|  | /* | 
|  | * This file is subject to the terms and conditions of the GNU General Public | 
|  | * License.  See the file "COPYING" in the main directory of this archive | 
|  | * for more details. | 
|  | * | 
|  | * Copyright (C) 2010 Cavium Networks | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/delay.h> | 
|  |  | 
|  | #include <asm/atomic.h> | 
|  |  | 
|  | #include <asm/octeon/octeon.h> | 
|  | #include <asm/octeon/cvmx-uctlx-defs.h> | 
|  |  | 
|  | static atomic_t  octeon2_usb_clock_start_cnt = ATOMIC_INIT(0); | 
|  |  | 
|  | void octeon2_usb_clocks_start(void) | 
|  | { | 
|  | u64 div; | 
|  | union cvmx_uctlx_if_ena if_ena; | 
|  | union cvmx_uctlx_clk_rst_ctl clk_rst_ctl; | 
|  | union cvmx_uctlx_uphy_ctl_status uphy_ctl_status; | 
|  | union cvmx_uctlx_uphy_portx_ctl_status port_ctl_status; | 
|  | int i; | 
|  | unsigned long io_clk_64_to_ns; | 
|  |  | 
|  | if (atomic_inc_return(&octeon2_usb_clock_start_cnt) != 1) | 
|  | return; | 
|  |  | 
|  | io_clk_64_to_ns = 64000000000ull / octeon_get_io_clock_rate(); | 
|  |  | 
|  | /* | 
|  | * Step 1: Wait for voltages stable.  That surely happened | 
|  | * before starting the kernel. | 
|  | * | 
|  | * Step 2: Enable  SCLK of UCTL by writing UCTL0_IF_ENA[EN] = 1 | 
|  | */ | 
|  | if_ena.u64 = 0; | 
|  | if_ena.s.en = 1; | 
|  | cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64); | 
|  |  | 
|  | /* Step 3: Configure the reference clock, PHY, and HCLK */ | 
|  | clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); | 
|  | /* 3a */ | 
|  | clk_rst_ctl.s.p_por = 1; | 
|  | clk_rst_ctl.s.hrst = 0; | 
|  | clk_rst_ctl.s.p_prst = 0; | 
|  | clk_rst_ctl.s.h_clkdiv_rst = 0; | 
|  | clk_rst_ctl.s.o_clkdiv_rst = 0; | 
|  | clk_rst_ctl.s.h_clkdiv_en = 0; | 
|  | clk_rst_ctl.s.o_clkdiv_en = 0; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  |  | 
|  | /* 3b */ | 
|  | /* 12MHz crystal. */ | 
|  | clk_rst_ctl.s.p_refclk_sel = 0; | 
|  | clk_rst_ctl.s.p_refclk_div = 0; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  |  | 
|  | /* 3c */ | 
|  | div = octeon_get_io_clock_rate() / 130000000ull; | 
|  |  | 
|  | switch (div) { | 
|  | case 0: | 
|  | div = 1; | 
|  | break; | 
|  | case 1: | 
|  | case 2: | 
|  | case 3: | 
|  | case 4: | 
|  | break; | 
|  | case 5: | 
|  | div = 4; | 
|  | break; | 
|  | case 6: | 
|  | case 7: | 
|  | div = 6; | 
|  | break; | 
|  | case 8: | 
|  | case 9: | 
|  | case 10: | 
|  | case 11: | 
|  | div = 8; | 
|  | break; | 
|  | default: | 
|  | div = 12; | 
|  | break; | 
|  | } | 
|  | clk_rst_ctl.s.h_div = div; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  | /* Read it back, */ | 
|  | clk_rst_ctl.u64 = cvmx_read_csr(CVMX_UCTLX_CLK_RST_CTL(0)); | 
|  | clk_rst_ctl.s.h_clkdiv_en = 1; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  | /* 3d */ | 
|  | clk_rst_ctl.s.h_clkdiv_rst = 1; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  |  | 
|  | /* 3e: delay 64 io clocks */ | 
|  | ndelay(io_clk_64_to_ns); | 
|  |  | 
|  | /* | 
|  | * Step 4: Program the power-on reset field in the UCTL | 
|  | * clock-reset-control register. | 
|  | */ | 
|  | clk_rst_ctl.s.p_por = 0; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  |  | 
|  | /* Step 5:    Wait 1 ms for the PHY clock to start. */ | 
|  | mdelay(1); | 
|  |  | 
|  | /* | 
|  | * Step 6: Program the reset input from automatic test | 
|  | * equipment field in the UPHY CSR | 
|  | */ | 
|  | uphy_ctl_status.u64 = cvmx_read_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0)); | 
|  | uphy_ctl_status.s.ate_reset = 1; | 
|  | cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64); | 
|  |  | 
|  | /* Step 7: Wait for at least 10ns. */ | 
|  | ndelay(10); | 
|  |  | 
|  | /* Step 8: Clear the ATE_RESET field in the UPHY CSR. */ | 
|  | uphy_ctl_status.s.ate_reset = 0; | 
|  | cvmx_write_csr(CVMX_UCTLX_UPHY_CTL_STATUS(0), uphy_ctl_status.u64); | 
|  |  | 
|  | /* | 
|  | * Step 9: Wait for at least 20ns for UPHY to output PHY clock | 
|  | * signals and OHCI_CLK48 | 
|  | */ | 
|  | ndelay(20); | 
|  |  | 
|  | /* Step 10: Configure the OHCI_CLK48 and OHCI_CLK12 clocks. */ | 
|  | /* 10a */ | 
|  | clk_rst_ctl.s.o_clkdiv_rst = 1; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  |  | 
|  | /* 10b */ | 
|  | clk_rst_ctl.s.o_clkdiv_en = 1; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  |  | 
|  | /* 10c */ | 
|  | ndelay(io_clk_64_to_ns); | 
|  |  | 
|  | /* | 
|  | * Step 11: Program the PHY reset field: | 
|  | * UCTL0_CLK_RST_CTL[P_PRST] = 1 | 
|  | */ | 
|  | clk_rst_ctl.s.p_prst = 1; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  |  | 
|  | /* Step 12: Wait 1 uS. */ | 
|  | udelay(1); | 
|  |  | 
|  | /* Step 13: Program the HRESET_N field: UCTL0_CLK_RST_CTL[HRST] = 1 */ | 
|  | clk_rst_ctl.s.hrst = 1; | 
|  | cvmx_write_csr(CVMX_UCTLX_CLK_RST_CTL(0), clk_rst_ctl.u64); | 
|  |  | 
|  | /* Now we can set some other registers.  */ | 
|  |  | 
|  | for (i = 0; i <= 1; i++) { | 
|  | port_ctl_status.u64 = | 
|  | cvmx_read_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0)); | 
|  | /* Set txvreftune to 15 to obtain complient 'eye' diagram. */ | 
|  | port_ctl_status.s.txvreftune = 15; | 
|  | cvmx_write_csr(CVMX_UCTLX_UPHY_PORTX_CTL_STATUS(i, 0), | 
|  | port_ctl_status.u64); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(octeon2_usb_clocks_start); | 
|  |  | 
|  | void octeon2_usb_clocks_stop(void) | 
|  | { | 
|  | union cvmx_uctlx_if_ena if_ena; | 
|  |  | 
|  | if (atomic_dec_return(&octeon2_usb_clock_start_cnt) != 0) | 
|  | return; | 
|  |  | 
|  | if_ena.u64 = 0; | 
|  | if_ena.s.en = 0; | 
|  | cvmx_write_csr(CVMX_UCTLX_IF_ENA(0), if_ena.u64); | 
|  | } | 
|  | EXPORT_SYMBOL(octeon2_usb_clocks_stop); |