
|  | if (nd->start == nd->end) | 
|  | continue; | 
|  | if (nd->end > start && nd->start < end) | 
|  | return memblk_nodeid[i]; | 
|  | if (nd->end == end && nd->start == start) | 
|  | return memblk_nodeid[i]; | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | static __init void cutoff_node(int i, unsigned long start, unsigned long end) | 
|  | { | 
|  | struct bootnode *nd = &nodes[i]; | 
|  |  | 
|  | if (nd->start < start) { | 
|  | nd->start = start; | 
|  | if (nd->end < nd->start) | 
|  | nd->start = nd->end; | 
|  | } | 
|  | if (nd->end > end) { | 
|  | nd->end = end; | 
|  | if (nd->start > nd->end) | 
|  | nd->start = nd->end; | 
|  | } | 
|  | } | 
|  |  | 
|  | static __init void bad_srat(void) | 
|  | { | 
|  | int i; | 
|  | printk(KERN_ERR "SRAT: SRAT not used.\n"); | 
|  | acpi_numa = -1; | 
|  | for (i = 0; i < MAX_LOCAL_APIC; i++) | 
|  | apicid_to_node[i] = NUMA_NO_NODE; | 
|  | for (i = 0; i < MAX_NUMNODES; i++) { | 
|  | nodes[i].start = nodes[i].end = 0; | 
|  | nodes_add[i].start = nodes_add[i].end = 0; | 
|  | } | 
|  | remove_all_active_ranges(); | 
|  | } | 
|  |  | 
|  | static __init inline int srat_disabled(void) | 
|  | { | 
|  | return numa_off || acpi_numa < 0; | 
|  | } | 
|  |  | 
|  | /* Callback for SLIT parsing */ | 
|  | void __init acpi_numa_slit_init(struct acpi_table_slit *slit) | 
|  | { | 
|  | unsigned length; | 
|  | unsigned long phys; | 
|  |  | 
|  | length = slit->header.length; | 
|  | phys = memblock_find_in_range(0, max_pfn_mapped<<PAGE_SHIFT, length, | 
|  | PAGE_SIZE); | 
|  |  | 
|  | if (phys == MEMBLOCK_ERROR) | 
|  | panic(" Can not save slit!\n"); | 
|  |  | 
|  | acpi_slit = __va(phys); | 
|  | memcpy(acpi_slit, slit, length); | 
|  | memblock_x86_reserve_range(phys, phys + length, "ACPI SLIT"); | 
|  | } | 
|  |  | 
|  | /* Callback for Proximity Domain -> x2APIC mapping */ | 
|  | void __init | 
|  | acpi_numa_x2apic_affinity_init(struct acpi_srat_x2apic_cpu_affinity *pa) | 
|  | { | 
|  | int pxm, node; | 
|  | int apic_id; | 
|  |  | 
|  | if (srat_disabled()) | 
|  | return; | 
|  | if (pa->header.length < sizeof(struct acpi_srat_x2apic_cpu_affinity)) { | 
|  | bad_srat(); | 
|  | return; | 
|  | } | 
|  | if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0) | 
|  | return; | 
|  | pxm = pa->proximity_domain; | 
|  | node = setup_node(pxm); | 
|  | if (node < 0) { | 
|  | printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); | 
|  | bad_srat(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | apic_id = pa->apic_id; | 
|  | if (apic_id >= MAX_LOCAL_APIC) { | 
|  | printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%04x -> Node %u skipped apicid that is too big\n", pxm, apic_id, node); | 
|  | return; | 
|  | } | 
|  | apicid_to_node[apic_id] = node; | 
|  | node_set(node, cpu_nodes_parsed); | 
|  | acpi_numa = 1; | 
|  | printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%04x -> Node %u\n", | 
|  | pxm, apic_id, node); | 
|  | } | 
|  |  | 
|  | /* Callback for Proximity Domain -> LAPIC mapping */ | 
|  | void __init | 
|  | acpi_numa_processor_affinity_init(struct acpi_srat_cpu_affinity *pa) | 
|  | { | 
|  | int pxm, node; | 
|  | int apic_id; | 
|  |  | 
|  | if (srat_disabled()) | 
|  | return; | 
|  | if (pa->header.length != sizeof(struct acpi_srat_cpu_affinity)) { | 
|  | bad_srat(); | 
|  | return; | 
|  | } | 
|  | if ((pa->flags & ACPI_SRAT_CPU_ENABLED) == 0) | 
|  | return; | 
|  | pxm = pa->proximity_domain_lo; | 
|  | node = setup_node(pxm); | 
|  | if (node < 0) { | 
|  | printk(KERN_ERR "SRAT: Too many proximity domains %x\n", pxm); | 
|  | bad_srat(); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (get_uv_system_type() >= UV_X2APIC) | 
|  | apic_id = (pa->apic_id << 8) | pa->local_sapic_eid; | 
|  | else | 
|  | apic_id = pa->apic_id; | 
|  |  | 
|  | if (apic_id >= MAX_LOCAL_APIC) { | 
|  | printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%02x -> Node %u skipped apicid that is too big\n", pxm, apic_id, node); | 
|  | return; | 
|  | } | 
|  |  | 
|  | apicid_to_node[apic_id] = node; | 
|  | node_set(node, cpu_nodes_parsed); | 
|  | acpi_numa = 1; | 
|  | printk(KERN_INFO "SRAT: PXM %u -> APIC 0x%02x -> Node %u\n", | 
|  | pxm, apic_id, node); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE | 
|  | static inline int save_add_info(void) {return 1;} | 
|  | #else | 
|  | static inline int save_add_info(void) {return 0;} | 
|  | #endif | 
|  | /* | 
|  | * Update nodes_add[] | 
|  | * This code supports one contiguous hot add area per node | 
|  | */ | 
|  | static void __init | 
|  | update_nodes_add(int node, unsigned long start, unsigned long end) | 
|  | { | 
|  | unsigned long s_pfn = start >> PAGE_SHIFT; | 
|  | unsigned long e_pfn = end >> PAGE_SHIFT; | 
|  | int changed = 0; | 
|  | struct bootnode *nd = &nodes_add[node]; | 
|  |  | 
|  | /* I had some trouble with strange memory hotadd regions breaking | 
|  | the boot. Be very strict here and reject anything unexpected. | 
|  | If you want working memory hotadd write correct SRATs. | 
|  |  | 
|  | The node size check is a basic sanity check to guard against | 
|  | mistakes */ | 
|  | if ((signed long)(end - start) < NODE_MIN_SIZE) { | 
|  | printk(KERN_ERR "SRAT: Hotplug area too small\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* This check might be a bit too strict, but I'm keeping it for now. */ | 
|  | if (absent_pages_in_range(s_pfn, e_pfn) != e_pfn - s_pfn) { | 
|  | printk(KERN_ERR | 
|  | "SRAT: Hotplug area %lu -> %lu has existing memory\n", | 
|  | s_pfn, e_pfn); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Looks good */ | 
|  |  | 
|  | if (nd->start == nd->end) { | 
|  | nd->start = start; | 
|  | nd->end = end; | 
|  | changed = 1; | 
|  | } else { | 
|  | if (nd->start == end) { | 
|  | nd->start = start; | 
|  | changed = 1; | 
|  | } | 
|  | if (nd->end == start) { | 
|  | nd->end = end; | 
|  | changed = 1; | 
|  | } | 
|  | if (!changed) | 
|  | printk(KERN_ERR "SRAT: Hotplug zone not continuous. Partly ignored\n"); | 
|  | } | 
|  |  | 
|  | if (changed) { | 
|  | node_set(node, cpu_nodes_parsed); | 
|  | printk(KERN_INFO "SRAT: hot plug zone found %Lx - %Lx\n", | 
|  | nd->start, nd->end); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Callback for parsing of the Proximity Domain <-> Memory Area mappings */ | 
|  | void __init | 
|  | acpi_numa_memory_affinity_init(struct acpi_srat_mem_affinity *ma) | 
|  | { | 
|  | struct bootnode *nd, oldnode; | 
|  | unsigned long start, end; | 
|  | int node, pxm; | 
|  | int i; | 
|  |  | 
|  | if (srat_disabled()) | 
|  | return; | 
|  | if (ma->header.length != sizeof(struct acpi_srat_mem_affinity)) { | 
|  | bad_srat(); | 
|  | return; | 
|  | } | 
|  | if ((ma->flags & ACPI_SRAT_MEM_ENABLED) == 0) | 
|  | return; | 
|  |  | 
|  | if ((ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) && !save_add_info()) | 
|  | return; | 
|  | start = ma->base_address; | 
|  | end = start + ma->length; | 
|  | pxm = ma->proximity_domain; | 
|  | node = setup_node(pxm); | 
|  | if (node < 0) { | 
|  | printk(KERN_ERR "SRAT: Too many proximity domains.\n"); | 
|  | bad_srat(); | 
|  | return; | 
|  | } | 
|  | i = conflicting_memblks(start, end); | 
|  | if (i == node) { | 
|  | printk(KERN_WARNING | 
|  | "SRAT: Warning: PXM %d (%lx-%lx) overlaps with itself (%Lx-%Lx)\n", | 
|  | pxm, start, end, nodes[i].start, nodes[i].end); | 
|  | } else if (i >= 0) { | 
|  | printk(KERN_ERR | 
|  | "SRAT: PXM %d (%lx-%lx) overlaps with PXM %d (%Lx-%Lx)\n", | 
|  | pxm, start, end, node_to_pxm(i), | 
|  | nodes[i].start, nodes[i].end); | 
|  | bad_srat(); | 
|  | return; | 
|  | } | 
|  | nd = &nodes[node]; | 
|  | oldnode = *nd; | 
|  | if (!node_test_and_set(node, nodes_parsed)) { | 
|  | nd->start = start; | 
|  | nd->end = end; | 
|  | } else { | 
|  | if (start < nd->start) | 
|  | nd->start = start; | 
|  | if (nd->end < end) | 
|  | nd->end = end; | 
|  | } | 
|  |  | 
|  | printk(KERN_INFO "SRAT: Node %u PXM %u %lx-%lx\n", node, pxm, | 
|  | start, end); | 
|  |  | 
|  | if (ma->flags & ACPI_SRAT_MEM_HOT_PLUGGABLE) { | 
|  | update_nodes_add(node, start, end); | 
|  | /* restore nodes[node] */ | 
|  | *nd = oldnode; | 
|  | if ((nd->start | nd->end) == 0) | 
|  | node_clear(node, nodes_parsed); | 
|  | } | 
|  |  | 
|  | node_memblk_range[num_node_memblks].start = start; | 
|  | node_memblk_range[num_node_memblks].end = end; | 
|  | memblk_nodeid[num_node_memblks] = node; | 
|  | num_node_memblks++; | 
|  | } | 
|  |  | 
|  | /* Sanity check to catch more bad SRATs (they are amazingly common). | 
|  | Make sure the PXMs cover all memory. */ | 
|  | static int __init nodes_cover_memory(const struct bootnode *nodes) | 
|  | { | 
|  | int i; | 
|  | unsigned long pxmram, e820ram; | 
|  |  | 
|  | pxmram = 0; | 
|  | for_each_node_mask(i, nodes_parsed) { | 
|  | unsigned long s = nodes[i].start >> PAGE_SHIFT; | 
|  | unsigned long e = nodes[i].end >> PAGE_SHIFT; | 
|  | pxmram += e - s; | 
|  | pxmram -= __absent_pages_in_range(i, s, e); | 
|  | if ((long)pxmram < 0) | 
|  | pxmram = 0; | 
|  | } | 
|  |  | 
|  | e820ram = max_pfn - (memblock_x86_hole_size(0, max_pfn<<PAGE_SHIFT)>>PAGE_SHIFT); | 
|  | /* We seem to lose 3 pages somewhere. Allow 1M of slack. */ | 
|  | if ((long)(e820ram - pxmram) >= (1<<(20 - PAGE_SHIFT))) { | 
|  | printk(KERN_ERR | 
|  | "SRAT: PXMs only cover %luMB of your %luMB e820 RAM. Not used.\n", | 
|  | (pxmram << PAGE_SHIFT) >> 20, | 
|  | (e820ram << PAGE_SHIFT) >> 20); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | void __init acpi_numa_arch_fixup(void) {} | 
|  |  | 
|  | #ifdef CONFIG_NUMA_EMU | 
|  | void __init acpi_get_nodes(struct bootnode *physnodes, unsigned long start, | 
|  | unsigned long end) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for_each_node_mask(i, nodes_parsed) { | 
|  | cutoff_node(i, start, end); | 
|  | physnodes[i].start = nodes[i].start; | 
|  | physnodes[i].end = nodes[i].end; | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_NUMA_EMU */ | 
|  |  | 
|  | /* Use the information discovered above to actually set up the nodes. */ | 
|  | int __init acpi_scan_nodes(unsigned long start, unsigned long end) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (acpi_numa <= 0) | 
|  | return -1; | 
|  |  | 
|  | /* First clean up the node list */ | 
|  | for (i = 0; i < MAX_NUMNODES; i++) | 
|  | cutoff_node(i, start, end); | 
|  |  | 
|  | /* | 
|  | * Join together blocks on the same node, holes between | 
|  | * which don't overlap with memory on other nodes. | 
|  | */ | 
|  | for (i = 0; i < num_node_memblks; ++i) { | 
|  | int j, k; | 
|  |  | 
|  | for (j = i + 1; j < num_node_memblks; ++j) { | 
|  | unsigned long start, end; | 
|  |  | 
|  | if (memblk_nodeid[i] != memblk_nodeid[j]) | 
|  | continue; | 
|  | start = min(node_memblk_range[i].end, | 
|  | node_memblk_range[j].end); | 
|  | end = max(node_memblk_range[i].start, | 
|  | node_memblk_range[j].start); | 
|  | for (k = 0; k < num_node_memblks; ++k) { | 
|  | if (memblk_nodeid[i] == memblk_nodeid[k]) | 
|  | continue; | 
|  | if (start < node_memblk_range[k].end && | 
|  | end > node_memblk_range[k].start) | 
|  | break; | 
|  | } | 
|  | if (k < num_node_memblks) | 
|  | continue; | 
|  | start = min(node_memblk_range[i].start, | 
|  | node_memblk_range[j].start); | 
|  | end = max(node_memblk_range[i].end, | 
|  | node_memblk_range[j].end); | 
|  | printk(KERN_INFO "SRAT: Node %d " | 
|  | "[%Lx,%Lx) + [%Lx,%Lx) -> [%lx,%lx)\n", | 
|  | memblk_nodeid[i], | 
|  | node_memblk_range[i].start, | 
|  | node_memblk_range[i].end, | 
|  | node_memblk_range[j].start, | 
|  | node_memblk_range[j].end, | 
|  | start, end); | 
|  | node_memblk_range[i].start = start; | 
|  | node_memblk_range[i].end = end; | 
|  | k = --num_node_memblks - j; | 
|  | memmove(memblk_nodeid + j, memblk_nodeid + j+1, | 
|  | k * sizeof(*memblk_nodeid)); | 
|  | memmove(node_memblk_range + j, node_memblk_range + j+1, | 
|  | k * sizeof(*node_memblk_range)); | 
|  | --j; | 
|  | } | 
|  | } | 
|  |  | 
|  | memnode_shift = compute_hash_shift(node_memblk_range, num_node_memblks, | 
|  | memblk_nodeid); | 
|  | if (memnode_shift < 0) { | 
|  | printk(KERN_ERR | 
|  | "SRAT: No NUMA node hash function found. Contact maintainer\n"); | 
|  | bad_srat(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < num_node_memblks; i++) | 
|  | memblock_x86_register_active_regions(memblk_nodeid[i], | 
|  | node_memblk_range[i].start >> PAGE_SHIFT, | 
|  | node_memblk_range[i].end >> PAGE_SHIFT); | 
|  |  | 
|  | /* for out of order entries in SRAT */ | 
|  | sort_node_map(); | 
|  | if (!nodes_cover_memory(nodes)) { | 
|  | bad_srat(); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Account for nodes with cpus and no memory */ | 
|  | nodes_or(node_possible_map, nodes_parsed, cpu_nodes_parsed); | 
|  |  | 
|  | /* Finally register nodes */ | 
|  | for_each_node_mask(i, node_possible_map) | 
|  | setup_node_bootmem(i, nodes[i].start, nodes[i].end); | 
|  | /* Try again in case setup_node_bootmem missed one due | 
|  | to missing bootmem */ | 
|  | for_each_node_mask(i, node_possible_map) | 
|  | if (!node_online(i)) | 
|  | setup_node_bootmem(i, nodes[i].start, nodes[i].end); | 
|  |  | 
|  | for (i = 0; i < nr_cpu_ids; i++) { | 
|  | int node = early_cpu_to_node(i); | 
|  |  | 
|  | if (node == NUMA_NO_NODE) | 
|  | continue; | 
|  | if (!node_online(node)) | 
|  | numa_clear_node(i); | 
|  | } | 
|  | numa_init_array(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_NUMA_EMU | 
|  | static int fake_node_to_pxm_map[MAX_NUMNODES] __initdata = { | 
|  | [0 ... MAX_NUMNODES-1] = PXM_INVAL | 
|  | }; | 
|  | static s16 fake_apicid_to_node[MAX_LOCAL_APIC] __initdata = { | 
|  | [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE | 
|  | }; | 
|  | static int __init find_node_by_addr(unsigned long addr) | 
|  | { | 
|  | int ret = NUMA_NO_NODE; | 
|  | int i; | 
|  |  | 
|  | for_each_node_mask(i, nodes_parsed) { | 
|  | /* | 
|  | * Find the real node that this emulated node appears on.  For | 
|  | * the sake of simplicity, we only use a real node's starting | 
|  | * address to determine which emulated node it appears on. | 
|  | */ | 
|  | if (addr >= nodes[i].start && addr < nodes[i].end) { | 
|  | ret = i; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In NUMA emulation, we need to setup proximity domain (_PXM) to node ID | 
|  | * mappings that respect the real ACPI topology but reflect our emulated | 
|  | * environment.  For each emulated node, we find which real node it appears on | 
|  | * and create PXM to NID mappings for those fake nodes which mirror that | 
|  | * locality.  SLIT will now represent the correct distances between emulated | 
|  | * nodes as a result of the real topology. | 
|  | */ | 
|  | void __init acpi_fake_nodes(const struct bootnode *fake_nodes, int num_nodes) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | for (i = 0; i < num_nodes; i++) { | 
|  | int nid, pxm; | 
|  |  | 
|  | nid = find_node_by_addr(fake_nodes[i].start); | 
|  | if (nid == NUMA_NO_NODE) | 
|  | continue; | 
|  | pxm = node_to_pxm(nid); | 
|  | if (pxm == PXM_INVAL) | 
|  | continue; | 
|  | fake_node_to_pxm_map[i] = pxm; | 
|  | /* | 
|  | * For each apicid_to_node mapping that exists for this real | 
|  | * node, it must now point to the fake node ID. | 
|  | */ | 
|  | for (j = 0; j < MAX_LOCAL_APIC; j++) | 
|  | if (apicid_to_node[j] == nid && | 
|  | fake_apicid_to_node[j] == NUMA_NO_NODE) | 
|  | fake_apicid_to_node[j] = i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are apicid-to-node mappings for physical nodes that do not | 
|  | * have a corresponding emulated node, it should default to a guaranteed | 
|  | * value. | 
|  | */ | 
|  | for (i = 0; i < MAX_LOCAL_APIC; i++) | 
|  | if (apicid_to_node[i] != NUMA_NO_NODE && | 
|  | fake_apicid_to_node[i] == NUMA_NO_NODE) | 
|  | fake_apicid_to_node[i] = 0; | 
|  |  | 
|  | for (i = 0; i < num_nodes; i++) | 
|  | __acpi_map_pxm_to_node(fake_node_to_pxm_map[i], i); | 
|  | memcpy(apicid_to_node, fake_apicid_to_node, sizeof(apicid_to_node)); | 
|  |  | 
|  | nodes_clear(nodes_parsed); | 
|  | for (i = 0; i < num_nodes; i++) | 
|  | if (fake_nodes[i].start != fake_nodes[i].end) | 
|  | node_set(i, nodes_parsed); | 
|  | } | 
|  |  | 
|  | static int null_slit_node_compare(int a, int b) | 
|  | { | 
|  | return node_to_pxm(a) == node_to_pxm(b); | 
|  | } | 
|  | #else | 
|  | static int null_slit_node_compare(int a, int b) | 
|  | { | 
|  | return a == b; | 
|  | } | 
|  | #endif /* CONFIG_NUMA_EMU */ | 
|  |  | 
|  | int __node_distance(int a, int b) | 
|  | { | 
|  | int index; | 
|  |  | 
|  | if (!acpi_slit) | 
|  | return null_slit_node_compare(a, b) ? LOCAL_DISTANCE : | 
|  | REMOTE_DISTANCE; | 
|  | index = acpi_slit->locality_count * node_to_pxm(a); | 
|  | return acpi_slit->entry[index + node_to_pxm(b)]; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__node_distance); | 
|  |  | 
|  | #if defined(CONFIG_MEMORY_HOTPLUG_SPARSE) || defined(CONFIG_ACPI_HOTPLUG_MEMORY) | 
|  | int memory_add_physaddr_to_nid(u64 start) | 
|  | { | 
|  | int i, ret = 0; | 
|  |  | 
|  | for_each_node(i) | 
|  | if (nodes_add[i].start <= start && nodes_add[i].end > start) | 
|  | ret = i; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(memory_add_physaddr_to_nid); | 
|  | #endif |