|  | /* | 
|  | * xHCI host controller driver | 
|  | * | 
|  | * Copyright (C) 2008 Intel Corp. | 
|  | * | 
|  | * Author: Sarah Sharp | 
|  | * Some code borrowed from the Linux EHCI driver. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but | 
|  | * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY | 
|  | * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License | 
|  | * for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software Foundation, | 
|  | * Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Ring initialization rules: | 
|  | * 1. Each segment is initialized to zero, except for link TRBs. | 
|  | * 2. Ring cycle state = 0.  This represents Producer Cycle State (PCS) or | 
|  | *    Consumer Cycle State (CCS), depending on ring function. | 
|  | * 3. Enqueue pointer = dequeue pointer = address of first TRB in the segment. | 
|  | * | 
|  | * Ring behavior rules: | 
|  | * 1. A ring is empty if enqueue == dequeue.  This means there will always be at | 
|  | *    least one free TRB in the ring.  This is useful if you want to turn that | 
|  | *    into a link TRB and expand the ring. | 
|  | * 2. When incrementing an enqueue or dequeue pointer, if the next TRB is a | 
|  | *    link TRB, then load the pointer with the address in the link TRB.  If the | 
|  | *    link TRB had its toggle bit set, you may need to update the ring cycle | 
|  | *    state (see cycle bit rules).  You may have to do this multiple times | 
|  | *    until you reach a non-link TRB. | 
|  | * 3. A ring is full if enqueue++ (for the definition of increment above) | 
|  | *    equals the dequeue pointer. | 
|  | * | 
|  | * Cycle bit rules: | 
|  | * 1. When a consumer increments a dequeue pointer and encounters a toggle bit | 
|  | *    in a link TRB, it must toggle the ring cycle state. | 
|  | * 2. When a producer increments an enqueue pointer and encounters a toggle bit | 
|  | *    in a link TRB, it must toggle the ring cycle state. | 
|  | * | 
|  | * Producer rules: | 
|  | * 1. Check if ring is full before you enqueue. | 
|  | * 2. Write the ring cycle state to the cycle bit in the TRB you're enqueuing. | 
|  | *    Update enqueue pointer between each write (which may update the ring | 
|  | *    cycle state). | 
|  | * 3. Notify consumer.  If SW is producer, it rings the doorbell for command | 
|  | *    and endpoint rings.  If HC is the producer for the event ring, | 
|  | *    and it generates an interrupt according to interrupt modulation rules. | 
|  | * | 
|  | * Consumer rules: | 
|  | * 1. Check if TRB belongs to you.  If the cycle bit == your ring cycle state, | 
|  | *    the TRB is owned by the consumer. | 
|  | * 2. Update dequeue pointer (which may update the ring cycle state) and | 
|  | *    continue processing TRBs until you reach a TRB which is not owned by you. | 
|  | * 3. Notify the producer.  SW is the consumer for the event ring, and it | 
|  | *   updates event ring dequeue pointer.  HC is the consumer for the command and | 
|  | *   endpoint rings; it generates events on the event ring for these. | 
|  | */ | 
|  |  | 
|  | #include <linux/scatterlist.h> | 
|  | #include <linux/slab.h> | 
|  | #include "xhci.h" | 
|  |  | 
|  | static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | struct xhci_event_cmd *event); | 
|  |  | 
|  | /* | 
|  | * Returns zero if the TRB isn't in this segment, otherwise it returns the DMA | 
|  | * address of the TRB. | 
|  | */ | 
|  | dma_addr_t xhci_trb_virt_to_dma(struct xhci_segment *seg, | 
|  | union xhci_trb *trb) | 
|  | { | 
|  | unsigned long segment_offset; | 
|  |  | 
|  | if (!seg || !trb || trb < seg->trbs) | 
|  | return 0; | 
|  | /* offset in TRBs */ | 
|  | segment_offset = trb - seg->trbs; | 
|  | if (segment_offset > TRBS_PER_SEGMENT) | 
|  | return 0; | 
|  | return seg->dma + (segment_offset * sizeof(*trb)); | 
|  | } | 
|  |  | 
|  | /* Does this link TRB point to the first segment in a ring, | 
|  | * or was the previous TRB the last TRB on the last segment in the ERST? | 
|  | */ | 
|  | static inline bool last_trb_on_last_seg(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
|  | struct xhci_segment *seg, union xhci_trb *trb) | 
|  | { | 
|  | if (ring == xhci->event_ring) | 
|  | return (trb == &seg->trbs[TRBS_PER_SEGMENT]) && | 
|  | (seg->next == xhci->event_ring->first_seg); | 
|  | else | 
|  | return trb->link.control & LINK_TOGGLE; | 
|  | } | 
|  |  | 
|  | /* Is this TRB a link TRB or was the last TRB the last TRB in this event ring | 
|  | * segment?  I.e. would the updated event TRB pointer step off the end of the | 
|  | * event seg? | 
|  | */ | 
|  | static inline int last_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
|  | struct xhci_segment *seg, union xhci_trb *trb) | 
|  | { | 
|  | if (ring == xhci->event_ring) | 
|  | return trb == &seg->trbs[TRBS_PER_SEGMENT]; | 
|  | else | 
|  | return (trb->link.control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK); | 
|  | } | 
|  |  | 
|  | static inline int enqueue_is_link_trb(struct xhci_ring *ring) | 
|  | { | 
|  | struct xhci_link_trb *link = &ring->enqueue->link; | 
|  | return ((link->control & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK)); | 
|  | } | 
|  |  | 
|  | /* Updates trb to point to the next TRB in the ring, and updates seg if the next | 
|  | * TRB is in a new segment.  This does not skip over link TRBs, and it does not | 
|  | * effect the ring dequeue or enqueue pointers. | 
|  | */ | 
|  | static void next_trb(struct xhci_hcd *xhci, | 
|  | struct xhci_ring *ring, | 
|  | struct xhci_segment **seg, | 
|  | union xhci_trb **trb) | 
|  | { | 
|  | if (last_trb(xhci, ring, *seg, *trb)) { | 
|  | *seg = (*seg)->next; | 
|  | *trb = ((*seg)->trbs); | 
|  | } else { | 
|  | (*trb)++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See Cycle bit rules. SW is the consumer for the event ring only. | 
|  | * Don't make a ring full of link TRBs.  That would be dumb and this would loop. | 
|  | */ | 
|  | static void inc_deq(struct xhci_hcd *xhci, struct xhci_ring *ring, bool consumer) | 
|  | { | 
|  | union xhci_trb *next = ++(ring->dequeue); | 
|  | unsigned long long addr; | 
|  |  | 
|  | ring->deq_updates++; | 
|  | /* Update the dequeue pointer further if that was a link TRB or we're at | 
|  | * the end of an event ring segment (which doesn't have link TRBS) | 
|  | */ | 
|  | while (last_trb(xhci, ring, ring->deq_seg, next)) { | 
|  | if (consumer && last_trb_on_last_seg(xhci, ring, ring->deq_seg, next)) { | 
|  | ring->cycle_state = (ring->cycle_state ? 0 : 1); | 
|  | if (!in_interrupt()) | 
|  | xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", | 
|  | ring, | 
|  | (unsigned int) ring->cycle_state); | 
|  | } | 
|  | ring->deq_seg = ring->deq_seg->next; | 
|  | ring->dequeue = ring->deq_seg->trbs; | 
|  | next = ring->dequeue; | 
|  | } | 
|  | addr = (unsigned long long) xhci_trb_virt_to_dma(ring->deq_seg, ring->dequeue); | 
|  | if (ring == xhci->event_ring) | 
|  | xhci_dbg(xhci, "Event ring deq = 0x%llx (DMA)\n", addr); | 
|  | else if (ring == xhci->cmd_ring) | 
|  | xhci_dbg(xhci, "Command ring deq = 0x%llx (DMA)\n", addr); | 
|  | else | 
|  | xhci_dbg(xhci, "Ring deq = 0x%llx (DMA)\n", addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See Cycle bit rules. SW is the consumer for the event ring only. | 
|  | * Don't make a ring full of link TRBs.  That would be dumb and this would loop. | 
|  | * | 
|  | * If we've just enqueued a TRB that is in the middle of a TD (meaning the | 
|  | * chain bit is set), then set the chain bit in all the following link TRBs. | 
|  | * If we've enqueued the last TRB in a TD, make sure the following link TRBs | 
|  | * have their chain bit cleared (so that each Link TRB is a separate TD). | 
|  | * | 
|  | * Section 6.4.4.1 of the 0.95 spec says link TRBs cannot have the chain bit | 
|  | * set, but other sections talk about dealing with the chain bit set.  This was | 
|  | * fixed in the 0.96 specification errata, but we have to assume that all 0.95 | 
|  | * xHCI hardware can't handle the chain bit being cleared on a link TRB. | 
|  | * | 
|  | * @more_trbs_coming:	Will you enqueue more TRBs before calling | 
|  | *			prepare_transfer()? | 
|  | */ | 
|  | static void inc_enq(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
|  | bool consumer, bool more_trbs_coming) | 
|  | { | 
|  | u32 chain; | 
|  | union xhci_trb *next; | 
|  | unsigned long long addr; | 
|  |  | 
|  | chain = ring->enqueue->generic.field[3] & TRB_CHAIN; | 
|  | next = ++(ring->enqueue); | 
|  |  | 
|  | ring->enq_updates++; | 
|  | /* Update the dequeue pointer further if that was a link TRB or we're at | 
|  | * the end of an event ring segment (which doesn't have link TRBS) | 
|  | */ | 
|  | while (last_trb(xhci, ring, ring->enq_seg, next)) { | 
|  | if (!consumer) { | 
|  | if (ring != xhci->event_ring) { | 
|  | /* | 
|  | * If the caller doesn't plan on enqueueing more | 
|  | * TDs before ringing the doorbell, then we | 
|  | * don't want to give the link TRB to the | 
|  | * hardware just yet.  We'll give the link TRB | 
|  | * back in prepare_ring() just before we enqueue | 
|  | * the TD at the top of the ring. | 
|  | */ | 
|  | if (!chain && !more_trbs_coming) | 
|  | break; | 
|  |  | 
|  | /* If we're not dealing with 0.95 hardware, | 
|  | * carry over the chain bit of the previous TRB | 
|  | * (which may mean the chain bit is cleared). | 
|  | */ | 
|  | if (!xhci_link_trb_quirk(xhci)) { | 
|  | next->link.control &= ~TRB_CHAIN; | 
|  | next->link.control |= chain; | 
|  | } | 
|  | /* Give this link TRB to the hardware */ | 
|  | wmb(); | 
|  | next->link.control ^= TRB_CYCLE; | 
|  | } | 
|  | /* Toggle the cycle bit after the last ring segment. */ | 
|  | if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { | 
|  | ring->cycle_state = (ring->cycle_state ? 0 : 1); | 
|  | if (!in_interrupt()) | 
|  | xhci_dbg(xhci, "Toggle cycle state for ring %p = %i\n", | 
|  | ring, | 
|  | (unsigned int) ring->cycle_state); | 
|  | } | 
|  | } | 
|  | ring->enq_seg = ring->enq_seg->next; | 
|  | ring->enqueue = ring->enq_seg->trbs; | 
|  | next = ring->enqueue; | 
|  | } | 
|  | addr = (unsigned long long) xhci_trb_virt_to_dma(ring->enq_seg, ring->enqueue); | 
|  | if (ring == xhci->event_ring) | 
|  | xhci_dbg(xhci, "Event ring enq = 0x%llx (DMA)\n", addr); | 
|  | else if (ring == xhci->cmd_ring) | 
|  | xhci_dbg(xhci, "Command ring enq = 0x%llx (DMA)\n", addr); | 
|  | else | 
|  | xhci_dbg(xhci, "Ring enq = 0x%llx (DMA)\n", addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check to see if there's room to enqueue num_trbs on the ring.  See rules | 
|  | * above. | 
|  | * FIXME: this would be simpler and faster if we just kept track of the number | 
|  | * of free TRBs in a ring. | 
|  | */ | 
|  | static int room_on_ring(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
|  | unsigned int num_trbs) | 
|  | { | 
|  | int i; | 
|  | union xhci_trb *enq = ring->enqueue; | 
|  | struct xhci_segment *enq_seg = ring->enq_seg; | 
|  | struct xhci_segment *cur_seg; | 
|  | unsigned int left_on_ring; | 
|  |  | 
|  | /* If we are currently pointing to a link TRB, advance the | 
|  | * enqueue pointer before checking for space */ | 
|  | while (last_trb(xhci, ring, enq_seg, enq)) { | 
|  | enq_seg = enq_seg->next; | 
|  | enq = enq_seg->trbs; | 
|  | } | 
|  |  | 
|  | /* Check if ring is empty */ | 
|  | if (enq == ring->dequeue) { | 
|  | /* Can't use link trbs */ | 
|  | left_on_ring = TRBS_PER_SEGMENT - 1; | 
|  | for (cur_seg = enq_seg->next; cur_seg != enq_seg; | 
|  | cur_seg = cur_seg->next) | 
|  | left_on_ring += TRBS_PER_SEGMENT - 1; | 
|  |  | 
|  | /* Always need one TRB free in the ring. */ | 
|  | left_on_ring -= 1; | 
|  | if (num_trbs > left_on_ring) { | 
|  | xhci_warn(xhci, "Not enough room on ring; " | 
|  | "need %u TRBs, %u TRBs left\n", | 
|  | num_trbs, left_on_ring); | 
|  | return 0; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  | /* Make sure there's an extra empty TRB available */ | 
|  | for (i = 0; i <= num_trbs; ++i) { | 
|  | if (enq == ring->dequeue) | 
|  | return 0; | 
|  | enq++; | 
|  | while (last_trb(xhci, ring, enq_seg, enq)) { | 
|  | enq_seg = enq_seg->next; | 
|  | enq = enq_seg->trbs; | 
|  | } | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* Ring the host controller doorbell after placing a command on the ring */ | 
|  | void xhci_ring_cmd_db(struct xhci_hcd *xhci) | 
|  | { | 
|  | xhci_dbg(xhci, "// Ding dong!\n"); | 
|  | xhci_writel(xhci, DB_VALUE_HOST, &xhci->dba->doorbell[0]); | 
|  | /* Flush PCI posted writes */ | 
|  | xhci_readl(xhci, &xhci->dba->doorbell[0]); | 
|  | } | 
|  |  | 
|  | void xhci_ring_ep_doorbell(struct xhci_hcd *xhci, | 
|  | unsigned int slot_id, | 
|  | unsigned int ep_index, | 
|  | unsigned int stream_id) | 
|  | { | 
|  | __u32 __iomem *db_addr = &xhci->dba->doorbell[slot_id]; | 
|  | struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
|  | unsigned int ep_state = ep->ep_state; | 
|  |  | 
|  | /* Don't ring the doorbell for this endpoint if there are pending | 
|  | * cancellations because we don't want to interrupt processing. | 
|  | * We don't want to restart any stream rings if there's a set dequeue | 
|  | * pointer command pending because the device can choose to start any | 
|  | * stream once the endpoint is on the HW schedule. | 
|  | * FIXME - check all the stream rings for pending cancellations. | 
|  | */ | 
|  | if ((ep_state & EP_HALT_PENDING) || (ep_state & SET_DEQ_PENDING) || | 
|  | (ep_state & EP_HALTED)) | 
|  | return; | 
|  | xhci_writel(xhci, DB_VALUE(ep_index, stream_id), db_addr); | 
|  | /* The CPU has better things to do at this point than wait for a | 
|  | * write-posting flush.  It'll get there soon enough. | 
|  | */ | 
|  | } | 
|  |  | 
|  | /* Ring the doorbell for any rings with pending URBs */ | 
|  | static void ring_doorbell_for_active_rings(struct xhci_hcd *xhci, | 
|  | unsigned int slot_id, | 
|  | unsigned int ep_index) | 
|  | { | 
|  | unsigned int stream_id; | 
|  | struct xhci_virt_ep *ep; | 
|  |  | 
|  | ep = &xhci->devs[slot_id]->eps[ep_index]; | 
|  |  | 
|  | /* A ring has pending URBs if its TD list is not empty */ | 
|  | if (!(ep->ep_state & EP_HAS_STREAMS)) { | 
|  | if (!(list_empty(&ep->ring->td_list))) | 
|  | xhci_ring_ep_doorbell(xhci, slot_id, ep_index, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (stream_id = 1; stream_id < ep->stream_info->num_streams; | 
|  | stream_id++) { | 
|  | struct xhci_stream_info *stream_info = ep->stream_info; | 
|  | if (!list_empty(&stream_info->stream_rings[stream_id]->td_list)) | 
|  | xhci_ring_ep_doorbell(xhci, slot_id, ep_index, | 
|  | stream_id); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Find the segment that trb is in.  Start searching in start_seg. | 
|  | * If we must move past a segment that has a link TRB with a toggle cycle state | 
|  | * bit set, then we will toggle the value pointed at by cycle_state. | 
|  | */ | 
|  | static struct xhci_segment *find_trb_seg( | 
|  | struct xhci_segment *start_seg, | 
|  | union xhci_trb	*trb, int *cycle_state) | 
|  | { | 
|  | struct xhci_segment *cur_seg = start_seg; | 
|  | struct xhci_generic_trb *generic_trb; | 
|  |  | 
|  | while (cur_seg->trbs > trb || | 
|  | &cur_seg->trbs[TRBS_PER_SEGMENT - 1] < trb) { | 
|  | generic_trb = &cur_seg->trbs[TRBS_PER_SEGMENT - 1].generic; | 
|  | if ((generic_trb->field[3] & TRB_TYPE_BITMASK) == | 
|  | TRB_TYPE(TRB_LINK) && | 
|  | (generic_trb->field[3] & LINK_TOGGLE)) | 
|  | *cycle_state = ~(*cycle_state) & 0x1; | 
|  | cur_seg = cur_seg->next; | 
|  | if (cur_seg == start_seg) | 
|  | /* Looped over the entire list.  Oops! */ | 
|  | return NULL; | 
|  | } | 
|  | return cur_seg; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct xhci_ring *xhci_triad_to_transfer_ring(struct xhci_hcd *xhci, | 
|  | unsigned int slot_id, unsigned int ep_index, | 
|  | unsigned int stream_id) | 
|  | { | 
|  | struct xhci_virt_ep *ep; | 
|  |  | 
|  | ep = &xhci->devs[slot_id]->eps[ep_index]; | 
|  | /* Common case: no streams */ | 
|  | if (!(ep->ep_state & EP_HAS_STREAMS)) | 
|  | return ep->ring; | 
|  |  | 
|  | if (stream_id == 0) { | 
|  | xhci_warn(xhci, | 
|  | "WARN: Slot ID %u, ep index %u has streams, " | 
|  | "but URB has no stream ID.\n", | 
|  | slot_id, ep_index); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (stream_id < ep->stream_info->num_streams) | 
|  | return ep->stream_info->stream_rings[stream_id]; | 
|  |  | 
|  | xhci_warn(xhci, | 
|  | "WARN: Slot ID %u, ep index %u has " | 
|  | "stream IDs 1 to %u allocated, " | 
|  | "but stream ID %u is requested.\n", | 
|  | slot_id, ep_index, | 
|  | ep->stream_info->num_streams - 1, | 
|  | stream_id); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Get the right ring for the given URB. | 
|  | * If the endpoint supports streams, boundary check the URB's stream ID. | 
|  | * If the endpoint doesn't support streams, return the singular endpoint ring. | 
|  | */ | 
|  | static struct xhci_ring *xhci_urb_to_transfer_ring(struct xhci_hcd *xhci, | 
|  | struct urb *urb) | 
|  | { | 
|  | return xhci_triad_to_transfer_ring(xhci, urb->dev->slot_id, | 
|  | xhci_get_endpoint_index(&urb->ep->desc), urb->stream_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move the xHC's endpoint ring dequeue pointer past cur_td. | 
|  | * Record the new state of the xHC's endpoint ring dequeue segment, | 
|  | * dequeue pointer, and new consumer cycle state in state. | 
|  | * Update our internal representation of the ring's dequeue pointer. | 
|  | * | 
|  | * We do this in three jumps: | 
|  | *  - First we update our new ring state to be the same as when the xHC stopped. | 
|  | *  - Then we traverse the ring to find the segment that contains | 
|  | *    the last TRB in the TD.  We toggle the xHC's new cycle state when we pass | 
|  | *    any link TRBs with the toggle cycle bit set. | 
|  | *  - Finally we move the dequeue state one TRB further, toggling the cycle bit | 
|  | *    if we've moved it past a link TRB with the toggle cycle bit set. | 
|  | */ | 
|  | void xhci_find_new_dequeue_state(struct xhci_hcd *xhci, | 
|  | unsigned int slot_id, unsigned int ep_index, | 
|  | unsigned int stream_id, struct xhci_td *cur_td, | 
|  | struct xhci_dequeue_state *state) | 
|  | { | 
|  | struct xhci_virt_device *dev = xhci->devs[slot_id]; | 
|  | struct xhci_ring *ep_ring; | 
|  | struct xhci_generic_trb *trb; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | dma_addr_t addr; | 
|  |  | 
|  | ep_ring = xhci_triad_to_transfer_ring(xhci, slot_id, | 
|  | ep_index, stream_id); | 
|  | if (!ep_ring) { | 
|  | xhci_warn(xhci, "WARN can't find new dequeue state " | 
|  | "for invalid stream ID %u.\n", | 
|  | stream_id); | 
|  | return; | 
|  | } | 
|  | state->new_cycle_state = 0; | 
|  | xhci_dbg(xhci, "Finding segment containing stopped TRB.\n"); | 
|  | state->new_deq_seg = find_trb_seg(cur_td->start_seg, | 
|  | dev->eps[ep_index].stopped_trb, | 
|  | &state->new_cycle_state); | 
|  | if (!state->new_deq_seg) | 
|  | BUG(); | 
|  | /* Dig out the cycle state saved by the xHC during the stop ep cmd */ | 
|  | xhci_dbg(xhci, "Finding endpoint context\n"); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); | 
|  | state->new_cycle_state = 0x1 & ep_ctx->deq; | 
|  |  | 
|  | state->new_deq_ptr = cur_td->last_trb; | 
|  | xhci_dbg(xhci, "Finding segment containing last TRB in TD.\n"); | 
|  | state->new_deq_seg = find_trb_seg(state->new_deq_seg, | 
|  | state->new_deq_ptr, | 
|  | &state->new_cycle_state); | 
|  | if (!state->new_deq_seg) | 
|  | BUG(); | 
|  |  | 
|  | trb = &state->new_deq_ptr->generic; | 
|  | if ((trb->field[3] & TRB_TYPE_BITMASK) == TRB_TYPE(TRB_LINK) && | 
|  | (trb->field[3] & LINK_TOGGLE)) | 
|  | state->new_cycle_state = ~(state->new_cycle_state) & 0x1; | 
|  | next_trb(xhci, ep_ring, &state->new_deq_seg, &state->new_deq_ptr); | 
|  |  | 
|  | /* Don't update the ring cycle state for the producer (us). */ | 
|  | xhci_dbg(xhci, "New dequeue segment = %p (virtual)\n", | 
|  | state->new_deq_seg); | 
|  | addr = xhci_trb_virt_to_dma(state->new_deq_seg, state->new_deq_ptr); | 
|  | xhci_dbg(xhci, "New dequeue pointer = 0x%llx (DMA)\n", | 
|  | (unsigned long long) addr); | 
|  | xhci_dbg(xhci, "Setting dequeue pointer in internal ring state.\n"); | 
|  | ep_ring->dequeue = state->new_deq_ptr; | 
|  | ep_ring->deq_seg = state->new_deq_seg; | 
|  | } | 
|  |  | 
|  | static void td_to_noop(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | 
|  | struct xhci_td *cur_td) | 
|  | { | 
|  | struct xhci_segment *cur_seg; | 
|  | union xhci_trb *cur_trb; | 
|  |  | 
|  | for (cur_seg = cur_td->start_seg, cur_trb = cur_td->first_trb; | 
|  | true; | 
|  | next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { | 
|  | if ((cur_trb->generic.field[3] & TRB_TYPE_BITMASK) == | 
|  | TRB_TYPE(TRB_LINK)) { | 
|  | /* Unchain any chained Link TRBs, but | 
|  | * leave the pointers intact. | 
|  | */ | 
|  | cur_trb->generic.field[3] &= ~TRB_CHAIN; | 
|  | xhci_dbg(xhci, "Cancel (unchain) link TRB\n"); | 
|  | xhci_dbg(xhci, "Address = %p (0x%llx dma); " | 
|  | "in seg %p (0x%llx dma)\n", | 
|  | cur_trb, | 
|  | (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), | 
|  | cur_seg, | 
|  | (unsigned long long)cur_seg->dma); | 
|  | } else { | 
|  | cur_trb->generic.field[0] = 0; | 
|  | cur_trb->generic.field[1] = 0; | 
|  | cur_trb->generic.field[2] = 0; | 
|  | /* Preserve only the cycle bit of this TRB */ | 
|  | cur_trb->generic.field[3] &= TRB_CYCLE; | 
|  | cur_trb->generic.field[3] |= TRB_TYPE(TRB_TR_NOOP); | 
|  | xhci_dbg(xhci, "Cancel TRB %p (0x%llx dma) " | 
|  | "in seg %p (0x%llx dma)\n", | 
|  | cur_trb, | 
|  | (unsigned long long)xhci_trb_virt_to_dma(cur_seg, cur_trb), | 
|  | cur_seg, | 
|  | (unsigned long long)cur_seg->dma); | 
|  | } | 
|  | if (cur_trb == cur_td->last_trb) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, | 
|  | unsigned int ep_index, unsigned int stream_id, | 
|  | struct xhci_segment *deq_seg, | 
|  | union xhci_trb *deq_ptr, u32 cycle_state); | 
|  |  | 
|  | void xhci_queue_new_dequeue_state(struct xhci_hcd *xhci, | 
|  | unsigned int slot_id, unsigned int ep_index, | 
|  | unsigned int stream_id, | 
|  | struct xhci_dequeue_state *deq_state) | 
|  | { | 
|  | struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
|  |  | 
|  | xhci_dbg(xhci, "Set TR Deq Ptr cmd, new deq seg = %p (0x%llx dma), " | 
|  | "new deq ptr = %p (0x%llx dma), new cycle = %u\n", | 
|  | deq_state->new_deq_seg, | 
|  | (unsigned long long)deq_state->new_deq_seg->dma, | 
|  | deq_state->new_deq_ptr, | 
|  | (unsigned long long)xhci_trb_virt_to_dma(deq_state->new_deq_seg, deq_state->new_deq_ptr), | 
|  | deq_state->new_cycle_state); | 
|  | queue_set_tr_deq(xhci, slot_id, ep_index, stream_id, | 
|  | deq_state->new_deq_seg, | 
|  | deq_state->new_deq_ptr, | 
|  | (u32) deq_state->new_cycle_state); | 
|  | /* Stop the TD queueing code from ringing the doorbell until | 
|  | * this command completes.  The HC won't set the dequeue pointer | 
|  | * if the ring is running, and ringing the doorbell starts the | 
|  | * ring running. | 
|  | */ | 
|  | ep->ep_state |= SET_DEQ_PENDING; | 
|  | } | 
|  |  | 
|  | static inline void xhci_stop_watchdog_timer_in_irq(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_ep *ep) | 
|  | { | 
|  | ep->ep_state &= ~EP_HALT_PENDING; | 
|  | /* Can't del_timer_sync in interrupt, so we attempt to cancel.  If the | 
|  | * timer is running on another CPU, we don't decrement stop_cmds_pending | 
|  | * (since we didn't successfully stop the watchdog timer). | 
|  | */ | 
|  | if (del_timer(&ep->stop_cmd_timer)) | 
|  | ep->stop_cmds_pending--; | 
|  | } | 
|  |  | 
|  | /* Must be called with xhci->lock held in interrupt context */ | 
|  | static void xhci_giveback_urb_in_irq(struct xhci_hcd *xhci, | 
|  | struct xhci_td *cur_td, int status, char *adjective) | 
|  | { | 
|  | struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
|  | struct urb	*urb; | 
|  | struct urb_priv	*urb_priv; | 
|  |  | 
|  | urb = cur_td->urb; | 
|  | urb_priv = urb->hcpriv; | 
|  | urb_priv->td_cnt++; | 
|  |  | 
|  | /* Only giveback urb when this is the last td in urb */ | 
|  | if (urb_priv->td_cnt == urb_priv->length) { | 
|  | usb_hcd_unlink_urb_from_ep(hcd, urb); | 
|  | xhci_dbg(xhci, "Giveback %s URB %p\n", adjective, urb); | 
|  |  | 
|  | spin_unlock(&xhci->lock); | 
|  | usb_hcd_giveback_urb(hcd, urb, status); | 
|  | xhci_urb_free_priv(xhci, urb_priv); | 
|  | spin_lock(&xhci->lock); | 
|  | xhci_dbg(xhci, "%s URB given back\n", adjective); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we get a command completion for a Stop Endpoint Command, we need to | 
|  | * unlink any cancelled TDs from the ring.  There are two ways to do that: | 
|  | * | 
|  | *  1. If the HW was in the middle of processing the TD that needs to be | 
|  | *     cancelled, then we must move the ring's dequeue pointer past the last TRB | 
|  | *     in the TD with a Set Dequeue Pointer Command. | 
|  | *  2. Otherwise, we turn all the TRBs in the TD into No-op TRBs (with the chain | 
|  | *     bit cleared) so that the HW will skip over them. | 
|  | */ | 
|  | static void handle_stopped_endpoint(struct xhci_hcd *xhci, | 
|  | union xhci_trb *trb, struct xhci_event_cmd *event) | 
|  | { | 
|  | unsigned int slot_id; | 
|  | unsigned int ep_index; | 
|  | struct xhci_virt_device *virt_dev; | 
|  | struct xhci_ring *ep_ring; | 
|  | struct xhci_virt_ep *ep; | 
|  | struct list_head *entry; | 
|  | struct xhci_td *cur_td = NULL; | 
|  | struct xhci_td *last_unlinked_td; | 
|  |  | 
|  | struct xhci_dequeue_state deq_state; | 
|  |  | 
|  | if (unlikely(TRB_TO_SUSPEND_PORT( | 
|  | xhci->cmd_ring->dequeue->generic.field[3]))) { | 
|  | slot_id = TRB_TO_SLOT_ID( | 
|  | xhci->cmd_ring->dequeue->generic.field[3]); | 
|  | virt_dev = xhci->devs[slot_id]; | 
|  | if (virt_dev) | 
|  | handle_cmd_in_cmd_wait_list(xhci, virt_dev, | 
|  | event); | 
|  | else | 
|  | xhci_warn(xhci, "Stop endpoint command " | 
|  | "completion for disabled slot %u\n", | 
|  | slot_id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memset(&deq_state, 0, sizeof(deq_state)); | 
|  | slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); | 
|  | ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); | 
|  | ep = &xhci->devs[slot_id]->eps[ep_index]; | 
|  |  | 
|  | if (list_empty(&ep->cancelled_td_list)) { | 
|  | xhci_stop_watchdog_timer_in_irq(xhci, ep); | 
|  | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Fix up the ep ring first, so HW stops executing cancelled TDs. | 
|  | * We have the xHCI lock, so nothing can modify this list until we drop | 
|  | * it.  We're also in the event handler, so we can't get re-interrupted | 
|  | * if another Stop Endpoint command completes | 
|  | */ | 
|  | list_for_each(entry, &ep->cancelled_td_list) { | 
|  | cur_td = list_entry(entry, struct xhci_td, cancelled_td_list); | 
|  | xhci_dbg(xhci, "Cancelling TD starting at %p, 0x%llx (dma).\n", | 
|  | cur_td->first_trb, | 
|  | (unsigned long long)xhci_trb_virt_to_dma(cur_td->start_seg, cur_td->first_trb)); | 
|  | ep_ring = xhci_urb_to_transfer_ring(xhci, cur_td->urb); | 
|  | if (!ep_ring) { | 
|  | /* This shouldn't happen unless a driver is mucking | 
|  | * with the stream ID after submission.  This will | 
|  | * leave the TD on the hardware ring, and the hardware | 
|  | * will try to execute it, and may access a buffer | 
|  | * that has already been freed.  In the best case, the | 
|  | * hardware will execute it, and the event handler will | 
|  | * ignore the completion event for that TD, since it was | 
|  | * removed from the td_list for that endpoint.  In | 
|  | * short, don't muck with the stream ID after | 
|  | * submission. | 
|  | */ | 
|  | xhci_warn(xhci, "WARN Cancelled URB %p " | 
|  | "has invalid stream ID %u.\n", | 
|  | cur_td->urb, | 
|  | cur_td->urb->stream_id); | 
|  | goto remove_finished_td; | 
|  | } | 
|  | /* | 
|  | * If we stopped on the TD we need to cancel, then we have to | 
|  | * move the xHC endpoint ring dequeue pointer past this TD. | 
|  | */ | 
|  | if (cur_td == ep->stopped_td) | 
|  | xhci_find_new_dequeue_state(xhci, slot_id, ep_index, | 
|  | cur_td->urb->stream_id, | 
|  | cur_td, &deq_state); | 
|  | else | 
|  | td_to_noop(xhci, ep_ring, cur_td); | 
|  | remove_finished_td: | 
|  | /* | 
|  | * The event handler won't see a completion for this TD anymore, | 
|  | * so remove it from the endpoint ring's TD list.  Keep it in | 
|  | * the cancelled TD list for URB completion later. | 
|  | */ | 
|  | list_del(&cur_td->td_list); | 
|  | } | 
|  | last_unlinked_td = cur_td; | 
|  | xhci_stop_watchdog_timer_in_irq(xhci, ep); | 
|  |  | 
|  | /* If necessary, queue a Set Transfer Ring Dequeue Pointer command */ | 
|  | if (deq_state.new_deq_ptr && deq_state.new_deq_seg) { | 
|  | xhci_queue_new_dequeue_state(xhci, | 
|  | slot_id, ep_index, | 
|  | ep->stopped_td->urb->stream_id, | 
|  | &deq_state); | 
|  | xhci_ring_cmd_db(xhci); | 
|  | } else { | 
|  | /* Otherwise ring the doorbell(s) to restart queued transfers */ | 
|  | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
|  | } | 
|  | ep->stopped_td = NULL; | 
|  | ep->stopped_trb = NULL; | 
|  |  | 
|  | /* | 
|  | * Drop the lock and complete the URBs in the cancelled TD list. | 
|  | * New TDs to be cancelled might be added to the end of the list before | 
|  | * we can complete all the URBs for the TDs we already unlinked. | 
|  | * So stop when we've completed the URB for the last TD we unlinked. | 
|  | */ | 
|  | do { | 
|  | cur_td = list_entry(ep->cancelled_td_list.next, | 
|  | struct xhci_td, cancelled_td_list); | 
|  | list_del(&cur_td->cancelled_td_list); | 
|  |  | 
|  | /* Clean up the cancelled URB */ | 
|  | /* Doesn't matter what we pass for status, since the core will | 
|  | * just overwrite it (because the URB has been unlinked). | 
|  | */ | 
|  | xhci_giveback_urb_in_irq(xhci, cur_td, 0, "cancelled"); | 
|  |  | 
|  | /* Stop processing the cancelled list if the watchdog timer is | 
|  | * running. | 
|  | */ | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) | 
|  | return; | 
|  | } while (cur_td != last_unlinked_td); | 
|  |  | 
|  | /* Return to the event handler with xhci->lock re-acquired */ | 
|  | } | 
|  |  | 
|  | /* Watchdog timer function for when a stop endpoint command fails to complete. | 
|  | * In this case, we assume the host controller is broken or dying or dead.  The | 
|  | * host may still be completing some other events, so we have to be careful to | 
|  | * let the event ring handler and the URB dequeueing/enqueueing functions know | 
|  | * through xhci->state. | 
|  | * | 
|  | * The timer may also fire if the host takes a very long time to respond to the | 
|  | * command, and the stop endpoint command completion handler cannot delete the | 
|  | * timer before the timer function is called.  Another endpoint cancellation may | 
|  | * sneak in before the timer function can grab the lock, and that may queue | 
|  | * another stop endpoint command and add the timer back.  So we cannot use a | 
|  | * simple flag to say whether there is a pending stop endpoint command for a | 
|  | * particular endpoint. | 
|  | * | 
|  | * Instead we use a combination of that flag and a counter for the number of | 
|  | * pending stop endpoint commands.  If the timer is the tail end of the last | 
|  | * stop endpoint command, and the endpoint's command is still pending, we assume | 
|  | * the host is dying. | 
|  | */ | 
|  | void xhci_stop_endpoint_command_watchdog(unsigned long arg) | 
|  | { | 
|  | struct xhci_hcd *xhci; | 
|  | struct xhci_virt_ep *ep; | 
|  | struct xhci_virt_ep *temp_ep; | 
|  | struct xhci_ring *ring; | 
|  | struct xhci_td *cur_td; | 
|  | int ret, i, j; | 
|  |  | 
|  | ep = (struct xhci_virt_ep *) arg; | 
|  | xhci = ep->xhci; | 
|  |  | 
|  | spin_lock(&xhci->lock); | 
|  |  | 
|  | ep->stop_cmds_pending--; | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) { | 
|  | xhci_dbg(xhci, "Stop EP timer ran, but another timer marked " | 
|  | "xHCI as DYING, exiting.\n"); | 
|  | spin_unlock(&xhci->lock); | 
|  | return; | 
|  | } | 
|  | if (!(ep->stop_cmds_pending == 0 && (ep->ep_state & EP_HALT_PENDING))) { | 
|  | xhci_dbg(xhci, "Stop EP timer ran, but no command pending, " | 
|  | "exiting.\n"); | 
|  | spin_unlock(&xhci->lock); | 
|  | return; | 
|  | } | 
|  |  | 
|  | xhci_warn(xhci, "xHCI host not responding to stop endpoint command.\n"); | 
|  | xhci_warn(xhci, "Assuming host is dying, halting host.\n"); | 
|  | /* Oops, HC is dead or dying or at least not responding to the stop | 
|  | * endpoint command. | 
|  | */ | 
|  | xhci->xhc_state |= XHCI_STATE_DYING; | 
|  | /* Disable interrupts from the host controller and start halting it */ | 
|  | xhci_quiesce(xhci); | 
|  | spin_unlock(&xhci->lock); | 
|  |  | 
|  | ret = xhci_halt(xhci); | 
|  |  | 
|  | spin_lock(&xhci->lock); | 
|  | if (ret < 0) { | 
|  | /* This is bad; the host is not responding to commands and it's | 
|  | * not allowing itself to be halted.  At least interrupts are | 
|  | * disabled, so we can set HC_STATE_HALT and notify the | 
|  | * USB core.  But if we call usb_hc_died(), it will attempt to | 
|  | * disconnect all device drivers under this host.  Those | 
|  | * disconnect() methods will wait for all URBs to be unlinked, | 
|  | * so we must complete them. | 
|  | */ | 
|  | xhci_warn(xhci, "Non-responsive xHCI host is not halting.\n"); | 
|  | xhci_warn(xhci, "Completing active URBs anyway.\n"); | 
|  | /* We could turn all TDs on the rings to no-ops.  This won't | 
|  | * help if the host has cached part of the ring, and is slow if | 
|  | * we want to preserve the cycle bit.  Skip it and hope the host | 
|  | * doesn't touch the memory. | 
|  | */ | 
|  | } | 
|  | for (i = 0; i < MAX_HC_SLOTS; i++) { | 
|  | if (!xhci->devs[i]) | 
|  | continue; | 
|  | for (j = 0; j < 31; j++) { | 
|  | temp_ep = &xhci->devs[i]->eps[j]; | 
|  | ring = temp_ep->ring; | 
|  | if (!ring) | 
|  | continue; | 
|  | xhci_dbg(xhci, "Killing URBs for slot ID %u, " | 
|  | "ep index %u\n", i, j); | 
|  | while (!list_empty(&ring->td_list)) { | 
|  | cur_td = list_first_entry(&ring->td_list, | 
|  | struct xhci_td, | 
|  | td_list); | 
|  | list_del(&cur_td->td_list); | 
|  | if (!list_empty(&cur_td->cancelled_td_list)) | 
|  | list_del(&cur_td->cancelled_td_list); | 
|  | xhci_giveback_urb_in_irq(xhci, cur_td, | 
|  | -ESHUTDOWN, "killed"); | 
|  | } | 
|  | while (!list_empty(&temp_ep->cancelled_td_list)) { | 
|  | cur_td = list_first_entry( | 
|  | &temp_ep->cancelled_td_list, | 
|  | struct xhci_td, | 
|  | cancelled_td_list); | 
|  | list_del(&cur_td->cancelled_td_list); | 
|  | xhci_giveback_urb_in_irq(xhci, cur_td, | 
|  | -ESHUTDOWN, "killed"); | 
|  | } | 
|  | } | 
|  | } | 
|  | spin_unlock(&xhci->lock); | 
|  | xhci_to_hcd(xhci)->state = HC_STATE_HALT; | 
|  | xhci_dbg(xhci, "Calling usb_hc_died()\n"); | 
|  | usb_hc_died(xhci_to_hcd(xhci)); | 
|  | xhci_dbg(xhci, "xHCI host controller is dead.\n"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we get a completion for a Set Transfer Ring Dequeue Pointer command, | 
|  | * we need to clear the set deq pending flag in the endpoint ring state, so that | 
|  | * the TD queueing code can ring the doorbell again.  We also need to ring the | 
|  | * endpoint doorbell to restart the ring, but only if there aren't more | 
|  | * cancellations pending. | 
|  | */ | 
|  | static void handle_set_deq_completion(struct xhci_hcd *xhci, | 
|  | struct xhci_event_cmd *event, | 
|  | union xhci_trb *trb) | 
|  | { | 
|  | unsigned int slot_id; | 
|  | unsigned int ep_index; | 
|  | unsigned int stream_id; | 
|  | struct xhci_ring *ep_ring; | 
|  | struct xhci_virt_device *dev; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | struct xhci_slot_ctx *slot_ctx; | 
|  |  | 
|  | slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); | 
|  | ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); | 
|  | stream_id = TRB_TO_STREAM_ID(trb->generic.field[2]); | 
|  | dev = xhci->devs[slot_id]; | 
|  |  | 
|  | ep_ring = xhci_stream_id_to_ring(dev, ep_index, stream_id); | 
|  | if (!ep_ring) { | 
|  | xhci_warn(xhci, "WARN Set TR deq ptr command for " | 
|  | "freed stream ID %u\n", | 
|  | stream_id); | 
|  | /* XXX: Harmless??? */ | 
|  | dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; | 
|  | return; | 
|  | } | 
|  |  | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, dev->out_ctx, ep_index); | 
|  | slot_ctx = xhci_get_slot_ctx(xhci, dev->out_ctx); | 
|  |  | 
|  | if (GET_COMP_CODE(event->status) != COMP_SUCCESS) { | 
|  | unsigned int ep_state; | 
|  | unsigned int slot_state; | 
|  |  | 
|  | switch (GET_COMP_CODE(event->status)) { | 
|  | case COMP_TRB_ERR: | 
|  | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd invalid because " | 
|  | "of stream ID configuration\n"); | 
|  | break; | 
|  | case COMP_CTX_STATE: | 
|  | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed due " | 
|  | "to incorrect slot or ep state.\n"); | 
|  | ep_state = ep_ctx->ep_info; | 
|  | ep_state &= EP_STATE_MASK; | 
|  | slot_state = slot_ctx->dev_state; | 
|  | slot_state = GET_SLOT_STATE(slot_state); | 
|  | xhci_dbg(xhci, "Slot state = %u, EP state = %u\n", | 
|  | slot_state, ep_state); | 
|  | break; | 
|  | case COMP_EBADSLT: | 
|  | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd failed because " | 
|  | "slot %u was not enabled.\n", slot_id); | 
|  | break; | 
|  | default: | 
|  | xhci_warn(xhci, "WARN Set TR Deq Ptr cmd with unknown " | 
|  | "completion code of %u.\n", | 
|  | GET_COMP_CODE(event->status)); | 
|  | break; | 
|  | } | 
|  | /* OK what do we do now?  The endpoint state is hosed, and we | 
|  | * should never get to this point if the synchronization between | 
|  | * queueing, and endpoint state are correct.  This might happen | 
|  | * if the device gets disconnected after we've finished | 
|  | * cancelling URBs, which might not be an error... | 
|  | */ | 
|  | } else { | 
|  | xhci_dbg(xhci, "Successful Set TR Deq Ptr cmd, deq = @%08llx\n", | 
|  | ep_ctx->deq); | 
|  | } | 
|  |  | 
|  | dev->eps[ep_index].ep_state &= ~SET_DEQ_PENDING; | 
|  | /* Restart any rings with pending URBs */ | 
|  | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
|  | } | 
|  |  | 
|  | static void handle_reset_ep_completion(struct xhci_hcd *xhci, | 
|  | struct xhci_event_cmd *event, | 
|  | union xhci_trb *trb) | 
|  | { | 
|  | int slot_id; | 
|  | unsigned int ep_index; | 
|  |  | 
|  | slot_id = TRB_TO_SLOT_ID(trb->generic.field[3]); | 
|  | ep_index = TRB_TO_EP_INDEX(trb->generic.field[3]); | 
|  | /* This command will only fail if the endpoint wasn't halted, | 
|  | * but we don't care. | 
|  | */ | 
|  | xhci_dbg(xhci, "Ignoring reset ep completion code of %u\n", | 
|  | (unsigned int) GET_COMP_CODE(event->status)); | 
|  |  | 
|  | /* HW with the reset endpoint quirk needs to have a configure endpoint | 
|  | * command complete before the endpoint can be used.  Queue that here | 
|  | * because the HW can't handle two commands being queued in a row. | 
|  | */ | 
|  | if (xhci->quirks & XHCI_RESET_EP_QUIRK) { | 
|  | xhci_dbg(xhci, "Queueing configure endpoint command\n"); | 
|  | xhci_queue_configure_endpoint(xhci, | 
|  | xhci->devs[slot_id]->in_ctx->dma, slot_id, | 
|  | false); | 
|  | xhci_ring_cmd_db(xhci); | 
|  | } else { | 
|  | /* Clear our internal halted state and restart the ring(s) */ | 
|  | xhci->devs[slot_id]->eps[ep_index].ep_state &= ~EP_HALTED; | 
|  | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check to see if a command in the device's command queue matches this one. | 
|  | * Signal the completion or free the command, and return 1.  Return 0 if the | 
|  | * completed command isn't at the head of the command list. | 
|  | */ | 
|  | static int handle_cmd_in_cmd_wait_list(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *virt_dev, | 
|  | struct xhci_event_cmd *event) | 
|  | { | 
|  | struct xhci_command *command; | 
|  |  | 
|  | if (list_empty(&virt_dev->cmd_list)) | 
|  | return 0; | 
|  |  | 
|  | command = list_entry(virt_dev->cmd_list.next, | 
|  | struct xhci_command, cmd_list); | 
|  | if (xhci->cmd_ring->dequeue != command->command_trb) | 
|  | return 0; | 
|  |  | 
|  | command->status = | 
|  | GET_COMP_CODE(event->status); | 
|  | list_del(&command->cmd_list); | 
|  | if (command->completion) | 
|  | complete(command->completion); | 
|  | else | 
|  | xhci_free_command(xhci, command); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void handle_cmd_completion(struct xhci_hcd *xhci, | 
|  | struct xhci_event_cmd *event) | 
|  | { | 
|  | int slot_id = TRB_TO_SLOT_ID(event->flags); | 
|  | u64 cmd_dma; | 
|  | dma_addr_t cmd_dequeue_dma; | 
|  | struct xhci_input_control_ctx *ctrl_ctx; | 
|  | struct xhci_virt_device *virt_dev; | 
|  | unsigned int ep_index; | 
|  | struct xhci_ring *ep_ring; | 
|  | unsigned int ep_state; | 
|  |  | 
|  | cmd_dma = event->cmd_trb; | 
|  | cmd_dequeue_dma = xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg, | 
|  | xhci->cmd_ring->dequeue); | 
|  | /* Is the command ring deq ptr out of sync with the deq seg ptr? */ | 
|  | if (cmd_dequeue_dma == 0) { | 
|  | xhci->error_bitmask |= 1 << 4; | 
|  | return; | 
|  | } | 
|  | /* Does the DMA address match our internal dequeue pointer address? */ | 
|  | if (cmd_dma != (u64) cmd_dequeue_dma) { | 
|  | xhci->error_bitmask |= 1 << 5; | 
|  | return; | 
|  | } | 
|  | switch (xhci->cmd_ring->dequeue->generic.field[3] & TRB_TYPE_BITMASK) { | 
|  | case TRB_TYPE(TRB_ENABLE_SLOT): | 
|  | if (GET_COMP_CODE(event->status) == COMP_SUCCESS) | 
|  | xhci->slot_id = slot_id; | 
|  | else | 
|  | xhci->slot_id = 0; | 
|  | complete(&xhci->addr_dev); | 
|  | break; | 
|  | case TRB_TYPE(TRB_DISABLE_SLOT): | 
|  | if (xhci->devs[slot_id]) | 
|  | xhci_free_virt_device(xhci, slot_id); | 
|  | break; | 
|  | case TRB_TYPE(TRB_CONFIG_EP): | 
|  | virt_dev = xhci->devs[slot_id]; | 
|  | if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) | 
|  | break; | 
|  | /* | 
|  | * Configure endpoint commands can come from the USB core | 
|  | * configuration or alt setting changes, or because the HW | 
|  | * needed an extra configure endpoint command after a reset | 
|  | * endpoint command or streams were being configured. | 
|  | * If the command was for a halted endpoint, the xHCI driver | 
|  | * is not waiting on the configure endpoint command. | 
|  | */ | 
|  | ctrl_ctx = xhci_get_input_control_ctx(xhci, | 
|  | virt_dev->in_ctx); | 
|  | /* Input ctx add_flags are the endpoint index plus one */ | 
|  | ep_index = xhci_last_valid_endpoint(ctrl_ctx->add_flags) - 1; | 
|  | /* A usb_set_interface() call directly after clearing a halted | 
|  | * condition may race on this quirky hardware.  Not worth | 
|  | * worrying about, since this is prototype hardware.  Not sure | 
|  | * if this will work for streams, but streams support was | 
|  | * untested on this prototype. | 
|  | */ | 
|  | if (xhci->quirks & XHCI_RESET_EP_QUIRK && | 
|  | ep_index != (unsigned int) -1 && | 
|  | ctrl_ctx->add_flags - SLOT_FLAG == | 
|  | ctrl_ctx->drop_flags) { | 
|  | ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; | 
|  | ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state; | 
|  | if (!(ep_state & EP_HALTED)) | 
|  | goto bandwidth_change; | 
|  | xhci_dbg(xhci, "Completed config ep cmd - " | 
|  | "last ep index = %d, state = %d\n", | 
|  | ep_index, ep_state); | 
|  | /* Clear internal halted state and restart ring(s) */ | 
|  | xhci->devs[slot_id]->eps[ep_index].ep_state &= | 
|  | ~EP_HALTED; | 
|  | ring_doorbell_for_active_rings(xhci, slot_id, ep_index); | 
|  | break; | 
|  | } | 
|  | bandwidth_change: | 
|  | xhci_dbg(xhci, "Completed config ep cmd\n"); | 
|  | xhci->devs[slot_id]->cmd_status = | 
|  | GET_COMP_CODE(event->status); | 
|  | complete(&xhci->devs[slot_id]->cmd_completion); | 
|  | break; | 
|  | case TRB_TYPE(TRB_EVAL_CONTEXT): | 
|  | virt_dev = xhci->devs[slot_id]; | 
|  | if (handle_cmd_in_cmd_wait_list(xhci, virt_dev, event)) | 
|  | break; | 
|  | xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); | 
|  | complete(&xhci->devs[slot_id]->cmd_completion); | 
|  | break; | 
|  | case TRB_TYPE(TRB_ADDR_DEV): | 
|  | xhci->devs[slot_id]->cmd_status = GET_COMP_CODE(event->status); | 
|  | complete(&xhci->addr_dev); | 
|  | break; | 
|  | case TRB_TYPE(TRB_STOP_RING): | 
|  | handle_stopped_endpoint(xhci, xhci->cmd_ring->dequeue, event); | 
|  | break; | 
|  | case TRB_TYPE(TRB_SET_DEQ): | 
|  | handle_set_deq_completion(xhci, event, xhci->cmd_ring->dequeue); | 
|  | break; | 
|  | case TRB_TYPE(TRB_CMD_NOOP): | 
|  | ++xhci->noops_handled; | 
|  | break; | 
|  | case TRB_TYPE(TRB_RESET_EP): | 
|  | handle_reset_ep_completion(xhci, event, xhci->cmd_ring->dequeue); | 
|  | break; | 
|  | case TRB_TYPE(TRB_RESET_DEV): | 
|  | xhci_dbg(xhci, "Completed reset device command.\n"); | 
|  | slot_id = TRB_TO_SLOT_ID( | 
|  | xhci->cmd_ring->dequeue->generic.field[3]); | 
|  | virt_dev = xhci->devs[slot_id]; | 
|  | if (virt_dev) | 
|  | handle_cmd_in_cmd_wait_list(xhci, virt_dev, event); | 
|  | else | 
|  | xhci_warn(xhci, "Reset device command completion " | 
|  | "for disabled slot %u\n", slot_id); | 
|  | break; | 
|  | case TRB_TYPE(TRB_NEC_GET_FW): | 
|  | if (!(xhci->quirks & XHCI_NEC_HOST)) { | 
|  | xhci->error_bitmask |= 1 << 6; | 
|  | break; | 
|  | } | 
|  | xhci_dbg(xhci, "NEC firmware version %2x.%02x\n", | 
|  | NEC_FW_MAJOR(event->status), | 
|  | NEC_FW_MINOR(event->status)); | 
|  | break; | 
|  | default: | 
|  | /* Skip over unknown commands on the event ring */ | 
|  | xhci->error_bitmask |= 1 << 6; | 
|  | break; | 
|  | } | 
|  | inc_deq(xhci, xhci->cmd_ring, false); | 
|  | } | 
|  |  | 
|  | static void handle_vendor_event(struct xhci_hcd *xhci, | 
|  | union xhci_trb *event) | 
|  | { | 
|  | u32 trb_type; | 
|  |  | 
|  | trb_type = TRB_FIELD_TO_TYPE(event->generic.field[3]); | 
|  | xhci_dbg(xhci, "Vendor specific event TRB type = %u\n", trb_type); | 
|  | if (trb_type == TRB_NEC_CMD_COMP && (xhci->quirks & XHCI_NEC_HOST)) | 
|  | handle_cmd_completion(xhci, &event->event_cmd); | 
|  | } | 
|  |  | 
|  | static void handle_port_status(struct xhci_hcd *xhci, | 
|  | union xhci_trb *event) | 
|  | { | 
|  | struct usb_hcd *hcd = xhci_to_hcd(xhci); | 
|  | u32 port_id; | 
|  | u32 temp, temp1; | 
|  | u32 __iomem *addr; | 
|  | int ports; | 
|  | int slot_id; | 
|  |  | 
|  | /* Port status change events always have a successful completion code */ | 
|  | if (GET_COMP_CODE(event->generic.field[2]) != COMP_SUCCESS) { | 
|  | xhci_warn(xhci, "WARN: xHC returned failed port status event\n"); | 
|  | xhci->error_bitmask |= 1 << 8; | 
|  | } | 
|  | port_id = GET_PORT_ID(event->generic.field[0]); | 
|  | xhci_dbg(xhci, "Port Status Change Event for port %d\n", port_id); | 
|  |  | 
|  | ports = HCS_MAX_PORTS(xhci->hcs_params1); | 
|  | if ((port_id <= 0) || (port_id > ports)) { | 
|  | xhci_warn(xhci, "Invalid port id %d\n", port_id); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | addr = &xhci->op_regs->port_status_base + NUM_PORT_REGS * (port_id - 1); | 
|  | temp = xhci_readl(xhci, addr); | 
|  | if (hcd->state == HC_STATE_SUSPENDED) { | 
|  | xhci_dbg(xhci, "resume root hub\n"); | 
|  | usb_hcd_resume_root_hub(hcd); | 
|  | } | 
|  |  | 
|  | if ((temp & PORT_PLC) && (temp & PORT_PLS_MASK) == XDEV_RESUME) { | 
|  | xhci_dbg(xhci, "port resume event for port %d\n", port_id); | 
|  |  | 
|  | temp1 = xhci_readl(xhci, &xhci->op_regs->command); | 
|  | if (!(temp1 & CMD_RUN)) { | 
|  | xhci_warn(xhci, "xHC is not running.\n"); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | if (DEV_SUPERSPEED(temp)) { | 
|  | xhci_dbg(xhci, "resume SS port %d\n", port_id); | 
|  | temp = xhci_port_state_to_neutral(temp); | 
|  | temp &= ~PORT_PLS_MASK; | 
|  | temp |= PORT_LINK_STROBE | XDEV_U0; | 
|  | xhci_writel(xhci, temp, addr); | 
|  | slot_id = xhci_find_slot_id_by_port(xhci, port_id); | 
|  | if (!slot_id) { | 
|  | xhci_dbg(xhci, "slot_id is zero\n"); | 
|  | goto cleanup; | 
|  | } | 
|  | xhci_ring_device(xhci, slot_id); | 
|  | xhci_dbg(xhci, "resume SS port %d finished\n", port_id); | 
|  | /* Clear PORT_PLC */ | 
|  | temp = xhci_readl(xhci, addr); | 
|  | temp = xhci_port_state_to_neutral(temp); | 
|  | temp |= PORT_PLC; | 
|  | xhci_writel(xhci, temp, addr); | 
|  | } else { | 
|  | xhci_dbg(xhci, "resume HS port %d\n", port_id); | 
|  | xhci->resume_done[port_id - 1] = jiffies + | 
|  | msecs_to_jiffies(20); | 
|  | mod_timer(&hcd->rh_timer, | 
|  | xhci->resume_done[port_id - 1]); | 
|  | /* Do the rest in GetPortStatus */ | 
|  | } | 
|  | } | 
|  |  | 
|  | cleanup: | 
|  | /* Update event ring dequeue pointer before dropping the lock */ | 
|  | inc_deq(xhci, xhci->event_ring, true); | 
|  |  | 
|  | spin_unlock(&xhci->lock); | 
|  | /* Pass this up to the core */ | 
|  | usb_hcd_poll_rh_status(xhci_to_hcd(xhci)); | 
|  | spin_lock(&xhci->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This TD is defined by the TRBs starting at start_trb in start_seg and ending | 
|  | * at end_trb, which may be in another segment.  If the suspect DMA address is a | 
|  | * TRB in this TD, this function returns that TRB's segment.  Otherwise it | 
|  | * returns 0. | 
|  | */ | 
|  | struct xhci_segment *trb_in_td(struct xhci_segment *start_seg, | 
|  | union xhci_trb	*start_trb, | 
|  | union xhci_trb	*end_trb, | 
|  | dma_addr_t	suspect_dma) | 
|  | { | 
|  | dma_addr_t start_dma; | 
|  | dma_addr_t end_seg_dma; | 
|  | dma_addr_t end_trb_dma; | 
|  | struct xhci_segment *cur_seg; | 
|  |  | 
|  | start_dma = xhci_trb_virt_to_dma(start_seg, start_trb); | 
|  | cur_seg = start_seg; | 
|  |  | 
|  | do { | 
|  | if (start_dma == 0) | 
|  | return NULL; | 
|  | /* We may get an event for a Link TRB in the middle of a TD */ | 
|  | end_seg_dma = xhci_trb_virt_to_dma(cur_seg, | 
|  | &cur_seg->trbs[TRBS_PER_SEGMENT - 1]); | 
|  | /* If the end TRB isn't in this segment, this is set to 0 */ | 
|  | end_trb_dma = xhci_trb_virt_to_dma(cur_seg, end_trb); | 
|  |  | 
|  | if (end_trb_dma > 0) { | 
|  | /* The end TRB is in this segment, so suspect should be here */ | 
|  | if (start_dma <= end_trb_dma) { | 
|  | if (suspect_dma >= start_dma && suspect_dma <= end_trb_dma) | 
|  | return cur_seg; | 
|  | } else { | 
|  | /* Case for one segment with | 
|  | * a TD wrapped around to the top | 
|  | */ | 
|  | if ((suspect_dma >= start_dma && | 
|  | suspect_dma <= end_seg_dma) || | 
|  | (suspect_dma >= cur_seg->dma && | 
|  | suspect_dma <= end_trb_dma)) | 
|  | return cur_seg; | 
|  | } | 
|  | return NULL; | 
|  | } else { | 
|  | /* Might still be somewhere in this segment */ | 
|  | if (suspect_dma >= start_dma && suspect_dma <= end_seg_dma) | 
|  | return cur_seg; | 
|  | } | 
|  | cur_seg = cur_seg->next; | 
|  | start_dma = xhci_trb_virt_to_dma(cur_seg, &cur_seg->trbs[0]); | 
|  | } while (cur_seg != start_seg); | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void xhci_cleanup_halted_endpoint(struct xhci_hcd *xhci, | 
|  | unsigned int slot_id, unsigned int ep_index, | 
|  | unsigned int stream_id, | 
|  | struct xhci_td *td, union xhci_trb *event_trb) | 
|  | { | 
|  | struct xhci_virt_ep *ep = &xhci->devs[slot_id]->eps[ep_index]; | 
|  | ep->ep_state |= EP_HALTED; | 
|  | ep->stopped_td = td; | 
|  | ep->stopped_trb = event_trb; | 
|  | ep->stopped_stream = stream_id; | 
|  |  | 
|  | xhci_queue_reset_ep(xhci, slot_id, ep_index); | 
|  | xhci_cleanup_stalled_ring(xhci, td->urb->dev, ep_index); | 
|  |  | 
|  | ep->stopped_td = NULL; | 
|  | ep->stopped_trb = NULL; | 
|  | ep->stopped_stream = 0; | 
|  |  | 
|  | xhci_ring_cmd_db(xhci); | 
|  | } | 
|  |  | 
|  | /* Check if an error has halted the endpoint ring.  The class driver will | 
|  | * cleanup the halt for a non-default control endpoint if we indicate a stall. | 
|  | * However, a babble and other errors also halt the endpoint ring, and the class | 
|  | * driver won't clear the halt in that case, so we need to issue a Set Transfer | 
|  | * Ring Dequeue Pointer command manually. | 
|  | */ | 
|  | static int xhci_requires_manual_halt_cleanup(struct xhci_hcd *xhci, | 
|  | struct xhci_ep_ctx *ep_ctx, | 
|  | unsigned int trb_comp_code) | 
|  | { | 
|  | /* TRB completion codes that may require a manual halt cleanup */ | 
|  | if (trb_comp_code == COMP_TX_ERR || | 
|  | trb_comp_code == COMP_BABBLE || | 
|  | trb_comp_code == COMP_SPLIT_ERR) | 
|  | /* The 0.96 spec says a babbling control endpoint | 
|  | * is not halted. The 0.96 spec says it is.  Some HW | 
|  | * claims to be 0.95 compliant, but it halts the control | 
|  | * endpoint anyway.  Check if a babble halted the | 
|  | * endpoint. | 
|  | */ | 
|  | if ((ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_HALTED) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int xhci_is_vendor_info_code(struct xhci_hcd *xhci, unsigned int trb_comp_code) | 
|  | { | 
|  | if (trb_comp_code >= 224 && trb_comp_code <= 255) { | 
|  | /* Vendor defined "informational" completion code, | 
|  | * treat as not-an-error. | 
|  | */ | 
|  | xhci_dbg(xhci, "Vendor defined info completion code %u\n", | 
|  | trb_comp_code); | 
|  | xhci_dbg(xhci, "Treating code as success.\n"); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finish the td processing, remove the td from td list; | 
|  | * Return 1 if the urb can be given back. | 
|  | */ | 
|  | static int finish_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
|  | union xhci_trb *event_trb, struct xhci_transfer_event *event, | 
|  | struct xhci_virt_ep *ep, int *status, bool skip) | 
|  | { | 
|  | struct xhci_virt_device *xdev; | 
|  | struct xhci_ring *ep_ring; | 
|  | unsigned int slot_id; | 
|  | int ep_index; | 
|  | struct urb *urb = NULL; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | int ret = 0; | 
|  | struct urb_priv	*urb_priv; | 
|  | u32 trb_comp_code; | 
|  |  | 
|  | slot_id = TRB_TO_SLOT_ID(event->flags); | 
|  | xdev = xhci->devs[slot_id]; | 
|  | ep_index = TRB_TO_EP_ID(event->flags) - 1; | 
|  | ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
|  | trb_comp_code = GET_COMP_CODE(event->transfer_len); | 
|  |  | 
|  | if (skip) | 
|  | goto td_cleanup; | 
|  |  | 
|  | if (trb_comp_code == COMP_STOP_INVAL || | 
|  | trb_comp_code == COMP_STOP) { | 
|  | /* The Endpoint Stop Command completion will take care of any | 
|  | * stopped TDs.  A stopped TD may be restarted, so don't update | 
|  | * the ring dequeue pointer or take this TD off any lists yet. | 
|  | */ | 
|  | ep->stopped_td = td; | 
|  | ep->stopped_trb = event_trb; | 
|  | return 0; | 
|  | } else { | 
|  | if (trb_comp_code == COMP_STALL) { | 
|  | /* The transfer is completed from the driver's | 
|  | * perspective, but we need to issue a set dequeue | 
|  | * command for this stalled endpoint to move the dequeue | 
|  | * pointer past the TD.  We can't do that here because | 
|  | * the halt condition must be cleared first.  Let the | 
|  | * USB class driver clear the stall later. | 
|  | */ | 
|  | ep->stopped_td = td; | 
|  | ep->stopped_trb = event_trb; | 
|  | ep->stopped_stream = ep_ring->stream_id; | 
|  | } else if (xhci_requires_manual_halt_cleanup(xhci, | 
|  | ep_ctx, trb_comp_code)) { | 
|  | /* Other types of errors halt the endpoint, but the | 
|  | * class driver doesn't call usb_reset_endpoint() unless | 
|  | * the error is -EPIPE.  Clear the halted status in the | 
|  | * xHCI hardware manually. | 
|  | */ | 
|  | xhci_cleanup_halted_endpoint(xhci, | 
|  | slot_id, ep_index, ep_ring->stream_id, | 
|  | td, event_trb); | 
|  | } else { | 
|  | /* Update ring dequeue pointer */ | 
|  | while (ep_ring->dequeue != td->last_trb) | 
|  | inc_deq(xhci, ep_ring, false); | 
|  | inc_deq(xhci, ep_ring, false); | 
|  | } | 
|  |  | 
|  | td_cleanup: | 
|  | /* Clean up the endpoint's TD list */ | 
|  | urb = td->urb; | 
|  | urb_priv = urb->hcpriv; | 
|  |  | 
|  | /* Do one last check of the actual transfer length. | 
|  | * If the host controller said we transferred more data than | 
|  | * the buffer length, urb->actual_length will be a very big | 
|  | * number (since it's unsigned).  Play it safe and say we didn't | 
|  | * transfer anything. | 
|  | */ | 
|  | if (urb->actual_length > urb->transfer_buffer_length) { | 
|  | xhci_warn(xhci, "URB transfer length is wrong, " | 
|  | "xHC issue? req. len = %u, " | 
|  | "act. len = %u\n", | 
|  | urb->transfer_buffer_length, | 
|  | urb->actual_length); | 
|  | urb->actual_length = 0; | 
|  | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
|  | *status = -EREMOTEIO; | 
|  | else | 
|  | *status = 0; | 
|  | } | 
|  | list_del(&td->td_list); | 
|  | /* Was this TD slated to be cancelled but completed anyway? */ | 
|  | if (!list_empty(&td->cancelled_td_list)) | 
|  | list_del(&td->cancelled_td_list); | 
|  |  | 
|  | urb_priv->td_cnt++; | 
|  | /* Giveback the urb when all the tds are completed */ | 
|  | if (urb_priv->td_cnt == urb_priv->length) | 
|  | ret = 1; | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process control tds, update urb status and actual_length. | 
|  | */ | 
|  | static int process_ctrl_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
|  | union xhci_trb *event_trb, struct xhci_transfer_event *event, | 
|  | struct xhci_virt_ep *ep, int *status) | 
|  | { | 
|  | struct xhci_virt_device *xdev; | 
|  | struct xhci_ring *ep_ring; | 
|  | unsigned int slot_id; | 
|  | int ep_index; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | u32 trb_comp_code; | 
|  |  | 
|  | slot_id = TRB_TO_SLOT_ID(event->flags); | 
|  | xdev = xhci->devs[slot_id]; | 
|  | ep_index = TRB_TO_EP_ID(event->flags) - 1; | 
|  | ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
|  | trb_comp_code = GET_COMP_CODE(event->transfer_len); | 
|  |  | 
|  | xhci_debug_trb(xhci, xhci->event_ring->dequeue); | 
|  | switch (trb_comp_code) { | 
|  | case COMP_SUCCESS: | 
|  | if (event_trb == ep_ring->dequeue) { | 
|  | xhci_warn(xhci, "WARN: Success on ctrl setup TRB " | 
|  | "without IOC set??\n"); | 
|  | *status = -ESHUTDOWN; | 
|  | } else if (event_trb != td->last_trb) { | 
|  | xhci_warn(xhci, "WARN: Success on ctrl data TRB " | 
|  | "without IOC set??\n"); | 
|  | *status = -ESHUTDOWN; | 
|  | } else { | 
|  | xhci_dbg(xhci, "Successful control transfer!\n"); | 
|  | *status = 0; | 
|  | } | 
|  | break; | 
|  | case COMP_SHORT_TX: | 
|  | xhci_warn(xhci, "WARN: short transfer on control ep\n"); | 
|  | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
|  | *status = -EREMOTEIO; | 
|  | else | 
|  | *status = 0; | 
|  | break; | 
|  | default: | 
|  | if (!xhci_requires_manual_halt_cleanup(xhci, | 
|  | ep_ctx, trb_comp_code)) | 
|  | break; | 
|  | xhci_dbg(xhci, "TRB error code %u, " | 
|  | "halted endpoint index = %u\n", | 
|  | trb_comp_code, ep_index); | 
|  | /* else fall through */ | 
|  | case COMP_STALL: | 
|  | /* Did we transfer part of the data (middle) phase? */ | 
|  | if (event_trb != ep_ring->dequeue && | 
|  | event_trb != td->last_trb) | 
|  | td->urb->actual_length = | 
|  | td->urb->transfer_buffer_length | 
|  | - TRB_LEN(event->transfer_len); | 
|  | else | 
|  | td->urb->actual_length = 0; | 
|  |  | 
|  | xhci_cleanup_halted_endpoint(xhci, | 
|  | slot_id, ep_index, 0, td, event_trb); | 
|  | return finish_td(xhci, td, event_trb, event, ep, status, true); | 
|  | } | 
|  | /* | 
|  | * Did we transfer any data, despite the errors that might have | 
|  | * happened?  I.e. did we get past the setup stage? | 
|  | */ | 
|  | if (event_trb != ep_ring->dequeue) { | 
|  | /* The event was for the status stage */ | 
|  | if (event_trb == td->last_trb) { | 
|  | if (td->urb->actual_length != 0) { | 
|  | /* Don't overwrite a previously set error code | 
|  | */ | 
|  | if ((*status == -EINPROGRESS || *status == 0) && | 
|  | (td->urb->transfer_flags | 
|  | & URB_SHORT_NOT_OK)) | 
|  | /* Did we already see a short data | 
|  | * stage? */ | 
|  | *status = -EREMOTEIO; | 
|  | } else { | 
|  | td->urb->actual_length = | 
|  | td->urb->transfer_buffer_length; | 
|  | } | 
|  | } else { | 
|  | /* Maybe the event was for the data stage? */ | 
|  | if (trb_comp_code != COMP_STOP_INVAL) { | 
|  | /* We didn't stop on a link TRB in the middle */ | 
|  | td->urb->actual_length = | 
|  | td->urb->transfer_buffer_length - | 
|  | TRB_LEN(event->transfer_len); | 
|  | xhci_dbg(xhci, "Waiting for status " | 
|  | "stage event\n"); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return finish_td(xhci, td, event_trb, event, ep, status, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process isochronous tds, update urb packet status and actual_length. | 
|  | */ | 
|  | static int process_isoc_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
|  | union xhci_trb *event_trb, struct xhci_transfer_event *event, | 
|  | struct xhci_virt_ep *ep, int *status) | 
|  | { | 
|  | struct xhci_ring *ep_ring; | 
|  | struct urb_priv *urb_priv; | 
|  | int idx; | 
|  | int len = 0; | 
|  | int skip_td = 0; | 
|  | union xhci_trb *cur_trb; | 
|  | struct xhci_segment *cur_seg; | 
|  | u32 trb_comp_code; | 
|  |  | 
|  | ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); | 
|  | trb_comp_code = GET_COMP_CODE(event->transfer_len); | 
|  | urb_priv = td->urb->hcpriv; | 
|  | idx = urb_priv->td_cnt; | 
|  |  | 
|  | if (ep->skip) { | 
|  | /* The transfer is partly done */ | 
|  | *status = -EXDEV; | 
|  | td->urb->iso_frame_desc[idx].status = -EXDEV; | 
|  | } else { | 
|  | /* handle completion code */ | 
|  | switch (trb_comp_code) { | 
|  | case COMP_SUCCESS: | 
|  | td->urb->iso_frame_desc[idx].status = 0; | 
|  | xhci_dbg(xhci, "Successful isoc transfer!\n"); | 
|  | break; | 
|  | case COMP_SHORT_TX: | 
|  | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
|  | td->urb->iso_frame_desc[idx].status = | 
|  | -EREMOTEIO; | 
|  | else | 
|  | td->urb->iso_frame_desc[idx].status = 0; | 
|  | break; | 
|  | case COMP_BW_OVER: | 
|  | td->urb->iso_frame_desc[idx].status = -ECOMM; | 
|  | skip_td = 1; | 
|  | break; | 
|  | case COMP_BUFF_OVER: | 
|  | case COMP_BABBLE: | 
|  | td->urb->iso_frame_desc[idx].status = -EOVERFLOW; | 
|  | skip_td = 1; | 
|  | break; | 
|  | case COMP_STALL: | 
|  | td->urb->iso_frame_desc[idx].status = -EPROTO; | 
|  | skip_td = 1; | 
|  | break; | 
|  | case COMP_STOP: | 
|  | case COMP_STOP_INVAL: | 
|  | break; | 
|  | default: | 
|  | td->urb->iso_frame_desc[idx].status = -1; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* calc actual length */ | 
|  | if (ep->skip) { | 
|  | td->urb->iso_frame_desc[idx].actual_length = 0; | 
|  | /* Update ring dequeue pointer */ | 
|  | while (ep_ring->dequeue != td->last_trb) | 
|  | inc_deq(xhci, ep_ring, false); | 
|  | inc_deq(xhci, ep_ring, false); | 
|  | return finish_td(xhci, td, event_trb, event, ep, status, true); | 
|  | } | 
|  |  | 
|  | if (trb_comp_code == COMP_SUCCESS || skip_td == 1) { | 
|  | td->urb->iso_frame_desc[idx].actual_length = | 
|  | td->urb->iso_frame_desc[idx].length; | 
|  | td->urb->actual_length += | 
|  | td->urb->iso_frame_desc[idx].length; | 
|  | } else { | 
|  | for (cur_trb = ep_ring->dequeue, | 
|  | cur_seg = ep_ring->deq_seg; cur_trb != event_trb; | 
|  | next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { | 
|  | if ((cur_trb->generic.field[3] & | 
|  | TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) && | 
|  | (cur_trb->generic.field[3] & | 
|  | TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK)) | 
|  | len += | 
|  | TRB_LEN(cur_trb->generic.field[2]); | 
|  | } | 
|  | len += TRB_LEN(cur_trb->generic.field[2]) - | 
|  | TRB_LEN(event->transfer_len); | 
|  |  | 
|  | if (trb_comp_code != COMP_STOP_INVAL) { | 
|  | td->urb->iso_frame_desc[idx].actual_length = len; | 
|  | td->urb->actual_length += len; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((idx == urb_priv->length - 1) && *status == -EINPROGRESS) | 
|  | *status = 0; | 
|  |  | 
|  | return finish_td(xhci, td, event_trb, event, ep, status, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process bulk and interrupt tds, update urb status and actual_length. | 
|  | */ | 
|  | static int process_bulk_intr_td(struct xhci_hcd *xhci, struct xhci_td *td, | 
|  | union xhci_trb *event_trb, struct xhci_transfer_event *event, | 
|  | struct xhci_virt_ep *ep, int *status) | 
|  | { | 
|  | struct xhci_ring *ep_ring; | 
|  | union xhci_trb *cur_trb; | 
|  | struct xhci_segment *cur_seg; | 
|  | u32 trb_comp_code; | 
|  |  | 
|  | ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); | 
|  | trb_comp_code = GET_COMP_CODE(event->transfer_len); | 
|  |  | 
|  | switch (trb_comp_code) { | 
|  | case COMP_SUCCESS: | 
|  | /* Double check that the HW transferred everything. */ | 
|  | if (event_trb != td->last_trb) { | 
|  | xhci_warn(xhci, "WARN Successful completion " | 
|  | "on short TX\n"); | 
|  | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
|  | *status = -EREMOTEIO; | 
|  | else | 
|  | *status = 0; | 
|  | } else { | 
|  | if (usb_endpoint_xfer_bulk(&td->urb->ep->desc)) | 
|  | xhci_dbg(xhci, "Successful bulk " | 
|  | "transfer!\n"); | 
|  | else | 
|  | xhci_dbg(xhci, "Successful interrupt " | 
|  | "transfer!\n"); | 
|  | *status = 0; | 
|  | } | 
|  | break; | 
|  | case COMP_SHORT_TX: | 
|  | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
|  | *status = -EREMOTEIO; | 
|  | else | 
|  | *status = 0; | 
|  | break; | 
|  | default: | 
|  | /* Others already handled above */ | 
|  | break; | 
|  | } | 
|  | xhci_dbg(xhci, "ep %#x - asked for %d bytes, " | 
|  | "%d bytes untransferred\n", | 
|  | td->urb->ep->desc.bEndpointAddress, | 
|  | td->urb->transfer_buffer_length, | 
|  | TRB_LEN(event->transfer_len)); | 
|  | /* Fast path - was this the last TRB in the TD for this URB? */ | 
|  | if (event_trb == td->last_trb) { | 
|  | if (TRB_LEN(event->transfer_len) != 0) { | 
|  | td->urb->actual_length = | 
|  | td->urb->transfer_buffer_length - | 
|  | TRB_LEN(event->transfer_len); | 
|  | if (td->urb->transfer_buffer_length < | 
|  | td->urb->actual_length) { | 
|  | xhci_warn(xhci, "HC gave bad length " | 
|  | "of %d bytes left\n", | 
|  | TRB_LEN(event->transfer_len)); | 
|  | td->urb->actual_length = 0; | 
|  | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
|  | *status = -EREMOTEIO; | 
|  | else | 
|  | *status = 0; | 
|  | } | 
|  | /* Don't overwrite a previously set error code */ | 
|  | if (*status == -EINPROGRESS) { | 
|  | if (td->urb->transfer_flags & URB_SHORT_NOT_OK) | 
|  | *status = -EREMOTEIO; | 
|  | else | 
|  | *status = 0; | 
|  | } | 
|  | } else { | 
|  | td->urb->actual_length = | 
|  | td->urb->transfer_buffer_length; | 
|  | /* Ignore a short packet completion if the | 
|  | * untransferred length was zero. | 
|  | */ | 
|  | if (*status == -EREMOTEIO) | 
|  | *status = 0; | 
|  | } | 
|  | } else { | 
|  | /* Slow path - walk the list, starting from the dequeue | 
|  | * pointer, to get the actual length transferred. | 
|  | */ | 
|  | td->urb->actual_length = 0; | 
|  | for (cur_trb = ep_ring->dequeue, cur_seg = ep_ring->deq_seg; | 
|  | cur_trb != event_trb; | 
|  | next_trb(xhci, ep_ring, &cur_seg, &cur_trb)) { | 
|  | if ((cur_trb->generic.field[3] & | 
|  | TRB_TYPE_BITMASK) != TRB_TYPE(TRB_TR_NOOP) && | 
|  | (cur_trb->generic.field[3] & | 
|  | TRB_TYPE_BITMASK) != TRB_TYPE(TRB_LINK)) | 
|  | td->urb->actual_length += | 
|  | TRB_LEN(cur_trb->generic.field[2]); | 
|  | } | 
|  | /* If the ring didn't stop on a Link or No-op TRB, add | 
|  | * in the actual bytes transferred from the Normal TRB | 
|  | */ | 
|  | if (trb_comp_code != COMP_STOP_INVAL) | 
|  | td->urb->actual_length += | 
|  | TRB_LEN(cur_trb->generic.field[2]) - | 
|  | TRB_LEN(event->transfer_len); | 
|  | } | 
|  |  | 
|  | return finish_td(xhci, td, event_trb, event, ep, status, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this function returns an error condition, it means it got a Transfer | 
|  | * event with a corrupted Slot ID, Endpoint ID, or TRB DMA address. | 
|  | * At this point, the host controller is probably hosed and should be reset. | 
|  | */ | 
|  | static int handle_tx_event(struct xhci_hcd *xhci, | 
|  | struct xhci_transfer_event *event) | 
|  | { | 
|  | struct xhci_virt_device *xdev; | 
|  | struct xhci_virt_ep *ep; | 
|  | struct xhci_ring *ep_ring; | 
|  | unsigned int slot_id; | 
|  | int ep_index; | 
|  | struct xhci_td *td = NULL; | 
|  | dma_addr_t event_dma; | 
|  | struct xhci_segment *event_seg; | 
|  | union xhci_trb *event_trb; | 
|  | struct urb *urb = NULL; | 
|  | int status = -EINPROGRESS; | 
|  | struct urb_priv *urb_priv; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | u32 trb_comp_code; | 
|  | int ret = 0; | 
|  |  | 
|  | slot_id = TRB_TO_SLOT_ID(event->flags); | 
|  | xdev = xhci->devs[slot_id]; | 
|  | if (!xdev) { | 
|  | xhci_err(xhci, "ERROR Transfer event pointed to bad slot\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* Endpoint ID is 1 based, our index is zero based */ | 
|  | ep_index = TRB_TO_EP_ID(event->flags) - 1; | 
|  | xhci_dbg(xhci, "%s - ep index = %d\n", __func__, ep_index); | 
|  | ep = &xdev->eps[ep_index]; | 
|  | ep_ring = xhci_dma_to_transfer_ring(ep, event->buffer); | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
|  | if (!ep_ring || | 
|  | (ep_ctx->ep_info & EP_STATE_MASK) == EP_STATE_DISABLED) { | 
|  | xhci_err(xhci, "ERROR Transfer event for disabled endpoint " | 
|  | "or incorrect stream ring\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | event_dma = event->buffer; | 
|  | trb_comp_code = GET_COMP_CODE(event->transfer_len); | 
|  | /* Look for common error cases */ | 
|  | switch (trb_comp_code) { | 
|  | /* Skip codes that require special handling depending on | 
|  | * transfer type | 
|  | */ | 
|  | case COMP_SUCCESS: | 
|  | case COMP_SHORT_TX: | 
|  | break; | 
|  | case COMP_STOP: | 
|  | xhci_dbg(xhci, "Stopped on Transfer TRB\n"); | 
|  | break; | 
|  | case COMP_STOP_INVAL: | 
|  | xhci_dbg(xhci, "Stopped on No-op or Link TRB\n"); | 
|  | break; | 
|  | case COMP_STALL: | 
|  | xhci_warn(xhci, "WARN: Stalled endpoint\n"); | 
|  | ep->ep_state |= EP_HALTED; | 
|  | status = -EPIPE; | 
|  | break; | 
|  | case COMP_TRB_ERR: | 
|  | xhci_warn(xhci, "WARN: TRB error on endpoint\n"); | 
|  | status = -EILSEQ; | 
|  | break; | 
|  | case COMP_SPLIT_ERR: | 
|  | case COMP_TX_ERR: | 
|  | xhci_warn(xhci, "WARN: transfer error on endpoint\n"); | 
|  | status = -EPROTO; | 
|  | break; | 
|  | case COMP_BABBLE: | 
|  | xhci_warn(xhci, "WARN: babble error on endpoint\n"); | 
|  | status = -EOVERFLOW; | 
|  | break; | 
|  | case COMP_DB_ERR: | 
|  | xhci_warn(xhci, "WARN: HC couldn't access mem fast enough\n"); | 
|  | status = -ENOSR; | 
|  | break; | 
|  | case COMP_BW_OVER: | 
|  | xhci_warn(xhci, "WARN: bandwidth overrun event on endpoint\n"); | 
|  | break; | 
|  | case COMP_BUFF_OVER: | 
|  | xhci_warn(xhci, "WARN: buffer overrun event on endpoint\n"); | 
|  | break; | 
|  | case COMP_UNDERRUN: | 
|  | /* | 
|  | * When the Isoch ring is empty, the xHC will generate | 
|  | * a Ring Overrun Event for IN Isoch endpoint or Ring | 
|  | * Underrun Event for OUT Isoch endpoint. | 
|  | */ | 
|  | xhci_dbg(xhci, "underrun event on endpoint\n"); | 
|  | if (!list_empty(&ep_ring->td_list)) | 
|  | xhci_dbg(xhci, "Underrun Event for slot %d ep %d " | 
|  | "still with TDs queued?\n", | 
|  | TRB_TO_SLOT_ID(event->flags), ep_index); | 
|  | goto cleanup; | 
|  | case COMP_OVERRUN: | 
|  | xhci_dbg(xhci, "overrun event on endpoint\n"); | 
|  | if (!list_empty(&ep_ring->td_list)) | 
|  | xhci_dbg(xhci, "Overrun Event for slot %d ep %d " | 
|  | "still with TDs queued?\n", | 
|  | TRB_TO_SLOT_ID(event->flags), ep_index); | 
|  | goto cleanup; | 
|  | case COMP_MISSED_INT: | 
|  | /* | 
|  | * When encounter missed service error, one or more isoc tds | 
|  | * may be missed by xHC. | 
|  | * Set skip flag of the ep_ring; Complete the missed tds as | 
|  | * short transfer when process the ep_ring next time. | 
|  | */ | 
|  | ep->skip = true; | 
|  | xhci_dbg(xhci, "Miss service interval error, set skip flag\n"); | 
|  | goto cleanup; | 
|  | default: | 
|  | if (xhci_is_vendor_info_code(xhci, trb_comp_code)) { | 
|  | status = 0; | 
|  | break; | 
|  | } | 
|  | xhci_warn(xhci, "ERROR Unknown event condition, HC probably " | 
|  | "busted\n"); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | do { | 
|  | /* This TRB should be in the TD at the head of this ring's | 
|  | * TD list. | 
|  | */ | 
|  | if (list_empty(&ep_ring->td_list)) { | 
|  | xhci_warn(xhci, "WARN Event TRB for slot %d ep %d " | 
|  | "with no TDs queued?\n", | 
|  | TRB_TO_SLOT_ID(event->flags), ep_index); | 
|  | xhci_dbg(xhci, "Event TRB with TRB type ID %u\n", | 
|  | (unsigned int) (event->flags & TRB_TYPE_BITMASK)>>10); | 
|  | xhci_print_trb_offsets(xhci, (union xhci_trb *) event); | 
|  | if (ep->skip) { | 
|  | ep->skip = false; | 
|  | xhci_dbg(xhci, "td_list is empty while skip " | 
|  | "flag set. Clear skip flag.\n"); | 
|  | } | 
|  | ret = 0; | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | td = list_entry(ep_ring->td_list.next, struct xhci_td, td_list); | 
|  | /* Is this a TRB in the currently executing TD? */ | 
|  | event_seg = trb_in_td(ep_ring->deq_seg, ep_ring->dequeue, | 
|  | td->last_trb, event_dma); | 
|  | if (event_seg && ep->skip) { | 
|  | xhci_dbg(xhci, "Found td. Clear skip flag.\n"); | 
|  | ep->skip = false; | 
|  | } | 
|  | if (!event_seg && | 
|  | (!ep->skip || !usb_endpoint_xfer_isoc(&td->urb->ep->desc))) { | 
|  | /* HC is busted, give up! */ | 
|  | xhci_err(xhci, "ERROR Transfer event TRB DMA ptr not " | 
|  | "part of current TD\n"); | 
|  | return -ESHUTDOWN; | 
|  | } | 
|  |  | 
|  | if (event_seg) { | 
|  | event_trb = &event_seg->trbs[(event_dma - | 
|  | event_seg->dma) / sizeof(*event_trb)]; | 
|  | /* | 
|  | * No-op TRB should not trigger interrupts. | 
|  | * If event_trb is a no-op TRB, it means the | 
|  | * corresponding TD has been cancelled. Just ignore | 
|  | * the TD. | 
|  | */ | 
|  | if ((event_trb->generic.field[3] & TRB_TYPE_BITMASK) | 
|  | == TRB_TYPE(TRB_TR_NOOP)) { | 
|  | xhci_dbg(xhci, "event_trb is a no-op TRB. " | 
|  | "Skip it\n"); | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now update the urb's actual_length and give back to | 
|  | * the core | 
|  | */ | 
|  | if (usb_endpoint_xfer_control(&td->urb->ep->desc)) | 
|  | ret = process_ctrl_td(xhci, td, event_trb, event, ep, | 
|  | &status); | 
|  | else if (usb_endpoint_xfer_isoc(&td->urb->ep->desc)) | 
|  | ret = process_isoc_td(xhci, td, event_trb, event, ep, | 
|  | &status); | 
|  | else | 
|  | ret = process_bulk_intr_td(xhci, td, event_trb, event, | 
|  | ep, &status); | 
|  |  | 
|  | cleanup: | 
|  | /* | 
|  | * Do not update event ring dequeue pointer if ep->skip is set. | 
|  | * Will roll back to continue process missed tds. | 
|  | */ | 
|  | if (trb_comp_code == COMP_MISSED_INT || !ep->skip) { | 
|  | inc_deq(xhci, xhci->event_ring, true); | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | urb = td->urb; | 
|  | urb_priv = urb->hcpriv; | 
|  | /* Leave the TD around for the reset endpoint function | 
|  | * to use(but only if it's not a control endpoint, | 
|  | * since we already queued the Set TR dequeue pointer | 
|  | * command for stalled control endpoints). | 
|  | */ | 
|  | if (usb_endpoint_xfer_control(&urb->ep->desc) || | 
|  | (trb_comp_code != COMP_STALL && | 
|  | trb_comp_code != COMP_BABBLE)) | 
|  | xhci_urb_free_priv(xhci, urb_priv); | 
|  |  | 
|  | usb_hcd_unlink_urb_from_ep(xhci_to_hcd(xhci), urb); | 
|  | xhci_dbg(xhci, "Giveback URB %p, len = %d, " | 
|  | "status = %d\n", | 
|  | urb, urb->actual_length, status); | 
|  | spin_unlock(&xhci->lock); | 
|  | usb_hcd_giveback_urb(xhci_to_hcd(xhci), urb, status); | 
|  | spin_lock(&xhci->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If ep->skip is set, it means there are missed tds on the | 
|  | * endpoint ring need to take care of. | 
|  | * Process them as short transfer until reach the td pointed by | 
|  | * the event. | 
|  | */ | 
|  | } while (ep->skip && trb_comp_code != COMP_MISSED_INT); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function handles all OS-owned events on the event ring.  It may drop | 
|  | * xhci->lock between event processing (e.g. to pass up port status changes). | 
|  | */ | 
|  | static void xhci_handle_event(struct xhci_hcd *xhci) | 
|  | { | 
|  | union xhci_trb *event; | 
|  | int update_ptrs = 1; | 
|  | int ret; | 
|  |  | 
|  | xhci_dbg(xhci, "In %s\n", __func__); | 
|  | if (!xhci->event_ring || !xhci->event_ring->dequeue) { | 
|  | xhci->error_bitmask |= 1 << 1; | 
|  | return; | 
|  | } | 
|  |  | 
|  | event = xhci->event_ring->dequeue; | 
|  | /* Does the HC or OS own the TRB? */ | 
|  | if ((event->event_cmd.flags & TRB_CYCLE) != | 
|  | xhci->event_ring->cycle_state) { | 
|  | xhci->error_bitmask |= 1 << 2; | 
|  | return; | 
|  | } | 
|  | xhci_dbg(xhci, "%s - OS owns TRB\n", __func__); | 
|  |  | 
|  | /* FIXME: Handle more event types. */ | 
|  | switch ((event->event_cmd.flags & TRB_TYPE_BITMASK)) { | 
|  | case TRB_TYPE(TRB_COMPLETION): | 
|  | xhci_dbg(xhci, "%s - calling handle_cmd_completion\n", __func__); | 
|  | handle_cmd_completion(xhci, &event->event_cmd); | 
|  | xhci_dbg(xhci, "%s - returned from handle_cmd_completion\n", __func__); | 
|  | break; | 
|  | case TRB_TYPE(TRB_PORT_STATUS): | 
|  | xhci_dbg(xhci, "%s - calling handle_port_status\n", __func__); | 
|  | handle_port_status(xhci, event); | 
|  | xhci_dbg(xhci, "%s - returned from handle_port_status\n", __func__); | 
|  | update_ptrs = 0; | 
|  | break; | 
|  | case TRB_TYPE(TRB_TRANSFER): | 
|  | xhci_dbg(xhci, "%s - calling handle_tx_event\n", __func__); | 
|  | ret = handle_tx_event(xhci, &event->trans_event); | 
|  | xhci_dbg(xhci, "%s - returned from handle_tx_event\n", __func__); | 
|  | if (ret < 0) | 
|  | xhci->error_bitmask |= 1 << 9; | 
|  | else | 
|  | update_ptrs = 0; | 
|  | break; | 
|  | default: | 
|  | if ((event->event_cmd.flags & TRB_TYPE_BITMASK) >= TRB_TYPE(48)) | 
|  | handle_vendor_event(xhci, event); | 
|  | else | 
|  | xhci->error_bitmask |= 1 << 3; | 
|  | } | 
|  | /* Any of the above functions may drop and re-acquire the lock, so check | 
|  | * to make sure a watchdog timer didn't mark the host as non-responsive. | 
|  | */ | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) { | 
|  | xhci_dbg(xhci, "xHCI host dying, returning from " | 
|  | "event handler.\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (update_ptrs) | 
|  | /* Update SW event ring dequeue pointer */ | 
|  | inc_deq(xhci, xhci->event_ring, true); | 
|  |  | 
|  | /* Are there more items on the event ring? */ | 
|  | xhci_handle_event(xhci); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xHCI spec says we can get an interrupt, and if the HC has an error condition, | 
|  | * we might get bad data out of the event ring.  Section 4.10.2.7 has a list of | 
|  | * indicators of an event TRB error, but we check the status *first* to be safe. | 
|  | */ | 
|  | irqreturn_t xhci_irq(struct usb_hcd *hcd) | 
|  | { | 
|  | struct xhci_hcd *xhci = hcd_to_xhci(hcd); | 
|  | u32 status; | 
|  | union xhci_trb *trb; | 
|  | u64 temp_64; | 
|  | union xhci_trb *event_ring_deq; | 
|  | dma_addr_t deq; | 
|  |  | 
|  | spin_lock(&xhci->lock); | 
|  | trb = xhci->event_ring->dequeue; | 
|  | /* Check if the xHC generated the interrupt, or the irq is shared */ | 
|  | status = xhci_readl(xhci, &xhci->op_regs->status); | 
|  | if (status == 0xffffffff) | 
|  | goto hw_died; | 
|  |  | 
|  | if (!(status & STS_EINT)) { | 
|  | spin_unlock(&xhci->lock); | 
|  | return IRQ_NONE; | 
|  | } | 
|  | xhci_dbg(xhci, "op reg status = %08x\n", status); | 
|  | xhci_dbg(xhci, "Event ring dequeue ptr:\n"); | 
|  | xhci_dbg(xhci, "@%llx %08x %08x %08x %08x\n", | 
|  | (unsigned long long) | 
|  | xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, trb), | 
|  | lower_32_bits(trb->link.segment_ptr), | 
|  | upper_32_bits(trb->link.segment_ptr), | 
|  | (unsigned int) trb->link.intr_target, | 
|  | (unsigned int) trb->link.control); | 
|  |  | 
|  | if (status & STS_FATAL) { | 
|  | xhci_warn(xhci, "WARNING: Host System Error\n"); | 
|  | xhci_halt(xhci); | 
|  | hw_died: | 
|  | xhci_to_hcd(xhci)->state = HC_STATE_HALT; | 
|  | spin_unlock(&xhci->lock); | 
|  | return -ESHUTDOWN; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clear the op reg interrupt status first, | 
|  | * so we can receive interrupts from other MSI-X interrupters. | 
|  | * Write 1 to clear the interrupt status. | 
|  | */ | 
|  | status |= STS_EINT; | 
|  | xhci_writel(xhci, status, &xhci->op_regs->status); | 
|  | /* FIXME when MSI-X is supported and there are multiple vectors */ | 
|  | /* Clear the MSI-X event interrupt status */ | 
|  |  | 
|  | if (hcd->irq != -1) { | 
|  | u32 irq_pending; | 
|  | /* Acknowledge the PCI interrupt */ | 
|  | irq_pending = xhci_readl(xhci, &xhci->ir_set->irq_pending); | 
|  | irq_pending |= 0x3; | 
|  | xhci_writel(xhci, irq_pending, &xhci->ir_set->irq_pending); | 
|  | } | 
|  |  | 
|  | if (xhci->xhc_state & XHCI_STATE_DYING) { | 
|  | xhci_dbg(xhci, "xHCI dying, ignoring interrupt. " | 
|  | "Shouldn't IRQs be disabled?\n"); | 
|  | /* Clear the event handler busy flag (RW1C); | 
|  | * the event ring should be empty. | 
|  | */ | 
|  | temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
|  | xhci_write_64(xhci, temp_64 | ERST_EHB, | 
|  | &xhci->ir_set->erst_dequeue); | 
|  | spin_unlock(&xhci->lock); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | event_ring_deq = xhci->event_ring->dequeue; | 
|  | /* FIXME this should be a delayed service routine | 
|  | * that clears the EHB. | 
|  | */ | 
|  | xhci_handle_event(xhci); | 
|  |  | 
|  | temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue); | 
|  | /* If necessary, update the HW's version of the event ring deq ptr. */ | 
|  | if (event_ring_deq != xhci->event_ring->dequeue) { | 
|  | deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg, | 
|  | xhci->event_ring->dequeue); | 
|  | if (deq == 0) | 
|  | xhci_warn(xhci, "WARN something wrong with SW event " | 
|  | "ring dequeue ptr.\n"); | 
|  | /* Update HC event ring dequeue pointer */ | 
|  | temp_64 &= ERST_PTR_MASK; | 
|  | temp_64 |= ((u64) deq & (u64) ~ERST_PTR_MASK); | 
|  | } | 
|  |  | 
|  | /* Clear the event handler busy flag (RW1C); event ring is empty. */ | 
|  | temp_64 |= ERST_EHB; | 
|  | xhci_write_64(xhci, temp_64, &xhci->ir_set->erst_dequeue); | 
|  |  | 
|  | spin_unlock(&xhci->lock); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | irqreturn_t xhci_msi_irq(int irq, struct usb_hcd *hcd) | 
|  | { | 
|  | irqreturn_t ret; | 
|  |  | 
|  | set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags); | 
|  |  | 
|  | ret = xhci_irq(hcd); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /****		Endpoint Ring Operations	****/ | 
|  |  | 
|  | /* | 
|  | * Generic function for queueing a TRB on a ring. | 
|  | * The caller must have checked to make sure there's room on the ring. | 
|  | * | 
|  | * @more_trbs_coming:	Will you enqueue more TRBs before calling | 
|  | *			prepare_transfer()? | 
|  | */ | 
|  | static void queue_trb(struct xhci_hcd *xhci, struct xhci_ring *ring, | 
|  | bool consumer, bool more_trbs_coming, | 
|  | u32 field1, u32 field2, u32 field3, u32 field4) | 
|  | { | 
|  | struct xhci_generic_trb *trb; | 
|  |  | 
|  | trb = &ring->enqueue->generic; | 
|  | trb->field[0] = field1; | 
|  | trb->field[1] = field2; | 
|  | trb->field[2] = field3; | 
|  | trb->field[3] = field4; | 
|  | inc_enq(xhci, ring, consumer, more_trbs_coming); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Does various checks on the endpoint ring, and makes it ready to queue num_trbs. | 
|  | * FIXME allocate segments if the ring is full. | 
|  | */ | 
|  | static int prepare_ring(struct xhci_hcd *xhci, struct xhci_ring *ep_ring, | 
|  | u32 ep_state, unsigned int num_trbs, gfp_t mem_flags) | 
|  | { | 
|  | /* Make sure the endpoint has been added to xHC schedule */ | 
|  | xhci_dbg(xhci, "Endpoint state = 0x%x\n", ep_state); | 
|  | switch (ep_state) { | 
|  | case EP_STATE_DISABLED: | 
|  | /* | 
|  | * USB core changed config/interfaces without notifying us, | 
|  | * or hardware is reporting the wrong state. | 
|  | */ | 
|  | xhci_warn(xhci, "WARN urb submitted to disabled ep\n"); | 
|  | return -ENOENT; | 
|  | case EP_STATE_ERROR: | 
|  | xhci_warn(xhci, "WARN waiting for error on ep to be cleared\n"); | 
|  | /* FIXME event handling code for error needs to clear it */ | 
|  | /* XXX not sure if this should be -ENOENT or not */ | 
|  | return -EINVAL; | 
|  | case EP_STATE_HALTED: | 
|  | xhci_dbg(xhci, "WARN halted endpoint, queueing URB anyway.\n"); | 
|  | case EP_STATE_STOPPED: | 
|  | case EP_STATE_RUNNING: | 
|  | break; | 
|  | default: | 
|  | xhci_err(xhci, "ERROR unknown endpoint state for ep\n"); | 
|  | /* | 
|  | * FIXME issue Configure Endpoint command to try to get the HC | 
|  | * back into a known state. | 
|  | */ | 
|  | return -EINVAL; | 
|  | } | 
|  | if (!room_on_ring(xhci, ep_ring, num_trbs)) { | 
|  | /* FIXME allocate more room */ | 
|  | xhci_err(xhci, "ERROR no room on ep ring\n"); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | if (enqueue_is_link_trb(ep_ring)) { | 
|  | struct xhci_ring *ring = ep_ring; | 
|  | union xhci_trb *next; | 
|  |  | 
|  | xhci_dbg(xhci, "prepare_ring: pointing to link trb\n"); | 
|  | next = ring->enqueue; | 
|  |  | 
|  | while (last_trb(xhci, ring, ring->enq_seg, next)) { | 
|  |  | 
|  | /* If we're not dealing with 0.95 hardware, | 
|  | * clear the chain bit. | 
|  | */ | 
|  | if (!xhci_link_trb_quirk(xhci)) | 
|  | next->link.control &= ~TRB_CHAIN; | 
|  | else | 
|  | next->link.control |= TRB_CHAIN; | 
|  |  | 
|  | wmb(); | 
|  | next->link.control ^= (u32) TRB_CYCLE; | 
|  |  | 
|  | /* Toggle the cycle bit after the last ring segment. */ | 
|  | if (last_trb_on_last_seg(xhci, ring, ring->enq_seg, next)) { | 
|  | ring->cycle_state = (ring->cycle_state ? 0 : 1); | 
|  | if (!in_interrupt()) { | 
|  | xhci_dbg(xhci, "queue_trb: Toggle cycle " | 
|  | "state for ring %p = %i\n", | 
|  | ring, (unsigned int)ring->cycle_state); | 
|  | } | 
|  | } | 
|  | ring->enq_seg = ring->enq_seg->next; | 
|  | ring->enqueue = ring->enq_seg->trbs; | 
|  | next = ring->enqueue; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int prepare_transfer(struct xhci_hcd *xhci, | 
|  | struct xhci_virt_device *xdev, | 
|  | unsigned int ep_index, | 
|  | unsigned int stream_id, | 
|  | unsigned int num_trbs, | 
|  | struct urb *urb, | 
|  | unsigned int td_index, | 
|  | gfp_t mem_flags) | 
|  | { | 
|  | int ret; | 
|  | struct urb_priv *urb_priv; | 
|  | struct xhci_td	*td; | 
|  | struct xhci_ring *ep_ring; | 
|  | struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
|  |  | 
|  | ep_ring = xhci_stream_id_to_ring(xdev, ep_index, stream_id); | 
|  | if (!ep_ring) { | 
|  | xhci_dbg(xhci, "Can't prepare ring for bad stream ID %u\n", | 
|  | stream_id); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | ret = prepare_ring(xhci, ep_ring, | 
|  | ep_ctx->ep_info & EP_STATE_MASK, | 
|  | num_trbs, mem_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | urb_priv = urb->hcpriv; | 
|  | td = urb_priv->td[td_index]; | 
|  |  | 
|  | INIT_LIST_HEAD(&td->td_list); | 
|  | INIT_LIST_HEAD(&td->cancelled_td_list); | 
|  |  | 
|  | if (td_index == 0) { | 
|  | ret = usb_hcd_link_urb_to_ep(xhci_to_hcd(xhci), urb); | 
|  | if (unlikely(ret)) { | 
|  | xhci_urb_free_priv(xhci, urb_priv); | 
|  | urb->hcpriv = NULL; | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | td->urb = urb; | 
|  | /* Add this TD to the tail of the endpoint ring's TD list */ | 
|  | list_add_tail(&td->td_list, &ep_ring->td_list); | 
|  | td->start_seg = ep_ring->enq_seg; | 
|  | td->first_trb = ep_ring->enqueue; | 
|  |  | 
|  | urb_priv->td[td_index] = td; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static unsigned int count_sg_trbs_needed(struct xhci_hcd *xhci, struct urb *urb) | 
|  | { | 
|  | int num_sgs, num_trbs, running_total, temp, i; | 
|  | struct scatterlist *sg; | 
|  |  | 
|  | sg = NULL; | 
|  | num_sgs = urb->num_sgs; | 
|  | temp = urb->transfer_buffer_length; | 
|  |  | 
|  | xhci_dbg(xhci, "count sg list trbs: \n"); | 
|  | num_trbs = 0; | 
|  | for_each_sg(urb->sg, sg, num_sgs, i) { | 
|  | unsigned int previous_total_trbs = num_trbs; | 
|  | unsigned int len = sg_dma_len(sg); | 
|  |  | 
|  | /* Scatter gather list entries may cross 64KB boundaries */ | 
|  | running_total = TRB_MAX_BUFF_SIZE - | 
|  | (sg_dma_address(sg) & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | 
|  | if (running_total != 0) | 
|  | num_trbs++; | 
|  |  | 
|  | /* How many more 64KB chunks to transfer, how many more TRBs? */ | 
|  | while (running_total < sg_dma_len(sg)) { | 
|  | num_trbs++; | 
|  | running_total += TRB_MAX_BUFF_SIZE; | 
|  | } | 
|  | xhci_dbg(xhci, " sg #%d: dma = %#llx, len = %#x (%d), num_trbs = %d\n", | 
|  | i, (unsigned long long)sg_dma_address(sg), | 
|  | len, len, num_trbs - previous_total_trbs); | 
|  |  | 
|  | len = min_t(int, len, temp); | 
|  | temp -= len; | 
|  | if (temp == 0) | 
|  | break; | 
|  | } | 
|  | xhci_dbg(xhci, "\n"); | 
|  | if (!in_interrupt()) | 
|  | xhci_dbg(xhci, "ep %#x - urb len = %d, sglist used, " | 
|  | "num_trbs = %d\n", | 
|  | urb->ep->desc.bEndpointAddress, | 
|  | urb->transfer_buffer_length, | 
|  | num_trbs); | 
|  | return num_trbs; | 
|  | } | 
|  |  | 
|  | static void check_trb_math(struct urb *urb, int num_trbs, int running_total) | 
|  | { | 
|  | if (num_trbs != 0) | 
|  | dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated number of " | 
|  | "TRBs, %d left\n", __func__, | 
|  | urb->ep->desc.bEndpointAddress, num_trbs); | 
|  | if (running_total != urb->transfer_buffer_length) | 
|  | dev_dbg(&urb->dev->dev, "%s - ep %#x - Miscalculated tx length, " | 
|  | "queued %#x (%d), asked for %#x (%d)\n", | 
|  | __func__, | 
|  | urb->ep->desc.bEndpointAddress, | 
|  | running_total, running_total, | 
|  | urb->transfer_buffer_length, | 
|  | urb->transfer_buffer_length); | 
|  | } | 
|  |  | 
|  | static void giveback_first_trb(struct xhci_hcd *xhci, int slot_id, | 
|  | unsigned int ep_index, unsigned int stream_id, int start_cycle, | 
|  | struct xhci_generic_trb *start_trb) | 
|  | { | 
|  | /* | 
|  | * Pass all the TRBs to the hardware at once and make sure this write | 
|  | * isn't reordered. | 
|  | */ | 
|  | wmb(); | 
|  | if (start_cycle) | 
|  | start_trb->field[3] |= start_cycle; | 
|  | else | 
|  | start_trb->field[3] &= ~0x1; | 
|  | xhci_ring_ep_doorbell(xhci, slot_id, ep_index, stream_id); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xHCI uses normal TRBs for both bulk and interrupt.  When the interrupt | 
|  | * endpoint is to be serviced, the xHC will consume (at most) one TD.  A TD | 
|  | * (comprised of sg list entries) can take several service intervals to | 
|  | * transmit. | 
|  | */ | 
|  | int xhci_queue_intr_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
|  | struct urb *urb, int slot_id, unsigned int ep_index) | 
|  | { | 
|  | struct xhci_ep_ctx *ep_ctx = xhci_get_ep_ctx(xhci, | 
|  | xhci->devs[slot_id]->out_ctx, ep_index); | 
|  | int xhci_interval; | 
|  | int ep_interval; | 
|  |  | 
|  | xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info); | 
|  | ep_interval = urb->interval; | 
|  | /* Convert to microframes */ | 
|  | if (urb->dev->speed == USB_SPEED_LOW || | 
|  | urb->dev->speed == USB_SPEED_FULL) | 
|  | ep_interval *= 8; | 
|  | /* FIXME change this to a warning and a suggestion to use the new API | 
|  | * to set the polling interval (once the API is added). | 
|  | */ | 
|  | if (xhci_interval != ep_interval) { | 
|  | if (printk_ratelimit()) | 
|  | dev_dbg(&urb->dev->dev, "Driver uses different interval" | 
|  | " (%d microframe%s) than xHCI " | 
|  | "(%d microframe%s)\n", | 
|  | ep_interval, | 
|  | ep_interval == 1 ? "" : "s", | 
|  | xhci_interval, | 
|  | xhci_interval == 1 ? "" : "s"); | 
|  | urb->interval = xhci_interval; | 
|  | /* Convert back to frames for LS/FS devices */ | 
|  | if (urb->dev->speed == USB_SPEED_LOW || | 
|  | urb->dev->speed == USB_SPEED_FULL) | 
|  | urb->interval /= 8; | 
|  | } | 
|  | return xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The TD size is the number of bytes remaining in the TD (including this TRB), | 
|  | * right shifted by 10. | 
|  | * It must fit in bits 21:17, so it can't be bigger than 31. | 
|  | */ | 
|  | static u32 xhci_td_remainder(unsigned int remainder) | 
|  | { | 
|  | u32 max = (1 << (21 - 17 + 1)) - 1; | 
|  |  | 
|  | if ((remainder >> 10) >= max) | 
|  | return max << 17; | 
|  | else | 
|  | return (remainder >> 10) << 17; | 
|  | } | 
|  |  | 
|  | static int queue_bulk_sg_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
|  | struct urb *urb, int slot_id, unsigned int ep_index) | 
|  | { | 
|  | struct xhci_ring *ep_ring; | 
|  | unsigned int num_trbs; | 
|  | struct urb_priv *urb_priv; | 
|  | struct xhci_td *td; | 
|  | struct scatterlist *sg; | 
|  | int num_sgs; | 
|  | int trb_buff_len, this_sg_len, running_total; | 
|  | bool first_trb; | 
|  | u64 addr; | 
|  | bool more_trbs_coming; | 
|  |  | 
|  | struct xhci_generic_trb *start_trb; | 
|  | int start_cycle; | 
|  |  | 
|  | ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
|  | if (!ep_ring) | 
|  | return -EINVAL; | 
|  |  | 
|  | num_trbs = count_sg_trbs_needed(xhci, urb); | 
|  | num_sgs = urb->num_sgs; | 
|  |  | 
|  | trb_buff_len = prepare_transfer(xhci, xhci->devs[slot_id], | 
|  | ep_index, urb->stream_id, | 
|  | num_trbs, urb, 0, mem_flags); | 
|  | if (trb_buff_len < 0) | 
|  | return trb_buff_len; | 
|  |  | 
|  | urb_priv = urb->hcpriv; | 
|  | td = urb_priv->td[0]; | 
|  |  | 
|  | /* | 
|  | * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
|  | * until we've finished creating all the other TRBs.  The ring's cycle | 
|  | * state may change as we enqueue the other TRBs, so save it too. | 
|  | */ | 
|  | start_trb = &ep_ring->enqueue->generic; | 
|  | start_cycle = ep_ring->cycle_state; | 
|  |  | 
|  | running_total = 0; | 
|  | /* | 
|  | * How much data is in the first TRB? | 
|  | * | 
|  | * There are three forces at work for TRB buffer pointers and lengths: | 
|  | * 1. We don't want to walk off the end of this sg-list entry buffer. | 
|  | * 2. The transfer length that the driver requested may be smaller than | 
|  | *    the amount of memory allocated for this scatter-gather list. | 
|  | * 3. TRBs buffers can't cross 64KB boundaries. | 
|  | */ | 
|  | sg = urb->sg; | 
|  | addr = (u64) sg_dma_address(sg); | 
|  | this_sg_len = sg_dma_len(sg); | 
|  | trb_buff_len = TRB_MAX_BUFF_SIZE - | 
|  | (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | 
|  | trb_buff_len = min_t(int, trb_buff_len, this_sg_len); | 
|  | if (trb_buff_len > urb->transfer_buffer_length) | 
|  | trb_buff_len = urb->transfer_buffer_length; | 
|  | xhci_dbg(xhci, "First length to xfer from 1st sglist entry = %u\n", | 
|  | trb_buff_len); | 
|  |  | 
|  | first_trb = true; | 
|  | /* Queue the first TRB, even if it's zero-length */ | 
|  | do { | 
|  | u32 field = 0; | 
|  | u32 length_field = 0; | 
|  | u32 remainder = 0; | 
|  |  | 
|  | /* Don't change the cycle bit of the first TRB until later */ | 
|  | if (first_trb) { | 
|  | first_trb = false; | 
|  | if (start_cycle == 0) | 
|  | field |= 0x1; | 
|  | } else | 
|  | field |= ep_ring->cycle_state; | 
|  |  | 
|  | /* Chain all the TRBs together; clear the chain bit in the last | 
|  | * TRB to indicate it's the last TRB in the chain. | 
|  | */ | 
|  | if (num_trbs > 1) { | 
|  | field |= TRB_CHAIN; | 
|  | } else { | 
|  | /* FIXME - add check for ZERO_PACKET flag before this */ | 
|  | td->last_trb = ep_ring->enqueue; | 
|  | field |= TRB_IOC; | 
|  | } | 
|  | xhci_dbg(xhci, " sg entry: dma = %#x, len = %#x (%d), " | 
|  | "64KB boundary at %#x, end dma = %#x\n", | 
|  | (unsigned int) addr, trb_buff_len, trb_buff_len, | 
|  | (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), | 
|  | (unsigned int) addr + trb_buff_len); | 
|  | if (TRB_MAX_BUFF_SIZE - | 
|  | (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)) < trb_buff_len) { | 
|  | xhci_warn(xhci, "WARN: sg dma xfer crosses 64KB boundaries!\n"); | 
|  | xhci_dbg(xhci, "Next boundary at %#x, end dma = %#x\n", | 
|  | (unsigned int) (addr + TRB_MAX_BUFF_SIZE) & ~(TRB_MAX_BUFF_SIZE - 1), | 
|  | (unsigned int) addr + trb_buff_len); | 
|  | } | 
|  | remainder = xhci_td_remainder(urb->transfer_buffer_length - | 
|  | running_total) ; | 
|  | length_field = TRB_LEN(trb_buff_len) | | 
|  | remainder | | 
|  | TRB_INTR_TARGET(0); | 
|  | if (num_trbs > 1) | 
|  | more_trbs_coming = true; | 
|  | else | 
|  | more_trbs_coming = false; | 
|  | queue_trb(xhci, ep_ring, false, more_trbs_coming, | 
|  | lower_32_bits(addr), | 
|  | upper_32_bits(addr), | 
|  | length_field, | 
|  | /* We always want to know if the TRB was short, | 
|  | * or we won't get an event when it completes. | 
|  | * (Unless we use event data TRBs, which are a | 
|  | * waste of space and HC resources.) | 
|  | */ | 
|  | field | TRB_ISP | TRB_TYPE(TRB_NORMAL)); | 
|  | --num_trbs; | 
|  | running_total += trb_buff_len; | 
|  |  | 
|  | /* Calculate length for next transfer -- | 
|  | * Are we done queueing all the TRBs for this sg entry? | 
|  | */ | 
|  | this_sg_len -= trb_buff_len; | 
|  | if (this_sg_len == 0) { | 
|  | --num_sgs; | 
|  | if (num_sgs == 0) | 
|  | break; | 
|  | sg = sg_next(sg); | 
|  | addr = (u64) sg_dma_address(sg); | 
|  | this_sg_len = sg_dma_len(sg); | 
|  | } else { | 
|  | addr += trb_buff_len; | 
|  | } | 
|  |  | 
|  | trb_buff_len = TRB_MAX_BUFF_SIZE - | 
|  | (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | 
|  | trb_buff_len = min_t(int, trb_buff_len, this_sg_len); | 
|  | if (running_total + trb_buff_len > urb->transfer_buffer_length) | 
|  | trb_buff_len = | 
|  | urb->transfer_buffer_length - running_total; | 
|  | } while (running_total < urb->transfer_buffer_length); | 
|  |  | 
|  | check_trb_math(urb, num_trbs, running_total); | 
|  | giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
|  | start_cycle, start_trb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This is very similar to what ehci-q.c qtd_fill() does */ | 
|  | int xhci_queue_bulk_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
|  | struct urb *urb, int slot_id, unsigned int ep_index) | 
|  | { | 
|  | struct xhci_ring *ep_ring; | 
|  | struct urb_priv *urb_priv; | 
|  | struct xhci_td *td; | 
|  | int num_trbs; | 
|  | struct xhci_generic_trb *start_trb; | 
|  | bool first_trb; | 
|  | bool more_trbs_coming; | 
|  | int start_cycle; | 
|  | u32 field, length_field; | 
|  |  | 
|  | int running_total, trb_buff_len, ret; | 
|  | u64 addr; | 
|  |  | 
|  | if (urb->num_sgs) | 
|  | return queue_bulk_sg_tx(xhci, mem_flags, urb, slot_id, ep_index); | 
|  |  | 
|  | ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
|  | if (!ep_ring) | 
|  | return -EINVAL; | 
|  |  | 
|  | num_trbs = 0; | 
|  | /* How much data is (potentially) left before the 64KB boundary? */ | 
|  | running_total = TRB_MAX_BUFF_SIZE - | 
|  | (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | 
|  |  | 
|  | /* If there's some data on this 64KB chunk, or we have to send a | 
|  | * zero-length transfer, we need at least one TRB | 
|  | */ | 
|  | if (running_total != 0 || urb->transfer_buffer_length == 0) | 
|  | num_trbs++; | 
|  | /* How many more 64KB chunks to transfer, how many more TRBs? */ | 
|  | while (running_total < urb->transfer_buffer_length) { | 
|  | num_trbs++; | 
|  | running_total += TRB_MAX_BUFF_SIZE; | 
|  | } | 
|  | /* FIXME: this doesn't deal with URB_ZERO_PACKET - need one more */ | 
|  |  | 
|  | if (!in_interrupt()) | 
|  | xhci_dbg(xhci, "ep %#x - urb len = %#x (%d), " | 
|  | "addr = %#llx, num_trbs = %d\n", | 
|  | urb->ep->desc.bEndpointAddress, | 
|  | urb->transfer_buffer_length, | 
|  | urb->transfer_buffer_length, | 
|  | (unsigned long long)urb->transfer_dma, | 
|  | num_trbs); | 
|  |  | 
|  | ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
|  | ep_index, urb->stream_id, | 
|  | num_trbs, urb, 0, mem_flags); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | urb_priv = urb->hcpriv; | 
|  | td = urb_priv->td[0]; | 
|  |  | 
|  | /* | 
|  | * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
|  | * until we've finished creating all the other TRBs.  The ring's cycle | 
|  | * state may change as we enqueue the other TRBs, so save it too. | 
|  | */ | 
|  | start_trb = &ep_ring->enqueue->generic; | 
|  | start_cycle = ep_ring->cycle_state; | 
|  |  | 
|  | running_total = 0; | 
|  | /* How much data is in the first TRB? */ | 
|  | addr = (u64) urb->transfer_dma; | 
|  | trb_buff_len = TRB_MAX_BUFF_SIZE - | 
|  | (urb->transfer_dma & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | 
|  | if (urb->transfer_buffer_length < trb_buff_len) | 
|  | trb_buff_len = urb->transfer_buffer_length; | 
|  |  | 
|  | first_trb = true; | 
|  |  | 
|  | /* Queue the first TRB, even if it's zero-length */ | 
|  | do { | 
|  | u32 remainder = 0; | 
|  | field = 0; | 
|  |  | 
|  | /* Don't change the cycle bit of the first TRB until later */ | 
|  | if (first_trb) { | 
|  | first_trb = false; | 
|  | if (start_cycle == 0) | 
|  | field |= 0x1; | 
|  | } else | 
|  | field |= ep_ring->cycle_state; | 
|  |  | 
|  | /* Chain all the TRBs together; clear the chain bit in the last | 
|  | * TRB to indicate it's the last TRB in the chain. | 
|  | */ | 
|  | if (num_trbs > 1) { | 
|  | field |= TRB_CHAIN; | 
|  | } else { | 
|  | /* FIXME - add check for ZERO_PACKET flag before this */ | 
|  | td->last_trb = ep_ring->enqueue; | 
|  | field |= TRB_IOC; | 
|  | } | 
|  | remainder = xhci_td_remainder(urb->transfer_buffer_length - | 
|  | running_total); | 
|  | length_field = TRB_LEN(trb_buff_len) | | 
|  | remainder | | 
|  | TRB_INTR_TARGET(0); | 
|  | if (num_trbs > 1) | 
|  | more_trbs_coming = true; | 
|  | else | 
|  | more_trbs_coming = false; | 
|  | queue_trb(xhci, ep_ring, false, more_trbs_coming, | 
|  | lower_32_bits(addr), | 
|  | upper_32_bits(addr), | 
|  | length_field, | 
|  | /* We always want to know if the TRB was short, | 
|  | * or we won't get an event when it completes. | 
|  | * (Unless we use event data TRBs, which are a | 
|  | * waste of space and HC resources.) | 
|  | */ | 
|  | field | TRB_ISP | TRB_TYPE(TRB_NORMAL)); | 
|  | --num_trbs; | 
|  | running_total += trb_buff_len; | 
|  |  | 
|  | /* Calculate length for next transfer */ | 
|  | addr += trb_buff_len; | 
|  | trb_buff_len = urb->transfer_buffer_length - running_total; | 
|  | if (trb_buff_len > TRB_MAX_BUFF_SIZE) | 
|  | trb_buff_len = TRB_MAX_BUFF_SIZE; | 
|  | } while (running_total < urb->transfer_buffer_length); | 
|  |  | 
|  | check_trb_math(urb, num_trbs, running_total); | 
|  | giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
|  | start_cycle, start_trb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Caller must have locked xhci->lock */ | 
|  | int xhci_queue_ctrl_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
|  | struct urb *urb, int slot_id, unsigned int ep_index) | 
|  | { | 
|  | struct xhci_ring *ep_ring; | 
|  | int num_trbs; | 
|  | int ret; | 
|  | struct usb_ctrlrequest *setup; | 
|  | struct xhci_generic_trb *start_trb; | 
|  | int start_cycle; | 
|  | u32 field, length_field; | 
|  | struct urb_priv *urb_priv; | 
|  | struct xhci_td *td; | 
|  |  | 
|  | ep_ring = xhci_urb_to_transfer_ring(xhci, urb); | 
|  | if (!ep_ring) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* | 
|  | * Need to copy setup packet into setup TRB, so we can't use the setup | 
|  | * DMA address. | 
|  | */ | 
|  | if (!urb->setup_packet) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (!in_interrupt()) | 
|  | xhci_dbg(xhci, "Queueing ctrl tx for slot id %d, ep %d\n", | 
|  | slot_id, ep_index); | 
|  | /* 1 TRB for setup, 1 for status */ | 
|  | num_trbs = 2; | 
|  | /* | 
|  | * Don't need to check if we need additional event data and normal TRBs, | 
|  | * since data in control transfers will never get bigger than 16MB | 
|  | * XXX: can we get a buffer that crosses 64KB boundaries? | 
|  | */ | 
|  | if (urb->transfer_buffer_length > 0) | 
|  | num_trbs++; | 
|  | ret = prepare_transfer(xhci, xhci->devs[slot_id], | 
|  | ep_index, urb->stream_id, | 
|  | num_trbs, urb, 0, mem_flags); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | urb_priv = urb->hcpriv; | 
|  | td = urb_priv->td[0]; | 
|  |  | 
|  | /* | 
|  | * Don't give the first TRB to the hardware (by toggling the cycle bit) | 
|  | * until we've finished creating all the other TRBs.  The ring's cycle | 
|  | * state may change as we enqueue the other TRBs, so save it too. | 
|  | */ | 
|  | start_trb = &ep_ring->enqueue->generic; | 
|  | start_cycle = ep_ring->cycle_state; | 
|  |  | 
|  | /* Queue setup TRB - see section 6.4.1.2.1 */ | 
|  | /* FIXME better way to translate setup_packet into two u32 fields? */ | 
|  | setup = (struct usb_ctrlrequest *) urb->setup_packet; | 
|  | field = 0; | 
|  | field |= TRB_IDT | TRB_TYPE(TRB_SETUP); | 
|  | if (start_cycle == 0) | 
|  | field |= 0x1; | 
|  | queue_trb(xhci, ep_ring, false, true, | 
|  | /* FIXME endianness is probably going to bite my ass here. */ | 
|  | setup->bRequestType | setup->bRequest << 8 | setup->wValue << 16, | 
|  | setup->wIndex | setup->wLength << 16, | 
|  | TRB_LEN(8) | TRB_INTR_TARGET(0), | 
|  | /* Immediate data in pointer */ | 
|  | field); | 
|  |  | 
|  | /* If there's data, queue data TRBs */ | 
|  | field = 0; | 
|  | length_field = TRB_LEN(urb->transfer_buffer_length) | | 
|  | xhci_td_remainder(urb->transfer_buffer_length) | | 
|  | TRB_INTR_TARGET(0); | 
|  | if (urb->transfer_buffer_length > 0) { | 
|  | if (setup->bRequestType & USB_DIR_IN) | 
|  | field |= TRB_DIR_IN; | 
|  | queue_trb(xhci, ep_ring, false, true, | 
|  | lower_32_bits(urb->transfer_dma), | 
|  | upper_32_bits(urb->transfer_dma), | 
|  | length_field, | 
|  | /* Event on short tx */ | 
|  | field | TRB_ISP | TRB_TYPE(TRB_DATA) | ep_ring->cycle_state); | 
|  | } | 
|  |  | 
|  | /* Save the DMA address of the last TRB in the TD */ | 
|  | td->last_trb = ep_ring->enqueue; | 
|  |  | 
|  | /* Queue status TRB - see Table 7 and sections 4.11.2.2 and 6.4.1.2.3 */ | 
|  | /* If the device sent data, the status stage is an OUT transfer */ | 
|  | if (urb->transfer_buffer_length > 0 && setup->bRequestType & USB_DIR_IN) | 
|  | field = 0; | 
|  | else | 
|  | field = TRB_DIR_IN; | 
|  | queue_trb(xhci, ep_ring, false, false, | 
|  | 0, | 
|  | 0, | 
|  | TRB_INTR_TARGET(0), | 
|  | /* Event on completion */ | 
|  | field | TRB_IOC | TRB_TYPE(TRB_STATUS) | ep_ring->cycle_state); | 
|  |  | 
|  | giveback_first_trb(xhci, slot_id, ep_index, 0, | 
|  | start_cycle, start_trb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int count_isoc_trbs_needed(struct xhci_hcd *xhci, | 
|  | struct urb *urb, int i) | 
|  | { | 
|  | int num_trbs = 0; | 
|  | u64 addr, td_len, running_total; | 
|  |  | 
|  | addr = (u64) (urb->transfer_dma + urb->iso_frame_desc[i].offset); | 
|  | td_len = urb->iso_frame_desc[i].length; | 
|  |  | 
|  | running_total = TRB_MAX_BUFF_SIZE - | 
|  | (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | 
|  | if (running_total != 0) | 
|  | num_trbs++; | 
|  |  | 
|  | while (running_total < td_len) { | 
|  | num_trbs++; | 
|  | running_total += TRB_MAX_BUFF_SIZE; | 
|  | } | 
|  |  | 
|  | return num_trbs; | 
|  | } | 
|  |  | 
|  | /* This is for isoc transfer */ | 
|  | static int xhci_queue_isoc_tx(struct xhci_hcd *xhci, gfp_t mem_flags, | 
|  | struct urb *urb, int slot_id, unsigned int ep_index) | 
|  | { | 
|  | struct xhci_ring *ep_ring; | 
|  | struct urb_priv *urb_priv; | 
|  | struct xhci_td *td; | 
|  | int num_tds, trbs_per_td; | 
|  | struct xhci_generic_trb *start_trb; | 
|  | bool first_trb; | 
|  | int start_cycle; | 
|  | u32 field, length_field; | 
|  | int running_total, trb_buff_len, td_len, td_remain_len, ret; | 
|  | u64 start_addr, addr; | 
|  | int i, j; | 
|  | bool more_trbs_coming; | 
|  |  | 
|  | ep_ring = xhci->devs[slot_id]->eps[ep_index].ring; | 
|  |  | 
|  | num_tds = urb->number_of_packets; | 
|  | if (num_tds < 1) { | 
|  | xhci_dbg(xhci, "Isoc URB with zero packets?\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (!in_interrupt()) | 
|  | xhci_dbg(xhci, "ep %#x - urb len = %#x (%d)," | 
|  | " addr = %#llx, num_tds = %d\n", | 
|  | urb->ep->desc.bEndpointAddress, | 
|  | urb->transfer_buffer_length, | 
|  | urb->transfer_buffer_length, | 
|  | (unsigned long long)urb->transfer_dma, | 
|  | num_tds); | 
|  |  | 
|  | start_addr = (u64) urb->transfer_dma; | 
|  | start_trb = &ep_ring->enqueue->generic; | 
|  | start_cycle = ep_ring->cycle_state; | 
|  |  | 
|  | /* Queue the first TRB, even if it's zero-length */ | 
|  | for (i = 0; i < num_tds; i++) { | 
|  | first_trb = true; | 
|  |  | 
|  | running_total = 0; | 
|  | addr = start_addr + urb->iso_frame_desc[i].offset; | 
|  | td_len = urb->iso_frame_desc[i].length; | 
|  | td_remain_len = td_len; | 
|  |  | 
|  | trbs_per_td = count_isoc_trbs_needed(xhci, urb, i); | 
|  |  | 
|  | ret = prepare_transfer(xhci, xhci->devs[slot_id], ep_index, | 
|  | urb->stream_id, trbs_per_td, urb, i, mem_flags); | 
|  | if (ret < 0) | 
|  | return ret; | 
|  |  | 
|  | urb_priv = urb->hcpriv; | 
|  | td = urb_priv->td[i]; | 
|  |  | 
|  | for (j = 0; j < trbs_per_td; j++) { | 
|  | u32 remainder = 0; | 
|  | field = 0; | 
|  |  | 
|  | if (first_trb) { | 
|  | /* Queue the isoc TRB */ | 
|  | field |= TRB_TYPE(TRB_ISOC); | 
|  | /* Assume URB_ISO_ASAP is set */ | 
|  | field |= TRB_SIA; | 
|  | if (i == 0) { | 
|  | if (start_cycle == 0) | 
|  | field |= 0x1; | 
|  | } else | 
|  | field |= ep_ring->cycle_state; | 
|  | first_trb = false; | 
|  | } else { | 
|  | /* Queue other normal TRBs */ | 
|  | field |= TRB_TYPE(TRB_NORMAL); | 
|  | field |= ep_ring->cycle_state; | 
|  | } | 
|  |  | 
|  | /* Chain all the TRBs together; clear the chain bit in | 
|  | * the last TRB to indicate it's the last TRB in the | 
|  | * chain. | 
|  | */ | 
|  | if (j < trbs_per_td - 1) { | 
|  | field |= TRB_CHAIN; | 
|  | more_trbs_coming = true; | 
|  | } else { | 
|  | td->last_trb = ep_ring->enqueue; | 
|  | field |= TRB_IOC; | 
|  | more_trbs_coming = false; | 
|  | } | 
|  |  | 
|  | /* Calculate TRB length */ | 
|  | trb_buff_len = TRB_MAX_BUFF_SIZE - | 
|  | (addr & ((1 << TRB_MAX_BUFF_SHIFT) - 1)); | 
|  | if (trb_buff_len > td_remain_len) | 
|  | trb_buff_len = td_remain_len; | 
|  |  | 
|  | remainder = xhci_td_remainder(td_len - running_total); | 
|  | length_field = TRB_LEN(trb_buff_len) | | 
|  | remainder | | 
|  | TRB_INTR_TARGET(0); | 
|  | queue_trb(xhci, ep_ring, false, more_trbs_coming, | 
|  | lower_32_bits(addr), | 
|  | upper_32_bits(addr), | 
|  | length_field, | 
|  | /* We always want to know if the TRB was short, | 
|  | * or we won't get an event when it completes. | 
|  | * (Unless we use event data TRBs, which are a | 
|  | * waste of space and HC resources.) | 
|  | */ | 
|  | field | TRB_ISP); | 
|  | running_total += trb_buff_len; | 
|  |  | 
|  | addr += trb_buff_len; | 
|  | td_remain_len -= trb_buff_len; | 
|  | } | 
|  |  | 
|  | /* Check TD length */ | 
|  | if (running_total != td_len) { | 
|  | xhci_err(xhci, "ISOC TD length unmatch\n"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | giveback_first_trb(xhci, slot_id, ep_index, urb->stream_id, | 
|  | start_cycle, start_trb); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check transfer ring to guarantee there is enough room for the urb. | 
|  | * Update ISO URB start_frame and interval. | 
|  | * Update interval as xhci_queue_intr_tx does. Just use xhci frame_index to | 
|  | * update the urb->start_frame by now. | 
|  | * Always assume URB_ISO_ASAP set, and NEVER use urb->start_frame as input. | 
|  | */ | 
|  | int xhci_queue_isoc_tx_prepare(struct xhci_hcd *xhci, gfp_t mem_flags, | 
|  | struct urb *urb, int slot_id, unsigned int ep_index) | 
|  | { | 
|  | struct xhci_virt_device *xdev; | 
|  | struct xhci_ring *ep_ring; | 
|  | struct xhci_ep_ctx *ep_ctx; | 
|  | int start_frame; | 
|  | int xhci_interval; | 
|  | int ep_interval; | 
|  | int num_tds, num_trbs, i; | 
|  | int ret; | 
|  |  | 
|  | xdev = xhci->devs[slot_id]; | 
|  | ep_ring = xdev->eps[ep_index].ring; | 
|  | ep_ctx = xhci_get_ep_ctx(xhci, xdev->out_ctx, ep_index); | 
|  |  | 
|  | num_trbs = 0; | 
|  | num_tds = urb->number_of_packets; | 
|  | for (i = 0; i < num_tds; i++) | 
|  | num_trbs += count_isoc_trbs_needed(xhci, urb, i); | 
|  |  | 
|  | /* Check the ring to guarantee there is enough room for the whole urb. | 
|  | * Do not insert any td of the urb to the ring if the check failed. | 
|  | */ | 
|  | ret = prepare_ring(xhci, ep_ring, ep_ctx->ep_info & EP_STATE_MASK, | 
|  | num_trbs, mem_flags); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | start_frame = xhci_readl(xhci, &xhci->run_regs->microframe_index); | 
|  | start_frame &= 0x3fff; | 
|  |  | 
|  | urb->start_frame = start_frame; | 
|  | if (urb->dev->speed == USB_SPEED_LOW || | 
|  | urb->dev->speed == USB_SPEED_FULL) | 
|  | urb->start_frame >>= 3; | 
|  |  | 
|  | xhci_interval = EP_INTERVAL_TO_UFRAMES(ep_ctx->ep_info); | 
|  | ep_interval = urb->interval; | 
|  | /* Convert to microframes */ | 
|  | if (urb->dev->speed == USB_SPEED_LOW || | 
|  | urb->dev->speed == USB_SPEED_FULL) | 
|  | ep_interval *= 8; | 
|  | /* FIXME change this to a warning and a suggestion to use the new API | 
|  | * to set the polling interval (once the API is added). | 
|  | */ | 
|  | if (xhci_interval != ep_interval) { | 
|  | if (printk_ratelimit()) | 
|  | dev_dbg(&urb->dev->dev, "Driver uses different interval" | 
|  | " (%d microframe%s) than xHCI " | 
|  | "(%d microframe%s)\n", | 
|  | ep_interval, | 
|  | ep_interval == 1 ? "" : "s", | 
|  | xhci_interval, | 
|  | xhci_interval == 1 ? "" : "s"); | 
|  | urb->interval = xhci_interval; | 
|  | /* Convert back to frames for LS/FS devices */ | 
|  | if (urb->dev->speed == USB_SPEED_LOW || | 
|  | urb->dev->speed == USB_SPEED_FULL) | 
|  | urb->interval /= 8; | 
|  | } | 
|  | return xhci_queue_isoc_tx(xhci, GFP_ATOMIC, urb, slot_id, ep_index); | 
|  | } | 
|  |  | 
|  | /****		Command Ring Operations		****/ | 
|  |  | 
|  | /* Generic function for queueing a command TRB on the command ring. | 
|  | * Check to make sure there's room on the command ring for one command TRB. | 
|  | * Also check that there's room reserved for commands that must not fail. | 
|  | * If this is a command that must not fail, meaning command_must_succeed = TRUE, | 
|  | * then only check for the number of reserved spots. | 
|  | * Don't decrement xhci->cmd_ring_reserved_trbs after we've queued the TRB | 
|  | * because the command event handler may want to resubmit a failed command. | 
|  | */ | 
|  | static int queue_command(struct xhci_hcd *xhci, u32 field1, u32 field2, | 
|  | u32 field3, u32 field4, bool command_must_succeed) | 
|  | { | 
|  | int reserved_trbs = xhci->cmd_ring_reserved_trbs; | 
|  | int ret; | 
|  |  | 
|  | if (!command_must_succeed) | 
|  | reserved_trbs++; | 
|  |  | 
|  | ret = prepare_ring(xhci, xhci->cmd_ring, EP_STATE_RUNNING, | 
|  | reserved_trbs, GFP_ATOMIC); | 
|  | if (ret < 0) { | 
|  | xhci_err(xhci, "ERR: No room for command on command ring\n"); | 
|  | if (command_must_succeed) | 
|  | xhci_err(xhci, "ERR: Reserved TRB counting for " | 
|  | "unfailable commands failed.\n"); | 
|  | return ret; | 
|  | } | 
|  | queue_trb(xhci, xhci->cmd_ring, false, false, field1, field2, field3, | 
|  | field4 | xhci->cmd_ring->cycle_state); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Queue a no-op command on the command ring */ | 
|  | static int queue_cmd_noop(struct xhci_hcd *xhci) | 
|  | { | 
|  | return queue_command(xhci, 0, 0, 0, TRB_TYPE(TRB_CMD_NOOP), false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Place a no-op command on the command ring to test the command and | 
|  | * event ring. | 
|  | */ | 
|  | void *xhci_setup_one_noop(struct xhci_hcd *xhci) | 
|  | { | 
|  | if (queue_cmd_noop(xhci) < 0) | 
|  | return NULL; | 
|  | xhci->noops_submitted++; | 
|  | return xhci_ring_cmd_db; | 
|  | } | 
|  |  | 
|  | /* Queue a slot enable or disable request on the command ring */ | 
|  | int xhci_queue_slot_control(struct xhci_hcd *xhci, u32 trb_type, u32 slot_id) | 
|  | { | 
|  | return queue_command(xhci, 0, 0, 0, | 
|  | TRB_TYPE(trb_type) | SLOT_ID_FOR_TRB(slot_id), false); | 
|  | } | 
|  |  | 
|  | /* Queue an address device command TRB */ | 
|  | int xhci_queue_address_device(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, | 
|  | u32 slot_id) | 
|  | { | 
|  | return queue_command(xhci, lower_32_bits(in_ctx_ptr), | 
|  | upper_32_bits(in_ctx_ptr), 0, | 
|  | TRB_TYPE(TRB_ADDR_DEV) | SLOT_ID_FOR_TRB(slot_id), | 
|  | false); | 
|  | } | 
|  |  | 
|  | int xhci_queue_vendor_command(struct xhci_hcd *xhci, | 
|  | u32 field1, u32 field2, u32 field3, u32 field4) | 
|  | { | 
|  | return queue_command(xhci, field1, field2, field3, field4, false); | 
|  | } | 
|  |  | 
|  | /* Queue a reset device command TRB */ | 
|  | int xhci_queue_reset_device(struct xhci_hcd *xhci, u32 slot_id) | 
|  | { | 
|  | return queue_command(xhci, 0, 0, 0, | 
|  | TRB_TYPE(TRB_RESET_DEV) | SLOT_ID_FOR_TRB(slot_id), | 
|  | false); | 
|  | } | 
|  |  | 
|  | /* Queue a configure endpoint command TRB */ | 
|  | int xhci_queue_configure_endpoint(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, | 
|  | u32 slot_id, bool command_must_succeed) | 
|  | { | 
|  | return queue_command(xhci, lower_32_bits(in_ctx_ptr), | 
|  | upper_32_bits(in_ctx_ptr), 0, | 
|  | TRB_TYPE(TRB_CONFIG_EP) | SLOT_ID_FOR_TRB(slot_id), | 
|  | command_must_succeed); | 
|  | } | 
|  |  | 
|  | /* Queue an evaluate context command TRB */ | 
|  | int xhci_queue_evaluate_context(struct xhci_hcd *xhci, dma_addr_t in_ctx_ptr, | 
|  | u32 slot_id) | 
|  | { | 
|  | return queue_command(xhci, lower_32_bits(in_ctx_ptr), | 
|  | upper_32_bits(in_ctx_ptr), 0, | 
|  | TRB_TYPE(TRB_EVAL_CONTEXT) | SLOT_ID_FOR_TRB(slot_id), | 
|  | false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Suspend is set to indicate "Stop Endpoint Command" is being issued to stop | 
|  | * activity on an endpoint that is about to be suspended. | 
|  | */ | 
|  | int xhci_queue_stop_endpoint(struct xhci_hcd *xhci, int slot_id, | 
|  | unsigned int ep_index, int suspend) | 
|  | { | 
|  | u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
|  | u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
|  | u32 type = TRB_TYPE(TRB_STOP_RING); | 
|  | u32 trb_suspend = SUSPEND_PORT_FOR_TRB(suspend); | 
|  |  | 
|  | return queue_command(xhci, 0, 0, 0, | 
|  | trb_slot_id | trb_ep_index | type | trb_suspend, false); | 
|  | } | 
|  |  | 
|  | /* Set Transfer Ring Dequeue Pointer command. | 
|  | * This should not be used for endpoints that have streams enabled. | 
|  | */ | 
|  | static int queue_set_tr_deq(struct xhci_hcd *xhci, int slot_id, | 
|  | unsigned int ep_index, unsigned int stream_id, | 
|  | struct xhci_segment *deq_seg, | 
|  | union xhci_trb *deq_ptr, u32 cycle_state) | 
|  | { | 
|  | dma_addr_t addr; | 
|  | u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
|  | u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
|  | u32 trb_stream_id = STREAM_ID_FOR_TRB(stream_id); | 
|  | u32 type = TRB_TYPE(TRB_SET_DEQ); | 
|  |  | 
|  | addr = xhci_trb_virt_to_dma(deq_seg, deq_ptr); | 
|  | if (addr == 0) { | 
|  | xhci_warn(xhci, "WARN Cannot submit Set TR Deq Ptr\n"); | 
|  | xhci_warn(xhci, "WARN deq seg = %p, deq pt = %p\n", | 
|  | deq_seg, deq_ptr); | 
|  | return 0; | 
|  | } | 
|  | return queue_command(xhci, lower_32_bits(addr) | cycle_state, | 
|  | upper_32_bits(addr), trb_stream_id, | 
|  | trb_slot_id | trb_ep_index | type, false); | 
|  | } | 
|  |  | 
|  | int xhci_queue_reset_ep(struct xhci_hcd *xhci, int slot_id, | 
|  | unsigned int ep_index) | 
|  | { | 
|  | u32 trb_slot_id = SLOT_ID_FOR_TRB(slot_id); | 
|  | u32 trb_ep_index = EP_ID_FOR_TRB(ep_index); | 
|  | u32 type = TRB_TYPE(TRB_RESET_EP); | 
|  |  | 
|  | return queue_command(xhci, 0, 0, 0, trb_slot_id | trb_ep_index | type, | 
|  | false); | 
|  | } |