| /* | 
 |  * Wireless Host Controller (WHC) qset management. | 
 |  * | 
 |  * Copyright (C) 2007 Cambridge Silicon Radio Ltd. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License version | 
 |  * 2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program.  If not, see <http://www.gnu.org/licenses/>. | 
 |  */ | 
 | #include <linux/kernel.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/uwb/umc.h> | 
 | #include <linux/usb.h> | 
 |  | 
 | #include "../../wusbcore/wusbhc.h" | 
 |  | 
 | #include "whcd.h" | 
 |  | 
 | struct whc_qset *qset_alloc(struct whc *whc, gfp_t mem_flags) | 
 | { | 
 | 	struct whc_qset *qset; | 
 | 	dma_addr_t dma; | 
 |  | 
 | 	qset = dma_pool_alloc(whc->qset_pool, mem_flags, &dma); | 
 | 	if (qset == NULL) | 
 | 		return NULL; | 
 | 	memset(qset, 0, sizeof(struct whc_qset)); | 
 |  | 
 | 	qset->qset_dma = dma; | 
 | 	qset->whc = whc; | 
 |  | 
 | 	INIT_LIST_HEAD(&qset->list_node); | 
 | 	INIT_LIST_HEAD(&qset->stds); | 
 |  | 
 | 	return qset; | 
 | } | 
 |  | 
 | /** | 
 |  * qset_fill_qh - fill the static endpoint state in a qset's QHead | 
 |  * @qset: the qset whose QH needs initializing with static endpoint | 
 |  *        state | 
 |  * @urb:  an urb for a transfer to this endpoint | 
 |  */ | 
 | static void qset_fill_qh(struct whc *whc, struct whc_qset *qset, struct urb *urb) | 
 | { | 
 | 	struct usb_device *usb_dev = urb->dev; | 
 | 	struct wusb_dev *wusb_dev = usb_dev->wusb_dev; | 
 | 	struct usb_wireless_ep_comp_descriptor *epcd; | 
 | 	bool is_out; | 
 | 	uint8_t phy_rate; | 
 |  | 
 | 	is_out = usb_pipeout(urb->pipe); | 
 |  | 
 | 	qset->max_packet = le16_to_cpu(urb->ep->desc.wMaxPacketSize); | 
 |  | 
 | 	epcd = (struct usb_wireless_ep_comp_descriptor *)qset->ep->extra; | 
 | 	if (epcd) { | 
 | 		qset->max_seq = epcd->bMaxSequence; | 
 | 		qset->max_burst = epcd->bMaxBurst; | 
 | 	} else { | 
 | 		qset->max_seq = 2; | 
 | 		qset->max_burst = 1; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Initial PHY rate is 53.3 Mbit/s for control endpoints or | 
 | 	 * the maximum supported by the device for other endpoints | 
 | 	 * (unless limited by the user). | 
 | 	 */ | 
 | 	if (usb_pipecontrol(urb->pipe)) | 
 | 		phy_rate = UWB_PHY_RATE_53; | 
 | 	else { | 
 | 		uint16_t phy_rates; | 
 |  | 
 | 		phy_rates = le16_to_cpu(wusb_dev->wusb_cap_descr->wPHYRates); | 
 | 		phy_rate = fls(phy_rates) - 1; | 
 | 		if (phy_rate > whc->wusbhc.phy_rate) | 
 | 			phy_rate = whc->wusbhc.phy_rate; | 
 | 	} | 
 |  | 
 | 	qset->qh.info1 = cpu_to_le32( | 
 | 		QH_INFO1_EP(usb_pipeendpoint(urb->pipe)) | 
 | 		| (is_out ? QH_INFO1_DIR_OUT : QH_INFO1_DIR_IN) | 
 | 		| usb_pipe_to_qh_type(urb->pipe) | 
 | 		| QH_INFO1_DEV_INFO_IDX(wusb_port_no_to_idx(usb_dev->portnum)) | 
 | 		| QH_INFO1_MAX_PKT_LEN(qset->max_packet) | 
 | 		); | 
 | 	qset->qh.info2 = cpu_to_le32( | 
 | 		QH_INFO2_BURST(qset->max_burst) | 
 | 		| QH_INFO2_DBP(0) | 
 | 		| QH_INFO2_MAX_COUNT(3) | 
 | 		| QH_INFO2_MAX_RETRY(3) | 
 | 		| QH_INFO2_MAX_SEQ(qset->max_seq - 1) | 
 | 		); | 
 | 	/* FIXME: where can we obtain these Tx parameters from?  Why | 
 | 	 * doesn't the chip know what Tx power to use? It knows the Rx | 
 | 	 * strength and can presumably guess the Tx power required | 
 | 	 * from that? */ | 
 | 	qset->qh.info3 = cpu_to_le32( | 
 | 		QH_INFO3_TX_RATE(phy_rate) | 
 | 		| QH_INFO3_TX_PWR(0) /* 0 == max power */ | 
 | 		); | 
 |  | 
 | 	qset->qh.cur_window = cpu_to_le32((1 << qset->max_burst) - 1); | 
 | } | 
 |  | 
 | /** | 
 |  * qset_clear - clear fields in a qset so it may be reinserted into a | 
 |  * schedule. | 
 |  * | 
 |  * The sequence number and current window are not cleared (see | 
 |  * qset_reset()). | 
 |  */ | 
 | void qset_clear(struct whc *whc, struct whc_qset *qset) | 
 | { | 
 | 	qset->td_start = qset->td_end = qset->ntds = 0; | 
 |  | 
 | 	qset->qh.link = cpu_to_le32(QH_LINK_NTDS(8) | QH_LINK_T); | 
 | 	qset->qh.status = qset->qh.status & QH_STATUS_SEQ_MASK; | 
 | 	qset->qh.err_count = 0; | 
 | 	qset->qh.scratch[0] = 0; | 
 | 	qset->qh.scratch[1] = 0; | 
 | 	qset->qh.scratch[2] = 0; | 
 |  | 
 | 	memset(&qset->qh.overlay, 0, sizeof(qset->qh.overlay)); | 
 |  | 
 | 	init_completion(&qset->remove_complete); | 
 | } | 
 |  | 
 | /** | 
 |  * qset_reset - reset endpoint state in a qset. | 
 |  * | 
 |  * Clears the sequence number and current window.  This qset must not | 
 |  * be in the ASL or PZL. | 
 |  */ | 
 | void qset_reset(struct whc *whc, struct whc_qset *qset) | 
 | { | 
 | 	qset->reset = 0; | 
 |  | 
 | 	qset->qh.status &= ~QH_STATUS_SEQ_MASK; | 
 | 	qset->qh.cur_window = cpu_to_le32((1 << qset->max_burst) - 1); | 
 | } | 
 |  | 
 | /** | 
 |  * get_qset - get the qset for an async endpoint | 
 |  * | 
 |  * A new qset is created if one does not already exist. | 
 |  */ | 
 | struct whc_qset *get_qset(struct whc *whc, struct urb *urb, | 
 | 				 gfp_t mem_flags) | 
 | { | 
 | 	struct whc_qset *qset; | 
 |  | 
 | 	qset = urb->ep->hcpriv; | 
 | 	if (qset == NULL) { | 
 | 		qset = qset_alloc(whc, mem_flags); | 
 | 		if (qset == NULL) | 
 | 			return NULL; | 
 |  | 
 | 		qset->ep = urb->ep; | 
 | 		urb->ep->hcpriv = qset; | 
 | 		qset_fill_qh(whc, qset, urb); | 
 | 	} | 
 | 	return qset; | 
 | } | 
 |  | 
 | void qset_remove_complete(struct whc *whc, struct whc_qset *qset) | 
 | { | 
 | 	qset->remove = 0; | 
 | 	list_del_init(&qset->list_node); | 
 | 	complete(&qset->remove_complete); | 
 | } | 
 |  | 
 | /** | 
 |  * qset_add_qtds - add qTDs for an URB to a qset | 
 |  * | 
 |  * Returns true if the list (ASL/PZL) must be updated because (for a | 
 |  * WHCI 0.95 controller) an activated qTD was pointed to be iCur. | 
 |  */ | 
 | enum whc_update qset_add_qtds(struct whc *whc, struct whc_qset *qset) | 
 | { | 
 | 	struct whc_std *std; | 
 | 	enum whc_update update = 0; | 
 |  | 
 | 	list_for_each_entry(std, &qset->stds, list_node) { | 
 | 		struct whc_qtd *qtd; | 
 | 		uint32_t status; | 
 |  | 
 | 		if (qset->ntds >= WHCI_QSET_TD_MAX | 
 | 		    || (qset->pause_after_urb && std->urb != qset->pause_after_urb)) | 
 | 			break; | 
 |  | 
 | 		if (std->qtd) | 
 | 			continue; /* already has a qTD */ | 
 |  | 
 | 		qtd = std->qtd = &qset->qtd[qset->td_end]; | 
 |  | 
 | 		/* Fill in setup bytes for control transfers. */ | 
 | 		if (usb_pipecontrol(std->urb->pipe)) | 
 | 			memcpy(qtd->setup, std->urb->setup_packet, 8); | 
 |  | 
 | 		status = QTD_STS_ACTIVE | QTD_STS_LEN(std->len); | 
 |  | 
 | 		if (whc_std_last(std) && usb_pipeout(std->urb->pipe)) | 
 | 			status |= QTD_STS_LAST_PKT; | 
 |  | 
 | 		/* | 
 | 		 * For an IN transfer the iAlt field should be set so | 
 | 		 * the h/w will automatically advance to the next | 
 | 		 * transfer. However, if there are 8 or more TDs | 
 | 		 * remaining in this transfer then iAlt cannot be set | 
 | 		 * as it could point to somewhere in this transfer. | 
 | 		 */ | 
 | 		if (std->ntds_remaining < WHCI_QSET_TD_MAX) { | 
 | 			int ialt; | 
 | 			ialt = (qset->td_end + std->ntds_remaining) % WHCI_QSET_TD_MAX; | 
 | 			status |= QTD_STS_IALT(ialt); | 
 | 		} else if (usb_pipein(std->urb->pipe)) | 
 | 			qset->pause_after_urb = std->urb; | 
 |  | 
 | 		if (std->num_pointers) | 
 | 			qtd->options = cpu_to_le32(QTD_OPT_IOC); | 
 | 		else | 
 | 			qtd->options = cpu_to_le32(QTD_OPT_IOC | QTD_OPT_SMALL); | 
 | 		qtd->page_list_ptr = cpu_to_le64(std->dma_addr); | 
 |  | 
 | 		qtd->status = cpu_to_le32(status); | 
 |  | 
 | 		if (QH_STATUS_TO_ICUR(qset->qh.status) == qset->td_end) | 
 | 			update = WHC_UPDATE_UPDATED; | 
 |  | 
 | 		if (++qset->td_end >= WHCI_QSET_TD_MAX) | 
 | 			qset->td_end = 0; | 
 | 		qset->ntds++; | 
 | 	} | 
 |  | 
 | 	return update; | 
 | } | 
 |  | 
 | /** | 
 |  * qset_remove_qtd - remove the first qTD from a qset. | 
 |  * | 
 |  * The qTD might be still active (if it's part of a IN URB that | 
 |  * resulted in a short read) so ensure it's deactivated. | 
 |  */ | 
 | static void qset_remove_qtd(struct whc *whc, struct whc_qset *qset) | 
 | { | 
 | 	qset->qtd[qset->td_start].status = 0; | 
 |  | 
 | 	if (++qset->td_start >= WHCI_QSET_TD_MAX) | 
 | 		qset->td_start = 0; | 
 | 	qset->ntds--; | 
 | } | 
 |  | 
 | static void qset_copy_bounce_to_sg(struct whc *whc, struct whc_std *std) | 
 | { | 
 | 	struct scatterlist *sg; | 
 | 	void *bounce; | 
 | 	size_t remaining, offset; | 
 |  | 
 | 	bounce = std->bounce_buf; | 
 | 	remaining = std->len; | 
 |  | 
 | 	sg = std->bounce_sg; | 
 | 	offset = std->bounce_offset; | 
 |  | 
 | 	while (remaining) { | 
 | 		size_t len; | 
 |  | 
 | 		len = min(sg->length - offset, remaining); | 
 | 		memcpy(sg_virt(sg) + offset, bounce, len); | 
 |  | 
 | 		bounce += len; | 
 | 		remaining -= len; | 
 |  | 
 | 		offset += len; | 
 | 		if (offset >= sg->length) { | 
 | 			sg = sg_next(sg); | 
 | 			offset = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /** | 
 |  * qset_free_std - remove an sTD and free it. | 
 |  * @whc: the WHCI host controller | 
 |  * @std: the sTD to remove and free. | 
 |  */ | 
 | void qset_free_std(struct whc *whc, struct whc_std *std) | 
 | { | 
 | 	list_del(&std->list_node); | 
 | 	if (std->bounce_buf) { | 
 | 		bool is_out = usb_pipeout(std->urb->pipe); | 
 | 		dma_addr_t dma_addr; | 
 |  | 
 | 		if (std->num_pointers) | 
 | 			dma_addr = le64_to_cpu(std->pl_virt[0].buf_ptr); | 
 | 		else | 
 | 			dma_addr = std->dma_addr; | 
 |  | 
 | 		dma_unmap_single(whc->wusbhc.dev, dma_addr, | 
 | 				 std->len, is_out ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
 | 		if (!is_out) | 
 | 			qset_copy_bounce_to_sg(whc, std); | 
 | 		kfree(std->bounce_buf); | 
 | 	} | 
 | 	if (std->pl_virt) { | 
 | 		if (std->dma_addr) | 
 | 			dma_unmap_single(whc->wusbhc.dev, std->dma_addr, | 
 | 					 std->num_pointers * sizeof(struct whc_page_list_entry), | 
 | 					 DMA_TO_DEVICE); | 
 | 		kfree(std->pl_virt); | 
 | 		std->pl_virt = NULL; | 
 | 	} | 
 | 	kfree(std); | 
 | } | 
 |  | 
 | /** | 
 |  * qset_remove_qtds - remove an URB's qTDs (and sTDs). | 
 |  */ | 
 | static void qset_remove_qtds(struct whc *whc, struct whc_qset *qset, | 
 | 			     struct urb *urb) | 
 | { | 
 | 	struct whc_std *std, *t; | 
 |  | 
 | 	list_for_each_entry_safe(std, t, &qset->stds, list_node) { | 
 | 		if (std->urb != urb) | 
 | 			break; | 
 | 		if (std->qtd != NULL) | 
 | 			qset_remove_qtd(whc, qset); | 
 | 		qset_free_std(whc, std); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * qset_free_stds - free any remaining sTDs for an URB. | 
 |  */ | 
 | static void qset_free_stds(struct whc_qset *qset, struct urb *urb) | 
 | { | 
 | 	struct whc_std *std, *t; | 
 |  | 
 | 	list_for_each_entry_safe(std, t, &qset->stds, list_node) { | 
 | 		if (std->urb == urb) | 
 | 			qset_free_std(qset->whc, std); | 
 | 	} | 
 | } | 
 |  | 
 | static int qset_fill_page_list(struct whc *whc, struct whc_std *std, gfp_t mem_flags) | 
 | { | 
 | 	dma_addr_t dma_addr = std->dma_addr; | 
 | 	dma_addr_t sp, ep; | 
 | 	size_t pl_len; | 
 | 	int p; | 
 |  | 
 | 	/* Short buffers don't need a page list. */ | 
 | 	if (std->len <= WHCI_PAGE_SIZE) { | 
 | 		std->num_pointers = 0; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	sp = dma_addr & ~(WHCI_PAGE_SIZE-1); | 
 | 	ep = dma_addr + std->len; | 
 | 	std->num_pointers = DIV_ROUND_UP(ep - sp, WHCI_PAGE_SIZE); | 
 |  | 
 | 	pl_len = std->num_pointers * sizeof(struct whc_page_list_entry); | 
 | 	std->pl_virt = kmalloc(pl_len, mem_flags); | 
 | 	if (std->pl_virt == NULL) | 
 | 		return -ENOMEM; | 
 | 	std->dma_addr = dma_map_single(whc->wusbhc.dev, std->pl_virt, pl_len, DMA_TO_DEVICE); | 
 |  | 
 | 	for (p = 0; p < std->num_pointers; p++) { | 
 | 		std->pl_virt[p].buf_ptr = cpu_to_le64(dma_addr); | 
 | 		dma_addr = (dma_addr + WHCI_PAGE_SIZE) & ~(WHCI_PAGE_SIZE-1); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * urb_dequeue_work - executes asl/pzl update and gives back the urb to the system. | 
 |  */ | 
 | static void urb_dequeue_work(struct work_struct *work) | 
 | { | 
 | 	struct whc_urb *wurb = container_of(work, struct whc_urb, dequeue_work); | 
 | 	struct whc_qset *qset = wurb->qset; | 
 | 	struct whc *whc = qset->whc; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (wurb->is_async == true) | 
 | 		asl_update(whc, WUSBCMD_ASYNC_UPDATED | 
 | 			   | WUSBCMD_ASYNC_SYNCED_DB | 
 | 			   | WUSBCMD_ASYNC_QSET_RM); | 
 | 	else | 
 | 		pzl_update(whc, WUSBCMD_PERIODIC_UPDATED | 
 | 			   | WUSBCMD_PERIODIC_SYNCED_DB | 
 | 			   | WUSBCMD_PERIODIC_QSET_RM); | 
 |  | 
 | 	spin_lock_irqsave(&whc->lock, flags); | 
 | 	qset_remove_urb(whc, qset, wurb->urb, wurb->status); | 
 | 	spin_unlock_irqrestore(&whc->lock, flags); | 
 | } | 
 |  | 
 | static struct whc_std *qset_new_std(struct whc *whc, struct whc_qset *qset, | 
 | 				    struct urb *urb, gfp_t mem_flags) | 
 | { | 
 | 	struct whc_std *std; | 
 |  | 
 | 	std = kzalloc(sizeof(struct whc_std), mem_flags); | 
 | 	if (std == NULL) | 
 | 		return NULL; | 
 |  | 
 | 	std->urb = urb; | 
 | 	std->qtd = NULL; | 
 |  | 
 | 	INIT_LIST_HEAD(&std->list_node); | 
 | 	list_add_tail(&std->list_node, &qset->stds); | 
 |  | 
 | 	return std; | 
 | } | 
 |  | 
 | static int qset_add_urb_sg(struct whc *whc, struct whc_qset *qset, struct urb *urb, | 
 | 			   gfp_t mem_flags) | 
 | { | 
 | 	size_t remaining; | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 | 	int ntds = 0; | 
 | 	struct whc_std *std = NULL; | 
 | 	struct whc_page_list_entry *entry; | 
 | 	dma_addr_t prev_end = 0; | 
 | 	size_t pl_len; | 
 | 	int p = 0; | 
 |  | 
 | 	remaining = urb->transfer_buffer_length; | 
 |  | 
 | 	for_each_sg(urb->sg, sg, urb->num_sgs, i) { | 
 | 		dma_addr_t dma_addr; | 
 | 		size_t dma_remaining; | 
 | 		dma_addr_t sp, ep; | 
 | 		int num_pointers; | 
 |  | 
 | 		if (remaining == 0) { | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		dma_addr = sg_dma_address(sg); | 
 | 		dma_remaining = min_t(size_t, sg_dma_len(sg), remaining); | 
 |  | 
 | 		while (dma_remaining) { | 
 | 			size_t dma_len; | 
 |  | 
 | 			/* | 
 | 			 * We can use the previous std (if it exists) provided that: | 
 | 			 * - the previous one ended on a page boundary. | 
 | 			 * - the current one begins on a page boundary. | 
 | 			 * - the previous one isn't full. | 
 | 			 * | 
 | 			 * If a new std is needed but the previous one | 
 | 			 * was not a whole number of packets then this | 
 | 			 * sg list cannot be mapped onto multiple | 
 | 			 * qTDs.  Return an error and let the caller | 
 | 			 * sort it out. | 
 | 			 */ | 
 | 			if (!std | 
 | 			    || (prev_end & (WHCI_PAGE_SIZE-1)) | 
 | 			    || (dma_addr & (WHCI_PAGE_SIZE-1)) | 
 | 			    || std->len + WHCI_PAGE_SIZE > QTD_MAX_XFER_SIZE) { | 
 | 				if (std && std->len % qset->max_packet != 0) | 
 | 					return -EINVAL; | 
 | 				std = qset_new_std(whc, qset, urb, mem_flags); | 
 | 				if (std == NULL) { | 
 | 					return -ENOMEM; | 
 | 				} | 
 | 				ntds++; | 
 | 				p = 0; | 
 | 			} | 
 |  | 
 | 			dma_len = dma_remaining; | 
 |  | 
 | 			/* | 
 | 			 * If the remainder of this element doesn't | 
 | 			 * fit in a single qTD, limit the qTD to a | 
 | 			 * whole number of packets.  This allows the | 
 | 			 * remainder to go into the next qTD. | 
 | 			 */ | 
 | 			if (std->len + dma_len > QTD_MAX_XFER_SIZE) { | 
 | 				dma_len = (QTD_MAX_XFER_SIZE / qset->max_packet) | 
 | 					* qset->max_packet - std->len; | 
 | 			} | 
 |  | 
 | 			std->len += dma_len; | 
 | 			std->ntds_remaining = -1; /* filled in later */ | 
 |  | 
 | 			sp = dma_addr & ~(WHCI_PAGE_SIZE-1); | 
 | 			ep = dma_addr + dma_len; | 
 | 			num_pointers = DIV_ROUND_UP(ep - sp, WHCI_PAGE_SIZE); | 
 | 			std->num_pointers += num_pointers; | 
 |  | 
 | 			pl_len = std->num_pointers * sizeof(struct whc_page_list_entry); | 
 |  | 
 | 			std->pl_virt = krealloc(std->pl_virt, pl_len, mem_flags); | 
 | 			if (std->pl_virt == NULL) { | 
 | 				return -ENOMEM; | 
 | 			} | 
 |  | 
 | 			for (;p < std->num_pointers; p++, entry++) { | 
 | 				std->pl_virt[p].buf_ptr = cpu_to_le64(dma_addr); | 
 | 				dma_addr = (dma_addr + WHCI_PAGE_SIZE) & ~(WHCI_PAGE_SIZE-1); | 
 | 			} | 
 |  | 
 | 			prev_end = dma_addr = ep; | 
 | 			dma_remaining -= dma_len; | 
 | 			remaining -= dma_len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Now the number of stds is know, go back and fill in | 
 | 	   std->ntds_remaining. */ | 
 | 	list_for_each_entry(std, &qset->stds, list_node) { | 
 | 		if (std->ntds_remaining == -1) { | 
 | 			pl_len = std->num_pointers * sizeof(struct whc_page_list_entry); | 
 | 			std->ntds_remaining = ntds--; | 
 | 			std->dma_addr = dma_map_single(whc->wusbhc.dev, std->pl_virt, | 
 | 						       pl_len, DMA_TO_DEVICE); | 
 | 		} | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * qset_add_urb_sg_linearize - add an urb with sg list, copying the data | 
 |  * | 
 |  * If the URB contains an sg list whose elements cannot be directly | 
 |  * mapped to qTDs then the data must be transferred via bounce | 
 |  * buffers. | 
 |  */ | 
 | static int qset_add_urb_sg_linearize(struct whc *whc, struct whc_qset *qset, | 
 | 				     struct urb *urb, gfp_t mem_flags) | 
 | { | 
 | 	bool is_out = usb_pipeout(urb->pipe); | 
 | 	size_t max_std_len; | 
 | 	size_t remaining; | 
 | 	int ntds = 0; | 
 | 	struct whc_std *std = NULL; | 
 | 	void *bounce = NULL; | 
 | 	struct scatterlist *sg; | 
 | 	int i; | 
 |  | 
 | 	/* limit maximum bounce buffer to 16 * 3.5 KiB ~= 28 k */ | 
 | 	max_std_len = qset->max_burst * qset->max_packet; | 
 |  | 
 | 	remaining = urb->transfer_buffer_length; | 
 |  | 
 | 	for_each_sg(urb->sg, sg, urb->num_sgs, i) { | 
 | 		size_t len; | 
 | 		size_t sg_remaining; | 
 | 		void *orig; | 
 |  | 
 | 		if (remaining == 0) { | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		sg_remaining = min_t(size_t, remaining, sg->length); | 
 | 		orig = sg_virt(sg); | 
 |  | 
 | 		while (sg_remaining) { | 
 | 			if (!std || std->len == max_std_len) { | 
 | 				std = qset_new_std(whc, qset, urb, mem_flags); | 
 | 				if (std == NULL) | 
 | 					return -ENOMEM; | 
 | 				std->bounce_buf = kmalloc(max_std_len, mem_flags); | 
 | 				if (std->bounce_buf == NULL) | 
 | 					return -ENOMEM; | 
 | 				std->bounce_sg = sg; | 
 | 				std->bounce_offset = orig - sg_virt(sg); | 
 | 				bounce = std->bounce_buf; | 
 | 				ntds++; | 
 | 			} | 
 |  | 
 | 			len = min(sg_remaining, max_std_len - std->len); | 
 |  | 
 | 			if (is_out) | 
 | 				memcpy(bounce, orig, len); | 
 |  | 
 | 			std->len += len; | 
 | 			std->ntds_remaining = -1; /* filled in later */ | 
 |  | 
 | 			bounce += len; | 
 | 			orig += len; | 
 | 			sg_remaining -= len; | 
 | 			remaining -= len; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For each of the new sTDs, map the bounce buffers, create | 
 | 	 * page lists (if necessary), and fill in std->ntds_remaining. | 
 | 	 */ | 
 | 	list_for_each_entry(std, &qset->stds, list_node) { | 
 | 		if (std->ntds_remaining != -1) | 
 | 			continue; | 
 |  | 
 | 		std->dma_addr = dma_map_single(&whc->umc->dev, std->bounce_buf, std->len, | 
 | 					       is_out ? DMA_TO_DEVICE : DMA_FROM_DEVICE); | 
 |  | 
 | 		if (qset_fill_page_list(whc, std, mem_flags) < 0) | 
 | 			return -ENOMEM; | 
 |  | 
 | 		std->ntds_remaining = ntds--; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * qset_add_urb - add an urb to the qset's queue. | 
 |  * | 
 |  * The URB is chopped into sTDs, one for each qTD that will required. | 
 |  * At least one qTD (and sTD) is required even if the transfer has no | 
 |  * data (e.g., for some control transfers). | 
 |  */ | 
 | int qset_add_urb(struct whc *whc, struct whc_qset *qset, struct urb *urb, | 
 | 	gfp_t mem_flags) | 
 | { | 
 | 	struct whc_urb *wurb; | 
 | 	int remaining = urb->transfer_buffer_length; | 
 | 	u64 transfer_dma = urb->transfer_dma; | 
 | 	int ntds_remaining; | 
 | 	int ret; | 
 |  | 
 | 	wurb = kzalloc(sizeof(struct whc_urb), mem_flags); | 
 | 	if (wurb == NULL) | 
 | 		goto err_no_mem; | 
 | 	urb->hcpriv = wurb; | 
 | 	wurb->qset = qset; | 
 | 	wurb->urb = urb; | 
 | 	INIT_WORK(&wurb->dequeue_work, urb_dequeue_work); | 
 |  | 
 | 	if (urb->num_sgs) { | 
 | 		ret = qset_add_urb_sg(whc, qset, urb, mem_flags); | 
 | 		if (ret == -EINVAL) { | 
 | 			qset_free_stds(qset, urb); | 
 | 			ret = qset_add_urb_sg_linearize(whc, qset, urb, mem_flags); | 
 | 		} | 
 | 		if (ret < 0) | 
 | 			goto err_no_mem; | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	ntds_remaining = DIV_ROUND_UP(remaining, QTD_MAX_XFER_SIZE); | 
 | 	if (ntds_remaining == 0) | 
 | 		ntds_remaining = 1; | 
 |  | 
 | 	while (ntds_remaining) { | 
 | 		struct whc_std *std; | 
 | 		size_t std_len; | 
 |  | 
 | 		std_len = remaining; | 
 | 		if (std_len > QTD_MAX_XFER_SIZE) | 
 | 			std_len = QTD_MAX_XFER_SIZE; | 
 |  | 
 | 		std = qset_new_std(whc, qset, urb, mem_flags); | 
 | 		if (std == NULL) | 
 | 			goto err_no_mem; | 
 |  | 
 | 		std->dma_addr = transfer_dma; | 
 | 		std->len = std_len; | 
 | 		std->ntds_remaining = ntds_remaining; | 
 |  | 
 | 		if (qset_fill_page_list(whc, std, mem_flags) < 0) | 
 | 			goto err_no_mem; | 
 |  | 
 | 		ntds_remaining--; | 
 | 		remaining -= std_len; | 
 | 		transfer_dma += std_len; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 |  | 
 | err_no_mem: | 
 | 	qset_free_stds(qset, urb); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | /** | 
 |  * qset_remove_urb - remove an URB from the urb queue. | 
 |  * | 
 |  * The URB is returned to the USB subsystem. | 
 |  */ | 
 | void qset_remove_urb(struct whc *whc, struct whc_qset *qset, | 
 | 			    struct urb *urb, int status) | 
 | { | 
 | 	struct wusbhc *wusbhc = &whc->wusbhc; | 
 | 	struct whc_urb *wurb = urb->hcpriv; | 
 |  | 
 | 	usb_hcd_unlink_urb_from_ep(&wusbhc->usb_hcd, urb); | 
 | 	/* Drop the lock as urb->complete() may enqueue another urb. */ | 
 | 	spin_unlock(&whc->lock); | 
 | 	wusbhc_giveback_urb(wusbhc, urb, status); | 
 | 	spin_lock(&whc->lock); | 
 |  | 
 | 	kfree(wurb); | 
 | } | 
 |  | 
 | /** | 
 |  * get_urb_status_from_qtd - get the completed urb status from qTD status | 
 |  * @urb:    completed urb | 
 |  * @status: qTD status | 
 |  */ | 
 | static int get_urb_status_from_qtd(struct urb *urb, u32 status) | 
 | { | 
 | 	if (status & QTD_STS_HALTED) { | 
 | 		if (status & QTD_STS_DBE) | 
 | 			return usb_pipein(urb->pipe) ? -ENOSR : -ECOMM; | 
 | 		else if (status & QTD_STS_BABBLE) | 
 | 			return -EOVERFLOW; | 
 | 		else if (status & QTD_STS_RCE) | 
 | 			return -ETIME; | 
 | 		return -EPIPE; | 
 | 	} | 
 | 	if (usb_pipein(urb->pipe) | 
 | 	    && (urb->transfer_flags & URB_SHORT_NOT_OK) | 
 | 	    && urb->actual_length < urb->transfer_buffer_length) | 
 | 		return -EREMOTEIO; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  * process_inactive_qtd - process an inactive (but not halted) qTD. | 
 |  * | 
 |  * Update the urb with the transfer bytes from the qTD, if the urb is | 
 |  * completely transfered or (in the case of an IN only) the LPF is | 
 |  * set, then the transfer is complete and the urb should be returned | 
 |  * to the system. | 
 |  */ | 
 | void process_inactive_qtd(struct whc *whc, struct whc_qset *qset, | 
 | 				 struct whc_qtd *qtd) | 
 | { | 
 | 	struct whc_std *std = list_first_entry(&qset->stds, struct whc_std, list_node); | 
 | 	struct urb *urb = std->urb; | 
 | 	uint32_t status; | 
 | 	bool complete; | 
 |  | 
 | 	status = le32_to_cpu(qtd->status); | 
 |  | 
 | 	urb->actual_length += std->len - QTD_STS_TO_LEN(status); | 
 |  | 
 | 	if (usb_pipein(urb->pipe) && (status & QTD_STS_LAST_PKT)) | 
 | 		complete = true; | 
 | 	else | 
 | 		complete = whc_std_last(std); | 
 |  | 
 | 	qset_remove_qtd(whc, qset); | 
 | 	qset_free_std(whc, std); | 
 |  | 
 | 	/* | 
 | 	 * Transfers for this URB are complete?  Then return it to the | 
 | 	 * USB subsystem. | 
 | 	 */ | 
 | 	if (complete) { | 
 | 		qset_remove_qtds(whc, qset, urb); | 
 | 		qset_remove_urb(whc, qset, urb, get_urb_status_from_qtd(urb, status)); | 
 |  | 
 | 		/* | 
 | 		 * If iAlt isn't valid then the hardware didn't | 
 | 		 * advance iCur. Adjust the start and end pointers to | 
 | 		 * match iCur. | 
 | 		 */ | 
 | 		if (!(status & QTD_STS_IALT_VALID)) | 
 | 			qset->td_start = qset->td_end | 
 | 				= QH_STATUS_TO_ICUR(le16_to_cpu(qset->qh.status)); | 
 | 		qset->pause_after_urb = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * process_halted_qtd - process a qset with a halted qtd | 
 |  * | 
 |  * Remove all the qTDs for the failed URB and return the failed URB to | 
 |  * the USB subsystem.  Then remove all other qTDs so the qset can be | 
 |  * removed. | 
 |  * | 
 |  * FIXME: this is the point where rate adaptation can be done.  If a | 
 |  * transfer failed because it exceeded the maximum number of retries | 
 |  * then it could be reactivated with a slower rate without having to | 
 |  * remove the qset. | 
 |  */ | 
 | void process_halted_qtd(struct whc *whc, struct whc_qset *qset, | 
 | 			       struct whc_qtd *qtd) | 
 | { | 
 | 	struct whc_std *std = list_first_entry(&qset->stds, struct whc_std, list_node); | 
 | 	struct urb *urb = std->urb; | 
 | 	int urb_status; | 
 |  | 
 | 	urb_status = get_urb_status_from_qtd(urb, le32_to_cpu(qtd->status)); | 
 |  | 
 | 	qset_remove_qtds(whc, qset, urb); | 
 | 	qset_remove_urb(whc, qset, urb, urb_status); | 
 |  | 
 | 	list_for_each_entry(std, &qset->stds, list_node) { | 
 | 		if (qset->ntds == 0) | 
 | 			break; | 
 | 		qset_remove_qtd(whc, qset); | 
 | 		std->qtd = NULL; | 
 | 	} | 
 |  | 
 | 	qset->remove = 1; | 
 | } | 
 |  | 
 | void qset_free(struct whc *whc, struct whc_qset *qset) | 
 | { | 
 | 	dma_pool_free(whc->qset_pool, qset, qset->qset_dma); | 
 | } | 
 |  | 
 | /** | 
 |  * qset_delete - wait for a qset to be unused, then free it. | 
 |  */ | 
 | void qset_delete(struct whc *whc, struct whc_qset *qset) | 
 | { | 
 | 	wait_for_completion(&qset->remove_complete); | 
 | 	qset_free(whc, qset); | 
 | } |