|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2006 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | /* e1000_hw.c | 
|  | * Shared functions for accessing and configuring the MAC | 
|  | */ | 
|  |  | 
|  |  | 
|  | #include "e1000_hw.h" | 
|  |  | 
|  | static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask); | 
|  | static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask); | 
|  | static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data); | 
|  | static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data); | 
|  | static s32 e1000_get_software_semaphore(struct e1000_hw *hw); | 
|  | static void e1000_release_software_semaphore(struct e1000_hw *hw); | 
|  |  | 
|  | static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw); | 
|  | static s32 e1000_check_downshift(struct e1000_hw *hw); | 
|  | static s32 e1000_check_polarity(struct e1000_hw *hw, | 
|  | e1000_rev_polarity *polarity); | 
|  | static void e1000_clear_hw_cntrs(struct e1000_hw *hw); | 
|  | static void e1000_clear_vfta(struct e1000_hw *hw); | 
|  | static s32 e1000_commit_shadow_ram(struct e1000_hw *hw); | 
|  | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, | 
|  | bool link_up); | 
|  | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw); | 
|  | static s32 e1000_detect_gig_phy(struct e1000_hw *hw); | 
|  | static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank); | 
|  | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw); | 
|  | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 
|  | u16 *max_length); | 
|  | static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw); | 
|  | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw); | 
|  | static s32 e1000_get_software_flag(struct e1000_hw *hw); | 
|  | static s32 e1000_ich8_cycle_init(struct e1000_hw *hw); | 
|  | static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout); | 
|  | static s32 e1000_id_led_init(struct e1000_hw *hw); | 
|  | static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | 
|  | u32 cnf_base_addr, | 
|  | u32 cnf_size); | 
|  | static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw); | 
|  | static void e1000_init_rx_addrs(struct e1000_hw *hw); | 
|  | static void e1000_initialize_hardware_bits(struct e1000_hw *hw); | 
|  | static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw); | 
|  | static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw); | 
|  | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw); | 
|  | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, | 
|  | u16 offset, u8 *sum); | 
|  | static s32 e1000_mng_write_cmd_header(struct e1000_hw* hw, | 
|  | struct e1000_host_mng_command_header | 
|  | *hdr); | 
|  | static s32 e1000_mng_write_commit(struct e1000_hw *hw); | 
|  | static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info); | 
|  | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info); | 
|  | static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data); | 
|  | static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data); | 
|  | static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd); | 
|  | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info); | 
|  | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw); | 
|  | static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data); | 
|  | static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, | 
|  | u8 byte); | 
|  | static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte); | 
|  | static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data); | 
|  | static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | 
|  | u16 *data); | 
|  | static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | 
|  | u16 data); | 
|  | static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data); | 
|  | static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data); | 
|  | static void e1000_release_software_flag(struct e1000_hw *hw); | 
|  | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active); | 
|  | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active); | 
|  | static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop); | 
|  | static void e1000_set_pci_express_master_disable(struct e1000_hw *hw); | 
|  | static s32 e1000_wait_autoneg(struct e1000_hw *hw); | 
|  | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value); | 
|  | static s32 e1000_set_phy_type(struct e1000_hw *hw); | 
|  | static void e1000_phy_init_script(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_copper_link(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw); | 
|  | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw); | 
|  | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw); | 
|  | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw); | 
|  | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 
|  | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl); | 
|  | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, | 
|  | u16 count); | 
|  | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw); | 
|  | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw); | 
|  | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data); | 
|  | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data); | 
|  | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw); | 
|  | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd); | 
|  | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd); | 
|  | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count); | 
|  | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|  | u16 phy_data); | 
|  | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw,u32 reg_addr, | 
|  | u16 *phy_data); | 
|  | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count); | 
|  | static s32 e1000_acquire_eeprom(struct e1000_hw *hw); | 
|  | static void e1000_release_eeprom(struct e1000_hw *hw); | 
|  | static void e1000_standby_eeprom(struct e1000_hw *hw); | 
|  | static s32 e1000_set_vco_speed(struct e1000_hw *hw); | 
|  | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw); | 
|  | static s32 e1000_set_phy_mode(struct e1000_hw *hw); | 
|  | static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer); | 
|  | static u8 e1000_calculate_mng_checksum(char *buffer, u32 length); | 
|  | static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex); | 
|  | static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw); | 
|  | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | 
|  | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data); | 
|  |  | 
|  | /* IGP cable length table */ | 
|  | static const | 
|  | u16 e1000_igp_cable_length_table[IGP01E1000_AGC_LENGTH_TABLE_SIZE] = | 
|  | { 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, | 
|  | 5, 10, 10, 10, 10, 10, 10, 10, 20, 20, 20, 20, 20, 25, 25, 25, | 
|  | 25, 25, 25, 25, 30, 30, 30, 30, 40, 40, 40, 40, 40, 40, 40, 40, | 
|  | 40, 50, 50, 50, 50, 50, 50, 50, 60, 60, 60, 60, 60, 60, 60, 60, | 
|  | 60, 70, 70, 70, 70, 70, 70, 80, 80, 80, 80, 80, 80, 90, 90, 90, | 
|  | 90, 90, 90, 90, 90, 90, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100, | 
|  | 100, 100, 100, 100, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, 110, | 
|  | 110, 110, 110, 110, 110, 110, 120, 120, 120, 120, 120, 120, 120, 120, 120, 120}; | 
|  |  | 
|  | static const | 
|  | u16 e1000_igp_2_cable_length_table[IGP02E1000_AGC_LENGTH_TABLE_SIZE] = | 
|  | { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21, | 
|  | 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41, | 
|  | 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61, | 
|  | 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82, | 
|  | 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104, | 
|  | 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121, | 
|  | 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124, | 
|  | 104, 109, 114, 118, 121, 124}; | 
|  |  | 
|  | static DEFINE_SPINLOCK(e1000_eeprom_lock); | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Set the phy type member in the hw struct. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_set_phy_type(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_set_phy_type"); | 
|  |  | 
|  | if (hw->mac_type == e1000_undefined) | 
|  | return -E1000_ERR_PHY_TYPE; | 
|  |  | 
|  | switch (hw->phy_id) { | 
|  | case M88E1000_E_PHY_ID: | 
|  | case M88E1000_I_PHY_ID: | 
|  | case M88E1011_I_PHY_ID: | 
|  | case M88E1111_I_PHY_ID: | 
|  | hw->phy_type = e1000_phy_m88; | 
|  | break; | 
|  | case IGP01E1000_I_PHY_ID: | 
|  | if (hw->mac_type == e1000_82541 || | 
|  | hw->mac_type == e1000_82541_rev_2 || | 
|  | hw->mac_type == e1000_82547 || | 
|  | hw->mac_type == e1000_82547_rev_2) { | 
|  | hw->phy_type = e1000_phy_igp; | 
|  | break; | 
|  | } | 
|  | case IGP03E1000_E_PHY_ID: | 
|  | hw->phy_type = e1000_phy_igp_3; | 
|  | break; | 
|  | case IFE_E_PHY_ID: | 
|  | case IFE_PLUS_E_PHY_ID: | 
|  | case IFE_C_E_PHY_ID: | 
|  | hw->phy_type = e1000_phy_ife; | 
|  | break; | 
|  | case GG82563_E_PHY_ID: | 
|  | if (hw->mac_type == e1000_80003es2lan) { | 
|  | hw->phy_type = e1000_phy_gg82563; | 
|  | break; | 
|  | } | 
|  | /* Fall Through */ | 
|  | default: | 
|  | /* Should never have loaded on this device */ | 
|  | hw->phy_type = e1000_phy_undefined; | 
|  | return -E1000_ERR_PHY_TYPE; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * IGP phy init script - initializes the GbE PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static void e1000_phy_init_script(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ret_val; | 
|  | u16 phy_saved_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_init_script"); | 
|  |  | 
|  | if (hw->phy_init_script) { | 
|  | msleep(20); | 
|  |  | 
|  | /* Save off the current value of register 0x2F5B to be restored at | 
|  | * the end of this routine. */ | 
|  | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  |  | 
|  | /* Disabled the PHY transmitter */ | 
|  | e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  |  | 
|  | msleep(20); | 
|  |  | 
|  | e1000_write_phy_reg(hw,0x0000,0x0140); | 
|  |  | 
|  | msleep(5); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | e1000_write_phy_reg(hw, 0x1F95, 0x0001); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x1F71, 0xBD21); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x1F79, 0x0018); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x1F30, 0x1600); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x1F31, 0x0014); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x1F32, 0x161C); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x1F94, 0x0003); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x1F96, 0x003F); | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x2010, 0x0008); | 
|  | break; | 
|  |  | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | e1000_write_phy_reg(hw, 0x1F73, 0x0099); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | e1000_write_phy_reg(hw, 0x0000, 0x3300); | 
|  |  | 
|  | msleep(20); | 
|  |  | 
|  | /* Now enable the transmitter */ | 
|  | e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  |  | 
|  | if (hw->mac_type == e1000_82547) { | 
|  | u16 fused, fine, coarse; | 
|  |  | 
|  | /* Move to analog registers page */ | 
|  | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_SPARE_FUSE_STATUS, &fused); | 
|  |  | 
|  | if (!(fused & IGP01E1000_ANALOG_SPARE_FUSE_ENABLED)) { | 
|  | e1000_read_phy_reg(hw, IGP01E1000_ANALOG_FUSE_STATUS, &fused); | 
|  |  | 
|  | fine = fused & IGP01E1000_ANALOG_FUSE_FINE_MASK; | 
|  | coarse = fused & IGP01E1000_ANALOG_FUSE_COARSE_MASK; | 
|  |  | 
|  | if (coarse > IGP01E1000_ANALOG_FUSE_COARSE_THRESH) { | 
|  | coarse -= IGP01E1000_ANALOG_FUSE_COARSE_10; | 
|  | fine -= IGP01E1000_ANALOG_FUSE_FINE_1; | 
|  | } else if (coarse == IGP01E1000_ANALOG_FUSE_COARSE_THRESH) | 
|  | fine -= IGP01E1000_ANALOG_FUSE_FINE_10; | 
|  |  | 
|  | fused = (fused & IGP01E1000_ANALOG_FUSE_POLY_MASK) | | 
|  | (fine & IGP01E1000_ANALOG_FUSE_FINE_MASK) | | 
|  | (coarse & IGP01E1000_ANALOG_FUSE_COARSE_MASK); | 
|  |  | 
|  | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_CONTROL, fused); | 
|  | e1000_write_phy_reg(hw, IGP01E1000_ANALOG_FUSE_BYPASS, | 
|  | IGP01E1000_ANALOG_FUSE_ENABLE_SW_CONTROL); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Set the mac type member in the hw struct. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_set_mac_type(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_set_mac_type"); | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82542: | 
|  | switch (hw->revision_id) { | 
|  | case E1000_82542_2_0_REV_ID: | 
|  | hw->mac_type = e1000_82542_rev2_0; | 
|  | break; | 
|  | case E1000_82542_2_1_REV_ID: | 
|  | hw->mac_type = e1000_82542_rev2_1; | 
|  | break; | 
|  | default: | 
|  | /* Invalid 82542 revision ID */ | 
|  | return -E1000_ERR_MAC_TYPE; | 
|  | } | 
|  | break; | 
|  | case E1000_DEV_ID_82543GC_FIBER: | 
|  | case E1000_DEV_ID_82543GC_COPPER: | 
|  | hw->mac_type = e1000_82543; | 
|  | break; | 
|  | case E1000_DEV_ID_82544EI_COPPER: | 
|  | case E1000_DEV_ID_82544EI_FIBER: | 
|  | case E1000_DEV_ID_82544GC_COPPER: | 
|  | case E1000_DEV_ID_82544GC_LOM: | 
|  | hw->mac_type = e1000_82544; | 
|  | break; | 
|  | case E1000_DEV_ID_82540EM: | 
|  | case E1000_DEV_ID_82540EM_LOM: | 
|  | case E1000_DEV_ID_82540EP: | 
|  | case E1000_DEV_ID_82540EP_LOM: | 
|  | case E1000_DEV_ID_82540EP_LP: | 
|  | hw->mac_type = e1000_82540; | 
|  | break; | 
|  | case E1000_DEV_ID_82545EM_COPPER: | 
|  | case E1000_DEV_ID_82545EM_FIBER: | 
|  | hw->mac_type = e1000_82545; | 
|  | break; | 
|  | case E1000_DEV_ID_82545GM_COPPER: | 
|  | case E1000_DEV_ID_82545GM_FIBER: | 
|  | case E1000_DEV_ID_82545GM_SERDES: | 
|  | hw->mac_type = e1000_82545_rev_3; | 
|  | break; | 
|  | case E1000_DEV_ID_82546EB_COPPER: | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | case E1000_DEV_ID_82546EB_QUAD_COPPER: | 
|  | hw->mac_type = e1000_82546; | 
|  | break; | 
|  | case E1000_DEV_ID_82546GB_COPPER: | 
|  | case E1000_DEV_ID_82546GB_FIBER: | 
|  | case E1000_DEV_ID_82546GB_SERDES: | 
|  | case E1000_DEV_ID_82546GB_PCIE: | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3: | 
|  | hw->mac_type = e1000_82546_rev_3; | 
|  | break; | 
|  | case E1000_DEV_ID_82541EI: | 
|  | case E1000_DEV_ID_82541EI_MOBILE: | 
|  | case E1000_DEV_ID_82541ER_LOM: | 
|  | hw->mac_type = e1000_82541; | 
|  | break; | 
|  | case E1000_DEV_ID_82541ER: | 
|  | case E1000_DEV_ID_82541GI: | 
|  | case E1000_DEV_ID_82541GI_LF: | 
|  | case E1000_DEV_ID_82541GI_MOBILE: | 
|  | hw->mac_type = e1000_82541_rev_2; | 
|  | break; | 
|  | case E1000_DEV_ID_82547EI: | 
|  | case E1000_DEV_ID_82547EI_MOBILE: | 
|  | hw->mac_type = e1000_82547; | 
|  | break; | 
|  | case E1000_DEV_ID_82547GI: | 
|  | hw->mac_type = e1000_82547_rev_2; | 
|  | break; | 
|  | case E1000_DEV_ID_82571EB_COPPER: | 
|  | case E1000_DEV_ID_82571EB_FIBER: | 
|  | case E1000_DEV_ID_82571EB_SERDES: | 
|  | case E1000_DEV_ID_82571EB_SERDES_DUAL: | 
|  | case E1000_DEV_ID_82571EB_SERDES_QUAD: | 
|  | case E1000_DEV_ID_82571EB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82571PT_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_FIBER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_COPPER_LOWPROFILE: | 
|  | hw->mac_type = e1000_82571; | 
|  | break; | 
|  | case E1000_DEV_ID_82572EI_COPPER: | 
|  | case E1000_DEV_ID_82572EI_FIBER: | 
|  | case E1000_DEV_ID_82572EI_SERDES: | 
|  | case E1000_DEV_ID_82572EI: | 
|  | hw->mac_type = e1000_82572; | 
|  | break; | 
|  | case E1000_DEV_ID_82573E: | 
|  | case E1000_DEV_ID_82573E_IAMT: | 
|  | case E1000_DEV_ID_82573L: | 
|  | hw->mac_type = e1000_82573; | 
|  | break; | 
|  | case E1000_DEV_ID_80003ES2LAN_COPPER_SPT: | 
|  | case E1000_DEV_ID_80003ES2LAN_SERDES_SPT: | 
|  | case E1000_DEV_ID_80003ES2LAN_COPPER_DPT: | 
|  | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | 
|  | hw->mac_type = e1000_80003es2lan; | 
|  | break; | 
|  | case E1000_DEV_ID_ICH8_IGP_M_AMT: | 
|  | case E1000_DEV_ID_ICH8_IGP_AMT: | 
|  | case E1000_DEV_ID_ICH8_IGP_C: | 
|  | case E1000_DEV_ID_ICH8_IFE: | 
|  | case E1000_DEV_ID_ICH8_IFE_GT: | 
|  | case E1000_DEV_ID_ICH8_IFE_G: | 
|  | case E1000_DEV_ID_ICH8_IGP_M: | 
|  | hw->mac_type = e1000_ich8lan; | 
|  | break; | 
|  | default: | 
|  | /* Should never have loaded on this device */ | 
|  | return -E1000_ERR_MAC_TYPE; | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_ich8lan: | 
|  | hw->swfwhw_semaphore_present = true; | 
|  | hw->asf_firmware_present = true; | 
|  | break; | 
|  | case e1000_80003es2lan: | 
|  | hw->swfw_sync_present = true; | 
|  | /* fall through */ | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_82573: | 
|  | hw->eeprom_semaphore_present = true; | 
|  | /* fall through */ | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | hw->asf_firmware_present = true; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* The 82543 chip does not count tx_carrier_errors properly in | 
|  | * FD mode | 
|  | */ | 
|  | if (hw->mac_type == e1000_82543) | 
|  | hw->bad_tx_carr_stats_fd = true; | 
|  |  | 
|  | /* capable of receiving management packets to the host */ | 
|  | if (hw->mac_type >= e1000_82571) | 
|  | hw->has_manc2h = true; | 
|  |  | 
|  | /* In rare occasions, ESB2 systems would end up started without | 
|  | * the RX unit being turned on. | 
|  | */ | 
|  | if (hw->mac_type == e1000_80003es2lan) | 
|  | hw->rx_needs_kicking = true; | 
|  |  | 
|  | if (hw->mac_type > e1000_82544) | 
|  | hw->has_smbus = true; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * Set media type and TBI compatibility. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * **************************************************************************/ | 
|  | void e1000_set_media_type(struct e1000_hw *hw) | 
|  | { | 
|  | u32 status; | 
|  |  | 
|  | DEBUGFUNC("e1000_set_media_type"); | 
|  |  | 
|  | if (hw->mac_type != e1000_82543) { | 
|  | /* tbi_compatibility is only valid on 82543 */ | 
|  | hw->tbi_compatibility_en = false; | 
|  | } | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82545GM_SERDES: | 
|  | case E1000_DEV_ID_82546GB_SERDES: | 
|  | case E1000_DEV_ID_82571EB_SERDES: | 
|  | case E1000_DEV_ID_82571EB_SERDES_DUAL: | 
|  | case E1000_DEV_ID_82571EB_SERDES_QUAD: | 
|  | case E1000_DEV_ID_82572EI_SERDES: | 
|  | case E1000_DEV_ID_80003ES2LAN_SERDES_DPT: | 
|  | hw->media_type = e1000_media_type_internal_serdes; | 
|  | break; | 
|  | default: | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | case e1000_82573: | 
|  | /* The STATUS_TBIMODE bit is reserved or reused for the this | 
|  | * device. | 
|  | */ | 
|  | hw->media_type = e1000_media_type_copper; | 
|  | break; | 
|  | default: | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_TBIMODE) { | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | /* tbi_compatibility not valid on fiber */ | 
|  | hw->tbi_compatibility_en = false; | 
|  | } else { | 
|  | hw->media_type = e1000_media_type_copper; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reset the transmit and receive units; mask and clear all interrupts. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_reset_hw(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 ctrl_ext; | 
|  | u32 icr; | 
|  | u32 manc; | 
|  | u32 led_ctrl; | 
|  | u32 timeout; | 
|  | u32 extcnf_ctrl; | 
|  | s32 ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_reset_hw"); | 
|  |  | 
|  | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
|  | e1000_pci_clear_mwi(hw); | 
|  | } | 
|  |  | 
|  | if (hw->bus_type == e1000_bus_type_pci_express) { | 
|  | /* Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | * on the last TLP read/write transaction when MAC is reset. | 
|  | */ | 
|  | if (e1000_disable_pciex_master(hw) != E1000_SUCCESS) { | 
|  | DEBUGOUT("PCI-E Master disable polling has failed.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clear interrupt mask to stop board from generating interrupts */ | 
|  | DEBUGOUT("Masking off all interrupts\n"); | 
|  | ew32(IMC, 0xffffffff); | 
|  |  | 
|  | /* Disable the Transmit and Receive units.  Then delay to allow | 
|  | * any pending transactions to complete before we hit the MAC with | 
|  | * the global reset. | 
|  | */ | 
|  | ew32(RCTL, 0); | 
|  | ew32(TCTL, E1000_TCTL_PSP); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | 
|  | hw->tbi_compatibility_on = false; | 
|  |  | 
|  | /* Delay to allow any outstanding PCI transactions to complete before | 
|  | * resetting the device | 
|  | */ | 
|  | msleep(10); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Must reset the PHY before resetting the MAC */ | 
|  | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | ew32(CTRL, (ctrl | E1000_CTRL_PHY_RST)); | 
|  | msleep(5); | 
|  | } | 
|  |  | 
|  | /* Must acquire the MDIO ownership before MAC reset. | 
|  | * Ownership defaults to firmware after a reset. */ | 
|  | if (hw->mac_type == e1000_82573) { | 
|  | timeout = 10; | 
|  |  | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
|  |  | 
|  | do { | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  |  | 
|  | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | 
|  | break; | 
|  | else | 
|  | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
|  |  | 
|  | msleep(2); | 
|  | timeout--; | 
|  | } while (timeout); | 
|  | } | 
|  |  | 
|  | /* Workaround for ICH8 bit corruption issue in FIFO memory */ | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | /* Set Tx and Rx buffer allocation to 8k apiece. */ | 
|  | ew32(PBA, E1000_PBA_8K); | 
|  | /* Set Packet Buffer Size to 16k. */ | 
|  | ew32(PBS, E1000_PBS_16K); | 
|  | } | 
|  |  | 
|  | /* Issue a global reset to the MAC.  This will reset the chip's | 
|  | * transmit, receive, DMA, and link units.  It will not effect | 
|  | * the current PCI configuration.  The global reset bit is self- | 
|  | * clearing, and should clear within a microsecond. | 
|  | */ | 
|  | DEBUGOUT("Issuing a global reset to MAC\n"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82544: | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82546: | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | /* These controllers can't ack the 64-bit write when issuing the | 
|  | * reset, so use IO-mapping as a workaround to issue the reset */ | 
|  | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | break; | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | /* Reset is performed on a shadow of the control register */ | 
|  | ew32(CTRL_DUP, (ctrl | E1000_CTRL_RST)); | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | if (!hw->phy_reset_disable && | 
|  | e1000_check_phy_reset_block(hw) == E1000_SUCCESS) { | 
|  | /* e1000_ich8lan PHY HW reset requires MAC CORE reset | 
|  | * at the same time to make sure the interface between | 
|  | * MAC and the external PHY is reset. | 
|  | */ | 
|  | ctrl |= E1000_CTRL_PHY_RST; | 
|  | } | 
|  |  | 
|  | e1000_get_software_flag(hw); | 
|  | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | msleep(5); | 
|  | break; | 
|  | default: | 
|  | ew32(CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* After MAC reset, force reload of EEPROM to restore power-on settings to | 
|  | * device.  Later controllers reload the EEPROM automatically, so just wait | 
|  | * for reload to complete. | 
|  | */ | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | /* Wait for reset to complete */ | 
|  | udelay(10); | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(); | 
|  | /* Wait for EEPROM reload */ | 
|  | msleep(2); | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | /* Wait for EEPROM reload */ | 
|  | msleep(20); | 
|  | break; | 
|  | case e1000_82573: | 
|  | if (!e1000_is_onboard_nvm_eeprom(hw)) { | 
|  | udelay(10); | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | /* fall through */ | 
|  | default: | 
|  | /* Auto read done will delay 5ms or poll based on mac type */ | 
|  | ret_val = e1000_get_auto_rd_done(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Disable HW ARPs on ASF enabled adapters */ | 
|  | if (hw->mac_type >= e1000_82540 && hw->mac_type <= e1000_82547_rev_2) { | 
|  | manc = er32(MANC); | 
|  | manc &= ~(E1000_MANC_ARP_EN); | 
|  | ew32(MANC, manc); | 
|  | } | 
|  |  | 
|  | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | e1000_phy_init_script(hw); | 
|  |  | 
|  | /* Configure activity LED after PHY reset */ | 
|  | led_ctrl = er32(LEDCTL); | 
|  | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | ew32(LEDCTL, led_ctrl); | 
|  | } | 
|  |  | 
|  | /* Clear interrupt mask to stop board from generating interrupts */ | 
|  | DEBUGOUT("Masking off all interrupts\n"); | 
|  | ew32(IMC, 0xffffffff); | 
|  |  | 
|  | /* Clear any pending interrupt events. */ | 
|  | icr = er32(ICR); | 
|  |  | 
|  | /* If MWI was previously enabled, reenable it. */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
|  | e1000_pci_set_mwi(hw); | 
|  | } | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | u32 kab = er32(KABGTXD); | 
|  | kab |= E1000_KABGTXD_BGSQLBIAS; | 
|  | ew32(KABGTXD, kab); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * Initialize a number of hardware-dependent bits | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * This function contains hardware limitation workarounds for PCI-E adapters | 
|  | * | 
|  | *****************************************************************************/ | 
|  | static void e1000_initialize_hardware_bits(struct e1000_hw *hw) | 
|  | { | 
|  | if ((hw->mac_type >= e1000_82571) && (!hw->initialize_hw_bits_disable)) { | 
|  | /* Settings common to all PCI-express silicon */ | 
|  | u32 reg_ctrl, reg_ctrl_ext; | 
|  | u32 reg_tarc0, reg_tarc1; | 
|  | u32 reg_tctl; | 
|  | u32 reg_txdctl, reg_txdctl1; | 
|  |  | 
|  | /* link autonegotiation/sync workarounds */ | 
|  | reg_tarc0 = er32(TARC0); | 
|  | reg_tarc0 &= ~((1 << 30)|(1 << 29)|(1 << 28)|(1 << 27)); | 
|  |  | 
|  | /* Enable not-done TX descriptor counting */ | 
|  | reg_txdctl = er32(TXDCTL); | 
|  | reg_txdctl |= E1000_TXDCTL_COUNT_DESC; | 
|  | ew32(TXDCTL, reg_txdctl); | 
|  | reg_txdctl1 = er32(TXDCTL1); | 
|  | reg_txdctl1 |= E1000_TXDCTL_COUNT_DESC; | 
|  | ew32(TXDCTL1, reg_txdctl1); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | /* Clear PHY TX compatible mode bits */ | 
|  | reg_tarc1 = er32(TARC1); | 
|  | reg_tarc1 &= ~((1 << 30)|(1 << 29)); | 
|  |  | 
|  | /* link autonegotiation/sync workarounds */ | 
|  | reg_tarc0 |= ((1 << 26)|(1 << 25)|(1 << 24)|(1 << 23)); | 
|  |  | 
|  | /* TX ring control fixes */ | 
|  | reg_tarc1 |= ((1 << 26)|(1 << 25)|(1 << 24)); | 
|  |  | 
|  | /* Multiple read bit is reversed polarity */ | 
|  | reg_tctl = er32(TCTL); | 
|  | if (reg_tctl & E1000_TCTL_MULR) | 
|  | reg_tarc1 &= ~(1 << 28); | 
|  | else | 
|  | reg_tarc1 |= (1 << 28); | 
|  |  | 
|  | ew32(TARC1, reg_tarc1); | 
|  | break; | 
|  | case e1000_82573: | 
|  | reg_ctrl_ext = er32(CTRL_EXT); | 
|  | reg_ctrl_ext &= ~(1 << 23); | 
|  | reg_ctrl_ext |= (1 << 22); | 
|  |  | 
|  | /* TX byte count fix */ | 
|  | reg_ctrl = er32(CTRL); | 
|  | reg_ctrl &= ~(1 << 29); | 
|  |  | 
|  | ew32(CTRL_EXT, reg_ctrl_ext); | 
|  | ew32(CTRL, reg_ctrl); | 
|  | break; | 
|  | case e1000_80003es2lan: | 
|  | /* improve small packet performace for fiber/serdes */ | 
|  | if ((hw->media_type == e1000_media_type_fiber) || | 
|  | (hw->media_type == e1000_media_type_internal_serdes)) { | 
|  | reg_tarc0 &= ~(1 << 20); | 
|  | } | 
|  |  | 
|  | /* Multiple read bit is reversed polarity */ | 
|  | reg_tctl = er32(TCTL); | 
|  | reg_tarc1 = er32(TARC1); | 
|  | if (reg_tctl & E1000_TCTL_MULR) | 
|  | reg_tarc1 &= ~(1 << 28); | 
|  | else | 
|  | reg_tarc1 |= (1 << 28); | 
|  |  | 
|  | ew32(TARC1, reg_tarc1); | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | /* Reduce concurrent DMA requests to 3 from 4 */ | 
|  | if ((hw->revision_id < 3) || | 
|  | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && | 
|  | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M))) | 
|  | reg_tarc0 |= ((1 << 29)|(1 << 28)); | 
|  |  | 
|  | reg_ctrl_ext = er32(CTRL_EXT); | 
|  | reg_ctrl_ext |= (1 << 22); | 
|  | ew32(CTRL_EXT, reg_ctrl_ext); | 
|  |  | 
|  | /* workaround TX hang with TSO=on */ | 
|  | reg_tarc0 |= ((1 << 27)|(1 << 26)|(1 << 24)|(1 << 23)); | 
|  |  | 
|  | /* Multiple read bit is reversed polarity */ | 
|  | reg_tctl = er32(TCTL); | 
|  | reg_tarc1 = er32(TARC1); | 
|  | if (reg_tctl & E1000_TCTL_MULR) | 
|  | reg_tarc1 &= ~(1 << 28); | 
|  | else | 
|  | reg_tarc1 |= (1 << 28); | 
|  |  | 
|  | /* workaround TX hang with TSO=on */ | 
|  | reg_tarc1 |= ((1 << 30)|(1 << 26)|(1 << 24)); | 
|  |  | 
|  | ew32(TARC1, reg_tarc1); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(TARC0, reg_tarc0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Performs basic configuration of the adapter. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Assumes that the controller has previously been reset and is in a | 
|  | * post-reset uninitialized state. Initializes the receive address registers, | 
|  | * multicast table, and VLAN filter table. Calls routines to setup link | 
|  | * configuration and flow control settings. Clears all on-chip counters. Leaves | 
|  | * the transmit and receive units disabled and uninitialized. | 
|  | *****************************************************************************/ | 
|  | s32 e1000_init_hw(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 i; | 
|  | s32 ret_val; | 
|  | u32 mta_size; | 
|  | u32 reg_data; | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | DEBUGFUNC("e1000_init_hw"); | 
|  |  | 
|  | /* force full DMA clock frequency for 10/100 on ICH8 A0-B0 */ | 
|  | if ((hw->mac_type == e1000_ich8lan) && | 
|  | ((hw->revision_id < 3) || | 
|  | ((hw->device_id != E1000_DEV_ID_ICH8_IGP_M_AMT) && | 
|  | (hw->device_id != E1000_DEV_ID_ICH8_IGP_M)))) { | 
|  | reg_data = er32(STATUS); | 
|  | reg_data &= ~0x80000000; | 
|  | ew32(STATUS, reg_data); | 
|  | } | 
|  |  | 
|  | /* Initialize Identification LED */ | 
|  | ret_val = e1000_id_led_init(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Initializing Identification LED\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Set the media type and TBI compatibility */ | 
|  | e1000_set_media_type(hw); | 
|  |  | 
|  | /* Must be called after e1000_set_media_type because media_type is used */ | 
|  | e1000_initialize_hardware_bits(hw); | 
|  |  | 
|  | /* Disabling VLAN filtering. */ | 
|  | DEBUGOUT("Initializing the IEEE VLAN\n"); | 
|  | /* VET hardcoded to standard value and VFTA removed in ICH8 LAN */ | 
|  | if (hw->mac_type != e1000_ich8lan) { | 
|  | if (hw->mac_type < e1000_82545_rev_3) | 
|  | ew32(VET, 0); | 
|  | e1000_clear_vfta(hw); | 
|  | } | 
|  |  | 
|  | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
|  | e1000_pci_clear_mwi(hw); | 
|  | ew32(RCTL, E1000_RCTL_RST); | 
|  | E1000_WRITE_FLUSH(); | 
|  | msleep(5); | 
|  | } | 
|  |  | 
|  | /* Setup the receive address. This involves initializing all of the Receive | 
|  | * Address Registers (RARs 0 - 15). | 
|  | */ | 
|  | e1000_init_rx_addrs(hw); | 
|  |  | 
|  | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | ew32(RCTL, 0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | msleep(1); | 
|  | if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE) | 
|  | e1000_pci_set_mwi(hw); | 
|  | } | 
|  |  | 
|  | /* Zero out the Multicast HASH table */ | 
|  | DEBUGOUT("Zeroing the MTA\n"); | 
|  | mta_size = E1000_MC_TBL_SIZE; | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | mta_size = E1000_MC_TBL_SIZE_ICH8LAN; | 
|  | for (i = 0; i < mta_size; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
|  | /* use write flush to prevent Memory Write Block (MWB) from | 
|  | * occuring when accessing our register space */ | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | /* Set the PCI priority bit correctly in the CTRL register.  This | 
|  | * determines if the adapter gives priority to receives, or if it | 
|  | * gives equal priority to transmits and receives.  Valid only on | 
|  | * 82542 and 82543 silicon. | 
|  | */ | 
|  | if (hw->dma_fairness && hw->mac_type <= e1000_82543) { | 
|  | ctrl = er32(CTRL); | 
|  | ew32(CTRL, ctrl | E1000_CTRL_PRIOR); | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | break; | 
|  | default: | 
|  | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | 
|  | if (hw->bus_type == e1000_bus_type_pcix && e1000_pcix_get_mmrbc(hw) > 2048) | 
|  | e1000_pcix_set_mmrbc(hw, 2048); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* More time needed for PHY to initialize */ | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | msleep(15); | 
|  |  | 
|  | /* Call a subroutine to configure the link and setup flow control. */ | 
|  | ret_val = e1000_setup_link(hw); | 
|  |  | 
|  | /* Set the transmit descriptor write-back policy */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | ctrl = er32(TXDCTL); | 
|  | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 
|  | ew32(TXDCTL, ctrl); | 
|  | } | 
|  |  | 
|  | if (hw->mac_type == e1000_82573) { | 
|  | e1000_enable_tx_pkt_filtering(hw); | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | default: | 
|  | break; | 
|  | case e1000_80003es2lan: | 
|  | /* Enable retransmit on late collisions */ | 
|  | reg_data = er32(TCTL); | 
|  | reg_data |= E1000_TCTL_RTLC; | 
|  | ew32(TCTL, reg_data); | 
|  |  | 
|  | /* Configure Gigabit Carry Extend Padding */ | 
|  | reg_data = er32(TCTL_EXT); | 
|  | reg_data &= ~E1000_TCTL_EXT_GCEX_MASK; | 
|  | reg_data |= DEFAULT_80003ES2LAN_TCTL_EXT_GCEX; | 
|  | ew32(TCTL_EXT, reg_data); | 
|  |  | 
|  | /* Configure Transmit Inter-Packet Gap */ | 
|  | reg_data = er32(TIPG); | 
|  | reg_data &= ~E1000_TIPG_IPGT_MASK; | 
|  | reg_data |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | 
|  | ew32(TIPG, reg_data); | 
|  |  | 
|  | reg_data = E1000_READ_REG_ARRAY(hw, FFLT, 0x0001); | 
|  | reg_data &= ~0x00100000; | 
|  | E1000_WRITE_REG_ARRAY(hw, FFLT, 0x0001, reg_data); | 
|  | /* Fall through */ | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_ich8lan: | 
|  | ctrl = er32(TXDCTL1); | 
|  | ctrl = (ctrl & ~E1000_TXDCTL_WTHRESH) | E1000_TXDCTL_FULL_TX_DESC_WB; | 
|  | ew32(TXDCTL1, ctrl); | 
|  | break; | 
|  | } | 
|  |  | 
|  |  | 
|  | if (hw->mac_type == e1000_82573) { | 
|  | u32 gcr = er32(GCR); | 
|  | gcr |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | 
|  | ew32(GCR, gcr); | 
|  | } | 
|  |  | 
|  | /* Clear all of the statistics registers (clear on read).  It is | 
|  | * important that we do this after we have tried to establish link | 
|  | * because the symbol error count will increment wildly if there | 
|  | * is no link. | 
|  | */ | 
|  | e1000_clear_hw_cntrs(hw); | 
|  |  | 
|  | /* ICH8 No-snoop bits are opposite polarity. | 
|  | * Set to snoop by default after reset. */ | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | e1000_set_pci_ex_no_snoop(hw, PCI_EX_82566_SNOOP_ALL); | 
|  |  | 
|  | if (hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER || | 
|  | hw->device_id == E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3) { | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | /* Relaxed ordering must be disabled to avoid a parity | 
|  | * error crash in a PCI slot. */ | 
|  | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Adjust SERDES output amplitude based on EEPROM setting. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_adjust_serdes_amplitude(struct e1000_hw *hw) | 
|  | { | 
|  | u16 eeprom_data; | 
|  | s32  ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_adjust_serdes_amplitude"); | 
|  |  | 
|  | if (hw->media_type != e1000_media_type_internal_serdes) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | break; | 
|  | default: | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_SERDES_AMPLITUDE, 1, &eeprom_data); | 
|  | if (ret_val) { | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (eeprom_data != EEPROM_RESERVED_WORD) { | 
|  | /* Adjust SERDES output amplitude only. */ | 
|  | eeprom_data &= EEPROM_SERDES_AMPLITUDE_MASK; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_EXT_CTRL, eeprom_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Configures flow control and link settings. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Determines which flow control settings to use. Calls the apropriate media- | 
|  | * specific link configuration function. Configures the flow control settings. | 
|  | * Assuming the adapter has a valid link partner, a valid link should be | 
|  | * established. Assumes the hardware has previously been reset and the | 
|  | * transmitter and receiver are not enabled. | 
|  | *****************************************************************************/ | 
|  | s32 e1000_setup_link(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl_ext; | 
|  | s32 ret_val; | 
|  | u16 eeprom_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_setup_link"); | 
|  |  | 
|  | /* In the case of the phy reset being blocked, we already have a link. | 
|  | * We do not have to set it up again. */ | 
|  | if (e1000_check_phy_reset_block(hw)) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Read and store word 0x0F of the EEPROM. This word contains bits | 
|  | * that determine the hardware's default PAUSE (flow control) mode, | 
|  | * a bit that determines whether the HW defaults to enabling or | 
|  | * disabling auto-negotiation, and the direction of the | 
|  | * SW defined pins. If there is no SW over-ride of the flow | 
|  | * control setting, then the variable hw->fc will | 
|  | * be initialized based on a value in the EEPROM. | 
|  | */ | 
|  | if (hw->fc == E1000_FC_DEFAULT) { | 
|  | switch (hw->mac_type) { | 
|  | case e1000_ich8lan: | 
|  | case e1000_82573: | 
|  | hw->fc = E1000_FC_FULL; | 
|  | break; | 
|  | default: | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 
|  | 1, &eeprom_data); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | 
|  | hw->fc = E1000_FC_NONE; | 
|  | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | 
|  | EEPROM_WORD0F_ASM_DIR) | 
|  | hw->fc = E1000_FC_TX_PAUSE; | 
|  | else | 
|  | hw->fc = E1000_FC_FULL; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* We want to save off the original Flow Control configuration just | 
|  | * in case we get disconnected and then reconnected into a different | 
|  | * hub or switch with different Flow Control capabilities. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | hw->fc &= (~E1000_FC_TX_PAUSE); | 
|  |  | 
|  | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | 
|  | hw->fc &= (~E1000_FC_RX_PAUSE); | 
|  |  | 
|  | hw->original_fc = hw->fc; | 
|  |  | 
|  | DEBUGOUT1("After fix-ups FlowControl is now = %x\n", hw->fc); | 
|  |  | 
|  | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | 
|  | * polarity value for the SW controlled pins, and setup the | 
|  | * Extended Device Control reg with that info. | 
|  | * This is needed because one of the SW controlled pins is used for | 
|  | * signal detection.  So this should be done before e1000_setup_pcs_link() | 
|  | * or e1000_phy_setup() is called. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82543) { | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, | 
|  | 1, &eeprom_data); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | 
|  | SWDPIO__EXT_SHIFT); | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | /* Call the necessary subroutine to configure the link. */ | 
|  | ret_val = (hw->media_type == e1000_media_type_copper) ? | 
|  | e1000_setup_copper_link(hw) : | 
|  | e1000_setup_fiber_serdes_link(hw); | 
|  |  | 
|  | /* Initialize the flow control address, type, and PAUSE timer | 
|  | * registers to their default values.  This is done even if flow | 
|  | * control is disabled, because it does not hurt anything to | 
|  | * initialize these registers. | 
|  | */ | 
|  | DEBUGOUT("Initializing the Flow Control address, type and timer regs\n"); | 
|  |  | 
|  | /* FCAL/H and FCT are hardcoded to standard values in e1000_ich8lan. */ | 
|  | if (hw->mac_type != e1000_ich8lan) { | 
|  | ew32(FCT, FLOW_CONTROL_TYPE); | 
|  | ew32(FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|  | ew32(FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|  | } | 
|  |  | 
|  | ew32(FCTTV, hw->fc_pause_time); | 
|  |  | 
|  | /* Set the flow control receive threshold registers.  Normally, | 
|  | * these registers will be set to a default threshold that may be | 
|  | * adjusted later by the driver's runtime code.  However, if the | 
|  | * ability to transmit pause frames in not enabled, then these | 
|  | * registers will be set to 0. | 
|  | */ | 
|  | if (!(hw->fc & E1000_FC_TX_PAUSE)) { | 
|  | ew32(FCRTL, 0); | 
|  | ew32(FCRTH, 0); | 
|  | } else { | 
|  | /* We need to set up the Receive Threshold high and low water marks | 
|  | * as well as (optionally) enabling the transmission of XON frames. | 
|  | */ | 
|  | if (hw->fc_send_xon) { | 
|  | ew32(FCRTL, (hw->fc_low_water | E1000_FCRTL_XONE)); | 
|  | ew32(FCRTH, hw->fc_high_water); | 
|  | } else { | 
|  | ew32(FCRTL, hw->fc_low_water); | 
|  | ew32(FCRTH, hw->fc_high_water); | 
|  | } | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Sets up link for a fiber based or serdes based adapter | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Manipulates Physical Coding Sublayer functions in order to configure | 
|  | * link. Assumes the hardware has been previously reset and the transmitter | 
|  | * and receiver are not enabled. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_setup_fiber_serdes_link(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 status; | 
|  | u32 txcw = 0; | 
|  | u32 i; | 
|  | u32 signal = 0; | 
|  | s32 ret_val; | 
|  |  | 
|  | DEBUGFUNC("e1000_setup_fiber_serdes_link"); | 
|  |  | 
|  | /* On 82571 and 82572 Fiber connections, SerDes loopback mode persists | 
|  | * until explicitly turned off or a power cycle is performed.  A read to | 
|  | * the register does not indicate its status.  Therefore, we ensure | 
|  | * loopback mode is disabled during initialization. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82571 || hw->mac_type == e1000_82572) | 
|  | ew32(SCTL, E1000_DISABLE_SERDES_LOOPBACK); | 
|  |  | 
|  | /* On adapters with a MAC newer than 82544, SWDP 1 will be | 
|  | * set when the optics detect a signal. On older adapters, it will be | 
|  | * cleared when there is a signal.  This applies to fiber media only. | 
|  | * If we're on serdes media, adjust the output amplitude to value | 
|  | * set in the EEPROM. | 
|  | */ | 
|  | ctrl = er32(CTRL); | 
|  | if (hw->media_type == e1000_media_type_fiber) | 
|  | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
|  |  | 
|  | ret_val = e1000_adjust_serdes_amplitude(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Take the link out of reset */ | 
|  | ctrl &= ~(E1000_CTRL_LRST); | 
|  |  | 
|  | /* Adjust VCO speed to improve BER performance */ | 
|  | ret_val = e1000_set_vco_speed(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Check for a software override of the flow control settings, and setup | 
|  | * the device accordingly.  If auto-negotiation is enabled, then software | 
|  | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | 
|  | * Config Word Register (TXCW) and re-start auto-negotiation.  However, if | 
|  | * auto-negotiation is disabled, then software will have to manually | 
|  | * configure the two flow control enable bits in the CTRL register. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause frames, but | 
|  | *          not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames but we do | 
|  | *          not support receiving pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|  | */ | 
|  | switch (hw->fc) { | 
|  | case E1000_FC_NONE: | 
|  | /* Flow control is completely disabled by a software over-ride. */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
|  | break; | 
|  | case E1000_FC_RX_PAUSE: | 
|  | /* RX Flow control is enabled and TX Flow control is disabled by a | 
|  | * software over-ride. Since there really isn't a way to advertise | 
|  | * that we are capable of RX Pause ONLY, we will advertise that we | 
|  | * support both symmetric and asymmetric RX PAUSE. Later, we will | 
|  | *  disable the adapter's ability to send PAUSE frames. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | break; | 
|  | case E1000_FC_TX_PAUSE: | 
|  | /* TX Flow control is enabled, and RX Flow control is disabled, by a | 
|  | * software over-ride. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
|  | break; | 
|  | case E1000_FC_FULL: | 
|  | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Since auto-negotiation is enabled, take the link out of reset (the link | 
|  | * will be in reset, because we previously reset the chip). This will | 
|  | * restart auto-negotiation.  If auto-neogtiation is successful then the | 
|  | * link-up status bit will be set and the flow control enable bits (RFCE | 
|  | * and TFCE) will be set according to their negotiated value. | 
|  | */ | 
|  | DEBUGOUT("Auto-negotiation enabled\n"); | 
|  |  | 
|  | ew32(TXCW, txcw); | 
|  | ew32(CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | hw->txcw = txcw; | 
|  | msleep(1); | 
|  |  | 
|  | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | 
|  | * indication in the Device Status Register.  Time-out if a link isn't | 
|  | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | 
|  | * less than 500 milliseconds even if the other end is doing it in SW). | 
|  | * For internal serdes, we just assume a signal is present, then poll. | 
|  | */ | 
|  | if (hw->media_type == e1000_media_type_internal_serdes || | 
|  | (er32(CTRL) & E1000_CTRL_SWDPIN1) == signal) { | 
|  | DEBUGOUT("Looking for Link\n"); | 
|  | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | 
|  | msleep(10); | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_LU) break; | 
|  | } | 
|  | if (i == (LINK_UP_TIMEOUT / 10)) { | 
|  | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | 
|  | hw->autoneg_failed = 1; | 
|  | /* AutoNeg failed to achieve a link, so we'll call | 
|  | * e1000_check_for_link. This routine will force the link up if | 
|  | * we detect a signal. This will allow us to communicate with | 
|  | * non-autonegotiating link partners. | 
|  | */ | 
|  | ret_val = e1000_check_for_link(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error while checking for link\n"); | 
|  | return ret_val; | 
|  | } | 
|  | hw->autoneg_failed = 0; | 
|  | } else { | 
|  | hw->autoneg_failed = 0; | 
|  | DEBUGOUT("Valid Link Found\n"); | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("No Signal Detected\n"); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Make sure we have a valid PHY and change PHY mode before link setup. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_copper_link_preconfig(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_preconfig"); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | /* With 82543, we need to force speed and duplex on the MAC equal to what | 
|  | * the PHY speed and duplex configuration is. In addition, we need to | 
|  | * perform a hardware reset on the PHY to take it out of reset. | 
|  | */ | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | ctrl |= E1000_CTRL_SLU; | 
|  | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ew32(CTRL, ctrl); | 
|  | } else { | 
|  | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 
|  | ew32(CTRL, ctrl); | 
|  | ret_val = e1000_phy_hw_reset(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Make sure we have a valid PHY */ | 
|  | ret_val = e1000_detect_gig_phy(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error, did not detect valid phy.\n"); | 
|  | return ret_val; | 
|  | } | 
|  | DEBUGOUT1("Phy ID = %x \n", hw->phy_id); | 
|  |  | 
|  | /* Set PHY to class A mode (if necessary) */ | 
|  | ret_val = e1000_set_phy_mode(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->mac_type == e1000_82545_rev_3) || | 
|  | (hw->mac_type == e1000_82546_rev_3)) { | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | phy_data |= 0x00000008; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | } | 
|  |  | 
|  | if (hw->mac_type <= e1000_82543 || | 
|  | hw->mac_type == e1000_82541 || hw->mac_type == e1000_82547 || | 
|  | hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) | 
|  | hw->phy_reset_disable = false; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /******************************************************************** | 
|  | * Copper link setup for e1000_phy_igp series. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *********************************************************************/ | 
|  | static s32 e1000_copper_link_igp_setup(struct e1000_hw *hw) | 
|  | { | 
|  | u32 led_ctrl; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_igp_setup"); | 
|  |  | 
|  | if (hw->phy_reset_disable) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | ret_val = e1000_phy_reset(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Resetting the PHY\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Wait 15ms for MAC to configure PHY from eeprom settings */ | 
|  | msleep(15); | 
|  | if (hw->mac_type != e1000_ich8lan) { | 
|  | /* Configure activity LED after PHY reset */ | 
|  | led_ctrl = er32(LEDCTL); | 
|  | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | ew32(LEDCTL, led_ctrl); | 
|  | } | 
|  |  | 
|  | /* The NVM settings will configure LPLU in D3 for IGP2 and IGP3 PHYs */ | 
|  | if (hw->phy_type == e1000_phy_igp) { | 
|  | /* disable lplu d3 during driver init */ | 
|  | ret_val = e1000_set_d3_lplu_state(hw, false); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Disabling LPLU D3\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* disable lplu d0 during driver init */ | 
|  | ret_val = e1000_set_d0_lplu_state(hw, false); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Disabling LPLU D0\n"); | 
|  | return ret_val; | 
|  | } | 
|  | /* Configure mdi-mdix settings */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | hw->dsp_config_state = e1000_dsp_config_disabled; | 
|  | /* Force MDI for earlier revs of the IGP PHY */ | 
|  | phy_data &= ~(IGP01E1000_PSCR_AUTO_MDIX | IGP01E1000_PSCR_FORCE_MDI_MDIX); | 
|  | hw->mdix = 1; | 
|  |  | 
|  | } else { | 
|  | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|  |  | 
|  | switch (hw->mdix) { | 
|  | case 1: | 
|  | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | break; | 
|  | case 2: | 
|  | phy_data |= IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | phy_data |= IGP01E1000_PSCR_AUTO_MDIX; | 
|  | break; | 
|  | } | 
|  | } | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* set auto-master slave resolution settings */ | 
|  | if (hw->autoneg) { | 
|  | e1000_ms_type phy_ms_setting = hw->master_slave; | 
|  |  | 
|  | if (hw->ffe_config_state == e1000_ffe_config_active) | 
|  | hw->ffe_config_state = e1000_ffe_config_enabled; | 
|  |  | 
|  | if (hw->dsp_config_state == e1000_dsp_config_activated) | 
|  | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  |  | 
|  | /* when autonegotiation advertisment is only 1000Mbps then we | 
|  | * should disable SmartSpeed and enable Auto MasterSlave | 
|  | * resolution as hardware default. */ | 
|  | if (hw->autoneg_advertised == ADVERTISE_1000_FULL) { | 
|  | /* Disable SmartSpeed */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* Set auto Master/Slave resolution process */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_data &= ~CR_1000T_MS_ENABLE; | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* load defaults for future use */ | 
|  | hw->original_master_slave = (phy_data & CR_1000T_MS_ENABLE) ? | 
|  | ((phy_data & CR_1000T_MS_VALUE) ? | 
|  | e1000_ms_force_master : | 
|  | e1000_ms_force_slave) : | 
|  | e1000_ms_auto; | 
|  |  | 
|  | switch (phy_ms_setting) { | 
|  | case e1000_ms_force_master: | 
|  | phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE); | 
|  | break; | 
|  | case e1000_ms_force_slave: | 
|  | phy_data |= CR_1000T_MS_ENABLE; | 
|  | phy_data &= ~(CR_1000T_MS_VALUE); | 
|  | break; | 
|  | case e1000_ms_auto: | 
|  | phy_data &= ~CR_1000T_MS_ENABLE; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | * Copper link setup for e1000_phy_gg82563 series. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *********************************************************************/ | 
|  | static s32 e1000_copper_link_ggp_setup(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | u32 reg_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_ggp_setup"); | 
|  |  | 
|  | if (!hw->phy_reset_disable) { | 
|  |  | 
|  | /* Enable CRS on TX for half-duplex operation. */ | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | 
|  | /* Use 25MHz for both link down and 1000BASE-T for Tx clock */ | 
|  | phy_data |= GG82563_MSCR_TX_CLK_1000MBPS_25MHZ; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Options: | 
|  | *   MDI/MDI-X = 0 (default) | 
|  | *   0 - Auto for all speeds | 
|  | *   1 - MDI mode | 
|  | *   2 - MDI-X mode | 
|  | *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~GG82563_PSCR_CROSSOVER_MODE_MASK; | 
|  |  | 
|  | switch (hw->mdix) { | 
|  | case 1: | 
|  | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDI; | 
|  | break; | 
|  | case 2: | 
|  | phy_data |= GG82563_PSCR_CROSSOVER_MODE_MDIX; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | phy_data |= GG82563_PSCR_CROSSOVER_MODE_AUTO; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Options: | 
|  | *   disable_polarity_correction = 0 (default) | 
|  | *       Automatic Correction for Reversed Cable Polarity | 
|  | *   0 - Disabled | 
|  | *   1 - Enabled | 
|  | */ | 
|  | phy_data &= ~GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | 
|  | if (hw->disable_polarity_correction == 1) | 
|  | phy_data |= GG82563_PSCR_POLARITY_REVERSAL_DISABLE; | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL, phy_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* SW Reset the PHY so all changes take effect */ | 
|  | ret_val = e1000_phy_reset(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Resetting the PHY\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } /* phy_reset_disable */ | 
|  |  | 
|  | if (hw->mac_type == e1000_80003es2lan) { | 
|  | /* Bypass RX and TX FIFO's */ | 
|  | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_FIFO_CTRL, | 
|  | E1000_KUMCTRLSTA_FIFO_CTRL_RX_BYPASS | | 
|  | E1000_KUMCTRLSTA_FIFO_CTRL_TX_BYPASS); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~GG82563_PSCR2_REVERSE_AUTO_NEG; | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_SPEC_CTRL_2, phy_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | reg_data = er32(CTRL_EXT); | 
|  | reg_data &= ~(E1000_CTRL_EXT_LINK_MODE_MASK); | 
|  | ew32(CTRL_EXT, reg_data); | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Do not init these registers when the HW is in IAMT mode, since the | 
|  | * firmware will have already initialized them.  We only initialize | 
|  | * them if the HW is not in IAMT mode. | 
|  | */ | 
|  | if (!e1000_check_mng_mode(hw)) { | 
|  | /* Enable Electrical Idle on the PHY */ | 
|  | phy_data |= GG82563_PMCR_ENABLE_ELECTRICAL_IDLE; | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_PWR_MGMT_CTRL, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, | 
|  | phy_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Workaround: Disable padding in Kumeran interface in the MAC | 
|  | * and in the PHY to avoid CRC errors. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_INBAND_CTRL, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_data |= GG82563_ICR_DIS_PADDING; | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_INBAND_CTRL, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | * Copper link setup for e1000_phy_m88 series. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *********************************************************************/ | 
|  | static s32 e1000_copper_link_mgp_setup(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_mgp_setup"); | 
|  |  | 
|  | if (hw->phy_reset_disable) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Enable CRS on TX. This must be set for half-duplex operation. */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  |  | 
|  | /* Options: | 
|  | *   MDI/MDI-X = 0 (default) | 
|  | *   0 - Auto for all speeds | 
|  | *   1 - MDI mode | 
|  | *   2 - MDI-X mode | 
|  | *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  |  | 
|  | switch (hw->mdix) { | 
|  | case 1: | 
|  | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 
|  | break; | 
|  | case 2: | 
|  | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 
|  | break; | 
|  | case 3: | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Options: | 
|  | *   disable_polarity_correction = 0 (default) | 
|  | *       Automatic Correction for Reversed Cable Polarity | 
|  | *   0 - Disabled | 
|  | *   1 - Enabled | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | if (hw->disable_polarity_correction == 1) | 
|  | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (hw->phy_revision < M88E1011_I_REV_4) { | 
|  | /* Force TX_CLK in the Extended PHY Specific Control Register | 
|  | * to 25MHz clock. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  |  | 
|  | if ((hw->phy_revision == E1000_REVISION_2) && | 
|  | (hw->phy_id == M88E1111_I_PHY_ID)) { | 
|  | /* Vidalia Phy, set the downshift counter to 5x */ | 
|  | phy_data &= ~(M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK); | 
|  | phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X; | 
|  | ret_val = e1000_write_phy_reg(hw, | 
|  | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | /* Configure Master and Slave downshift values */ | 
|  | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 
|  | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 
|  | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 
|  | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 
|  | ret_val = e1000_write_phy_reg(hw, | 
|  | M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* SW Reset the PHY so all changes take effect */ | 
|  | ret_val = e1000_phy_reset(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Resetting the PHY\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | * Setup auto-negotiation and flow control advertisements, | 
|  | * and then perform auto-negotiation. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *********************************************************************/ | 
|  | static s32 e1000_copper_link_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_copper_link_autoneg"); | 
|  |  | 
|  | /* Perform some bounds checking on the hw->autoneg_advertised | 
|  | * parameter.  If this variable is zero, then set it to the default. | 
|  | */ | 
|  | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  |  | 
|  | /* If autoneg_advertised is zero, we assume it was not defaulted | 
|  | * by the calling code so we set to advertise full capability. | 
|  | */ | 
|  | if (hw->autoneg_advertised == 0) | 
|  | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  |  | 
|  | /* IFE phy only supports 10/100 */ | 
|  | if (hw->phy_type == e1000_phy_ife) | 
|  | hw->autoneg_advertised &= AUTONEG_ADVERTISE_10_100_ALL; | 
|  |  | 
|  | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 
|  | ret_val = e1000_phy_setup_autoneg(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 
|  | return ret_val; | 
|  | } | 
|  | DEBUGOUT("Restarting Auto-Neg\n"); | 
|  |  | 
|  | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 
|  | * the Auto Neg Restart bit in the PHY control register. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Does the user want to wait for Auto-Neg to complete here, or | 
|  | * check at a later time (for example, callback routine). | 
|  | */ | 
|  | if (hw->wait_autoneg_complete) { | 
|  | ret_val = e1000_wait_autoneg(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error while waiting for autoneg to complete\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | hw->get_link_status = true; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Config the MAC and the PHY after link is up. | 
|  | *   1) Set up the MAC to the current PHY speed/duplex | 
|  | *      if we are on 82543.  If we | 
|  | *      are on newer silicon, we only need to configure | 
|  | *      collision distance in the Transmit Control Register. | 
|  | *   2) Set up flow control on the MAC to that established with | 
|  | *      the link partner. | 
|  | *   3) Config DSP to improve Gigabit link quality for some PHY revisions. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_copper_link_postconfig(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | DEBUGFUNC("e1000_copper_link_postconfig"); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82544) { | 
|  | e1000_config_collision_dist(hw); | 
|  | } else { | 
|  | ret_val = e1000_config_mac_to_phy(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Configuring Flow Control\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Config DSP to improve Giga link quality */ | 
|  | if (hw->phy_type == e1000_phy_igp) { | 
|  | ret_val = e1000_config_dsp_after_link_change(hw, true); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Configuring DSP after link up\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Detects which PHY is present and setup the speed and duplex | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_setup_copper_link(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 i; | 
|  | u16 phy_data; | 
|  | u16 reg_data = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_setup_copper_link"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_80003es2lan: | 
|  | case e1000_ich8lan: | 
|  | /* Set the mac to wait the maximum time between each | 
|  | * iteration and increase the max iterations when | 
|  | * polling the phy; this fixes erroneous timeouts at 10Mbps. */ | 
|  | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 4), 0xFFFF); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_kmrn_reg(hw, GG82563_REG(0x34, 9), ®_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | reg_data |= 0x3F; | 
|  | ret_val = e1000_write_kmrn_reg(hw, GG82563_REG(0x34, 9), reg_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Check if it is a valid PHY and set PHY mode if necessary. */ | 
|  | ret_val = e1000_copper_link_preconfig(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_80003es2lan: | 
|  | /* Kumeran registers are written-only */ | 
|  | reg_data = E1000_KUMCTRLSTA_INB_CTRL_LINK_STATUS_TX_TIMEOUT_DEFAULT; | 
|  | reg_data |= E1000_KUMCTRLSTA_INB_CTRL_DIS_PADDING; | 
|  | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_INB_CTRL, | 
|  | reg_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_igp || | 
|  | hw->phy_type == e1000_phy_igp_3 || | 
|  | hw->phy_type == e1000_phy_igp_2) { | 
|  | ret_val = e1000_copper_link_igp_setup(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (hw->phy_type == e1000_phy_m88) { | 
|  | ret_val = e1000_copper_link_mgp_setup(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (hw->phy_type == e1000_phy_gg82563) { | 
|  | ret_val = e1000_copper_link_ggp_setup(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (hw->autoneg) { | 
|  | /* Setup autoneg and flow control advertisement | 
|  | * and perform autonegotiation */ | 
|  | ret_val = e1000_copper_link_autoneg(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | /* PHY will be set to 10H, 10F, 100H,or 100F | 
|  | * depending on value from forced_speed_duplex. */ | 
|  | DEBUGOUT("Forcing speed and duplex\n"); | 
|  | ret_val = e1000_phy_force_speed_duplex(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Forcing Speed and Duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check link status. Wait up to 100 microseconds for link to become | 
|  | * valid. | 
|  | */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (phy_data & MII_SR_LINK_STATUS) { | 
|  | /* Config the MAC and PHY after link is up */ | 
|  | ret_val = e1000_copper_link_postconfig(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | DEBUGOUT("Valid link established!!!\n"); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | DEBUGOUT("Unable to establish link!!!\n"); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Configure the MAC-to-PHY interface for 10/100Mbps | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_configure_kmrn_for_10_100(struct e1000_hw *hw, u16 duplex) | 
|  | { | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  | u32 tipg; | 
|  | u16 reg_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_configure_kmrn_for_10_100"); | 
|  |  | 
|  | reg_data = E1000_KUMCTRLSTA_HD_CTRL_10_100_DEFAULT; | 
|  | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, | 
|  | reg_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Configure Transmit Inter-Packet Gap */ | 
|  | tipg = er32(TIPG); | 
|  | tipg &= ~E1000_TIPG_IPGT_MASK; | 
|  | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_10_100; | 
|  | ew32(TIPG, tipg); | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (duplex == HALF_DUPLEX) | 
|  | reg_data |= GG82563_KMCR_PASS_FALSE_CARRIER; | 
|  | else | 
|  | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static s32 e1000_configure_kmrn_for_1000(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  | u16 reg_data; | 
|  | u32 tipg; | 
|  |  | 
|  | DEBUGFUNC("e1000_configure_kmrn_for_1000"); | 
|  |  | 
|  | reg_data = E1000_KUMCTRLSTA_HD_CTRL_1000_DEFAULT; | 
|  | ret_val = e1000_write_kmrn_reg(hw, E1000_KUMCTRLSTA_OFFSET_HD_CTRL, | 
|  | reg_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Configure Transmit Inter-Packet Gap */ | 
|  | tipg = er32(TIPG); | 
|  | tipg &= ~E1000_TIPG_IPGT_MASK; | 
|  | tipg |= DEFAULT_80003ES2LAN_TIPG_IPGT_1000; | 
|  | ew32(TIPG, tipg); | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, ®_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | reg_data &= ~GG82563_KMCR_PASS_FALSE_CARRIER; | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_KMRN_MODE_CTRL, reg_data); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Configures PHY autoneg and flow control advertisement settings | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | s32 e1000_phy_setup_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 mii_autoneg_adv_reg; | 
|  | u16 mii_1000t_ctrl_reg; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_setup_autoneg"); | 
|  |  | 
|  | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (hw->phy_type != e1000_phy_ife) { | 
|  | /* Read the MII 1000Base-T Control Register (Address 9). */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else | 
|  | mii_1000t_ctrl_reg=0; | 
|  |  | 
|  | /* Need to parse both autoneg_advertised and fc and set up | 
|  | * the appropriate PHY registers.  First we will parse for | 
|  | * autoneg_advertised software override.  Since we can advertise | 
|  | * a plethora of combinations, we need to check each bit | 
|  | * individually. | 
|  | */ | 
|  |  | 
|  | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | 
|  | * Advertisement Register (Address 4) and the 1000 mb speed bits in | 
|  | * the  1000Base-T Control Register (Address 9). | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | 
|  | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | 
|  |  | 
|  | DEBUGOUT1("autoneg_advertised %x\n", hw->autoneg_advertised); | 
|  |  | 
|  | /* Do we want to advertise 10 Mb Half Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | 
|  | DEBUGOUT("Advertise 10mb Half duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 10 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { | 
|  | DEBUGOUT("Advertise 10mb Full duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 100 Mb Half Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { | 
|  | DEBUGOUT("Advertise 100mb Half duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 100 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | 
|  | DEBUGOUT("Advertise 100mb Full duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { | 
|  | DEBUGOUT("Advertise 1000mb Half duplex requested, request denied!\n"); | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 1000 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 
|  | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 
|  | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 
|  | if (hw->phy_type == e1000_phy_ife) { | 
|  | DEBUGOUT("e1000_phy_ife is a 10/100 PHY. Gigabit speed is not supported.\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for a software override of the flow control settings, and | 
|  | * setup the PHY advertisement registers accordingly.  If | 
|  | * auto-negotiation is enabled, then software will have to set the | 
|  | * "PAUSE" bits to the correct value in the Auto-Negotiation | 
|  | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause frames | 
|  | *          but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *          but we do not support receiving pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|  | *  other:  No software override.  The flow control configuration | 
|  | *          in the EEPROM is used. | 
|  | */ | 
|  | switch (hw->fc) { | 
|  | case E1000_FC_NONE: /* 0 */ | 
|  | /* Flow control (RX & TX) is completely disabled by a | 
|  | * software over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | case E1000_FC_RX_PAUSE: /* 1 */ | 
|  | /* RX Flow control is enabled, and TX Flow control is | 
|  | * disabled, by a software over-ride. | 
|  | */ | 
|  | /* Since there really isn't a way to advertise that we are | 
|  | * capable of RX Pause ONLY, we will advertise that we | 
|  | * support both symmetric and asymmetric RX PAUSE.  Later | 
|  | * (in e1000_config_fc_after_link_up) we will disable the | 
|  | *hw's ability to send PAUSE frames. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | case E1000_FC_TX_PAUSE: /* 2 */ | 
|  | /* TX Flow control is enabled, and RX Flow control is | 
|  | * disabled, by a software over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | 
|  | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | 
|  | break; | 
|  | case E1000_FC_FULL: /* 3 */ | 
|  | /* Flow control (both RX and TX) is enabled by a software | 
|  | * over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | DEBUGOUT1("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 
|  |  | 
|  | if (hw->phy_type != e1000_phy_ife) { | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Force PHY speed and duplex settings to hw->forced_speed_duplex | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_phy_force_speed_duplex(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  | u16 mii_ctrl_reg; | 
|  | u16 mii_status_reg; | 
|  | u16 phy_data; | 
|  | u16 i; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_force_speed_duplex"); | 
|  |  | 
|  | /* Turn off Flow control if we are forcing speed and duplex. */ | 
|  | hw->fc = E1000_FC_NONE; | 
|  |  | 
|  | DEBUGOUT1("hw->fc = %d\n", hw->fc); | 
|  |  | 
|  | /* Read the Device Control Register. */ | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Set the bits to Force Speed and Duplex in the Device Ctrl Reg. */ | 
|  | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ctrl &= ~(DEVICE_SPEED_MASK); | 
|  |  | 
|  | /* Clear the Auto Speed Detect Enable bit. */ | 
|  | ctrl &= ~E1000_CTRL_ASDE; | 
|  |  | 
|  | /* Read the MII Control Register. */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &mii_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* We need to disable autoneg in order to force link and duplex. */ | 
|  |  | 
|  | mii_ctrl_reg &= ~MII_CR_AUTO_NEG_EN; | 
|  |  | 
|  | /* Are we forcing Full or Half Duplex? */ | 
|  | if (hw->forced_speed_duplex == e1000_100_full || | 
|  | hw->forced_speed_duplex == e1000_10_full) { | 
|  | /* We want to force full duplex so we SET the full duplex bits in the | 
|  | * Device and MII Control Registers. | 
|  | */ | 
|  | ctrl |= E1000_CTRL_FD; | 
|  | mii_ctrl_reg |= MII_CR_FULL_DUPLEX; | 
|  | DEBUGOUT("Full Duplex\n"); | 
|  | } else { | 
|  | /* We want to force half duplex so we CLEAR the full duplex bits in | 
|  | * the Device and MII Control Registers. | 
|  | */ | 
|  | ctrl &= ~E1000_CTRL_FD; | 
|  | mii_ctrl_reg &= ~MII_CR_FULL_DUPLEX; | 
|  | DEBUGOUT("Half Duplex\n"); | 
|  | } | 
|  |  | 
|  | /* Are we forcing 100Mbps??? */ | 
|  | if (hw->forced_speed_duplex == e1000_100_full || | 
|  | hw->forced_speed_duplex == e1000_100_half) { | 
|  | /* Set the 100Mb bit and turn off the 1000Mb and 10Mb bits. */ | 
|  | ctrl |= E1000_CTRL_SPD_100; | 
|  | mii_ctrl_reg |= MII_CR_SPEED_100; | 
|  | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10); | 
|  | DEBUGOUT("Forcing 100mb "); | 
|  | } else { | 
|  | /* Set the 10Mb bit and turn off the 1000Mb and 100Mb bits. */ | 
|  | ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100); | 
|  | mii_ctrl_reg |= MII_CR_SPEED_10; | 
|  | mii_ctrl_reg &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100); | 
|  | DEBUGOUT("Forcing 10mb "); | 
|  | } | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Write the configured values back to the Device Control Reg. */ | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | if ((hw->phy_type == e1000_phy_m88) || | 
|  | (hw->phy_type == e1000_phy_gg82563)) { | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI | 
|  | * forced whenever speed are duplex are forced. | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | DEBUGOUT1("M88E1000 PSCR: %x \n", phy_data); | 
|  |  | 
|  | /* Need to reset the PHY or these changes will be ignored */ | 
|  | mii_ctrl_reg |= MII_CR_RESET; | 
|  |  | 
|  | /* Disable MDI-X support for 10/100 */ | 
|  | } else if (hw->phy_type == e1000_phy_ife) { | 
|  | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IFE_PMC_AUTO_MDIX; | 
|  | phy_data &= ~IFE_PMC_FORCE_MDIX; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, IFE_PHY_MDIX_CONTROL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | } else { | 
|  | /* Clear Auto-Crossover to force MDI manually.  IGP requires MDI | 
|  | * forced whenever speed or duplex are forced. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX; | 
|  | phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Write back the modified PHY MII control register. */ | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, mii_ctrl_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | udelay(1); | 
|  |  | 
|  | /* The wait_autoneg_complete flag may be a little misleading here. | 
|  | * Since we are forcing speed and duplex, Auto-Neg is not enabled. | 
|  | * But we do want to delay for a period while forcing only so we | 
|  | * don't generate false No Link messages.  So we will wait here | 
|  | * only if the user has set wait_autoneg_complete to 1, which is | 
|  | * the default. | 
|  | */ | 
|  | if (hw->wait_autoneg_complete) { | 
|  | /* We will wait for autoneg to complete. */ | 
|  | DEBUGOUT("Waiting for forced speed/duplex link.\n"); | 
|  | mii_status_reg = 0; | 
|  |  | 
|  | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
|  | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 
|  | * to be set. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (mii_status_reg & MII_SR_LINK_STATUS) break; | 
|  | msleep(100); | 
|  | } | 
|  | if ((i == 0) && | 
|  | ((hw->phy_type == e1000_phy_m88) || | 
|  | (hw->phy_type == e1000_phy_gg82563))) { | 
|  | /* We didn't get link.  Reset the DSP and wait again for link. */ | 
|  | ret_val = e1000_phy_reset_dsp(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error Resetting PHY DSP\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | /* This loop will early-out if the link condition has been met.  */ | 
|  | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | if (mii_status_reg & MII_SR_LINK_STATUS) break; | 
|  | msleep(100); | 
|  | /* Read the MII Status Register and wait for Auto-Neg Complete bit | 
|  | * to be set. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_m88) { | 
|  | /* Because we reset the PHY above, we need to re-force TX_CLK in the | 
|  | * Extended PHY Specific Control Register to 25MHz clock.  This value | 
|  | * defaults back to a 2.5MHz clock when the PHY is reset. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* In addition, because of the s/w reset above, we need to enable CRS on | 
|  | * TX.  This must be set for both full and half duplex operation. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 
|  | (!hw->autoneg) && (hw->forced_speed_duplex == e1000_10_full || | 
|  | hw->forced_speed_duplex == e1000_10_half)) { | 
|  | ret_val = e1000_polarity_reversal_workaround(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } else if (hw->phy_type == e1000_phy_gg82563) { | 
|  | /* The TX_CLK of the Extended PHY Specific Control Register defaults | 
|  | * to 2.5MHz on a reset.  We need to re-force it back to 25MHz, if | 
|  | * we're not in a forced 10/duplex configuration. */ | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~GG82563_MSCR_TX_CLK_MASK; | 
|  | if ((hw->forced_speed_duplex == e1000_10_full) || | 
|  | (hw->forced_speed_duplex == e1000_10_half)) | 
|  | phy_data |= GG82563_MSCR_TX_CLK_10MBPS_2_5MHZ; | 
|  | else | 
|  | phy_data |= GG82563_MSCR_TX_CLK_100MBPS_25MHZ; | 
|  |  | 
|  | /* Also due to the reset, we need to enable CRS on Tx. */ | 
|  | phy_data |= GG82563_MSCR_ASSERT_CRS_ON_TX; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, GG82563_PHY_MAC_SPEC_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Sets the collision distance in the Transmit Control register | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Link should have been established previously. Reads the speed and duplex | 
|  | * information from the Device Status register. | 
|  | ******************************************************************************/ | 
|  | void e1000_config_collision_dist(struct e1000_hw *hw) | 
|  | { | 
|  | u32 tctl, coll_dist; | 
|  |  | 
|  | DEBUGFUNC("e1000_config_collision_dist"); | 
|  |  | 
|  | if (hw->mac_type < e1000_82543) | 
|  | coll_dist = E1000_COLLISION_DISTANCE_82542; | 
|  | else | 
|  | coll_dist = E1000_COLLISION_DISTANCE; | 
|  |  | 
|  | tctl = er32(TCTL); | 
|  |  | 
|  | tctl &= ~E1000_TCTL_COLD; | 
|  | tctl |= coll_dist << E1000_COLD_SHIFT; | 
|  |  | 
|  | ew32(TCTL, tctl); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Sets MAC speed and duplex settings to reflect the those in the PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * mii_reg - data to write to the MII control register | 
|  | * | 
|  | * The contents of the PHY register containing the needed information need to | 
|  | * be passed in. | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_config_mac_to_phy(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_config_mac_to_phy"); | 
|  |  | 
|  | /* 82544 or newer MAC, Auto Speed Detection takes care of | 
|  | * MAC speed/duplex configuration.*/ | 
|  | if (hw->mac_type >= e1000_82544) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Read the Device Control Register and set the bits to Force Speed | 
|  | * and Duplex. | 
|  | */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | 
|  |  | 
|  | /* Set up duplex in the Device Control and Transmit Control | 
|  | * registers depending on negotiated values. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (phy_data & M88E1000_PSSR_DPLX) | 
|  | ctrl |= E1000_CTRL_FD; | 
|  | else | 
|  | ctrl &= ~E1000_CTRL_FD; | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Set up speed in the Device Control register depending on | 
|  | * negotiated values. | 
|  | */ | 
|  | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | 
|  | ctrl |= E1000_CTRL_SPD_1000; | 
|  | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | 
|  | ctrl |= E1000_CTRL_SPD_100; | 
|  |  | 
|  | /* Write the configured values back to the Device Control Reg. */ | 
|  | ew32(CTRL, ctrl); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Forces the MAC's flow control settings. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sets the TFCE and RFCE bits in the device control register to reflect | 
|  | * the adapter settings. TFCE and RFCE need to be explicitly set by | 
|  | * software when a Copper PHY is used because autonegotiation is managed | 
|  | * by the PHY rather than the MAC. Software must also configure these | 
|  | * bits when link is forced on a fiber connection. | 
|  | *****************************************************************************/ | 
|  | s32 e1000_force_mac_fc(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  |  | 
|  | DEBUGFUNC("e1000_force_mac_fc"); | 
|  |  | 
|  | /* Get the current configuration of the Device Control Register */ | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Because we didn't get link via the internal auto-negotiation | 
|  | * mechanism (we either forced link or we got link via PHY | 
|  | * auto-neg), we have to manually enable/disable transmit an | 
|  | * receive flow control. | 
|  | * | 
|  | * The "Case" statement below enables/disable flow control | 
|  | * according to the "hw->fc" parameter. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause | 
|  | *          frames but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *          frames but we do not receive pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) is enabled. | 
|  | *  other:  No other values should be possible at this point. | 
|  | */ | 
|  |  | 
|  | switch (hw->fc) { | 
|  | case E1000_FC_NONE: | 
|  | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|  | break; | 
|  | case E1000_FC_RX_PAUSE: | 
|  | ctrl &= (~E1000_CTRL_TFCE); | 
|  | ctrl |= E1000_CTRL_RFCE; | 
|  | break; | 
|  | case E1000_FC_TX_PAUSE: | 
|  | ctrl &= (~E1000_CTRL_RFCE); | 
|  | ctrl |= E1000_CTRL_TFCE; | 
|  | break; | 
|  | case E1000_FC_FULL: | 
|  | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | /* Disable TX Flow Control for 82542 (rev 2.0) */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | ctrl &= (~E1000_CTRL_TFCE); | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Configures flow control settings after link is established | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Should be called immediately after a valid link has been established. | 
|  | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | 
|  | * and autonegotiation is enabled, the MAC flow control settings will be set | 
|  | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | 
|  | * and RFCE bits will be automaticaly set to the negotiated flow control mode. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_config_fc_after_link_up(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 mii_status_reg; | 
|  | u16 mii_nway_adv_reg; | 
|  | u16 mii_nway_lp_ability_reg; | 
|  | u16 speed; | 
|  | u16 duplex; | 
|  |  | 
|  | DEBUGFUNC("e1000_config_fc_after_link_up"); | 
|  |  | 
|  | /* Check for the case where we have fiber media and auto-neg failed | 
|  | * so we had to force link.  In this case, we need to force the | 
|  | * configuration of the MAC to match the "fc" parameter. | 
|  | */ | 
|  | if (((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) || | 
|  | ((hw->media_type == e1000_media_type_internal_serdes) && | 
|  | (hw->autoneg_failed)) || | 
|  | ((hw->media_type == e1000_media_type_copper) && (!hw->autoneg))) { | 
|  | ret_val = e1000_force_mac_fc(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error forcing flow control settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for the case where we have copper media and auto-neg is | 
|  | * enabled.  In this case, we need to check and see if Auto-Neg | 
|  | * has completed, and if so, how the PHY and link partner has | 
|  | * flow control configured. | 
|  | */ | 
|  | if ((hw->media_type == e1000_media_type_copper) && hw->autoneg) { | 
|  | /* Read the MII Status Register and check to see if AutoNeg | 
|  | * has completed.  We read this twice because this reg has | 
|  | * some "sticky" (latched) bits. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | 
|  | /* The AutoNeg process has completed, so we now need to | 
|  | * read both the Auto Negotiation Advertisement Register | 
|  | * (Address 4) and the Auto_Negotiation Base Page Ability | 
|  | * Register (Address 5) to determine how flow control was | 
|  | * negotiated. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, | 
|  | &mii_nway_adv_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, | 
|  | &mii_nway_lp_ability_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Two bits in the Auto Negotiation Advertisement Register | 
|  | * (Address 4) and two bits in the Auto Negotiation Base | 
|  | * Page Ability Register (Address 5) determine flow control | 
|  | * for both the PHY and the link partner.  The following | 
|  | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|  | * 1999, describes these PAUSE resolution bits and how flow | 
|  | * control is determined based upon these settings. | 
|  | * NOTE:  DC = Don't Care | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    0    |  DC   |   DC    | E1000_FC_NONE | 
|  | *   0   |    1    |   0   |   DC    | E1000_FC_NONE | 
|  | *   0   |    1    |   1   |    0    | E1000_FC_NONE | 
|  | *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE | 
|  | *   1   |    0    |   0   |   DC    | E1000_FC_NONE | 
|  | *   1   |   DC    |   1   |   DC    | E1000_FC_FULL | 
|  | *   1   |    1    |   0   |    0    | E1000_FC_NONE | 
|  | *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE | 
|  | * | 
|  | */ | 
|  | /* Are both PAUSE bits set to 1?  If so, this implies | 
|  | * Symmetric Flow Control is enabled at both ends.  The | 
|  | * ASM_DIR bits are irrelevant per the spec. | 
|  | * | 
|  | * For Symmetric Flow Control: | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |   DC    |   1   |   DC    | E1000_FC_FULL | 
|  | * | 
|  | */ | 
|  | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
|  | /* Now we need to check if the user selected RX ONLY | 
|  | * of pause frames.  In this case, we had to advertise | 
|  | * FULL flow control because we could not advertise RX | 
|  | * ONLY. Hence, we must now check to see if we need to | 
|  | * turn OFF  the TRANSMISSION of PAUSE frames. | 
|  | */ | 
|  | if (hw->original_fc == E1000_FC_FULL) { | 
|  | hw->fc = E1000_FC_FULL; | 
|  | DEBUGOUT("Flow Control = FULL.\n"); | 
|  | } else { | 
|  | hw->fc = E1000_FC_RX_PAUSE; | 
|  | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 
|  | } | 
|  | } | 
|  | /* For receiving PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    1    |   1   |    1    | E1000_FC_TX_PAUSE | 
|  | * | 
|  | */ | 
|  | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | hw->fc = E1000_FC_TX_PAUSE; | 
|  | DEBUGOUT("Flow Control = TX PAUSE frames only.\n"); | 
|  | } | 
|  | /* For transmitting PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |    1    |   0   |    1    | E1000_FC_RX_PAUSE | 
|  | * | 
|  | */ | 
|  | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) { | 
|  | hw->fc = E1000_FC_RX_PAUSE; | 
|  | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 
|  | } | 
|  | /* Per the IEEE spec, at this point flow control should be | 
|  | * disabled.  However, we want to consider that we could | 
|  | * be connected to a legacy switch that doesn't advertise | 
|  | * desired flow control, but can be forced on the link | 
|  | * partner.  So if we advertised no flow control, that is | 
|  | * what we will resolve to.  If we advertised some kind of | 
|  | * receive capability (Rx Pause Only or Full Flow Control) | 
|  | * and the link partner advertised none, we will configure | 
|  | * ourselves to enable Rx Flow Control only.  We can do | 
|  | * this safely for two reasons:  If the link partner really | 
|  | * didn't want flow control enabled, and we enable Rx, no | 
|  | * harm done since we won't be receiving any PAUSE frames | 
|  | * anyway.  If the intent on the link partner was to have | 
|  | * flow control enabled, then by us enabling RX only, we | 
|  | * can at least receive pause frames and process them. | 
|  | * This is a good idea because in most cases, since we are | 
|  | * predominantly a server NIC, more times than not we will | 
|  | * be asked to delay transmission of packets than asking | 
|  | * our link partner to pause transmission of frames. | 
|  | */ | 
|  | else if ((hw->original_fc == E1000_FC_NONE || | 
|  | hw->original_fc == E1000_FC_TX_PAUSE) || | 
|  | hw->fc_strict_ieee) { | 
|  | hw->fc = E1000_FC_NONE; | 
|  | DEBUGOUT("Flow Control = NONE.\n"); | 
|  | } else { | 
|  | hw->fc = E1000_FC_RX_PAUSE; | 
|  | DEBUGOUT("Flow Control = RX PAUSE frames only.\n"); | 
|  | } | 
|  |  | 
|  | /* Now we need to do one last check...  If we auto- | 
|  | * negotiated to HALF DUPLEX, flow control should not be | 
|  | * enabled per IEEE 802.3 spec. | 
|  | */ | 
|  | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error getting link speed and duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (duplex == HALF_DUPLEX) | 
|  | hw->fc = E1000_FC_NONE; | 
|  |  | 
|  | /* Now we call a subroutine to actually force the MAC | 
|  | * controller to use the correct flow control settings. | 
|  | */ | 
|  | ret_val = e1000_force_mac_fc(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error forcing flow control settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("Copper PHY and Auto Neg has not completed.\n"); | 
|  | } | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Checks to see if the link status of the hardware has changed. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Called by any function that needs to check the link status of the adapter. | 
|  | *****************************************************************************/ | 
|  | s32 e1000_check_for_link(struct e1000_hw *hw) | 
|  | { | 
|  | u32 rxcw = 0; | 
|  | u32 ctrl; | 
|  | u32 status; | 
|  | u32 rctl; | 
|  | u32 icr; | 
|  | u32 signal = 0; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_check_for_link"); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | status = er32(STATUS); | 
|  |  | 
|  | /* On adapters with a MAC newer than 82544, SW Defineable pin 1 will be | 
|  | * set when the optics detect a signal. On older adapters, it will be | 
|  | * cleared when there is a signal.  This applies to fiber media only. | 
|  | */ | 
|  | if ((hw->media_type == e1000_media_type_fiber) || | 
|  | (hw->media_type == e1000_media_type_internal_serdes)) { | 
|  | rxcw = er32(RXCW); | 
|  |  | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | signal = (hw->mac_type > e1000_82544) ? E1000_CTRL_SWDPIN1 : 0; | 
|  | if (status & E1000_STATUS_LU) | 
|  | hw->get_link_status = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If we have a copper PHY then we only want to go out to the PHY | 
|  | * registers to see if Auto-Neg has completed and/or if our link | 
|  | * status has changed.  The get_link_status flag will be set if we | 
|  | * receive a Link Status Change interrupt or we have Rx Sequence | 
|  | * Errors. | 
|  | */ | 
|  | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | 
|  | /* First we want to see if the MII Status Register reports | 
|  | * link.  If so, then we want to get the current speed/duplex | 
|  | * of the PHY. | 
|  | * Read the register twice since the link bit is sticky. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (phy_data & MII_SR_LINK_STATUS) { | 
|  | hw->get_link_status = false; | 
|  | /* Check if there was DownShift, must be checked immediately after | 
|  | * link-up */ | 
|  | e1000_check_downshift(hw); | 
|  |  | 
|  | /* If we are on 82544 or 82543 silicon and speed/duplex | 
|  | * are forced to 10H or 10F, then we will implement the polarity | 
|  | * reversal workaround.  We disable interrupts first, and upon | 
|  | * returning, place the devices interrupt state to its previous | 
|  | * value except for the link status change interrupt which will | 
|  | * happen due to the execution of this workaround. | 
|  | */ | 
|  |  | 
|  | if ((hw->mac_type == e1000_82544 || hw->mac_type == e1000_82543) && | 
|  | (!hw->autoneg) && | 
|  | (hw->forced_speed_duplex == e1000_10_full || | 
|  | hw->forced_speed_duplex == e1000_10_half)) { | 
|  | ew32(IMC, 0xffffffff); | 
|  | ret_val = e1000_polarity_reversal_workaround(hw); | 
|  | icr = er32(ICR); | 
|  | ew32(ICS, (icr & ~E1000_ICS_LSC)); | 
|  | ew32(IMS, IMS_ENABLE_MASK); | 
|  | } | 
|  |  | 
|  | } else { | 
|  | /* No link detected */ | 
|  | e1000_config_dsp_after_link_change(hw, false); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* If we are forcing speed/duplex, then we simply return since | 
|  | * we have already determined whether we have link or not. | 
|  | */ | 
|  | if (!hw->autoneg) return -E1000_ERR_CONFIG; | 
|  |  | 
|  | /* optimize the dsp settings for the igp phy */ | 
|  | e1000_config_dsp_after_link_change(hw, true); | 
|  |  | 
|  | /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we | 
|  | * have Si on board that is 82544 or newer, Auto | 
|  | * Speed Detection takes care of MAC speed/duplex | 
|  | * configuration.  So we only need to configure Collision | 
|  | * Distance in the MAC.  Otherwise, we need to force | 
|  | * speed/duplex on the MAC to the current PHY speed/duplex | 
|  | * settings. | 
|  | */ | 
|  | if (hw->mac_type >= e1000_82544) | 
|  | e1000_config_collision_dist(hw); | 
|  | else { | 
|  | ret_val = e1000_config_mac_to_phy(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error configuring MAC to PHY settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Configure Flow Control now that Auto-Neg has completed. First, we | 
|  | * need to restore the desired flow control settings because we may | 
|  | * have had to re-autoneg with a different link partner. | 
|  | */ | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error configuring flow control\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* At this point we know that we are on copper and we have | 
|  | * auto-negotiated link.  These are conditions for checking the link | 
|  | * partner capability register.  We use the link speed to determine if | 
|  | * TBI compatibility needs to be turned on or off.  If the link is not | 
|  | * at gigabit speed, then TBI compatibility is not needed.  If we are | 
|  | * at gigabit speed, we turn on TBI compatibility. | 
|  | */ | 
|  | if (hw->tbi_compatibility_en) { | 
|  | u16 speed, duplex; | 
|  | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error getting link speed and duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  | if (speed != SPEED_1000) { | 
|  | /* If link speed is not set to gigabit speed, we do not need | 
|  | * to enable TBI compatibility. | 
|  | */ | 
|  | if (hw->tbi_compatibility_on) { | 
|  | /* If we previously were in the mode, turn it off. */ | 
|  | rctl = er32(RCTL); | 
|  | rctl &= ~E1000_RCTL_SBP; | 
|  | ew32(RCTL, rctl); | 
|  | hw->tbi_compatibility_on = false; | 
|  | } | 
|  | } else { | 
|  | /* If TBI compatibility is was previously off, turn it on. For | 
|  | * compatibility with a TBI link partner, we will store bad | 
|  | * packets. Some frames have an additional byte on the end and | 
|  | * will look like CRC errors to to the hardware. | 
|  | */ | 
|  | if (!hw->tbi_compatibility_on) { | 
|  | hw->tbi_compatibility_on = true; | 
|  | rctl = er32(RCTL); | 
|  | rctl |= E1000_RCTL_SBP; | 
|  | ew32(RCTL, rctl); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | /* If we don't have link (auto-negotiation failed or link partner cannot | 
|  | * auto-negotiate), the cable is plugged in (we have signal), and our | 
|  | * link partner is not trying to auto-negotiate with us (we are receiving | 
|  | * idles or data), we need to force link up. We also need to give | 
|  | * auto-negotiation time to complete, in case the cable was just plugged | 
|  | * in. The autoneg_failed flag does this. | 
|  | */ | 
|  | else if ((((hw->media_type == e1000_media_type_fiber) && | 
|  | ((ctrl & E1000_CTRL_SWDPIN1) == signal)) || | 
|  | (hw->media_type == e1000_media_type_internal_serdes)) && | 
|  | (!(status & E1000_STATUS_LU)) && | 
|  | (!(rxcw & E1000_RXCW_C))) { | 
|  | if (hw->autoneg_failed == 0) { | 
|  | hw->autoneg_failed = 1; | 
|  | return 0; | 
|  | } | 
|  | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\n"); | 
|  |  | 
|  | /* Disable auto-negotiation in the TXCW register */ | 
|  | ew32(TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | 
|  |  | 
|  | /* Force link-up and also force full-duplex. */ | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | /* Configure Flow Control after forcing link up. */ | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error configuring flow control\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable | 
|  | * auto-negotiation in the TXCW register and disable forced link in the | 
|  | * Device Control register in an attempt to auto-negotiate with our link | 
|  | * partner. | 
|  | */ | 
|  | else if (((hw->media_type == e1000_media_type_fiber) || | 
|  | (hw->media_type == e1000_media_type_internal_serdes)) && | 
|  | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|  | DEBUGOUT("RXing /C/, enable AutoNeg and stop forcing link.\n"); | 
|  | ew32(TXCW, hw->txcw); | 
|  | ew32(CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|  |  | 
|  | hw->serdes_link_down = false; | 
|  | } | 
|  | /* If we force link for non-auto-negotiation switch, check link status | 
|  | * based on MAC synchronization for internal serdes media type. | 
|  | */ | 
|  | else if ((hw->media_type == e1000_media_type_internal_serdes) && | 
|  | !(E1000_TXCW_ANE & er32(TXCW))) { | 
|  | /* SYNCH bit and IV bit are sticky. */ | 
|  | udelay(10); | 
|  | if (E1000_RXCW_SYNCH & er32(RXCW)) { | 
|  | if (!(rxcw & E1000_RXCW_IV)) { | 
|  | hw->serdes_link_down = false; | 
|  | DEBUGOUT("SERDES: Link is up.\n"); | 
|  | } | 
|  | } else { | 
|  | hw->serdes_link_down = true; | 
|  | DEBUGOUT("SERDES: Link is down.\n"); | 
|  | } | 
|  | } | 
|  | if ((hw->media_type == e1000_media_type_internal_serdes) && | 
|  | (E1000_TXCW_ANE & er32(TXCW))) { | 
|  | hw->serdes_link_down = !(E1000_STATUS_LU & er32(STATUS)); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Detects the current speed and duplex settings of the hardware. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * speed - Speed of the connection | 
|  | * duplex - Duplex setting of the connection | 
|  | *****************************************************************************/ | 
|  | s32 e1000_get_speed_and_duplex(struct e1000_hw *hw, u16 *speed, u16 *duplex) | 
|  | { | 
|  | u32 status; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_speed_and_duplex"); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | status = er32(STATUS); | 
|  | if (status & E1000_STATUS_SPEED_1000) { | 
|  | *speed = SPEED_1000; | 
|  | DEBUGOUT("1000 Mbs, "); | 
|  | } else if (status & E1000_STATUS_SPEED_100) { | 
|  | *speed = SPEED_100; | 
|  | DEBUGOUT("100 Mbs, "); | 
|  | } else { | 
|  | *speed = SPEED_10; | 
|  | DEBUGOUT("10 Mbs, "); | 
|  | } | 
|  |  | 
|  | if (status & E1000_STATUS_FD) { | 
|  | *duplex = FULL_DUPLEX; | 
|  | DEBUGOUT("Full Duplex\n"); | 
|  | } else { | 
|  | *duplex = HALF_DUPLEX; | 
|  | DEBUGOUT(" Half Duplex\n"); | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("1000 Mbs, Full Duplex\n"); | 
|  | *speed = SPEED_1000; | 
|  | *duplex = FULL_DUPLEX; | 
|  | } | 
|  |  | 
|  | /* IGP01 PHY may advertise full duplex operation after speed downgrade even | 
|  | * if it is operating at half duplex.  Here we set the duplex settings to | 
|  | * match the duplex in the link partner's capabilities. | 
|  | */ | 
|  | if (hw->phy_type == e1000_phy_igp && hw->speed_downgraded) { | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_AUTONEG_EXP, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!(phy_data & NWAY_ER_LP_NWAY_CAPS)) | 
|  | *duplex = HALF_DUPLEX; | 
|  | else { | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_LP_ABILITY, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | if ((*speed == SPEED_100 && !(phy_data & NWAY_LPAR_100TX_FD_CAPS)) || | 
|  | (*speed == SPEED_10 && !(phy_data & NWAY_LPAR_10T_FD_CAPS))) | 
|  | *duplex = HALF_DUPLEX; | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((hw->mac_type == e1000_80003es2lan) && | 
|  | (hw->media_type == e1000_media_type_copper)) { | 
|  | if (*speed == SPEED_1000) | 
|  | ret_val = e1000_configure_kmrn_for_1000(hw); | 
|  | else | 
|  | ret_val = e1000_configure_kmrn_for_10_100(hw, *duplex); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if ((hw->phy_type == e1000_phy_igp_3) && (*speed == SPEED_1000)) { | 
|  | ret_val = e1000_kumeran_lock_loss_workaround(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Blocks until autoneg completes or times out (~4.5 seconds) | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_wait_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 i; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_wait_autoneg"); | 
|  | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | 
|  |  | 
|  | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
|  | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Auto-Neg | 
|  | * Complete bit to be set. | 
|  | */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | if (phy_data & MII_SR_AUTONEG_COMPLETE) { | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | msleep(100); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Raises the Management Data Clock | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * ctrl - Device control register's current value | 
|  | ******************************************************************************/ | 
|  | static void e1000_raise_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 
|  | { | 
|  | /* Raise the clock input to the Management Data Clock (by setting the MDC | 
|  | * bit), and then delay 10 microseconds. | 
|  | */ | 
|  | ew32(CTRL, (*ctrl | E1000_CTRL_MDC)); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Lowers the Management Data Clock | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * ctrl - Device control register's current value | 
|  | ******************************************************************************/ | 
|  | static void e1000_lower_mdi_clk(struct e1000_hw *hw, u32 *ctrl) | 
|  | { | 
|  | /* Lower the clock input to the Management Data Clock (by clearing the MDC | 
|  | * bit), and then delay 10 microseconds. | 
|  | */ | 
|  | ew32(CTRL, (*ctrl & ~E1000_CTRL_MDC)); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Shifts data bits out to the PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * data - Data to send out to the PHY | 
|  | * count - Number of bits to shift out | 
|  | * | 
|  | * Bits are shifted out in MSB to LSB order. | 
|  | ******************************************************************************/ | 
|  | static void e1000_shift_out_mdi_bits(struct e1000_hw *hw, u32 data, u16 count) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 mask; | 
|  |  | 
|  | /* We need to shift "count" number of bits out to the PHY. So, the value | 
|  | * in the "data" parameter will be shifted out to the PHY one bit at a | 
|  | * time. In order to do this, "data" must be broken down into bits. | 
|  | */ | 
|  | mask = 0x01; | 
|  | mask <<= (count - 1); | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | 
|  | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | 
|  |  | 
|  | while (mask) { | 
|  | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | 
|  | * then raising and lowering the Management Data Clock. A "0" is | 
|  | * shifted out to the PHY by setting the MDIO bit to "0" and then | 
|  | * raising and lowering the clock. | 
|  | */ | 
|  | if (data & mask) | 
|  | ctrl |= E1000_CTRL_MDIO; | 
|  | else | 
|  | ctrl &= ~E1000_CTRL_MDIO; | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | udelay(10); | 
|  |  | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | mask = mask >> 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Shifts data bits in from the PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Bits are shifted in in MSB to LSB order. | 
|  | ******************************************************************************/ | 
|  | static u16 e1000_shift_in_mdi_bits(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u16 data = 0; | 
|  | u8 i; | 
|  |  | 
|  | /* In order to read a register from the PHY, we need to shift in a total | 
|  | * of 18 bits from the PHY. The first two bit (turnaround) times are used | 
|  | * to avoid contention on the MDIO pin when a read operation is performed. | 
|  | * These two bits are ignored by us and thrown away. Bits are "shifted in" | 
|  | * by raising the input to the Management Data Clock (setting the MDC bit), | 
|  | * and then reading the value of the MDIO bit. | 
|  | */ | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | 
|  | ctrl &= ~E1000_CTRL_MDIO_DIR; | 
|  | ctrl &= ~E1000_CTRL_MDIO; | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | /* Raise and Lower the clock before reading in the data. This accounts for | 
|  | * the turnaround bits. The first clock occurred when we clocked out the | 
|  | * last bit of the Register Address. | 
|  | */ | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | for (data = 0, i = 0; i < 16; i++) { | 
|  | data = data << 1; | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | ctrl = er32(CTRL); | 
|  | /* Check to see if we shifted in a "1". */ | 
|  | if (ctrl & E1000_CTRL_MDIO) | 
|  | data |= 1; | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  | } | 
|  |  | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | static s32 e1000_swfw_sync_acquire(struct e1000_hw *hw, u16 mask) | 
|  | { | 
|  | u32 swfw_sync = 0; | 
|  | u32 swmask = mask; | 
|  | u32 fwmask = mask << 16; | 
|  | s32 timeout = 200; | 
|  |  | 
|  | DEBUGFUNC("e1000_swfw_sync_acquire"); | 
|  |  | 
|  | if (hw->swfwhw_semaphore_present) | 
|  | return e1000_get_software_flag(hw); | 
|  |  | 
|  | if (!hw->swfw_sync_present) | 
|  | return e1000_get_hw_eeprom_semaphore(hw); | 
|  |  | 
|  | while (timeout) { | 
|  | if (e1000_get_hw_eeprom_semaphore(hw)) | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  |  | 
|  | swfw_sync = er32(SW_FW_SYNC); | 
|  | if (!(swfw_sync & (fwmask | swmask))) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* firmware currently using resource (fwmask) */ | 
|  | /* or other software thread currently using resource (swmask) */ | 
|  | e1000_put_hw_eeprom_semaphore(hw); | 
|  | mdelay(5); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | DEBUGOUT("Driver can't access resource, SW_FW_SYNC timeout.\n"); | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  | } | 
|  |  | 
|  | swfw_sync |= swmask; | 
|  | ew32(SW_FW_SYNC, swfw_sync); | 
|  |  | 
|  | e1000_put_hw_eeprom_semaphore(hw); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void e1000_swfw_sync_release(struct e1000_hw *hw, u16 mask) | 
|  | { | 
|  | u32 swfw_sync; | 
|  | u32 swmask = mask; | 
|  |  | 
|  | DEBUGFUNC("e1000_swfw_sync_release"); | 
|  |  | 
|  | if (hw->swfwhw_semaphore_present) { | 
|  | e1000_release_software_flag(hw); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!hw->swfw_sync_present) { | 
|  | e1000_put_hw_eeprom_semaphore(hw); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* if (e1000_get_hw_eeprom_semaphore(hw)) | 
|  | *    return -E1000_ERR_SWFW_SYNC; */ | 
|  | while (e1000_get_hw_eeprom_semaphore(hw) != E1000_SUCCESS); | 
|  | /* empty */ | 
|  |  | 
|  | swfw_sync = er32(SW_FW_SYNC); | 
|  | swfw_sync &= ~swmask; | 
|  | ew32(SW_FW_SYNC, swfw_sync); | 
|  |  | 
|  | e1000_put_hw_eeprom_semaphore(hw); | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * Reads the value from a PHY register, if the value is on a specific non zero | 
|  | * page, sets the page first. | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * reg_addr - address of the PHY register to read | 
|  | ******************************************************************************/ | 
|  | s32 e1000_read_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 *phy_data) | 
|  | { | 
|  | u32 ret_val; | 
|  | u16 swfw; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_phy_reg"); | 
|  |  | 
|  | if ((hw->mac_type == e1000_80003es2lan) && | 
|  | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 
|  | swfw = E1000_SWFW_PHY1_SM; | 
|  | } else { | 
|  | swfw = E1000_SWFW_PHY0_SM; | 
|  | } | 
|  | if (e1000_swfw_sync_acquire(hw, swfw)) | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  |  | 
|  | if ((hw->phy_type == e1000_phy_igp || | 
|  | hw->phy_type == e1000_phy_igp_3 || | 
|  | hw->phy_type == e1000_phy_igp_2) && | 
|  | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
|  | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | (u16)reg_addr); | 
|  | if (ret_val) { | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | return ret_val; | 
|  | } | 
|  | } else if (hw->phy_type == e1000_phy_gg82563) { | 
|  | if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || | 
|  | (hw->mac_type == e1000_80003es2lan)) { | 
|  | /* Select Configuration Page */ | 
|  | if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { | 
|  | ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, | 
|  | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | 
|  | } else { | 
|  | /* Use Alternative Page Select register to access | 
|  | * registers 30 and 31 | 
|  | */ | 
|  | ret_val = e1000_write_phy_reg_ex(hw, | 
|  | GG82563_PHY_PAGE_SELECT_ALT, | 
|  | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | 
|  | } | 
|  |  | 
|  | if (ret_val) { | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
|  | phy_data); | 
|  |  | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static s32 e1000_read_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|  | u16 *phy_data) | 
|  | { | 
|  | u32 i; | 
|  | u32 mdic = 0; | 
|  | const u32 phy_addr = 1; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_phy_reg_ex"); | 
|  |  | 
|  | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 
|  | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | /* Set up Op-code, Phy Address, and register address in the MDI | 
|  | * Control register.  The MAC will take care of interfacing with the | 
|  | * PHY to retrieve the desired data. | 
|  | */ | 
|  | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 
|  | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|  | (E1000_MDIC_OP_READ)); | 
|  |  | 
|  | ew32(MDIC, mdic); | 
|  |  | 
|  | /* Poll the ready bit to see if the MDI read completed */ | 
|  | for (i = 0; i < 64; i++) { | 
|  | udelay(50); | 
|  | mdic = er32(MDIC); | 
|  | if (mdic & E1000_MDIC_READY) break; | 
|  | } | 
|  | if (!(mdic & E1000_MDIC_READY)) { | 
|  | DEBUGOUT("MDI Read did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (mdic & E1000_MDIC_ERROR) { | 
|  | DEBUGOUT("MDI Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | *phy_data = (u16)mdic; | 
|  | } else { | 
|  | /* We must first send a preamble through the MDIO pin to signal the | 
|  | * beginning of an MII instruction.  This is done by sending 32 | 
|  | * consecutive "1" bits. | 
|  | */ | 
|  | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|  |  | 
|  | /* Now combine the next few fields that are required for a read | 
|  | * operation.  We use this method instead of calling the | 
|  | * e1000_shift_out_mdi_bits routine five different times. The format of | 
|  | * a MII read instruction consists of a shift out of 14 bits and is | 
|  | * defined as follows: | 
|  | *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | 
|  | * followed by a shift in of 18 bits.  This first two bits shifted in | 
|  | * are TurnAround bits used to avoid contention on the MDIO pin when a | 
|  | * READ operation is performed.  These two bits are thrown away | 
|  | * followed by a shift in of 16 bits which contains the desired data. | 
|  | */ | 
|  | mdic = ((reg_addr) | (phy_addr << 5) | | 
|  | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | 
|  |  | 
|  | e1000_shift_out_mdi_bits(hw, mdic, 14); | 
|  |  | 
|  | /* Now that we've shifted out the read command to the MII, we need to | 
|  | * "shift in" the 16-bit value (18 total bits) of the requested PHY | 
|  | * register address. | 
|  | */ | 
|  | *phy_data = e1000_shift_in_mdi_bits(hw); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a value to a PHY register | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * reg_addr - address of the PHY register to write | 
|  | * data - data to write to the PHY | 
|  | ******************************************************************************/ | 
|  | s32 e1000_write_phy_reg(struct e1000_hw *hw, u32 reg_addr, u16 phy_data) | 
|  | { | 
|  | u32 ret_val; | 
|  | u16 swfw; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_phy_reg"); | 
|  |  | 
|  | if ((hw->mac_type == e1000_80003es2lan) && | 
|  | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 
|  | swfw = E1000_SWFW_PHY1_SM; | 
|  | } else { | 
|  | swfw = E1000_SWFW_PHY0_SM; | 
|  | } | 
|  | if (e1000_swfw_sync_acquire(hw, swfw)) | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  |  | 
|  | if ((hw->phy_type == e1000_phy_igp || | 
|  | hw->phy_type == e1000_phy_igp_3 || | 
|  | hw->phy_type == e1000_phy_igp_2) && | 
|  | (reg_addr > MAX_PHY_MULTI_PAGE_REG)) { | 
|  | ret_val = e1000_write_phy_reg_ex(hw, IGP01E1000_PHY_PAGE_SELECT, | 
|  | (u16)reg_addr); | 
|  | if (ret_val) { | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | return ret_val; | 
|  | } | 
|  | } else if (hw->phy_type == e1000_phy_gg82563) { | 
|  | if (((reg_addr & MAX_PHY_REG_ADDRESS) > MAX_PHY_MULTI_PAGE_REG) || | 
|  | (hw->mac_type == e1000_80003es2lan)) { | 
|  | /* Select Configuration Page */ | 
|  | if ((reg_addr & MAX_PHY_REG_ADDRESS) < GG82563_MIN_ALT_REG) { | 
|  | ret_val = e1000_write_phy_reg_ex(hw, GG82563_PHY_PAGE_SELECT, | 
|  | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | 
|  | } else { | 
|  | /* Use Alternative Page Select register to access | 
|  | * registers 30 and 31 | 
|  | */ | 
|  | ret_val = e1000_write_phy_reg_ex(hw, | 
|  | GG82563_PHY_PAGE_SELECT_ALT, | 
|  | (u16)((u16)reg_addr >> GG82563_PAGE_SHIFT)); | 
|  | } | 
|  |  | 
|  | if (ret_val) { | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | ret_val = e1000_write_phy_reg_ex(hw, MAX_PHY_REG_ADDRESS & reg_addr, | 
|  | phy_data); | 
|  |  | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | static s32 e1000_write_phy_reg_ex(struct e1000_hw *hw, u32 reg_addr, | 
|  | u16 phy_data) | 
|  | { | 
|  | u32 i; | 
|  | u32 mdic = 0; | 
|  | const u32 phy_addr = 1; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_phy_reg_ex"); | 
|  |  | 
|  | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 
|  | DEBUGOUT1("PHY Address %d is out of range\n", reg_addr); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | /* Set up Op-code, Phy Address, register address, and data intended | 
|  | * for the PHY register in the MDI Control register.  The MAC will take | 
|  | * care of interfacing with the PHY to send the desired data. | 
|  | */ | 
|  | mdic = (((u32)phy_data) | | 
|  | (reg_addr << E1000_MDIC_REG_SHIFT) | | 
|  | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|  | (E1000_MDIC_OP_WRITE)); | 
|  |  | 
|  | ew32(MDIC, mdic); | 
|  |  | 
|  | /* Poll the ready bit to see if the MDI read completed */ | 
|  | for (i = 0; i < 641; i++) { | 
|  | udelay(5); | 
|  | mdic = er32(MDIC); | 
|  | if (mdic & E1000_MDIC_READY) break; | 
|  | } | 
|  | if (!(mdic & E1000_MDIC_READY)) { | 
|  | DEBUGOUT("MDI Write did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | } else { | 
|  | /* We'll need to use the SW defined pins to shift the write command | 
|  | * out to the PHY. We first send a preamble to the PHY to signal the | 
|  | * beginning of the MII instruction.  This is done by sending 32 | 
|  | * consecutive "1" bits. | 
|  | */ | 
|  | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|  |  | 
|  | /* Now combine the remaining required fields that will indicate a | 
|  | * write operation. We use this method instead of calling the | 
|  | * e1000_shift_out_mdi_bits routine for each field in the command. The | 
|  | * format of a MII write instruction is as follows: | 
|  | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | 
|  | */ | 
|  | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | 
|  | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | 
|  | mdic <<= 16; | 
|  | mdic |= (u32)phy_data; | 
|  |  | 
|  | e1000_shift_out_mdi_bits(hw, mdic, 32); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | static s32 e1000_read_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 *data) | 
|  | { | 
|  | u32 reg_val; | 
|  | u16 swfw; | 
|  | DEBUGFUNC("e1000_read_kmrn_reg"); | 
|  |  | 
|  | if ((hw->mac_type == e1000_80003es2lan) && | 
|  | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 
|  | swfw = E1000_SWFW_PHY1_SM; | 
|  | } else { | 
|  | swfw = E1000_SWFW_PHY0_SM; | 
|  | } | 
|  | if (e1000_swfw_sync_acquire(hw, swfw)) | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  |  | 
|  | /* Write register address */ | 
|  | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & | 
|  | E1000_KUMCTRLSTA_OFFSET) | | 
|  | E1000_KUMCTRLSTA_REN; | 
|  | ew32(KUMCTRLSTA, reg_val); | 
|  | udelay(2); | 
|  |  | 
|  | /* Read the data returned */ | 
|  | reg_val = er32(KUMCTRLSTA); | 
|  | *data = (u16)reg_val; | 
|  |  | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | static s32 e1000_write_kmrn_reg(struct e1000_hw *hw, u32 reg_addr, u16 data) | 
|  | { | 
|  | u32 reg_val; | 
|  | u16 swfw; | 
|  | DEBUGFUNC("e1000_write_kmrn_reg"); | 
|  |  | 
|  | if ((hw->mac_type == e1000_80003es2lan) && | 
|  | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 
|  | swfw = E1000_SWFW_PHY1_SM; | 
|  | } else { | 
|  | swfw = E1000_SWFW_PHY0_SM; | 
|  | } | 
|  | if (e1000_swfw_sync_acquire(hw, swfw)) | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  |  | 
|  | reg_val = ((reg_addr << E1000_KUMCTRLSTA_OFFSET_SHIFT) & | 
|  | E1000_KUMCTRLSTA_OFFSET) | data; | 
|  | ew32(KUMCTRLSTA, reg_val); | 
|  | udelay(2); | 
|  |  | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Returns the PHY to the power-on reset state | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | s32 e1000_phy_hw_reset(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl, ctrl_ext; | 
|  | u32 led_ctrl; | 
|  | s32 ret_val; | 
|  | u16 swfw; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_hw_reset"); | 
|  |  | 
|  | /* In the case of the phy reset being blocked, it's not an error, we | 
|  | * simply return success without performing the reset. */ | 
|  | ret_val = e1000_check_phy_reset_block(hw); | 
|  | if (ret_val) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | DEBUGOUT("Resetting Phy...\n"); | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | if ((hw->mac_type == e1000_80003es2lan) && | 
|  | (er32(STATUS) & E1000_STATUS_FUNC_1)) { | 
|  | swfw = E1000_SWFW_PHY1_SM; | 
|  | } else { | 
|  | swfw = E1000_SWFW_PHY0_SM; | 
|  | } | 
|  | if (e1000_swfw_sync_acquire(hw, swfw)) { | 
|  | DEBUGOUT("Unable to acquire swfw sync\n"); | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  | } | 
|  | /* Read the device control register and assert the E1000_CTRL_PHY_RST | 
|  | * bit. Then, take it out of reset. | 
|  | * For pre-e1000_82571 hardware, we delay for 10ms between the assert | 
|  | * and deassert.  For e1000_82571 hardware and later, we instead delay | 
|  | * for 50us between and 10ms after the deassertion. | 
|  | */ | 
|  | ctrl = er32(CTRL); | 
|  | ew32(CTRL, ctrl | E1000_CTRL_PHY_RST); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | if (hw->mac_type < e1000_82571) | 
|  | msleep(10); | 
|  | else | 
|  | udelay(100); | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82571) | 
|  | mdelay(10); | 
|  |  | 
|  | e1000_swfw_sync_release(hw, swfw); | 
|  | } else { | 
|  | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 
|  | * bit to put the PHY into reset. Then, take it out of reset. | 
|  | */ | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | 
|  | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(); | 
|  | msleep(10); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | udelay(150); | 
|  |  | 
|  | if ((hw->mac_type == e1000_82541) || (hw->mac_type == e1000_82547)) { | 
|  | /* Configure activity LED after PHY reset */ | 
|  | led_ctrl = er32(LEDCTL); | 
|  | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | ew32(LEDCTL, led_ctrl); | 
|  | } | 
|  |  | 
|  | /* Wait for FW to finish PHY configuration. */ | 
|  | ret_val = e1000_get_phy_cfg_done(hw); | 
|  | if (ret_val != E1000_SUCCESS) | 
|  | return ret_val; | 
|  | e1000_release_software_semaphore(hw); | 
|  |  | 
|  | if ((hw->mac_type == e1000_ich8lan) && (hw->phy_type == e1000_phy_igp_3)) | 
|  | ret_val = e1000_init_lcd_from_nvm(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Resets the PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sets bit 15 of the MII Control register | 
|  | ******************************************************************************/ | 
|  | s32 e1000_phy_reset(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_reset"); | 
|  |  | 
|  | /* In the case of the phy reset being blocked, it's not an error, we | 
|  | * simply return success without performing the reset. */ | 
|  | ret_val = e1000_check_phy_reset_block(hw); | 
|  | if (ret_val) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | switch (hw->phy_type) { | 
|  | case e1000_phy_igp: | 
|  | case e1000_phy_igp_2: | 
|  | case e1000_phy_igp_3: | 
|  | case e1000_phy_ife: | 
|  | ret_val = e1000_phy_hw_reset(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | default: | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= MII_CR_RESET; | 
|  | ret_val = e1000_write_phy_reg(hw, PHY_CTRL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | udelay(1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_igp || hw->phy_type == e1000_phy_igp_2) | 
|  | e1000_phy_init_script(hw); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Work-around for 82566 power-down: on D3 entry- | 
|  | * 1) disable gigabit link | 
|  | * 2) write VR power-down enable | 
|  | * 3) read it back | 
|  | * if successful continue, else issue LCD reset and repeat | 
|  | * | 
|  | * hw - struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | void e1000_phy_powerdown_workaround(struct e1000_hw *hw) | 
|  | { | 
|  | s32 reg; | 
|  | u16 phy_data; | 
|  | s32 retry = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_powerdown_workaround"); | 
|  |  | 
|  | if (hw->phy_type != e1000_phy_igp_3) | 
|  | return; | 
|  |  | 
|  | do { | 
|  | /* Disable link */ | 
|  | reg = er32(PHY_CTRL); | 
|  | ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | 
|  | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | 
|  |  | 
|  | /* Write VR power-down enable - bits 9:8 should be 10b */ | 
|  | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | 
|  | phy_data |= (1 << 9); | 
|  | phy_data &= ~(1 << 8); | 
|  | e1000_write_phy_reg(hw, IGP3_VR_CTRL, phy_data); | 
|  |  | 
|  | /* Read it back and test */ | 
|  | e1000_read_phy_reg(hw, IGP3_VR_CTRL, &phy_data); | 
|  | if (((phy_data & IGP3_VR_CTRL_MODE_MASK) == IGP3_VR_CTRL_MODE_SHUT) || retry) | 
|  | break; | 
|  |  | 
|  | /* Issue PHY reset and repeat at most one more time */ | 
|  | reg = er32(CTRL); | 
|  | ew32(CTRL, reg | E1000_CTRL_PHY_RST); | 
|  | retry++; | 
|  | } while (retry); | 
|  |  | 
|  | return; | 
|  |  | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Work-around for 82566 Kumeran PCS lock loss: | 
|  | * On link status change (i.e. PCI reset, speed change) and link is up and | 
|  | * speed is gigabit- | 
|  | * 0) if workaround is optionally disabled do nothing | 
|  | * 1) wait 1ms for Kumeran link to come up | 
|  | * 2) check Kumeran Diagnostic register PCS lock loss bit | 
|  | * 3) if not set the link is locked (all is good), otherwise... | 
|  | * 4) reset the PHY | 
|  | * 5) repeat up to 10 times | 
|  | * Note: this is only called for IGP3 copper when speed is 1gb. | 
|  | * | 
|  | * hw - struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_kumeran_lock_loss_workaround(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | s32 reg; | 
|  | s32 cnt; | 
|  | u16 phy_data; | 
|  |  | 
|  | if (hw->kmrn_lock_loss_workaround_disabled) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Make sure link is up before proceeding.  If not just return. | 
|  | * Attempting this while link is negotiating fouled up link | 
|  | * stability */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  |  | 
|  | if (phy_data & MII_SR_LINK_STATUS) { | 
|  | for (cnt = 0; cnt < 10; cnt++) { | 
|  | /* read once to clear */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* and again to get new status */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP3_KMRN_DIAG, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* check for PCS lock */ | 
|  | if (!(phy_data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS)) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Issue PHY reset */ | 
|  | e1000_phy_hw_reset(hw); | 
|  | mdelay(5); | 
|  | } | 
|  | /* Disable GigE link negotiation */ | 
|  | reg = er32(PHY_CTRL); | 
|  | ew32(PHY_CTRL, reg | E1000_PHY_CTRL_GBE_DISABLE | | 
|  | E1000_PHY_CTRL_NOND0A_GBE_DISABLE); | 
|  |  | 
|  | /* unable to acquire PCS lock */ | 
|  | return E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Probes the expected PHY address for known PHY IDs | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_detect_gig_phy(struct e1000_hw *hw) | 
|  | { | 
|  | s32 phy_init_status, ret_val; | 
|  | u16 phy_id_high, phy_id_low; | 
|  | bool match = false; | 
|  |  | 
|  | DEBUGFUNC("e1000_detect_gig_phy"); | 
|  |  | 
|  | if (hw->phy_id != 0) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* The 82571 firmware may still be configuring the PHY.  In this | 
|  | * case, we cannot access the PHY until the configuration is done.  So | 
|  | * we explicitly set the PHY values. */ | 
|  | if (hw->mac_type == e1000_82571 || | 
|  | hw->mac_type == e1000_82572) { | 
|  | hw->phy_id = IGP01E1000_I_PHY_ID; | 
|  | hw->phy_type = e1000_phy_igp_2; | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* ESB-2 PHY reads require e1000_phy_gg82563 to be set because of a work- | 
|  | * around that forces PHY page 0 to be set or the reads fail.  The rest of | 
|  | * the code in this routine uses e1000_read_phy_reg to read the PHY ID. | 
|  | * So for ESB-2 we need to have this set so our reads won't fail.  If the | 
|  | * attached PHY is not a e1000_phy_gg82563, the routines below will figure | 
|  | * this out as well. */ | 
|  | if (hw->mac_type == e1000_80003es2lan) | 
|  | hw->phy_type = e1000_phy_gg82563; | 
|  |  | 
|  | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->phy_id = (u32)(phy_id_high << 16); | 
|  | udelay(20); | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->phy_id |= (u32)(phy_id_low & PHY_REVISION_MASK); | 
|  | hw->phy_revision = (u32)phy_id_low & ~PHY_REVISION_MASK; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82543: | 
|  | if (hw->phy_id == M88E1000_E_PHY_ID) match = true; | 
|  | break; | 
|  | case e1000_82544: | 
|  | if (hw->phy_id == M88E1000_I_PHY_ID) match = true; | 
|  | break; | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | if (hw->phy_id == M88E1011_I_PHY_ID) match = true; | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | if (hw->phy_id == IGP01E1000_I_PHY_ID) match = true; | 
|  | break; | 
|  | case e1000_82573: | 
|  | if (hw->phy_id == M88E1111_I_PHY_ID) match = true; | 
|  | break; | 
|  | case e1000_80003es2lan: | 
|  | if (hw->phy_id == GG82563_E_PHY_ID) match = true; | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | if (hw->phy_id == IGP03E1000_E_PHY_ID) match = true; | 
|  | if (hw->phy_id == IFE_E_PHY_ID) match = true; | 
|  | if (hw->phy_id == IFE_PLUS_E_PHY_ID) match = true; | 
|  | if (hw->phy_id == IFE_C_E_PHY_ID) match = true; | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT1("Invalid MAC type %d\n", hw->mac_type); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  | phy_init_status = e1000_set_phy_type(hw); | 
|  |  | 
|  | if ((match) && (phy_init_status == E1000_SUCCESS)) { | 
|  | DEBUGOUT1("PHY ID 0x%X detected\n", hw->phy_id); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | DEBUGOUT1("Invalid PHY ID 0x%X\n", hw->phy_id); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Resets the PHY's DSP | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_phy_reset_dsp(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | DEBUGFUNC("e1000_phy_reset_dsp"); | 
|  |  | 
|  | do { | 
|  | if (hw->phy_type != e1000_phy_gg82563) { | 
|  | ret_val = e1000_write_phy_reg(hw, 29, 0x001d); | 
|  | if (ret_val) break; | 
|  | } | 
|  | ret_val = e1000_write_phy_reg(hw, 30, 0x00c1); | 
|  | if (ret_val) break; | 
|  | ret_val = e1000_write_phy_reg(hw, 30, 0x0000); | 
|  | if (ret_val) break; | 
|  | ret_val = E1000_SUCCESS; | 
|  | } while (0); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Get PHY information from various PHY registers for igp PHY only. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * phy_info - PHY information structure | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_phy_igp_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data, min_length, max_length, average; | 
|  | e1000_rev_polarity polarity; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_igp_get_info"); | 
|  |  | 
|  | /* The downshift status is checked only once, after link is established, | 
|  | * and it stored in the hw->speed_downgraded parameter. */ | 
|  | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 
|  |  | 
|  | /* IGP01E1000 does not need to support it. */ | 
|  | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 
|  |  | 
|  | /* IGP01E1000 always correct polarity reversal */ | 
|  | phy_info->polarity_correction = e1000_polarity_reversal_enabled; | 
|  |  | 
|  | /* Check polarity status */ | 
|  | ret_val = e1000_check_polarity(hw, &polarity); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->cable_polarity = polarity; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & IGP01E1000_PSSR_MDIX) >> | 
|  | IGP01E1000_PSSR_MDIX_SHIFT); | 
|  |  | 
|  | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
|  | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|  | /* Local/Remote Receiver Information are only valid at 1000 Mbps */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 
|  | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | 
|  | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|  | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 
|  | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | 
|  | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|  |  | 
|  | /* Get cable length */ | 
|  | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Translate to old method */ | 
|  | average = (max_length + min_length) / 2; | 
|  |  | 
|  | if (average <= e1000_igp_cable_length_50) | 
|  | phy_info->cable_length = e1000_cable_length_50; | 
|  | else if (average <= e1000_igp_cable_length_80) | 
|  | phy_info->cable_length = e1000_cable_length_50_80; | 
|  | else if (average <= e1000_igp_cable_length_110) | 
|  | phy_info->cable_length = e1000_cable_length_80_110; | 
|  | else if (average <= e1000_igp_cable_length_140) | 
|  | phy_info->cable_length = e1000_cable_length_110_140; | 
|  | else | 
|  | phy_info->cable_length = e1000_cable_length_140; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Get PHY information from various PHY registers for ife PHY only. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * phy_info - PHY information structure | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_phy_ife_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | e1000_rev_polarity polarity; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_ife_get_info"); | 
|  |  | 
|  | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 
|  | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_normal; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_info->polarity_correction = | 
|  | ((phy_data & IFE_PSC_AUTO_POLARITY_DISABLE) >> | 
|  | IFE_PSC_AUTO_POLARITY_DISABLE_SHIFT) ? | 
|  | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | 
|  |  | 
|  | if (phy_info->polarity_correction == e1000_polarity_reversal_enabled) { | 
|  | ret_val = e1000_check_polarity(hw, &polarity); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | /* Polarity is forced. */ | 
|  | polarity = ((phy_data & IFE_PSC_FORCE_POLARITY) >> | 
|  | IFE_PSC_FORCE_POLARITY_SHIFT) ? | 
|  | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 
|  | } | 
|  | phy_info->cable_polarity = polarity; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, IFE_PHY_MDIX_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->mdix_mode = (e1000_auto_x_mode) | 
|  | ((phy_data & (IFE_PMC_AUTO_MDIX | IFE_PMC_FORCE_MDIX)) >> | 
|  | IFE_PMC_MDIX_MODE_SHIFT); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Get PHY information from various PHY registers fot m88 PHY only. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * phy_info - PHY information structure | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_phy_m88_get_info(struct e1000_hw *hw, | 
|  | struct e1000_phy_info *phy_info) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | e1000_rev_polarity polarity; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_m88_get_info"); | 
|  |  | 
|  | /* The downshift status is checked only once, after link is established, | 
|  | * and it stored in the hw->speed_downgraded parameter. */ | 
|  | phy_info->downshift = (e1000_downshift)hw->speed_downgraded; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->extended_10bt_distance = | 
|  | ((phy_data & M88E1000_PSCR_10BT_EXT_DIST_ENABLE) >> | 
|  | M88E1000_PSCR_10BT_EXT_DIST_ENABLE_SHIFT) ? | 
|  | e1000_10bt_ext_dist_enable_lower : e1000_10bt_ext_dist_enable_normal; | 
|  |  | 
|  | phy_info->polarity_correction = | 
|  | ((phy_data & M88E1000_PSCR_POLARITY_REVERSAL) >> | 
|  | M88E1000_PSCR_POLARITY_REVERSAL_SHIFT) ? | 
|  | e1000_polarity_reversal_disabled : e1000_polarity_reversal_enabled; | 
|  |  | 
|  | /* Check polarity status */ | 
|  | ret_val = e1000_check_polarity(hw, &polarity); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | phy_info->cable_polarity = polarity; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->mdix_mode = (e1000_auto_x_mode)((phy_data & M88E1000_PSSR_MDIX) >> | 
|  | M88E1000_PSSR_MDIX_SHIFT); | 
|  |  | 
|  | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) { | 
|  | /* Cable Length Estimation and Local/Remote Receiver Information | 
|  | * are only valid at 1000 Mbps. | 
|  | */ | 
|  | if (hw->phy_type != e1000_phy_gg82563) { | 
|  | phy_info->cable_length = (e1000_cable_length)((phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 
|  | M88E1000_PSSR_CABLE_LENGTH_SHIFT); | 
|  | } else { | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->cable_length = (e1000_cable_length)(phy_data & GG82563_DSPD_CABLE_LENGTH); | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_info->local_rx = ((phy_data & SR_1000T_LOCAL_RX_STATUS) >> | 
|  | SR_1000T_LOCAL_RX_STATUS_SHIFT) ? | 
|  | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|  | phy_info->remote_rx = ((phy_data & SR_1000T_REMOTE_RX_STATUS) >> | 
|  | SR_1000T_REMOTE_RX_STATUS_SHIFT) ? | 
|  | e1000_1000t_rx_status_ok : e1000_1000t_rx_status_not_ok; | 
|  |  | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Get PHY information from various PHY registers | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * phy_info - PHY information structure | 
|  | ******************************************************************************/ | 
|  | s32 e1000_phy_get_info(struct e1000_hw *hw, struct e1000_phy_info *phy_info) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_phy_get_info"); | 
|  |  | 
|  | phy_info->cable_length = e1000_cable_length_undefined; | 
|  | phy_info->extended_10bt_distance = e1000_10bt_ext_dist_enable_undefined; | 
|  | phy_info->cable_polarity = e1000_rev_polarity_undefined; | 
|  | phy_info->downshift = e1000_downshift_undefined; | 
|  | phy_info->polarity_correction = e1000_polarity_reversal_undefined; | 
|  | phy_info->mdix_mode = e1000_auto_x_mode_undefined; | 
|  | phy_info->local_rx = e1000_1000t_rx_status_undefined; | 
|  | phy_info->remote_rx = e1000_1000t_rx_status_undefined; | 
|  |  | 
|  | if (hw->media_type != e1000_media_type_copper) { | 
|  | DEBUGOUT("PHY info is only valid for copper media\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((phy_data & MII_SR_LINK_STATUS) != MII_SR_LINK_STATUS) { | 
|  | DEBUGOUT("PHY info is only valid if link is up\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_igp || | 
|  | hw->phy_type == e1000_phy_igp_3 || | 
|  | hw->phy_type == e1000_phy_igp_2) | 
|  | return e1000_phy_igp_get_info(hw, phy_info); | 
|  | else if (hw->phy_type == e1000_phy_ife) | 
|  | return e1000_phy_ife_get_info(hw, phy_info); | 
|  | else | 
|  | return e1000_phy_m88_get_info(hw, phy_info); | 
|  | } | 
|  |  | 
|  | s32 e1000_validate_mdi_setting(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_validate_mdi_settings"); | 
|  |  | 
|  | if (!hw->autoneg && (hw->mdix == 0 || hw->mdix == 3)) { | 
|  | DEBUGOUT("Invalid MDI setting detected\n"); | 
|  | hw->mdix = 1; | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Sets up eeprom variables in the hw struct.  Must be called after mac_type | 
|  | * is configured.  Additionally, if this is ICH8, the flash controller GbE | 
|  | * registers must be mapped, or this will crash. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_init_eeprom_params(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd = er32(EECD); | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  | u16 eeprom_size; | 
|  |  | 
|  | DEBUGFUNC("e1000_init_eeprom_params"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | eeprom->type = e1000_eeprom_microwire; | 
|  | eeprom->word_size = 64; | 
|  | eeprom->opcode_bits = 3; | 
|  | eeprom->address_bits = 6; | 
|  | eeprom->delay_usec = 50; | 
|  | eeprom->use_eerd = false; | 
|  | eeprom->use_eewr = false; | 
|  | break; | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | eeprom->type = e1000_eeprom_microwire; | 
|  | eeprom->opcode_bits = 3; | 
|  | eeprom->delay_usec = 50; | 
|  | if (eecd & E1000_EECD_SIZE) { | 
|  | eeprom->word_size = 256; | 
|  | eeprom->address_bits = 8; | 
|  | } else { | 
|  | eeprom->word_size = 64; | 
|  | eeprom->address_bits = 6; | 
|  | } | 
|  | eeprom->use_eerd = false; | 
|  | eeprom->use_eewr = false; | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547: | 
|  | case e1000_82547_rev_2: | 
|  | if (eecd & E1000_EECD_TYPE) { | 
|  | eeprom->type = e1000_eeprom_spi; | 
|  | eeprom->opcode_bits = 8; | 
|  | eeprom->delay_usec = 1; | 
|  | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | eeprom->page_size = 32; | 
|  | eeprom->address_bits = 16; | 
|  | } else { | 
|  | eeprom->page_size = 8; | 
|  | eeprom->address_bits = 8; | 
|  | } | 
|  | } else { | 
|  | eeprom->type = e1000_eeprom_microwire; | 
|  | eeprom->opcode_bits = 3; | 
|  | eeprom->delay_usec = 50; | 
|  | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | eeprom->word_size = 256; | 
|  | eeprom->address_bits = 8; | 
|  | } else { | 
|  | eeprom->word_size = 64; | 
|  | eeprom->address_bits = 6; | 
|  | } | 
|  | } | 
|  | eeprom->use_eerd = false; | 
|  | eeprom->use_eewr = false; | 
|  | break; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | eeprom->type = e1000_eeprom_spi; | 
|  | eeprom->opcode_bits = 8; | 
|  | eeprom->delay_usec = 1; | 
|  | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | eeprom->page_size = 32; | 
|  | eeprom->address_bits = 16; | 
|  | } else { | 
|  | eeprom->page_size = 8; | 
|  | eeprom->address_bits = 8; | 
|  | } | 
|  | eeprom->use_eerd = false; | 
|  | eeprom->use_eewr = false; | 
|  | break; | 
|  | case e1000_82573: | 
|  | eeprom->type = e1000_eeprom_spi; | 
|  | eeprom->opcode_bits = 8; | 
|  | eeprom->delay_usec = 1; | 
|  | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | eeprom->page_size = 32; | 
|  | eeprom->address_bits = 16; | 
|  | } else { | 
|  | eeprom->page_size = 8; | 
|  | eeprom->address_bits = 8; | 
|  | } | 
|  | eeprom->use_eerd = true; | 
|  | eeprom->use_eewr = true; | 
|  | if (!e1000_is_onboard_nvm_eeprom(hw)) { | 
|  | eeprom->type = e1000_eeprom_flash; | 
|  | eeprom->word_size = 2048; | 
|  |  | 
|  | /* Ensure that the Autonomous FLASH update bit is cleared due to | 
|  | * Flash update issue on parts which use a FLASH for NVM. */ | 
|  | eecd &= ~E1000_EECD_AUPDEN; | 
|  | ew32(EECD, eecd); | 
|  | } | 
|  | break; | 
|  | case e1000_80003es2lan: | 
|  | eeprom->type = e1000_eeprom_spi; | 
|  | eeprom->opcode_bits = 8; | 
|  | eeprom->delay_usec = 1; | 
|  | if (eecd & E1000_EECD_ADDR_BITS) { | 
|  | eeprom->page_size = 32; | 
|  | eeprom->address_bits = 16; | 
|  | } else { | 
|  | eeprom->page_size = 8; | 
|  | eeprom->address_bits = 8; | 
|  | } | 
|  | eeprom->use_eerd = true; | 
|  | eeprom->use_eewr = false; | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | { | 
|  | s32  i = 0; | 
|  | u32 flash_size = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_GFPREG); | 
|  |  | 
|  | eeprom->type = e1000_eeprom_ich8; | 
|  | eeprom->use_eerd = false; | 
|  | eeprom->use_eewr = false; | 
|  | eeprom->word_size = E1000_SHADOW_RAM_WORDS; | 
|  |  | 
|  | /* Zero the shadow RAM structure. But don't load it from NVM | 
|  | * so as to save time for driver init */ | 
|  | if (hw->eeprom_shadow_ram != NULL) { | 
|  | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | 
|  | hw->eeprom_shadow_ram[i].modified = false; | 
|  | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | 
|  | } | 
|  | } | 
|  |  | 
|  | hw->flash_base_addr = (flash_size & ICH_GFPREG_BASE_MASK) * | 
|  | ICH_FLASH_SECTOR_SIZE; | 
|  |  | 
|  | hw->flash_bank_size = ((flash_size >> 16) & ICH_GFPREG_BASE_MASK) + 1; | 
|  | hw->flash_bank_size -= (flash_size & ICH_GFPREG_BASE_MASK); | 
|  |  | 
|  | hw->flash_bank_size *= ICH_FLASH_SECTOR_SIZE; | 
|  |  | 
|  | hw->flash_bank_size /= 2 * sizeof(u16); | 
|  |  | 
|  | break; | 
|  | } | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_spi) { | 
|  | /* eeprom_size will be an enum [0..8] that maps to eeprom sizes 128B to | 
|  | * 32KB (incremented by powers of 2). | 
|  | */ | 
|  | if (hw->mac_type <= e1000_82547_rev_2) { | 
|  | /* Set to default value for initial eeprom read. */ | 
|  | eeprom->word_size = 64; | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_CFG, 1, &eeprom_size); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | eeprom_size = (eeprom_size & EEPROM_SIZE_MASK) >> EEPROM_SIZE_SHIFT; | 
|  | /* 256B eeprom size was not supported in earlier hardware, so we | 
|  | * bump eeprom_size up one to ensure that "1" (which maps to 256B) | 
|  | * is never the result used in the shifting logic below. */ | 
|  | if (eeprom_size) | 
|  | eeprom_size++; | 
|  | } else { | 
|  | eeprom_size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
|  | E1000_EECD_SIZE_EX_SHIFT); | 
|  | } | 
|  |  | 
|  | eeprom->word_size = 1 << (eeprom_size + EEPROM_WORD_SIZE_SHIFT); | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Raises the EEPROM's clock input. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * eecd - EECD's current value | 
|  | *****************************************************************************/ | 
|  | static void e1000_raise_ee_clk(struct e1000_hw *hw, u32 *eecd) | 
|  | { | 
|  | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | 
|  | * wait <delay> microseconds. | 
|  | */ | 
|  | *eecd = *eecd | E1000_EECD_SK; | 
|  | ew32(EECD, *eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(hw->eeprom.delay_usec); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Lowers the EEPROM's clock input. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * eecd - EECD's current value | 
|  | *****************************************************************************/ | 
|  | static void e1000_lower_ee_clk(struct e1000_hw *hw, u32 *eecd) | 
|  | { | 
|  | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | 
|  | * wait 50 microseconds. | 
|  | */ | 
|  | *eecd = *eecd & ~E1000_EECD_SK; | 
|  | ew32(EECD, *eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(hw->eeprom.delay_usec); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Shift data bits out to the EEPROM. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * data - data to send to the EEPROM | 
|  | * count - number of bits to shift out | 
|  | *****************************************************************************/ | 
|  | static void e1000_shift_out_ee_bits(struct e1000_hw *hw, u16 data, u16 count) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd; | 
|  | u32 mask; | 
|  |  | 
|  | /* We need to shift "count" bits out to the EEPROM. So, value in the | 
|  | * "data" parameter will be shifted out to the EEPROM one bit at a time. | 
|  | * In order to do this, "data" must be broken down into bits. | 
|  | */ | 
|  | mask = 0x01 << (count - 1); | 
|  | eecd = er32(EECD); | 
|  | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | eecd &= ~E1000_EECD_DO; | 
|  | } else if (eeprom->type == e1000_eeprom_spi) { | 
|  | eecd |= E1000_EECD_DO; | 
|  | } | 
|  | do { | 
|  | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | 
|  | * and then raising and then lowering the clock (the SK bit controls | 
|  | * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM | 
|  | * by setting "DI" to "0" and then raising and then lowering the clock. | 
|  | */ | 
|  | eecd &= ~E1000_EECD_DI; | 
|  |  | 
|  | if (data & mask) | 
|  | eecd |= E1000_EECD_DI; | 
|  |  | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  |  | 
|  | udelay(eeprom->delay_usec); | 
|  |  | 
|  | e1000_raise_ee_clk(hw, &eecd); | 
|  | e1000_lower_ee_clk(hw, &eecd); | 
|  |  | 
|  | mask = mask >> 1; | 
|  |  | 
|  | } while (mask); | 
|  |  | 
|  | /* We leave the "DI" bit set to "0" when we leave this routine. */ | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | ew32(EECD, eecd); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Shift data bits in from the EEPROM | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static u16 e1000_shift_in_ee_bits(struct e1000_hw *hw, u16 count) | 
|  | { | 
|  | u32 eecd; | 
|  | u32 i; | 
|  | u16 data; | 
|  |  | 
|  | /* In order to read a register from the EEPROM, we need to shift 'count' | 
|  | * bits in from the EEPROM. Bits are "shifted in" by raising the clock | 
|  | * input to the EEPROM (setting the SK bit), and then reading the value of | 
|  | * the "DO" bit.  During this "shifting in" process the "DI" bit should | 
|  | * always be clear. | 
|  | */ | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|  | data = 0; | 
|  |  | 
|  | for (i = 0; i < count; i++) { | 
|  | data = data << 1; | 
|  | e1000_raise_ee_clk(hw, &eecd); | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DI); | 
|  | if (eecd & E1000_EECD_DO) | 
|  | data |= 1; | 
|  |  | 
|  | e1000_lower_ee_clk(hw, &eecd); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Prepares EEPROM for access | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | 
|  | * function should be called before issuing a command to the EEPROM. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_acquire_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd, i=0; | 
|  |  | 
|  | DEBUGFUNC("e1000_acquire_eeprom"); | 
|  |  | 
|  | if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | if (hw->mac_type != e1000_82573) { | 
|  | /* Request EEPROM Access */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | eecd |= E1000_EECD_REQ; | 
|  | ew32(EECD, eecd); | 
|  | eecd = er32(EECD); | 
|  | while ((!(eecd & E1000_EECD_GNT)) && | 
|  | (i < E1000_EEPROM_GRANT_ATTEMPTS)) { | 
|  | i++; | 
|  | udelay(5); | 
|  | eecd = er32(EECD); | 
|  | } | 
|  | if (!(eecd & E1000_EECD_GNT)) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | ew32(EECD, eecd); | 
|  | DEBUGOUT("Could not acquire EEPROM grant\n"); | 
|  | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Setup EEPROM for Read/Write */ | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | /* Clear SK and DI */ | 
|  | eecd &= ~(E1000_EECD_DI | E1000_EECD_SK); | 
|  | ew32(EECD, eecd); | 
|  |  | 
|  | /* Set CS */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | } else if (eeprom->type == e1000_eeprom_spi) { | 
|  | /* Clear SK and CS */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | ew32(EECD, eecd); | 
|  | udelay(1); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Returns EEPROM to a "standby" state | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static void e1000_standby_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd; | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  |  | 
|  | /* Clock high */ | 
|  | eecd |= E1000_EECD_SK; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  |  | 
|  | /* Select EEPROM */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  |  | 
|  | /* Clock low */ | 
|  | eecd &= ~E1000_EECD_SK; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  | } else if (eeprom->type == e1000_eeprom_spi) { | 
|  | /* Toggle CS to flush commands */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  | eecd &= ~E1000_EECD_CS; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(eeprom->delay_usec); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Terminates a command by inverting the EEPROM's chip select pin | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static void e1000_release_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  |  | 
|  | DEBUGFUNC("e1000_release_eeprom"); | 
|  |  | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | if (hw->eeprom.type == e1000_eeprom_spi) { | 
|  | eecd |= E1000_EECD_CS;  /* Pull CS high */ | 
|  | eecd &= ~E1000_EECD_SK; /* Lower SCK */ | 
|  |  | 
|  | ew32(EECD, eecd); | 
|  |  | 
|  | udelay(hw->eeprom.delay_usec); | 
|  | } else if (hw->eeprom.type == e1000_eeprom_microwire) { | 
|  | /* cleanup eeprom */ | 
|  |  | 
|  | /* CS on Microwire is active-high */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 
|  |  | 
|  | ew32(EECD, eecd); | 
|  |  | 
|  | /* Rising edge of clock */ | 
|  | eecd |= E1000_EECD_SK; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(hw->eeprom.delay_usec); | 
|  |  | 
|  | /* Falling edge of clock */ | 
|  | eecd &= ~E1000_EECD_SK; | 
|  | ew32(EECD, eecd); | 
|  | E1000_WRITE_FLUSH(); | 
|  | udelay(hw->eeprom.delay_usec); | 
|  | } | 
|  |  | 
|  | /* Stop requesting EEPROM access */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | ew32(EECD, eecd); | 
|  | } | 
|  |  | 
|  | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads a 16 bit word from the EEPROM. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_spi_eeprom_ready(struct e1000_hw *hw) | 
|  | { | 
|  | u16 retry_count = 0; | 
|  | u8 spi_stat_reg; | 
|  |  | 
|  | DEBUGFUNC("e1000_spi_eeprom_ready"); | 
|  |  | 
|  | /* Read "Status Register" repeatedly until the LSB is cleared.  The | 
|  | * EEPROM will signal that the command has been completed by clearing | 
|  | * bit 0 of the internal status register.  If it's not cleared within | 
|  | * 5 milliseconds, then error out. | 
|  | */ | 
|  | retry_count = 0; | 
|  | do { | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_RDSR_OPCODE_SPI, | 
|  | hw->eeprom.opcode_bits); | 
|  | spi_stat_reg = (u8)e1000_shift_in_ee_bits(hw, 8); | 
|  | if (!(spi_stat_reg & EEPROM_STATUS_RDY_SPI)) | 
|  | break; | 
|  |  | 
|  | udelay(5); | 
|  | retry_count += 5; | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  | } while (retry_count < EEPROM_MAX_RETRY_SPI); | 
|  |  | 
|  | /* ATMEL SPI write time could vary from 0-20mSec on 3.3V devices (and | 
|  | * only 0-5mSec on 5V devices) | 
|  | */ | 
|  | if (retry_count >= EEPROM_MAX_RETRY_SPI) { | 
|  | DEBUGOUT("SPI EEPROM Status error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads a 16 bit word from the EEPROM. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset of  word in the EEPROM to read | 
|  | * data - word read from the EEPROM | 
|  | * words - number of words to read | 
|  | *****************************************************************************/ | 
|  | s32 e1000_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | s32 ret; | 
|  | spin_lock(&e1000_eeprom_lock); | 
|  | ret = e1000_do_read_eeprom(hw, offset, words, data); | 
|  | spin_unlock(&e1000_eeprom_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static s32 e1000_do_read_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 i = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_eeprom"); | 
|  |  | 
|  | /* If eeprom is not yet detected, do so now */ | 
|  | if (eeprom->word_size == 0) | 
|  | e1000_init_eeprom_params(hw); | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, and not | 
|  | * enough words. | 
|  | */ | 
|  | if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 
|  | (words == 0)) { | 
|  | DEBUGOUT2("\"words\" parameter out of bounds. Words = %d, size = %d\n", offset, eeprom->word_size); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* EEPROM's that don't use EERD to read require us to bit-bang the SPI | 
|  | * directly. In this case, we need to acquire the EEPROM so that | 
|  | * FW or other port software does not interrupt. | 
|  | */ | 
|  | if (e1000_is_onboard_nvm_eeprom(hw) && !hw->eeprom.use_eerd) { | 
|  | /* Prepare the EEPROM for bit-bang reading */ | 
|  | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* Eerd register EEPROM access requires no eeprom aquire/release */ | 
|  | if (eeprom->use_eerd) | 
|  | return e1000_read_eeprom_eerd(hw, offset, words, data); | 
|  |  | 
|  | /* ICH EEPROM access is done via the ICH flash controller */ | 
|  | if (eeprom->type == e1000_eeprom_ich8) | 
|  | return e1000_read_eeprom_ich8(hw, offset, words, data); | 
|  |  | 
|  | /* Set up the SPI or Microwire EEPROM for bit-bang reading.  We have | 
|  | * acquired the EEPROM at this point, so any returns should relase it */ | 
|  | if (eeprom->type == e1000_eeprom_spi) { | 
|  | u16 word_in; | 
|  | u8 read_opcode = EEPROM_READ_OPCODE_SPI; | 
|  |  | 
|  | if (e1000_spi_eeprom_ready(hw)) { | 
|  | e1000_release_eeprom(hw); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 
|  | if ((eeprom->address_bits == 8) && (offset >= 128)) | 
|  | read_opcode |= EEPROM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the READ command (opcode + addr)  */ | 
|  | e1000_shift_out_ee_bits(hw, read_opcode, eeprom->opcode_bits); | 
|  | e1000_shift_out_ee_bits(hw, (u16)(offset*2), eeprom->address_bits); | 
|  |  | 
|  | /* Read the data.  The address of the eeprom internally increments with | 
|  | * each byte (spi) being read, saving on the overhead of eeprom setup | 
|  | * and tear-down.  The address counter will roll over if reading beyond | 
|  | * the size of the eeprom, thus allowing the entire memory to be read | 
|  | * starting from any offset. */ | 
|  | for (i = 0; i < words; i++) { | 
|  | word_in = e1000_shift_in_ee_bits(hw, 16); | 
|  | data[i] = (word_in >> 8) | (word_in << 8); | 
|  | } | 
|  | } else if (eeprom->type == e1000_eeprom_microwire) { | 
|  | for (i = 0; i < words; i++) { | 
|  | /* Send the READ command (opcode + addr)  */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE_MICROWIRE, | 
|  | eeprom->opcode_bits); | 
|  | e1000_shift_out_ee_bits(hw, (u16)(offset + i), | 
|  | eeprom->address_bits); | 
|  |  | 
|  | /* Read the data.  For microwire, each word requires the overhead | 
|  | * of eeprom setup and tear-down. */ | 
|  | data[i] = e1000_shift_in_ee_bits(hw, 16); | 
|  | e1000_standby_eeprom(hw); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* End this read operation */ | 
|  | e1000_release_eeprom(hw); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads a 16 bit word from the EEPROM using the EERD register. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset of  word in the EEPROM to read | 
|  | * data - word read from the EEPROM | 
|  | * words - number of words to read | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_read_eeprom_eerd(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | u32 i, eerd = 0; | 
|  | s32 error = 0; | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | eerd = ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) + | 
|  | E1000_EEPROM_RW_REG_START; | 
|  |  | 
|  | ew32(EERD, eerd); | 
|  | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_READ); | 
|  |  | 
|  | if (error) { | 
|  | break; | 
|  | } | 
|  | data[i] = (er32(EERD) >> E1000_EEPROM_RW_REG_DATA); | 
|  |  | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a 16 bit word from the EEPROM using the EEWR register. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset of  word in the EEPROM to read | 
|  | * data - word read from the EEPROM | 
|  | * words - number of words to read | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_write_eeprom_eewr(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | u32    register_value = 0; | 
|  | u32    i              = 0; | 
|  | s32     error          = 0; | 
|  |  | 
|  | if (e1000_swfw_sync_acquire(hw, E1000_SWFW_EEP_SM)) | 
|  | return -E1000_ERR_SWFW_SYNC; | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | register_value = (data[i] << E1000_EEPROM_RW_REG_DATA) | | 
|  | ((offset+i) << E1000_EEPROM_RW_ADDR_SHIFT) | | 
|  | E1000_EEPROM_RW_REG_START; | 
|  |  | 
|  | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | 
|  | if (error) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(EEWR, register_value); | 
|  |  | 
|  | error = e1000_poll_eerd_eewr_done(hw, E1000_EEPROM_POLL_WRITE); | 
|  |  | 
|  | if (error) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | e1000_swfw_sync_release(hw, E1000_SWFW_EEP_SM); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Polls the status bit (bit 1) of the EERD to determine when the read is done. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_poll_eerd_eewr_done(struct e1000_hw *hw, int eerd) | 
|  | { | 
|  | u32 attempts = 100000; | 
|  | u32 i, reg = 0; | 
|  | s32 done = E1000_ERR_EEPROM; | 
|  |  | 
|  | for (i = 0; i < attempts; i++) { | 
|  | if (eerd == E1000_EEPROM_POLL_READ) | 
|  | reg = er32(EERD); | 
|  | else | 
|  | reg = er32(EEWR); | 
|  |  | 
|  | if (reg & E1000_EEPROM_RW_REG_DONE) { | 
|  | done = E1000_SUCCESS; | 
|  | break; | 
|  | } | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | return done; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Description:     Determines if the onboard NVM is FLASH or EEPROM. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ****************************************************************************/ | 
|  | static bool e1000_is_onboard_nvm_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_is_onboard_nvm_eeprom"); | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | return false; | 
|  |  | 
|  | if (hw->mac_type == e1000_82573) { | 
|  | eecd = er32(EECD); | 
|  |  | 
|  | /* Isolate bits 15 & 16 */ | 
|  | eecd = ((eecd >> 15) & 0x03); | 
|  |  | 
|  | /* If both bits are set, device is Flash type */ | 
|  | if (eecd == 0x03) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Verifies that the EEPROM has a valid checksum | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | 
|  | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | 
|  | * valid. | 
|  | *****************************************************************************/ | 
|  | s32 e1000_validate_eeprom_checksum(struct e1000_hw *hw) | 
|  | { | 
|  | u16 checksum = 0; | 
|  | u16 i, eeprom_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_validate_eeprom_checksum"); | 
|  |  | 
|  | if ((hw->mac_type == e1000_82573) && !e1000_is_onboard_nvm_eeprom(hw)) { | 
|  | /* Check bit 4 of word 10h.  If it is 0, firmware is done updating | 
|  | * 10h-12h.  Checksum may need to be fixed. */ | 
|  | e1000_read_eeprom(hw, 0x10, 1, &eeprom_data); | 
|  | if ((eeprom_data & 0x10) == 0) { | 
|  | /* Read 0x23 and check bit 15.  This bit is a 1 when the checksum | 
|  | * has already been fixed.  If the checksum is still wrong and this | 
|  | * bit is a 1, we need to return bad checksum.  Otherwise, we need | 
|  | * to set this bit to a 1 and update the checksum. */ | 
|  | e1000_read_eeprom(hw, 0x23, 1, &eeprom_data); | 
|  | if ((eeprom_data & 0x8000) == 0) { | 
|  | eeprom_data |= 0x8000; | 
|  | e1000_write_eeprom(hw, 0x23, 1, &eeprom_data); | 
|  | e1000_update_eeprom_checksum(hw); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | /* Drivers must allocate the shadow ram structure for the | 
|  | * EEPROM checksum to be updated.  Otherwise, this bit as well | 
|  | * as the checksum must both be set correctly for this | 
|  | * validation to pass. | 
|  | */ | 
|  | e1000_read_eeprom(hw, 0x19, 1, &eeprom_data); | 
|  | if ((eeprom_data & 0x40) == 0) { | 
|  | eeprom_data |= 0x40; | 
|  | e1000_write_eeprom(hw, 0x19, 1, &eeprom_data); | 
|  | e1000_update_eeprom_checksum(hw); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 
|  | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | checksum += eeprom_data; | 
|  | } | 
|  |  | 
|  | if (checksum == (u16)EEPROM_SUM) | 
|  | return E1000_SUCCESS; | 
|  | else { | 
|  | DEBUGOUT("EEPROM Checksum Invalid\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Calculates the EEPROM checksum and writes it to the EEPROM | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sums the first 63 16 bit words of the EEPROM. Subtracts the sum from 0xBABA. | 
|  | * Writes the difference to word offset 63 of the EEPROM. | 
|  | *****************************************************************************/ | 
|  | s32 e1000_update_eeprom_checksum(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl_ext; | 
|  | u16 checksum = 0; | 
|  | u16 i, eeprom_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_update_eeprom_checksum"); | 
|  |  | 
|  | for (i = 0; i < EEPROM_CHECKSUM_REG; i++) { | 
|  | if (e1000_read_eeprom(hw, i, 1, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | checksum += eeprom_data; | 
|  | } | 
|  | checksum = (u16)EEPROM_SUM - checksum; | 
|  | if (e1000_write_eeprom(hw, EEPROM_CHECKSUM_REG, 1, &checksum) < 0) { | 
|  | DEBUGOUT("EEPROM Write Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } else if (hw->eeprom.type == e1000_eeprom_flash) { | 
|  | e1000_commit_shadow_ram(hw); | 
|  | } else if (hw->eeprom.type == e1000_eeprom_ich8) { | 
|  | e1000_commit_shadow_ram(hw); | 
|  | /* Reload the EEPROM, or else modifications will not appear | 
|  | * until after next adapter reset. */ | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | msleep(10); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Parent function for writing words to the different EEPROM types. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset within the EEPROM to be written to | 
|  | * words - number of words to write | 
|  | * data - 16 bit word to be written to the EEPROM | 
|  | * | 
|  | * If e1000_update_eeprom_checksum is not called after this function, the | 
|  | * EEPROM will most likely contain an invalid checksum. | 
|  | *****************************************************************************/ | 
|  | s32 e1000_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | s32 ret; | 
|  | spin_lock(&e1000_eeprom_lock); | 
|  | ret = e1000_do_write_eeprom(hw, offset, words, data); | 
|  | spin_unlock(&e1000_eeprom_lock); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static s32 e1000_do_write_eeprom(struct e1000_hw *hw, u16 offset, u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | s32 status = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_eeprom"); | 
|  |  | 
|  | /* If eeprom is not yet detected, do so now */ | 
|  | if (eeprom->word_size == 0) | 
|  | e1000_init_eeprom_params(hw); | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, and not | 
|  | * enough words. | 
|  | */ | 
|  | if ((offset >= eeprom->word_size) || (words > eeprom->word_size - offset) || | 
|  | (words == 0)) { | 
|  | DEBUGOUT("\"words\" parameter out of bounds\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* 82573 writes only through eewr */ | 
|  | if (eeprom->use_eewr) | 
|  | return e1000_write_eeprom_eewr(hw, offset, words, data); | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_ich8) | 
|  | return e1000_write_eeprom_ich8(hw, offset, words, data); | 
|  |  | 
|  | /* Prepare the EEPROM for writing  */ | 
|  | if (e1000_acquire_eeprom(hw) != E1000_SUCCESS) | 
|  | return -E1000_ERR_EEPROM; | 
|  |  | 
|  | if (eeprom->type == e1000_eeprom_microwire) { | 
|  | status = e1000_write_eeprom_microwire(hw, offset, words, data); | 
|  | } else { | 
|  | status = e1000_write_eeprom_spi(hw, offset, words, data); | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | /* Done with writing */ | 
|  | e1000_release_eeprom(hw); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a 16 bit word to a given offset in an SPI EEPROM. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset within the EEPROM to be written to | 
|  | * words - number of words to write | 
|  | * data - pointer to array of 8 bit words to be written to the EEPROM | 
|  | * | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_write_eeprom_spi(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u16 widx = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_eeprom_spi"); | 
|  |  | 
|  | while (widx < words) { | 
|  | u8 write_opcode = EEPROM_WRITE_OPCODE_SPI; | 
|  |  | 
|  | if (e1000_spi_eeprom_ready(hw)) return -E1000_ERR_EEPROM; | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /*  Send the WRITE ENABLE command (8 bit opcode )  */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_WREN_OPCODE_SPI, | 
|  | eeprom->opcode_bits); | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /* Some SPI eeproms use the 8th address bit embedded in the opcode */ | 
|  | if ((eeprom->address_bits == 8) && (offset >= 128)) | 
|  | write_opcode |= EEPROM_A8_OPCODE_SPI; | 
|  |  | 
|  | /* Send the Write command (8-bit opcode + addr) */ | 
|  | e1000_shift_out_ee_bits(hw, write_opcode, eeprom->opcode_bits); | 
|  |  | 
|  | e1000_shift_out_ee_bits(hw, (u16)((offset + widx)*2), | 
|  | eeprom->address_bits); | 
|  |  | 
|  | /* Send the data */ | 
|  |  | 
|  | /* Loop to allow for up to whole page write (32 bytes) of eeprom */ | 
|  | while (widx < words) { | 
|  | u16 word_out = data[widx]; | 
|  | word_out = (word_out >> 8) | (word_out << 8); | 
|  | e1000_shift_out_ee_bits(hw, word_out, 16); | 
|  | widx++; | 
|  |  | 
|  | /* Some larger eeprom sizes are capable of a 32-byte PAGE WRITE | 
|  | * operation, while the smaller eeproms are capable of an 8-byte | 
|  | * PAGE WRITE operation.  Break the inner loop to pass new address | 
|  | */ | 
|  | if ((((offset + widx)*2) % eeprom->page_size) == 0) { | 
|  | e1000_standby_eeprom(hw); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a 16 bit word to a given offset in a Microwire EEPROM. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset within the EEPROM to be written to | 
|  | * words - number of words to write | 
|  | * data - pointer to array of 16 bit words to be written to the EEPROM | 
|  | * | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_write_eeprom_microwire(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_eeprom_info *eeprom = &hw->eeprom; | 
|  | u32 eecd; | 
|  | u16 words_written = 0; | 
|  | u16 i = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_eeprom_microwire"); | 
|  |  | 
|  | /* Send the write enable command to the EEPROM (3-bit opcode plus | 
|  | * 6/8-bit dummy address beginning with 11).  It's less work to include | 
|  | * the 11 of the dummy address as part of the opcode than it is to shift | 
|  | * it over the correct number of bits for the address.  This puts the | 
|  | * EEPROM into write/erase mode. | 
|  | */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE_MICROWIRE, | 
|  | (u16)(eeprom->opcode_bits + 2)); | 
|  |  | 
|  | e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); | 
|  |  | 
|  | /* Prepare the EEPROM */ | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | while (words_written < words) { | 
|  | /* Send the Write command (3-bit opcode + addr) */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE_MICROWIRE, | 
|  | eeprom->opcode_bits); | 
|  |  | 
|  | e1000_shift_out_ee_bits(hw, (u16)(offset + words_written), | 
|  | eeprom->address_bits); | 
|  |  | 
|  | /* Send the data */ | 
|  | e1000_shift_out_ee_bits(hw, data[words_written], 16); | 
|  |  | 
|  | /* Toggle the CS line.  This in effect tells the EEPROM to execute | 
|  | * the previous command. | 
|  | */ | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /* Read DO repeatedly until it is high (equal to '1').  The EEPROM will | 
|  | * signal that the command has been completed by raising the DO signal. | 
|  | * If DO does not go high in 10 milliseconds, then error out. | 
|  | */ | 
|  | for (i = 0; i < 200; i++) { | 
|  | eecd = er32(EECD); | 
|  | if (eecd & E1000_EECD_DO) break; | 
|  | udelay(50); | 
|  | } | 
|  | if (i == 200) { | 
|  | DEBUGOUT("EEPROM Write did not complete\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* Recover from write */ | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | words_written++; | 
|  | } | 
|  |  | 
|  | /* Send the write disable command to the EEPROM (3-bit opcode plus | 
|  | * 6/8-bit dummy address beginning with 10).  It's less work to include | 
|  | * the 10 of the dummy address as part of the opcode than it is to shift | 
|  | * it over the correct number of bits for the address.  This takes the | 
|  | * EEPROM out of write/erase mode. | 
|  | */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE_MICROWIRE, | 
|  | (u16)(eeprom->opcode_bits + 2)); | 
|  |  | 
|  | e1000_shift_out_ee_bits(hw, 0, (u16)(eeprom->address_bits - 2)); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Flushes the cached eeprom to NVM. This is done by saving the modified values | 
|  | * in the eeprom cache and the non modified values in the currently active bank | 
|  | * to the new bank. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset of  word in the EEPROM to read | 
|  | * data - word read from the EEPROM | 
|  | * words - number of words to read | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_commit_shadow_ram(struct e1000_hw *hw) | 
|  | { | 
|  | u32 attempts = 100000; | 
|  | u32 eecd = 0; | 
|  | u32 flop = 0; | 
|  | u32 i = 0; | 
|  | s32 error = E1000_SUCCESS; | 
|  | u32 old_bank_offset = 0; | 
|  | u32 new_bank_offset = 0; | 
|  | u8 low_byte = 0; | 
|  | u8 high_byte = 0; | 
|  | bool sector_write_failed = false; | 
|  |  | 
|  | if (hw->mac_type == e1000_82573) { | 
|  | /* The flop register will be used to determine if flash type is STM */ | 
|  | flop = er32(FLOP); | 
|  | for (i=0; i < attempts; i++) { | 
|  | eecd = er32(EECD); | 
|  | if ((eecd & E1000_EECD_FLUPD) == 0) { | 
|  | break; | 
|  | } | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | if (i == attempts) { | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* If STM opcode located in bits 15:8 of flop, reset firmware */ | 
|  | if ((flop & 0xFF00) == E1000_STM_OPCODE) { | 
|  | ew32(HICR, E1000_HICR_FW_RESET); | 
|  | } | 
|  |  | 
|  | /* Perform the flash update */ | 
|  | ew32(EECD, eecd | E1000_EECD_FLUPD); | 
|  |  | 
|  | for (i=0; i < attempts; i++) { | 
|  | eecd = er32(EECD); | 
|  | if ((eecd & E1000_EECD_FLUPD) == 0) { | 
|  | break; | 
|  | } | 
|  | udelay(5); | 
|  | } | 
|  |  | 
|  | if (i == attempts) { | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan && hw->eeprom_shadow_ram != NULL) { | 
|  | /* We're writing to the opposite bank so if we're on bank 1, | 
|  | * write to bank 0 etc.  We also need to erase the segment that | 
|  | * is going to be written */ | 
|  | if (!(er32(EECD) & E1000_EECD_SEC1VAL)) { | 
|  | new_bank_offset = hw->flash_bank_size * 2; | 
|  | old_bank_offset = 0; | 
|  | e1000_erase_ich8_4k_segment(hw, 1); | 
|  | } else { | 
|  | old_bank_offset = hw->flash_bank_size * 2; | 
|  | new_bank_offset = 0; | 
|  | e1000_erase_ich8_4k_segment(hw, 0); | 
|  | } | 
|  |  | 
|  | sector_write_failed = false; | 
|  | /* Loop for every byte in the shadow RAM, | 
|  | * which is in units of words. */ | 
|  | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | 
|  | /* Determine whether to write the value stored | 
|  | * in the other NVM bank or a modified value stored | 
|  | * in the shadow RAM */ | 
|  | if (hw->eeprom_shadow_ram[i].modified) { | 
|  | low_byte = (u8)hw->eeprom_shadow_ram[i].eeprom_word; | 
|  | udelay(100); | 
|  | error = e1000_verify_write_ich8_byte(hw, | 
|  | (i << 1) + new_bank_offset, low_byte); | 
|  |  | 
|  | if (error != E1000_SUCCESS) | 
|  | sector_write_failed = true; | 
|  | else { | 
|  | high_byte = | 
|  | (u8)(hw->eeprom_shadow_ram[i].eeprom_word >> 8); | 
|  | udelay(100); | 
|  | } | 
|  | } else { | 
|  | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset, | 
|  | &low_byte); | 
|  | udelay(100); | 
|  | error = e1000_verify_write_ich8_byte(hw, | 
|  | (i << 1) + new_bank_offset, low_byte); | 
|  |  | 
|  | if (error != E1000_SUCCESS) | 
|  | sector_write_failed = true; | 
|  | else { | 
|  | e1000_read_ich8_byte(hw, (i << 1) + old_bank_offset + 1, | 
|  | &high_byte); | 
|  | udelay(100); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If the write of the low byte was successful, go ahead and | 
|  | * write the high byte while checking to make sure that if it | 
|  | * is the signature byte, then it is handled properly */ | 
|  | if (!sector_write_failed) { | 
|  | /* If the word is 0x13, then make sure the signature bits | 
|  | * (15:14) are 11b until the commit has completed. | 
|  | * This will allow us to write 10b which indicates the | 
|  | * signature is valid.  We want to do this after the write | 
|  | * has completed so that we don't mark the segment valid | 
|  | * while the write is still in progress */ | 
|  | if (i == E1000_ICH_NVM_SIG_WORD) | 
|  | high_byte = E1000_ICH_NVM_SIG_MASK | high_byte; | 
|  |  | 
|  | error = e1000_verify_write_ich8_byte(hw, | 
|  | (i << 1) + new_bank_offset + 1, high_byte); | 
|  | if (error != E1000_SUCCESS) | 
|  | sector_write_failed = true; | 
|  |  | 
|  | } else { | 
|  | /* If the write failed then break from the loop and | 
|  | * return an error */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Don't bother writing the segment valid bits if sector | 
|  | * programming failed. */ | 
|  | if (!sector_write_failed) { | 
|  | /* Finally validate the new segment by setting bit 15:14 | 
|  | * to 10b in word 0x13 , this can be done without an | 
|  | * erase as well since these bits are 11 to start with | 
|  | * and we need to change bit 14 to 0b */ | 
|  | e1000_read_ich8_byte(hw, | 
|  | E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, | 
|  | &high_byte); | 
|  | high_byte &= 0xBF; | 
|  | error = e1000_verify_write_ich8_byte(hw, | 
|  | E1000_ICH_NVM_SIG_WORD * 2 + 1 + new_bank_offset, high_byte); | 
|  | /* And invalidate the previously valid segment by setting | 
|  | * its signature word (0x13) high_byte to 0b. This can be | 
|  | * done without an erase because flash erase sets all bits | 
|  | * to 1's. We can write 1's to 0's without an erase */ | 
|  | if (error == E1000_SUCCESS) { | 
|  | error = e1000_verify_write_ich8_byte(hw, | 
|  | E1000_ICH_NVM_SIG_WORD * 2 + 1 + old_bank_offset, 0); | 
|  | } | 
|  |  | 
|  | /* Clear the now not used entry in the cache */ | 
|  | for (i = 0; i < E1000_SHADOW_RAM_WORDS; i++) { | 
|  | hw->eeprom_shadow_ram[i].modified = false; | 
|  | hw->eeprom_shadow_ram[i].eeprom_word = 0xFFFF; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 
|  | * second function of dual function devices | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_read_mac_addr(struct e1000_hw *hw) | 
|  | { | 
|  | u16 offset; | 
|  | u16 eeprom_data, i; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_mac_addr"); | 
|  |  | 
|  | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | 
|  | offset = i >> 1; | 
|  | if (e1000_read_eeprom(hw, offset, 1, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | hw->perm_mac_addr[i] = (u8)(eeprom_data & 0x00FF); | 
|  | hw->perm_mac_addr[i+1] = (u8)(eeprom_data >> 8); | 
|  | } | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | default: | 
|  | break; | 
|  | case e1000_82546: | 
|  | case e1000_82546_rev_3: | 
|  | case e1000_82571: | 
|  | case e1000_80003es2lan: | 
|  | if (er32(STATUS) & E1000_STATUS_FUNC_1) | 
|  | hw->perm_mac_addr[5] ^= 0x01; | 
|  | break; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < NODE_ADDRESS_SIZE; i++) | 
|  | hw->mac_addr[i] = hw->perm_mac_addr[i]; | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Initializes receive address filters. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Places the MAC address in receive address register 0 and clears the rest | 
|  | * of the receive addresss registers. Clears the multicast table. Assumes | 
|  | * the receiver is in reset when the routine is called. | 
|  | *****************************************************************************/ | 
|  | static void e1000_init_rx_addrs(struct e1000_hw *hw) | 
|  | { | 
|  | u32 i; | 
|  | u32 rar_num; | 
|  |  | 
|  | DEBUGFUNC("e1000_init_rx_addrs"); | 
|  |  | 
|  | /* Setup the receive address. */ | 
|  | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | 
|  |  | 
|  | e1000_rar_set(hw, hw->mac_addr, 0); | 
|  |  | 
|  | rar_num = E1000_RAR_ENTRIES; | 
|  |  | 
|  | /* Reserve a spot for the Locally Administered Address to work around | 
|  | * an 82571 issue in which a reset on one port will reload the MAC on | 
|  | * the other port. */ | 
|  | if ((hw->mac_type == e1000_82571) && (hw->laa_is_present)) | 
|  | rar_num -= 1; | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | rar_num = E1000_RAR_ENTRIES_ICH8LAN; | 
|  |  | 
|  | /* Zero out the other 15 receive addresses. */ | 
|  | DEBUGOUT("Clearing RAR[1-15]\n"); | 
|  | for (i = 1; i < rar_num; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Hashes an address to determine its location in the multicast table | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * mc_addr - the multicast address to hash | 
|  | *****************************************************************************/ | 
|  | u32 e1000_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 hash_value = 0; | 
|  |  | 
|  | /* The portion of the address that is used for the hash table is | 
|  | * determined by the mc_filter_type setting. | 
|  | */ | 
|  | switch (hw->mc_filter_type) { | 
|  | /* [0] [1] [2] [3] [4] [5] | 
|  | * 01  AA  00  12  34  56 | 
|  | * LSB                 MSB | 
|  | */ | 
|  | case 0: | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | /* [47:38] i.e. 0x158 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 6) | (((u16)mc_addr[5]) << 2)); | 
|  | } else { | 
|  | /* [47:36] i.e. 0x563 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | 
|  | } | 
|  | break; | 
|  | case 1: | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | /* [46:37] i.e. 0x2B1 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 5) | (((u16)mc_addr[5]) << 3)); | 
|  | } else { | 
|  | /* [46:35] i.e. 0xAC6 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5)); | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | /*[45:36] i.e. 0x163 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4)); | 
|  | } else { | 
|  | /* [45:34] i.e. 0x5D8 for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | 
|  | } | 
|  | break; | 
|  | case 3: | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | /* [43:34] i.e. 0x18D for above example address */ | 
|  | hash_value = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6)); | 
|  | } else { | 
|  | /* [43:32] i.e. 0x634 for above example address */ | 
|  | hash_value = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8)); | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | hash_value &= 0xFFF; | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | hash_value &= 0x3FF; | 
|  |  | 
|  | return hash_value; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Puts an ethernet address into a receive address register. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * addr - Address to put into receive address register | 
|  | * index - Receive address register to write | 
|  | *****************************************************************************/ | 
|  | void e1000_rar_set(struct e1000_hw *hw, u8 *addr, u32 index) | 
|  | { | 
|  | u32 rar_low, rar_high; | 
|  |  | 
|  | /* HW expects these in little endian so we reverse the byte order | 
|  | * from network order (big endian) to little endian | 
|  | */ | 
|  | rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) | | 
|  | ((u32)addr[2] << 16) | ((u32)addr[3] << 24)); | 
|  | rar_high = ((u32)addr[4] | ((u32)addr[5] << 8)); | 
|  |  | 
|  | /* Disable Rx and flush all Rx frames before enabling RSS to avoid Rx | 
|  | * unit hang. | 
|  | * | 
|  | * Description: | 
|  | * If there are any Rx frames queued up or otherwise present in the HW | 
|  | * before RSS is enabled, and then we enable RSS, the HW Rx unit will | 
|  | * hang.  To work around this issue, we have to disable receives and | 
|  | * flush out all Rx frames before we enable RSS. To do so, we modify we | 
|  | * redirect all Rx traffic to manageability and then reset the HW. | 
|  | * This flushes away Rx frames, and (since the redirections to | 
|  | * manageability persists across resets) keeps new ones from coming in | 
|  | * while we work.  Then, we clear the Address Valid AV bit for all MAC | 
|  | * addresses and undo the re-direction to manageability. | 
|  | * Now, frames are coming in again, but the MAC won't accept them, so | 
|  | * far so good.  We now proceed to initialize RSS (if necessary) and | 
|  | * configure the Rx unit.  Last, we re-enable the AV bits and continue | 
|  | * on our merry way. | 
|  | */ | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_80003es2lan: | 
|  | if (hw->leave_av_bit_off) | 
|  | break; | 
|  | default: | 
|  | /* Indicate to hardware the Address is Valid. */ | 
|  | rar_high |= E1000_RAH_AV; | 
|  | break; | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, (index << 1), rar_low); | 
|  | E1000_WRITE_FLUSH(); | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, ((index << 1) + 1), rar_high); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a value to the specified offset in the VLAN filter table. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - Offset in VLAN filer table to write | 
|  | * value - Value to write into VLAN filter table | 
|  | *****************************************************************************/ | 
|  | void e1000_write_vfta(struct e1000_hw *hw, u32 offset, u32 value) | 
|  | { | 
|  | u32 temp; | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | return; | 
|  |  | 
|  | if ((hw->mac_type == e1000_82544) && ((offset & 0x1) == 1)) { | 
|  | temp = E1000_READ_REG_ARRAY(hw, VFTA, (offset - 1)); | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
|  | E1000_WRITE_FLUSH(); | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, (offset - 1), temp); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } else { | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, value); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Clears the VLAN filer table | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static void e1000_clear_vfta(struct e1000_hw *hw) | 
|  | { | 
|  | u32 offset; | 
|  | u32 vfta_value = 0; | 
|  | u32 vfta_offset = 0; | 
|  | u32 vfta_bit_in_reg = 0; | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | return; | 
|  |  | 
|  | if (hw->mac_type == e1000_82573) { | 
|  | if (hw->mng_cookie.vlan_id != 0) { | 
|  | /* The VFTA is a 4096b bit-field, each identifying a single VLAN | 
|  | * ID.  The following operations determine which 32b entry | 
|  | * (i.e. offset) into the array we want to set the VLAN ID | 
|  | * (i.e. bit) of the manageability unit. */ | 
|  | vfta_offset = (hw->mng_cookie.vlan_id >> | 
|  | E1000_VFTA_ENTRY_SHIFT) & | 
|  | E1000_VFTA_ENTRY_MASK; | 
|  | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | 
|  | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | 
|  | } | 
|  | } | 
|  | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|  | /* If the offset we want to clear is the same offset of the | 
|  | * manageability VLAN ID, then clear all bits except that of the | 
|  | * manageability unit */ | 
|  | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, vfta_value); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  | } | 
|  |  | 
|  | static s32 e1000_id_led_init(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ledctl; | 
|  | const u32 ledctl_mask = 0x000000FF; | 
|  | const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON; | 
|  | const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF; | 
|  | u16 eeprom_data, i, temp; | 
|  | const u16 led_mask = 0x0F; | 
|  |  | 
|  | DEBUGFUNC("e1000_id_led_init"); | 
|  |  | 
|  | if (hw->mac_type < e1000_82540) { | 
|  | /* Nothing to do */ | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | ledctl = er32(LEDCTL); | 
|  | hw->ledctl_default = ledctl; | 
|  | hw->ledctl_mode1 = hw->ledctl_default; | 
|  | hw->ledctl_mode2 = hw->ledctl_default; | 
|  |  | 
|  | if (e1000_read_eeprom(hw, EEPROM_ID_LED_SETTINGS, 1, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | if ((hw->mac_type == e1000_82573) && | 
|  | (eeprom_data == ID_LED_RESERVED_82573)) | 
|  | eeprom_data = ID_LED_DEFAULT_82573; | 
|  | else if ((eeprom_data == ID_LED_RESERVED_0000) || | 
|  | (eeprom_data == ID_LED_RESERVED_FFFF)) { | 
|  | if (hw->mac_type == e1000_ich8lan) | 
|  | eeprom_data = ID_LED_DEFAULT_ICH8LAN; | 
|  | else | 
|  | eeprom_data = ID_LED_DEFAULT; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 4; i++) { | 
|  | temp = (eeprom_data >> (i << 2)) & led_mask; | 
|  | switch (temp) { | 
|  | case ID_LED_ON1_DEF2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | hw->ledctl_mode1 |= ledctl_on << (i << 3); | 
|  | break; | 
|  | case ID_LED_OFF1_DEF2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | hw->ledctl_mode1 &= ~(ledctl_mask << (i << 3)); | 
|  | hw->ledctl_mode1 |= ledctl_off << (i << 3); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | switch (temp) { | 
|  | case ID_LED_DEF1_ON2: | 
|  | case ID_LED_ON1_ON2: | 
|  | case ID_LED_OFF1_ON2: | 
|  | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | hw->ledctl_mode2 |= ledctl_on << (i << 3); | 
|  | break; | 
|  | case ID_LED_DEF1_OFF2: | 
|  | case ID_LED_ON1_OFF2: | 
|  | case ID_LED_OFF1_OFF2: | 
|  | hw->ledctl_mode2 &= ~(ledctl_mask << (i << 3)); | 
|  | hw->ledctl_mode2 |= ledctl_off << (i << 3); | 
|  | break; | 
|  | default: | 
|  | /* Do nothing */ | 
|  | break; | 
|  | } | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Prepares SW controlable LED for use and saves the current state of the LED. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_setup_led(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ledctl; | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  |  | 
|  | DEBUGFUNC("e1000_setup_led"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | /* No setup necessary */ | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | /* Turn off PHY Smart Power Down (if enabled) */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | &hw->phy_spd_default); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | (u16)(hw->phy_spd_default & | 
|  | ~IGP01E1000_GMII_SPD)); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* Fall Through */ | 
|  | default: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | ledctl = er32(LEDCTL); | 
|  | /* Save current LEDCTL settings */ | 
|  | hw->ledctl_default = ledctl; | 
|  | /* Turn off LED0 */ | 
|  | ledctl &= ~(E1000_LEDCTL_LED0_IVRT | | 
|  | E1000_LEDCTL_LED0_BLINK | | 
|  | E1000_LEDCTL_LED0_MODE_MASK); | 
|  | ledctl |= (E1000_LEDCTL_MODE_LED_OFF << | 
|  | E1000_LEDCTL_LED0_MODE_SHIFT); | 
|  | ew32(LEDCTL, ledctl); | 
|  | } else if (hw->media_type == e1000_media_type_copper) | 
|  | ew32(LEDCTL, hw->ledctl_mode1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Used on 82571 and later Si that has LED blink bits. | 
|  | * Callers must use their own timer and should have already called | 
|  | * e1000_id_led_init() | 
|  | * Call e1000_cleanup led() to stop blinking | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_blink_led_start(struct e1000_hw *hw) | 
|  | { | 
|  | s16  i; | 
|  | u32 ledctl_blink = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_id_led_blink_on"); | 
|  |  | 
|  | if (hw->mac_type < e1000_82571) { | 
|  | /* Nothing to do */ | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* always blink LED0 for PCI-E fiber */ | 
|  | ledctl_blink = E1000_LEDCTL_LED0_BLINK | | 
|  | (E1000_LEDCTL_MODE_LED_ON << E1000_LEDCTL_LED0_MODE_SHIFT); | 
|  | } else { | 
|  | /* set the blink bit for each LED that's "on" (0x0E) in ledctl_mode2 */ | 
|  | ledctl_blink = hw->ledctl_mode2; | 
|  | for (i=0; i < 4; i++) | 
|  | if (((hw->ledctl_mode2 >> (i * 8)) & 0xFF) == | 
|  | E1000_LEDCTL_MODE_LED_ON) | 
|  | ledctl_blink |= (E1000_LEDCTL_LED0_BLINK << (i * 8)); | 
|  | } | 
|  |  | 
|  | ew32(LEDCTL, ledctl_blink); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Restores the saved state of the SW controlable LED. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_cleanup_led(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val = E1000_SUCCESS; | 
|  |  | 
|  | DEBUGFUNC("e1000_cleanup_led"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | case e1000_82544: | 
|  | /* No cleanup necessary */ | 
|  | break; | 
|  | case e1000_82541: | 
|  | case e1000_82547: | 
|  | case e1000_82541_rev_2: | 
|  | case e1000_82547_rev_2: | 
|  | /* Turn on PHY Smart Power Down (if previously enabled) */ | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, | 
|  | hw->phy_spd_default); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | /* Fall Through */ | 
|  | default: | 
|  | if (hw->phy_type == e1000_phy_ife) { | 
|  | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0); | 
|  | break; | 
|  | } | 
|  | /* Restore LEDCTL settings */ | 
|  | ew32(LEDCTL, hw->ledctl_default); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Turns on the software controllable LED | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_led_on(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl = er32(CTRL); | 
|  |  | 
|  | DEBUGFUNC("e1000_led_on"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | /* Set SW Defineable Pin 0 to turn on the LED */ | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | break; | 
|  | case e1000_82544: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* Set SW Defineable Pin 0 to turn on the LED */ | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } else { | 
|  | /* Clear SW Defineable Pin 0 to turn on the LED */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* Clear SW Defineable Pin 0 to turn on the LED */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } else if (hw->phy_type == e1000_phy_ife) { | 
|  | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | 
|  | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON)); | 
|  | } else if (hw->media_type == e1000_media_type_copper) { | 
|  | ew32(LEDCTL, hw->ledctl_mode2); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Turns off the software controllable LED | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | s32 e1000_led_off(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl = er32(CTRL); | 
|  |  | 
|  | DEBUGFUNC("e1000_led_off"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | case e1000_82543: | 
|  | /* Clear SW Defineable Pin 0 to turn off the LED */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | break; | 
|  | case e1000_82544: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* Clear SW Defineable Pin 0 to turn off the LED */ | 
|  | ctrl &= ~E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } else { | 
|  | /* Set SW Defineable Pin 0 to turn off the LED */ | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | if (hw->media_type == e1000_media_type_fiber) { | 
|  | /* Set SW Defineable Pin 0 to turn off the LED */ | 
|  | ctrl |= E1000_CTRL_SWDPIN0; | 
|  | ctrl |= E1000_CTRL_SWDPIO0; | 
|  | } else if (hw->phy_type == e1000_phy_ife) { | 
|  | e1000_write_phy_reg(hw, IFE_PHY_SPECIAL_CONTROL_LED, | 
|  | (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_OFF)); | 
|  | } else if (hw->media_type == e1000_media_type_copper) { | 
|  | ew32(LEDCTL, hw->ledctl_mode1); | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Clears all hardware statistics counters. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static void e1000_clear_hw_cntrs(struct e1000_hw *hw) | 
|  | { | 
|  | volatile u32 temp; | 
|  |  | 
|  | temp = er32(CRCERRS); | 
|  | temp = er32(SYMERRS); | 
|  | temp = er32(MPC); | 
|  | temp = er32(SCC); | 
|  | temp = er32(ECOL); | 
|  | temp = er32(MCC); | 
|  | temp = er32(LATECOL); | 
|  | temp = er32(COLC); | 
|  | temp = er32(DC); | 
|  | temp = er32(SEC); | 
|  | temp = er32(RLEC); | 
|  | temp = er32(XONRXC); | 
|  | temp = er32(XONTXC); | 
|  | temp = er32(XOFFRXC); | 
|  | temp = er32(XOFFTXC); | 
|  | temp = er32(FCRUC); | 
|  |  | 
|  | if (hw->mac_type != e1000_ich8lan) { | 
|  | temp = er32(PRC64); | 
|  | temp = er32(PRC127); | 
|  | temp = er32(PRC255); | 
|  | temp = er32(PRC511); | 
|  | temp = er32(PRC1023); | 
|  | temp = er32(PRC1522); | 
|  | } | 
|  |  | 
|  | temp = er32(GPRC); | 
|  | temp = er32(BPRC); | 
|  | temp = er32(MPRC); | 
|  | temp = er32(GPTC); | 
|  | temp = er32(GORCL); | 
|  | temp = er32(GORCH); | 
|  | temp = er32(GOTCL); | 
|  | temp = er32(GOTCH); | 
|  | temp = er32(RNBC); | 
|  | temp = er32(RUC); | 
|  | temp = er32(RFC); | 
|  | temp = er32(ROC); | 
|  | temp = er32(RJC); | 
|  | temp = er32(TORL); | 
|  | temp = er32(TORH); | 
|  | temp = er32(TOTL); | 
|  | temp = er32(TOTH); | 
|  | temp = er32(TPR); | 
|  | temp = er32(TPT); | 
|  |  | 
|  | if (hw->mac_type != e1000_ich8lan) { | 
|  | temp = er32(PTC64); | 
|  | temp = er32(PTC127); | 
|  | temp = er32(PTC255); | 
|  | temp = er32(PTC511); | 
|  | temp = er32(PTC1023); | 
|  | temp = er32(PTC1522); | 
|  | } | 
|  |  | 
|  | temp = er32(MPTC); | 
|  | temp = er32(BPTC); | 
|  |  | 
|  | if (hw->mac_type < e1000_82543) return; | 
|  |  | 
|  | temp = er32(ALGNERRC); | 
|  | temp = er32(RXERRC); | 
|  | temp = er32(TNCRS); | 
|  | temp = er32(CEXTERR); | 
|  | temp = er32(TSCTC); | 
|  | temp = er32(TSCTFC); | 
|  |  | 
|  | if (hw->mac_type <= e1000_82544) return; | 
|  |  | 
|  | temp = er32(MGTPRC); | 
|  | temp = er32(MGTPDC); | 
|  | temp = er32(MGTPTC); | 
|  |  | 
|  | if (hw->mac_type <= e1000_82547_rev_2) return; | 
|  |  | 
|  | temp = er32(IAC); | 
|  | temp = er32(ICRXOC); | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) return; | 
|  |  | 
|  | temp = er32(ICRXPTC); | 
|  | temp = er32(ICRXATC); | 
|  | temp = er32(ICTXPTC); | 
|  | temp = er32(ICTXATC); | 
|  | temp = er32(ICTXQEC); | 
|  | temp = er32(ICTXQMTC); | 
|  | temp = er32(ICRXDMTC); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Resets Adaptive IFS to its default state. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Call this after e1000_init_hw. You may override the IFS defaults by setting | 
|  | * hw->ifs_params_forced to true. However, you must initialize hw-> | 
|  | * current_ifs_val, ifs_min_val, ifs_max_val, ifs_step_size, and ifs_ratio | 
|  | * before calling this function. | 
|  | *****************************************************************************/ | 
|  | void e1000_reset_adaptive(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_reset_adaptive"); | 
|  |  | 
|  | if (hw->adaptive_ifs) { | 
|  | if (!hw->ifs_params_forced) { | 
|  | hw->current_ifs_val = 0; | 
|  | hw->ifs_min_val = IFS_MIN; | 
|  | hw->ifs_max_val = IFS_MAX; | 
|  | hw->ifs_step_size = IFS_STEP; | 
|  | hw->ifs_ratio = IFS_RATIO; | 
|  | } | 
|  | hw->in_ifs_mode = false; | 
|  | ew32(AIT, 0); | 
|  | } else { | 
|  | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Called during the callback/watchdog routine to update IFS value based on | 
|  | * the ratio of transmits to collisions. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * tx_packets - Number of transmits since last callback | 
|  | * total_collisions - Number of collisions since last callback | 
|  | *****************************************************************************/ | 
|  | void e1000_update_adaptive(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC("e1000_update_adaptive"); | 
|  |  | 
|  | if (hw->adaptive_ifs) { | 
|  | if ((hw->collision_delta * hw->ifs_ratio) > hw->tx_packet_delta) { | 
|  | if (hw->tx_packet_delta > MIN_NUM_XMITS) { | 
|  | hw->in_ifs_mode = true; | 
|  | if (hw->current_ifs_val < hw->ifs_max_val) { | 
|  | if (hw->current_ifs_val == 0) | 
|  | hw->current_ifs_val = hw->ifs_min_val; | 
|  | else | 
|  | hw->current_ifs_val += hw->ifs_step_size; | 
|  | ew32(AIT, hw->current_ifs_val); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (hw->in_ifs_mode && (hw->tx_packet_delta <= MIN_NUM_XMITS)) { | 
|  | hw->current_ifs_val = 0; | 
|  | hw->in_ifs_mode = false; | 
|  | ew32(AIT, 0); | 
|  | } | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("Not in Adaptive IFS mode!\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * frame_len - The length of the frame in question | 
|  | * mac_addr - The Ethernet destination address of the frame in question | 
|  | *****************************************************************************/ | 
|  | void e1000_tbi_adjust_stats(struct e1000_hw *hw, struct e1000_hw_stats *stats, | 
|  | u32 frame_len, u8 *mac_addr) | 
|  | { | 
|  | u64 carry_bit; | 
|  |  | 
|  | /* First adjust the frame length. */ | 
|  | frame_len--; | 
|  | /* We need to adjust the statistics counters, since the hardware | 
|  | * counters overcount this packet as a CRC error and undercount | 
|  | * the packet as a good packet | 
|  | */ | 
|  | /* This packet should not be counted as a CRC error.    */ | 
|  | stats->crcerrs--; | 
|  | /* This packet does count as a Good Packet Received.    */ | 
|  | stats->gprc++; | 
|  |  | 
|  | /* Adjust the Good Octets received counters             */ | 
|  | carry_bit = 0x80000000 & stats->gorcl; | 
|  | stats->gorcl += frame_len; | 
|  | /* If the high bit of Gorcl (the low 32 bits of the Good Octets | 
|  | * Received Count) was one before the addition, | 
|  | * AND it is zero after, then we lost the carry out, | 
|  | * need to add one to Gorch (Good Octets Received Count High). | 
|  | * This could be simplified if all environments supported | 
|  | * 64-bit integers. | 
|  | */ | 
|  | if (carry_bit && ((stats->gorcl & 0x80000000) == 0)) | 
|  | stats->gorch++; | 
|  | /* Is this a broadcast or multicast?  Check broadcast first, | 
|  | * since the test for a multicast frame will test positive on | 
|  | * a broadcast frame. | 
|  | */ | 
|  | if ((mac_addr[0] == (u8)0xff) && (mac_addr[1] == (u8)0xff)) | 
|  | /* Broadcast packet */ | 
|  | stats->bprc++; | 
|  | else if (*mac_addr & 0x01) | 
|  | /* Multicast packet */ | 
|  | stats->mprc++; | 
|  |  | 
|  | if (frame_len == hw->max_frame_size) { | 
|  | /* In this case, the hardware has overcounted the number of | 
|  | * oversize frames. | 
|  | */ | 
|  | if (stats->roc > 0) | 
|  | stats->roc--; | 
|  | } | 
|  |  | 
|  | /* Adjust the bin counters when the extra byte put the frame in the | 
|  | * wrong bin. Remember that the frame_len was adjusted above. | 
|  | */ | 
|  | if (frame_len == 64) { | 
|  | stats->prc64++; | 
|  | stats->prc127--; | 
|  | } else if (frame_len == 127) { | 
|  | stats->prc127++; | 
|  | stats->prc255--; | 
|  | } else if (frame_len == 255) { | 
|  | stats->prc255++; | 
|  | stats->prc511--; | 
|  | } else if (frame_len == 511) { | 
|  | stats->prc511++; | 
|  | stats->prc1023--; | 
|  | } else if (frame_len == 1023) { | 
|  | stats->prc1023++; | 
|  | stats->prc1522--; | 
|  | } else if (frame_len == 1522) { | 
|  | stats->prc1522++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Gets the current PCI bus type, speed, and width of the hardware | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | void e1000_get_bus_info(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 pci_ex_link_status; | 
|  | u32 status; | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | hw->bus_type = e1000_bus_type_pci; | 
|  | hw->bus_speed = e1000_bus_speed_unknown; | 
|  | hw->bus_width = e1000_bus_width_unknown; | 
|  | break; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_82573: | 
|  | case e1000_80003es2lan: | 
|  | hw->bus_type = e1000_bus_type_pci_express; | 
|  | hw->bus_speed = e1000_bus_speed_2500; | 
|  | ret_val = e1000_read_pcie_cap_reg(hw, | 
|  | PCI_EX_LINK_STATUS, | 
|  | &pci_ex_link_status); | 
|  | if (ret_val) | 
|  | hw->bus_width = e1000_bus_width_unknown; | 
|  | else | 
|  | hw->bus_width = (pci_ex_link_status & PCI_EX_LINK_WIDTH_MASK) >> | 
|  | PCI_EX_LINK_WIDTH_SHIFT; | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | hw->bus_type = e1000_bus_type_pci_express; | 
|  | hw->bus_speed = e1000_bus_speed_2500; | 
|  | hw->bus_width = e1000_bus_width_pciex_1; | 
|  | break; | 
|  | default: | 
|  | status = er32(STATUS); | 
|  | hw->bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 
|  | e1000_bus_type_pcix : e1000_bus_type_pci; | 
|  |  | 
|  | if (hw->device_id == E1000_DEV_ID_82546EB_QUAD_COPPER) { | 
|  | hw->bus_speed = (hw->bus_type == e1000_bus_type_pci) ? | 
|  | e1000_bus_speed_66 : e1000_bus_speed_120; | 
|  | } else if (hw->bus_type == e1000_bus_type_pci) { | 
|  | hw->bus_speed = (status & E1000_STATUS_PCI66) ? | 
|  | e1000_bus_speed_66 : e1000_bus_speed_33; | 
|  | } else { | 
|  | switch (status & E1000_STATUS_PCIX_SPEED) { | 
|  | case E1000_STATUS_PCIX_SPEED_66: | 
|  | hw->bus_speed = e1000_bus_speed_66; | 
|  | break; | 
|  | case E1000_STATUS_PCIX_SPEED_100: | 
|  | hw->bus_speed = e1000_bus_speed_100; | 
|  | break; | 
|  | case E1000_STATUS_PCIX_SPEED_133: | 
|  | hw->bus_speed = e1000_bus_speed_133; | 
|  | break; | 
|  | default: | 
|  | hw->bus_speed = e1000_bus_speed_reserved; | 
|  | break; | 
|  | } | 
|  | } | 
|  | hw->bus_width = (status & E1000_STATUS_BUS64) ? | 
|  | e1000_bus_width_64 : e1000_bus_width_32; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a value to one of the devices registers using port I/O (as opposed to | 
|  | * memory mapped I/O). Only 82544 and newer devices support port I/O. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset to write to | 
|  | * value - value to write | 
|  | *****************************************************************************/ | 
|  | static void e1000_write_reg_io(struct e1000_hw *hw, u32 offset, u32 value) | 
|  | { | 
|  | unsigned long io_addr = hw->io_base; | 
|  | unsigned long io_data = hw->io_base + 4; | 
|  |  | 
|  | e1000_io_write(hw, io_addr, offset); | 
|  | e1000_io_write(hw, io_data, value); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Estimates the cable length. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * min_length - The estimated minimum length | 
|  | * max_length - The estimated maximum length | 
|  | * | 
|  | * returns: - E1000_ERR_XXX | 
|  | *            E1000_SUCCESS | 
|  | * | 
|  | * This function always returns a ranged length (minimum & maximum). | 
|  | * So for M88 phy's, this function interprets the one value returned from the | 
|  | * register to the minimum and maximum range. | 
|  | * For IGP phy's, the function calculates the range by the AGC registers. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_get_cable_length(struct e1000_hw *hw, u16 *min_length, | 
|  | u16 *max_length) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 agc_value = 0; | 
|  | u16 i, phy_data; | 
|  | u16 cable_length; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_cable_length"); | 
|  |  | 
|  | *min_length = *max_length = 0; | 
|  |  | 
|  | /* Use old method for Phy older than IGP */ | 
|  | if (hw->phy_type == e1000_phy_m88) { | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | cable_length = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >> | 
|  | M88E1000_PSSR_CABLE_LENGTH_SHIFT; | 
|  |  | 
|  | /* Convert the enum value to ranged values */ | 
|  | switch (cable_length) { | 
|  | case e1000_cable_length_50: | 
|  | *min_length = 0; | 
|  | *max_length = e1000_igp_cable_length_50; | 
|  | break; | 
|  | case e1000_cable_length_50_80: | 
|  | *min_length = e1000_igp_cable_length_50; | 
|  | *max_length = e1000_igp_cable_length_80; | 
|  | break; | 
|  | case e1000_cable_length_80_110: | 
|  | *min_length = e1000_igp_cable_length_80; | 
|  | *max_length = e1000_igp_cable_length_110; | 
|  | break; | 
|  | case e1000_cable_length_110_140: | 
|  | *min_length = e1000_igp_cable_length_110; | 
|  | *max_length = e1000_igp_cable_length_140; | 
|  | break; | 
|  | case e1000_cable_length_140: | 
|  | *min_length = e1000_igp_cable_length_140; | 
|  | *max_length = e1000_igp_cable_length_170; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  | } else if (hw->phy_type == e1000_phy_gg82563) { | 
|  | ret_val = e1000_read_phy_reg(hw, GG82563_PHY_DSP_DISTANCE, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | cable_length = phy_data & GG82563_DSPD_CABLE_LENGTH; | 
|  |  | 
|  | switch (cable_length) { | 
|  | case e1000_gg_cable_length_60: | 
|  | *min_length = 0; | 
|  | *max_length = e1000_igp_cable_length_60; | 
|  | break; | 
|  | case e1000_gg_cable_length_60_115: | 
|  | *min_length = e1000_igp_cable_length_60; | 
|  | *max_length = e1000_igp_cable_length_115; | 
|  | break; | 
|  | case e1000_gg_cable_length_115_150: | 
|  | *min_length = e1000_igp_cable_length_115; | 
|  | *max_length = e1000_igp_cable_length_150; | 
|  | break; | 
|  | case e1000_gg_cable_length_150: | 
|  | *min_length = e1000_igp_cable_length_150; | 
|  | *max_length = e1000_igp_cable_length_180; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  | } else if (hw->phy_type == e1000_phy_igp) { /* For IGP PHY */ | 
|  | u16 cur_agc_value; | 
|  | u16 min_agc_value = IGP01E1000_AGC_LENGTH_TABLE_SIZE; | 
|  | u16 agc_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 
|  | {IGP01E1000_PHY_AGC_A, | 
|  | IGP01E1000_PHY_AGC_B, | 
|  | IGP01E1000_PHY_AGC_C, | 
|  | IGP01E1000_PHY_AGC_D}; | 
|  | /* Read the AGC registers for all channels */ | 
|  | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | cur_agc_value = phy_data >> IGP01E1000_AGC_LENGTH_SHIFT; | 
|  |  | 
|  | /* Value bound check. */ | 
|  | if ((cur_agc_value >= IGP01E1000_AGC_LENGTH_TABLE_SIZE - 1) || | 
|  | (cur_agc_value == 0)) | 
|  | return -E1000_ERR_PHY; | 
|  |  | 
|  | agc_value += cur_agc_value; | 
|  |  | 
|  | /* Update minimal AGC value. */ | 
|  | if (min_agc_value > cur_agc_value) | 
|  | min_agc_value = cur_agc_value; | 
|  | } | 
|  |  | 
|  | /* Remove the minimal AGC result for length < 50m */ | 
|  | if (agc_value < IGP01E1000_PHY_CHANNEL_NUM * e1000_igp_cable_length_50) { | 
|  | agc_value -= min_agc_value; | 
|  |  | 
|  | /* Get the average length of the remaining 3 channels */ | 
|  | agc_value /= (IGP01E1000_PHY_CHANNEL_NUM - 1); | 
|  | } else { | 
|  | /* Get the average length of all the 4 channels. */ | 
|  | agc_value /= IGP01E1000_PHY_CHANNEL_NUM; | 
|  | } | 
|  |  | 
|  | /* Set the range of the calculated length. */ | 
|  | *min_length = ((e1000_igp_cable_length_table[agc_value] - | 
|  | IGP01E1000_AGC_RANGE) > 0) ? | 
|  | (e1000_igp_cable_length_table[agc_value] - | 
|  | IGP01E1000_AGC_RANGE) : 0; | 
|  | *max_length = e1000_igp_cable_length_table[agc_value] + | 
|  | IGP01E1000_AGC_RANGE; | 
|  | } else if (hw->phy_type == e1000_phy_igp_2 || | 
|  | hw->phy_type == e1000_phy_igp_3) { | 
|  | u16 cur_agc_index, max_agc_index = 0; | 
|  | u16 min_agc_index = IGP02E1000_AGC_LENGTH_TABLE_SIZE - 1; | 
|  | u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = | 
|  | {IGP02E1000_PHY_AGC_A, | 
|  | IGP02E1000_PHY_AGC_B, | 
|  | IGP02E1000_PHY_AGC_C, | 
|  | IGP02E1000_PHY_AGC_D}; | 
|  | /* Read the AGC registers for all channels */ | 
|  | for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) { | 
|  | ret_val = e1000_read_phy_reg(hw, agc_reg_array[i], &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Getting bits 15:9, which represent the combination of course and | 
|  | * fine gain values.  The result is a number that can be put into | 
|  | * the lookup table to obtain the approximate cable length. */ | 
|  | cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) & | 
|  | IGP02E1000_AGC_LENGTH_MASK; | 
|  |  | 
|  | /* Array index bound check. */ | 
|  | if ((cur_agc_index >= IGP02E1000_AGC_LENGTH_TABLE_SIZE) || | 
|  | (cur_agc_index == 0)) | 
|  | return -E1000_ERR_PHY; | 
|  |  | 
|  | /* Remove min & max AGC values from calculation. */ | 
|  | if (e1000_igp_2_cable_length_table[min_agc_index] > | 
|  | e1000_igp_2_cable_length_table[cur_agc_index]) | 
|  | min_agc_index = cur_agc_index; | 
|  | if (e1000_igp_2_cable_length_table[max_agc_index] < | 
|  | e1000_igp_2_cable_length_table[cur_agc_index]) | 
|  | max_agc_index = cur_agc_index; | 
|  |  | 
|  | agc_value += e1000_igp_2_cable_length_table[cur_agc_index]; | 
|  | } | 
|  |  | 
|  | agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] + | 
|  | e1000_igp_2_cable_length_table[max_agc_index]); | 
|  | agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2); | 
|  |  | 
|  | /* Calculate cable length with the error range of +/- 10 meters. */ | 
|  | *min_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ? | 
|  | (agc_value - IGP02E1000_AGC_RANGE) : 0; | 
|  | *max_length = agc_value + IGP02E1000_AGC_RANGE; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Check the cable polarity | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * polarity - output parameter : 0 - Polarity is not reversed | 
|  | *                               1 - Polarity is reversed. | 
|  | * | 
|  | * returns: - E1000_ERR_XXX | 
|  | *            E1000_SUCCESS | 
|  | * | 
|  | * For phy's older than IGP, this function simply reads the polarity bit in the | 
|  | * Phy Status register.  For IGP phy's, this bit is valid only if link speed is | 
|  | * 10 Mbps.  If the link speed is 100 Mbps there is no polarity so this bit will | 
|  | * return 0.  If the link speed is 1000 Mbps the polarity status is in the | 
|  | * IGP01E1000_PHY_PCS_INIT_REG. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_check_polarity(struct e1000_hw *hw, | 
|  | e1000_rev_polarity *polarity) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_check_polarity"); | 
|  |  | 
|  | if ((hw->phy_type == e1000_phy_m88) || | 
|  | (hw->phy_type == e1000_phy_gg82563)) { | 
|  | /* return the Polarity bit in the Status register. */ | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | *polarity = ((phy_data & M88E1000_PSSR_REV_POLARITY) >> | 
|  | M88E1000_PSSR_REV_POLARITY_SHIFT) ? | 
|  | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 
|  |  | 
|  | } else if (hw->phy_type == e1000_phy_igp || | 
|  | hw->phy_type == e1000_phy_igp_3 || | 
|  | hw->phy_type == e1000_phy_igp_2) { | 
|  | /* Read the Status register to check the speed */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* If speed is 1000 Mbps, must read the IGP01E1000_PHY_PCS_INIT_REG to | 
|  | * find the polarity status */ | 
|  | if ((phy_data & IGP01E1000_PSSR_SPEED_MASK) == | 
|  | IGP01E1000_PSSR_SPEED_1000MBPS) { | 
|  |  | 
|  | /* Read the GIG initialization PCS register (0x00B4) */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Check the polarity bits */ | 
|  | *polarity = (phy_data & IGP01E1000_PHY_POLARITY_MASK) ? | 
|  | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 
|  | } else { | 
|  | /* For 10 Mbps, read the polarity bit in the status register. (for | 
|  | * 100 Mbps this bit is always 0) */ | 
|  | *polarity = (phy_data & IGP01E1000_PSSR_POLARITY_REVERSED) ? | 
|  | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 
|  | } | 
|  | } else if (hw->phy_type == e1000_phy_ife) { | 
|  | ret_val = e1000_read_phy_reg(hw, IFE_PHY_EXTENDED_STATUS_CONTROL, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | *polarity = ((phy_data & IFE_PESC_POLARITY_REVERSED) >> | 
|  | IFE_PESC_POLARITY_REVERSED_SHIFT) ? | 
|  | e1000_rev_polarity_reversed : e1000_rev_polarity_normal; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Check if Downshift occured | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * downshift - output parameter : 0 - No Downshift ocured. | 
|  | *                                1 - Downshift ocured. | 
|  | * | 
|  | * returns: - E1000_ERR_XXX | 
|  | *            E1000_SUCCESS | 
|  | * | 
|  | * For phy's older than IGP, this function reads the Downshift bit in the Phy | 
|  | * Specific Status register.  For IGP phy's, it reads the Downgrade bit in the | 
|  | * Link Health register.  In IGP this bit is latched high, so the driver must | 
|  | * read it immediately after link is established. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_check_downshift(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_check_downshift"); | 
|  |  | 
|  | if (hw->phy_type == e1000_phy_igp || | 
|  | hw->phy_type == e1000_phy_igp_3 || | 
|  | hw->phy_type == e1000_phy_igp_2) { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_LINK_HEALTH, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->speed_downgraded = (phy_data & IGP01E1000_PLHR_SS_DOWNGRADE) ? 1 : 0; | 
|  | } else if ((hw->phy_type == e1000_phy_m88) || | 
|  | (hw->phy_type == e1000_phy_gg82563)) { | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->speed_downgraded = (phy_data & M88E1000_PSSR_DOWNSHIFT) >> | 
|  | M88E1000_PSSR_DOWNSHIFT_SHIFT; | 
|  | } else if (hw->phy_type == e1000_phy_ife) { | 
|  | /* e1000_phy_ife supports 10/100 speed only */ | 
|  | hw->speed_downgraded = false; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * | 
|  | * 82541_rev_2 & 82547_rev_2 have the capability to configure the DSP when a | 
|  | * gigabit link is achieved to improve link quality. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|  | *            E1000_SUCCESS at any other case. | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static s32 e1000_config_dsp_after_link_change(struct e1000_hw *hw, bool link_up) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 phy_data, phy_saved_data, speed, duplex, i; | 
|  | u16 dsp_reg_array[IGP01E1000_PHY_CHANNEL_NUM] = | 
|  | {IGP01E1000_PHY_AGC_PARAM_A, | 
|  | IGP01E1000_PHY_AGC_PARAM_B, | 
|  | IGP01E1000_PHY_AGC_PARAM_C, | 
|  | IGP01E1000_PHY_AGC_PARAM_D}; | 
|  | u16 min_length, max_length; | 
|  |  | 
|  | DEBUGFUNC("e1000_config_dsp_after_link_change"); | 
|  |  | 
|  | if (hw->phy_type != e1000_phy_igp) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | if (link_up) { | 
|  | ret_val = e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  | if (ret_val) { | 
|  | DEBUGOUT("Error getting link speed and duplex\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (speed == SPEED_1000) { | 
|  |  | 
|  | ret_val = e1000_get_cable_length(hw, &min_length, &max_length); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((hw->dsp_config_state == e1000_dsp_config_enabled) && | 
|  | min_length >= e1000_igp_cable_length_50) { | 
|  |  | 
|  | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, dsp_reg_array[i], | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | hw->dsp_config_state = e1000_dsp_config_activated; | 
|  | } | 
|  |  | 
|  | if ((hw->ffe_config_state == e1000_ffe_config_enabled) && | 
|  | (min_length < e1000_igp_cable_length_50)) { | 
|  |  | 
|  | u16 ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_20; | 
|  | u32 idle_errs = 0; | 
|  |  | 
|  | /* clear previous idle error counts */ | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | for (i = 0; i < ffe_idle_err_timeout; i++) { | 
|  | udelay(1000); | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_1000T_STATUS, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | idle_errs += (phy_data & SR_1000T_IDLE_ERROR_CNT); | 
|  | if (idle_errs > SR_1000T_PHY_EXCESSIVE_IDLE_ERR_COUNT) { | 
|  | hw->ffe_config_state = e1000_ffe_config_active; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, | 
|  | IGP01E1000_PHY_DSP_FFE, | 
|  | IGP01E1000_PHY_DSP_FFE_CM_CP); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (idle_errs) | 
|  | ffe_idle_err_timeout = FFE_IDLE_ERR_COUNT_TIMEOUT_100; | 
|  | } | 
|  | } | 
|  | } | 
|  | } else { | 
|  | if (hw->dsp_config_state == e1000_dsp_config_activated) { | 
|  | /* Save off the current value of register 0x2F5B to be restored at | 
|  | * the end of the routines. */ | 
|  | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Disable the PHY transmitter */ | 
|  | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mdelay(20); | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | IGP01E1000_IEEE_FORCE_GIGA); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | for (i = 0; i < IGP01E1000_PHY_CHANNEL_NUM; i++) { | 
|  | ret_val = e1000_read_phy_reg(hw, dsp_reg_array[i], &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PHY_EDAC_MU_INDEX; | 
|  | phy_data |=  IGP01E1000_PHY_EDAC_SIGN_EXT_9_BITS; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw,dsp_reg_array[i], phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | IGP01E1000_IEEE_RESTART_AUTONEG); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mdelay(20); | 
|  |  | 
|  | /* Now enable the transmitter */ | 
|  | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->dsp_config_state = e1000_dsp_config_enabled; | 
|  | } | 
|  |  | 
|  | if (hw->ffe_config_state == e1000_ffe_config_active) { | 
|  | /* Save off the current value of register 0x2F5B to be restored at | 
|  | * the end of the routines. */ | 
|  | ret_val = e1000_read_phy_reg(hw, 0x2F5B, &phy_saved_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Disable the PHY transmitter */ | 
|  | ret_val = e1000_write_phy_reg(hw, 0x2F5B, 0x0003); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mdelay(20); | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | IGP01E1000_IEEE_FORCE_GIGA); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_DSP_FFE, | 
|  | IGP01E1000_PHY_DSP_FFE_DEFAULT); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, 0x0000, | 
|  | IGP01E1000_IEEE_RESTART_AUTONEG); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | mdelay(20); | 
|  |  | 
|  | /* Now enable the transmitter */ | 
|  | ret_val = e1000_write_phy_reg(hw, 0x2F5B, phy_saved_data); | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->ffe_config_state = e1000_ffe_config_enabled; | 
|  | } | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * Set PHY to class A mode | 
|  | * Assumes the following operations will follow to enable the new class mode. | 
|  | *  1. Do a PHY soft reset | 
|  | *  2. Restart auto-negotiation or force link. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ****************************************************************************/ | 
|  | static s32 e1000_set_phy_mode(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 eeprom_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_set_phy_mode"); | 
|  |  | 
|  | if ((hw->mac_type == e1000_82545_rev_3) && | 
|  | (hw->media_type == e1000_media_type_copper)) { | 
|  | ret_val = e1000_read_eeprom(hw, EEPROM_PHY_CLASS_WORD, 1, &eeprom_data); | 
|  | if (ret_val) { | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if ((eeprom_data != EEPROM_RESERVED_WORD) && | 
|  | (eeprom_data & EEPROM_PHY_CLASS_A)) { | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x000B); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x8104); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | hw->phy_reset_disable = false; | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * | 
|  | * This function sets the lplu state according to the active flag.  When | 
|  | * activating lplu this function also disables smart speed and vise versa. | 
|  | * lplu will not be activated unless the device autonegotiation advertisment | 
|  | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * active - true to enable lplu false to disable lplu. | 
|  | * | 
|  | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|  | *            E1000_SUCCESS at any other case. | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static s32 e1000_set_d3_lplu_state(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | u32 phy_ctrl = 0; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | DEBUGFUNC("e1000_set_d3_lplu_state"); | 
|  |  | 
|  | if (hw->phy_type != e1000_phy_igp && hw->phy_type != e1000_phy_igp_2 | 
|  | && hw->phy_type != e1000_phy_igp_3) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* During driver activity LPLU should not be used or it will attain link | 
|  | * from the lowest speeds starting from 10Mbps. The capability is used for | 
|  | * Dx transitions and states */ | 
|  | if (hw->mac_type == e1000_82541_rev_2 || hw->mac_type == e1000_82547_rev_2) { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_GMII_FIFO, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (hw->mac_type == e1000_ich8lan) { | 
|  | /* MAC writes into PHY register based on the state transition | 
|  | * and start auto-negotiation. SW driver can overwrite the settings | 
|  | * in CSR PHY power control E1000_PHY_CTRL register. */ | 
|  | phy_ctrl = er32(PHY_CTRL); | 
|  | } else { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (!active) { | 
|  | if (hw->mac_type == e1000_82541_rev_2 || | 
|  | hw->mac_type == e1000_82547_rev_2) { | 
|  | phy_data &= ~IGP01E1000_GMII_FLEX_SPD; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  | } else { | 
|  | phy_data &= ~IGP02E1000_PM_D3_LPLU; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during | 
|  | * Dx states where the power conservation is most important.  During | 
|  | * driver activity we should enable SmartSpeed, so performance is | 
|  | * maintained. */ | 
|  | if (hw->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (hw->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | } else if ((hw->autoneg_advertised == AUTONEG_ADVERTISE_SPEED_DEFAULT) || | 
|  | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_ALL ) || | 
|  | (hw->autoneg_advertised == AUTONEG_ADVERTISE_10_100_ALL)) { | 
|  |  | 
|  | if (hw->mac_type == e1000_82541_rev_2 || | 
|  | hw->mac_type == e1000_82547_rev_2) { | 
|  | phy_data |= IGP01E1000_GMII_FLEX_SPD; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_GMII_FIFO, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  | } else { | 
|  | phy_data |= IGP02E1000_PM_D3_LPLU; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* When LPLU is enabled we should disable SmartSpeed */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * | 
|  | * This function sets the lplu d0 state according to the active flag.  When | 
|  | * activating lplu this function also disables smart speed and vise versa. | 
|  | * lplu will not be activated unless the device autonegotiation advertisment | 
|  | * meets standards of either 10 or 10/100 or 10/100/1000 at all duplexes. | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * active - true to enable lplu false to disable lplu. | 
|  | * | 
|  | * returns: - E1000_ERR_PHY if fail to read/write the PHY | 
|  | *            E1000_SUCCESS at any other case. | 
|  | * | 
|  | ****************************************************************************/ | 
|  |  | 
|  | static s32 e1000_set_d0_lplu_state(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | u32 phy_ctrl = 0; | 
|  | s32 ret_val; | 
|  | u16 phy_data; | 
|  | DEBUGFUNC("e1000_set_d0_lplu_state"); | 
|  |  | 
|  | if (hw->mac_type <= e1000_82547_rev_2) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | phy_ctrl = er32(PHY_CTRL); | 
|  | } else { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (!active) { | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  | } else { | 
|  | phy_data &= ~IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used during | 
|  | * Dx states where the power conservation is most important.  During | 
|  | * driver activity we should enable SmartSpeed, so performance is | 
|  | * maintained. */ | 
|  | if (hw->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (hw->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  |  | 
|  | } else { | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU; | 
|  | ew32(PHY_CTRL, phy_ctrl); | 
|  | } else { | 
|  | phy_data |= IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP02E1000_PHY_POWER_MGMT, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* When LPLU is enabled we should disable SmartSpeed */ | 
|  | ret_val = e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1000_write_phy_reg(hw, IGP01E1000_PHY_PORT_CONFIG, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Change VCO speed register to improve Bit Error Rate performance of SERDES. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_set_vco_speed(struct e1000_hw *hw) | 
|  | { | 
|  | s32  ret_val; | 
|  | u16 default_page = 0; | 
|  | u16 phy_data; | 
|  |  | 
|  | DEBUGFUNC("e1000_set_vco_speed"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82545_rev_3: | 
|  | case e1000_82546_rev_3: | 
|  | break; | 
|  | default: | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* Set PHY register 30, page 5, bit 8 to 0 */ | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, &default_page); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0005); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data &= ~M88E1000_PHY_VCO_REG_BIT8; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* Set PHY register 30, page 4, bit 11 to 1 */ | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0004); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, &phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | phy_data |= M88E1000_PHY_VCO_REG_BIT11; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, phy_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, default_page); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function reads the cookie from ARC ram. | 
|  | * | 
|  | * returns: - E1000_SUCCESS . | 
|  | ****************************************************************************/ | 
|  | static s32 e1000_host_if_read_cookie(struct e1000_hw *hw, u8 *buffer) | 
|  | { | 
|  | u8 i; | 
|  | u32 offset = E1000_MNG_DHCP_COOKIE_OFFSET; | 
|  | u8 length = E1000_MNG_DHCP_COOKIE_LENGTH; | 
|  |  | 
|  | length = (length >> 2); | 
|  | offset = (offset >> 2); | 
|  |  | 
|  | for (i = 0; i < length; i++) { | 
|  | *((u32 *)buffer + i) = | 
|  | E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset + i); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function checks whether the HOST IF is enabled for command operaton | 
|  | * and also checks whether the previous command is completed. | 
|  | * It busy waits in case of previous command is not completed. | 
|  | * | 
|  | * returns: - E1000_ERR_HOST_INTERFACE_COMMAND in case if is not ready or | 
|  | *            timeout | 
|  | *          - E1000_SUCCESS for success. | 
|  | ****************************************************************************/ | 
|  | static s32 e1000_mng_enable_host_if(struct e1000_hw *hw) | 
|  | { | 
|  | u32 hicr; | 
|  | u8 i; | 
|  |  | 
|  | /* Check that the host interface is enabled. */ | 
|  | hicr = er32(HICR); | 
|  | if ((hicr & E1000_HICR_EN) == 0) { | 
|  | DEBUGOUT("E1000_HOST_EN bit disabled.\n"); | 
|  | return -E1000_ERR_HOST_INTERFACE_COMMAND; | 
|  | } | 
|  | /* check the previous command is completed */ | 
|  | for (i = 0; i < E1000_MNG_DHCP_COMMAND_TIMEOUT; i++) { | 
|  | hicr = er32(HICR); | 
|  | if (!(hicr & E1000_HICR_C)) | 
|  | break; | 
|  | mdelay(1); | 
|  | } | 
|  |  | 
|  | if (i == E1000_MNG_DHCP_COMMAND_TIMEOUT) { | 
|  | DEBUGOUT("Previous command timeout failed .\n"); | 
|  | return -E1000_ERR_HOST_INTERFACE_COMMAND; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function writes the buffer content at the offset given on the host if. | 
|  | * It also does alignment considerations to do the writes in most efficient way. | 
|  | * Also fills up the sum of the buffer in *buffer parameter. | 
|  | * | 
|  | * returns  - E1000_SUCCESS for success. | 
|  | ****************************************************************************/ | 
|  | static s32 e1000_mng_host_if_write(struct e1000_hw *hw, u8 *buffer, u16 length, | 
|  | u16 offset, u8 *sum) | 
|  | { | 
|  | u8 *tmp; | 
|  | u8 *bufptr = buffer; | 
|  | u32 data = 0; | 
|  | u16 remaining, i, j, prev_bytes; | 
|  |  | 
|  | /* sum = only sum of the data and it is not checksum */ | 
|  |  | 
|  | if (length == 0 || offset + length > E1000_HI_MAX_MNG_DATA_LENGTH) { | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | tmp = (u8 *)&data; | 
|  | prev_bytes = offset & 0x3; | 
|  | offset &= 0xFFFC; | 
|  | offset >>= 2; | 
|  |  | 
|  | if (prev_bytes) { | 
|  | data = E1000_READ_REG_ARRAY_DWORD(hw, HOST_IF, offset); | 
|  | for (j = prev_bytes; j < sizeof(u32); j++) { | 
|  | *(tmp + j) = *bufptr++; | 
|  | *sum += *(tmp + j); | 
|  | } | 
|  | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset, data); | 
|  | length -= j - prev_bytes; | 
|  | offset++; | 
|  | } | 
|  |  | 
|  | remaining = length & 0x3; | 
|  | length -= remaining; | 
|  |  | 
|  | /* Calculate length in DWORDs */ | 
|  | length >>= 2; | 
|  |  | 
|  | /* The device driver writes the relevant command block into the | 
|  | * ram area. */ | 
|  | for (i = 0; i < length; i++) { | 
|  | for (j = 0; j < sizeof(u32); j++) { | 
|  | *(tmp + j) = *bufptr++; | 
|  | *sum += *(tmp + j); | 
|  | } | 
|  |  | 
|  | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | 
|  | } | 
|  | if (remaining) { | 
|  | for (j = 0; j < sizeof(u32); j++) { | 
|  | if (j < remaining) | 
|  | *(tmp + j) = *bufptr++; | 
|  | else | 
|  | *(tmp + j) = 0; | 
|  |  | 
|  | *sum += *(tmp + j); | 
|  | } | 
|  | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, offset + i, data); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function writes the command header after does the checksum calculation. | 
|  | * | 
|  | * returns  - E1000_SUCCESS for success. | 
|  | ****************************************************************************/ | 
|  | static s32 e1000_mng_write_cmd_header(struct e1000_hw *hw, | 
|  | struct e1000_host_mng_command_header *hdr) | 
|  | { | 
|  | u16 i; | 
|  | u8 sum; | 
|  | u8 *buffer; | 
|  |  | 
|  | /* Write the whole command header structure which includes sum of | 
|  | * the buffer */ | 
|  |  | 
|  | u16 length = sizeof(struct e1000_host_mng_command_header); | 
|  |  | 
|  | sum = hdr->checksum; | 
|  | hdr->checksum = 0; | 
|  |  | 
|  | buffer = (u8 *)hdr; | 
|  | i = length; | 
|  | while (i--) | 
|  | sum += buffer[i]; | 
|  |  | 
|  | hdr->checksum = 0 - sum; | 
|  |  | 
|  | length >>= 2; | 
|  | /* The device driver writes the relevant command block into the ram area. */ | 
|  | for (i = 0; i < length; i++) { | 
|  | E1000_WRITE_REG_ARRAY_DWORD(hw, HOST_IF, i, *((u32 *)hdr + i)); | 
|  | E1000_WRITE_FLUSH(); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function indicates to ARC that a new command is pending which completes | 
|  | * one write operation by the driver. | 
|  | * | 
|  | * returns  - E1000_SUCCESS for success. | 
|  | ****************************************************************************/ | 
|  | static s32 e1000_mng_write_commit(struct e1000_hw *hw) | 
|  | { | 
|  | u32 hicr; | 
|  |  | 
|  | hicr = er32(HICR); | 
|  | /* Setting this bit tells the ARC that a new command is pending. */ | 
|  | ew32(HICR, hicr | E1000_HICR_C); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function checks the mode of the firmware. | 
|  | * | 
|  | * returns  - true when the mode is IAMT or false. | 
|  | ****************************************************************************/ | 
|  | bool e1000_check_mng_mode(struct e1000_hw *hw) | 
|  | { | 
|  | u32 fwsm; | 
|  |  | 
|  | fwsm = er32(FWSM); | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | if ((fwsm & E1000_FWSM_MODE_MASK) == | 
|  | (E1000_MNG_ICH_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | 
|  | return true; | 
|  | } else if ((fwsm & E1000_FWSM_MODE_MASK) == | 
|  | (E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT)) | 
|  | return true; | 
|  |  | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function writes the dhcp info . | 
|  | ****************************************************************************/ | 
|  | s32 e1000_mng_write_dhcp_info(struct e1000_hw *hw, u8 *buffer, u16 length) | 
|  | { | 
|  | s32 ret_val; | 
|  | struct e1000_host_mng_command_header hdr; | 
|  |  | 
|  | hdr.command_id = E1000_MNG_DHCP_TX_PAYLOAD_CMD; | 
|  | hdr.command_length = length; | 
|  | hdr.reserved1 = 0; | 
|  | hdr.reserved2 = 0; | 
|  | hdr.checksum = 0; | 
|  |  | 
|  | ret_val = e1000_mng_enable_host_if(hw); | 
|  | if (ret_val == E1000_SUCCESS) { | 
|  | ret_val = e1000_mng_host_if_write(hw, buffer, length, sizeof(hdr), | 
|  | &(hdr.checksum)); | 
|  | if (ret_val == E1000_SUCCESS) { | 
|  | ret_val = e1000_mng_write_cmd_header(hw, &hdr); | 
|  | if (ret_val == E1000_SUCCESS) | 
|  | ret_val = e1000_mng_write_commit(hw); | 
|  | } | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function calculates the checksum. | 
|  | * | 
|  | * returns  - checksum of buffer contents. | 
|  | ****************************************************************************/ | 
|  | static u8 e1000_calculate_mng_checksum(char *buffer, u32 length) | 
|  | { | 
|  | u8 sum = 0; | 
|  | u32 i; | 
|  |  | 
|  | if (!buffer) | 
|  | return 0; | 
|  |  | 
|  | for (i=0; i < length; i++) | 
|  | sum += buffer[i]; | 
|  |  | 
|  | return (u8)(0 - sum); | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * This function checks whether tx pkt filtering needs to be enabled or not. | 
|  | * | 
|  | * returns  - true for packet filtering or false. | 
|  | ****************************************************************************/ | 
|  | bool e1000_enable_tx_pkt_filtering(struct e1000_hw *hw) | 
|  | { | 
|  | /* called in init as well as watchdog timer functions */ | 
|  |  | 
|  | s32 ret_val, checksum; | 
|  | bool tx_filter = false; | 
|  | struct e1000_host_mng_dhcp_cookie *hdr = &(hw->mng_cookie); | 
|  | u8 *buffer = (u8 *) &(hw->mng_cookie); | 
|  |  | 
|  | if (e1000_check_mng_mode(hw)) { | 
|  | ret_val = e1000_mng_enable_host_if(hw); | 
|  | if (ret_val == E1000_SUCCESS) { | 
|  | ret_val = e1000_host_if_read_cookie(hw, buffer); | 
|  | if (ret_val == E1000_SUCCESS) { | 
|  | checksum = hdr->checksum; | 
|  | hdr->checksum = 0; | 
|  | if ((hdr->signature == E1000_IAMT_SIGNATURE) && | 
|  | checksum == e1000_calculate_mng_checksum((char *)buffer, | 
|  | E1000_MNG_DHCP_COOKIE_LENGTH)) { | 
|  | if (hdr->status & | 
|  | E1000_MNG_DHCP_COOKIE_STATUS_PARSING_SUPPORT) | 
|  | tx_filter = true; | 
|  | } else | 
|  | tx_filter = true; | 
|  | } else | 
|  | tx_filter = true; | 
|  | } | 
|  | } | 
|  |  | 
|  | hw->tx_pkt_filtering = tx_filter; | 
|  | return tx_filter; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Verifies the hardware needs to allow ARPs to be processed by the host | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - true/false | 
|  | * | 
|  | *****************************************************************************/ | 
|  | u32 e1000_enable_mng_pass_thru(struct e1000_hw *hw) | 
|  | { | 
|  | u32 manc; | 
|  | u32 fwsm, factps; | 
|  |  | 
|  | if (hw->asf_firmware_present) { | 
|  | manc = er32(MANC); | 
|  |  | 
|  | if (!(manc & E1000_MANC_RCV_TCO_EN) || | 
|  | !(manc & E1000_MANC_EN_MAC_ADDR_FILTER)) | 
|  | return false; | 
|  | if (e1000_arc_subsystem_valid(hw)) { | 
|  | fwsm = er32(FWSM); | 
|  | factps = er32(FACTPS); | 
|  |  | 
|  | if ((((fwsm & E1000_FWSM_MODE_MASK) >> E1000_FWSM_MODE_SHIFT) == | 
|  | e1000_mng_mode_pt) && !(factps & E1000_FACTPS_MNGCG)) | 
|  | return true; | 
|  | } else | 
|  | if ((manc & E1000_MANC_SMBUS_EN) && !(manc & E1000_MANC_ASF_EN)) | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static s32 e1000_polarity_reversal_workaround(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  | u16 mii_status_reg; | 
|  | u16 i; | 
|  |  | 
|  | /* Polarity reversal workaround for forced 10F/10H links. */ | 
|  |  | 
|  | /* Disable the transmitter on the PHY */ | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFFF); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* This loop will early-out if the NO link condition has been met. */ | 
|  | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Link Status bit | 
|  | * to be clear. | 
|  | */ | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if ((mii_status_reg & ~MII_SR_LINK_STATUS) == 0) break; | 
|  | mdelay(100); | 
|  | } | 
|  |  | 
|  | /* Recommended delay time after link has been lost */ | 
|  | mdelay(1000); | 
|  |  | 
|  | /* Now we will re-enable th transmitter on the PHY */ | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0019); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | mdelay(50); | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFFF0); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | mdelay(50); | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xFF00); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | mdelay(50); | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_GEN_CONTROL, 0x0000); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg(hw, M88E1000_PHY_PAGE_SELECT, 0x0000); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* This loop will early-out if the link condition has been met. */ | 
|  | for (i = PHY_FORCE_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Link Status bit | 
|  | * to be set. | 
|  | */ | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (mii_status_reg & MII_SR_LINK_STATUS) break; | 
|  | mdelay(100); | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * | 
|  | * Disables PCI-Express master access. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - none. | 
|  | * | 
|  | ***************************************************************************/ | 
|  | static void e1000_set_pci_express_master_disable(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  |  | 
|  | DEBUGFUNC("e1000_set_pci_express_master_disable"); | 
|  |  | 
|  | if (hw->bus_type != e1000_bus_type_pci_express) | 
|  | return; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_GIO_MASTER_DISABLE; | 
|  | ew32(CTRL, ctrl); | 
|  | } | 
|  |  | 
|  | /******************************************************************************* | 
|  | * | 
|  | * Disables PCI-Express master access and verifies there are no pending requests | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - E1000_ERR_MASTER_REQUESTS_PENDING if master disable bit hasn't | 
|  | *            caused the master requests to be disabled. | 
|  | *            E1000_SUCCESS master requests disabled. | 
|  | * | 
|  | ******************************************************************************/ | 
|  | s32 e1000_disable_pciex_master(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = MASTER_DISABLE_TIMEOUT;   /* 80ms */ | 
|  |  | 
|  | DEBUGFUNC("e1000_disable_pciex_master"); | 
|  |  | 
|  | if (hw->bus_type != e1000_bus_type_pci_express) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | e1000_set_pci_express_master_disable(hw); | 
|  |  | 
|  | while (timeout) { | 
|  | if (!(er32(STATUS) & E1000_STATUS_GIO_MASTER_ENABLE)) | 
|  | break; | 
|  | else | 
|  | udelay(100); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | DEBUGOUT("Master requests are pending.\n"); | 
|  | return -E1000_ERR_MASTER_REQUESTS_PENDING; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /******************************************************************************* | 
|  | * | 
|  | * Check for EEPROM Auto Read bit done. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - E1000_ERR_RESET if fail to reset MAC | 
|  | *            E1000_SUCCESS at any other case. | 
|  | * | 
|  | ******************************************************************************/ | 
|  | static s32 e1000_get_auto_rd_done(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = AUTO_READ_DONE_TIMEOUT; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_auto_rd_done"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | default: | 
|  | msleep(5); | 
|  | break; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_82573: | 
|  | case e1000_80003es2lan: | 
|  | case e1000_ich8lan: | 
|  | while (timeout) { | 
|  | if (er32(EECD) & E1000_EECD_AUTO_RD) | 
|  | break; | 
|  | else msleep(1); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | DEBUGOUT("Auto read by HW from EEPROM has not completed.\n"); | 
|  | return -E1000_ERR_RESET; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* PHY configuration from NVM just starts after EECD_AUTO_RD sets to high. | 
|  | * Need to wait for PHY configuration completion before accessing NVM | 
|  | * and PHY. */ | 
|  | if (hw->mac_type == e1000_82573) | 
|  | msleep(25); | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * Checks if the PHY configuration is done | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - E1000_ERR_RESET if fail to reset MAC | 
|  | *            E1000_SUCCESS at any other case. | 
|  | * | 
|  | ***************************************************************************/ | 
|  | static s32 e1000_get_phy_cfg_done(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = PHY_CFG_TIMEOUT; | 
|  | u32 cfg_mask = E1000_EEPROM_CFG_DONE; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_phy_cfg_done"); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | default: | 
|  | mdelay(10); | 
|  | break; | 
|  | case e1000_80003es2lan: | 
|  | /* Separate *_CFG_DONE_* bit for each port */ | 
|  | if (er32(STATUS) & E1000_STATUS_FUNC_1) | 
|  | cfg_mask = E1000_EEPROM_CFG_DONE_PORT_1; | 
|  | /* Fall Through */ | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | while (timeout) { | 
|  | if (er32(EEMNGCTL) & cfg_mask) | 
|  | break; | 
|  | else | 
|  | msleep(1); | 
|  | timeout--; | 
|  | } | 
|  | if (!timeout) { | 
|  | DEBUGOUT("MNG configuration cycle has not completed.\n"); | 
|  | return -E1000_ERR_RESET; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * | 
|  | * Using the combination of SMBI and SWESMBI semaphore bits when resetting | 
|  | * adapter or Eeprom access. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - E1000_ERR_EEPROM if fail to access EEPROM. | 
|  | *            E1000_SUCCESS at any other case. | 
|  | * | 
|  | ***************************************************************************/ | 
|  | static s32 e1000_get_hw_eeprom_semaphore(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout; | 
|  | u32 swsm; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_hw_eeprom_semaphore"); | 
|  |  | 
|  | if (!hw->eeprom_semaphore_present) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | if (hw->mac_type == e1000_80003es2lan) { | 
|  | /* Get the SW semaphore. */ | 
|  | if (e1000_get_software_semaphore(hw) != E1000_SUCCESS) | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | /* Get the FW semaphore. */ | 
|  | timeout = hw->eeprom.word_size + 1; | 
|  | while (timeout) { | 
|  | swsm = er32(SWSM); | 
|  | swsm |= E1000_SWSM_SWESMBI; | 
|  | ew32(SWSM, swsm); | 
|  | /* if we managed to set the bit we got the semaphore. */ | 
|  | swsm = er32(SWSM); | 
|  | if (swsm & E1000_SWSM_SWESMBI) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | /* Release semaphores */ | 
|  | e1000_put_hw_eeprom_semaphore(hw); | 
|  | DEBUGOUT("Driver can't access the Eeprom - SWESMBI bit is set.\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * This function clears HW semaphore bits. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - None. | 
|  | * | 
|  | ***************************************************************************/ | 
|  | static void e1000_put_hw_eeprom_semaphore(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  |  | 
|  | DEBUGFUNC("e1000_put_hw_eeprom_semaphore"); | 
|  |  | 
|  | if (!hw->eeprom_semaphore_present) | 
|  | return; | 
|  |  | 
|  | swsm = er32(SWSM); | 
|  | if (hw->mac_type == e1000_80003es2lan) { | 
|  | /* Release both semaphores. */ | 
|  | swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI); | 
|  | } else | 
|  | swsm &= ~(E1000_SWSM_SWESMBI); | 
|  | ew32(SWSM, swsm); | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * | 
|  | * Obtaining software semaphore bit (SMBI) before resetting PHY. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - E1000_ERR_RESET if fail to obtain semaphore. | 
|  | *            E1000_SUCCESS at any other case. | 
|  | * | 
|  | ***************************************************************************/ | 
|  | static s32 e1000_get_software_semaphore(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = hw->eeprom.word_size + 1; | 
|  | u32 swsm; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_software_semaphore"); | 
|  |  | 
|  | if (hw->mac_type != e1000_80003es2lan) { | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | while (timeout) { | 
|  | swsm = er32(SWSM); | 
|  | /* If SMBI bit cleared, it is now set and we hold the semaphore */ | 
|  | if (!(swsm & E1000_SWSM_SMBI)) | 
|  | break; | 
|  | mdelay(1); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | DEBUGOUT("Driver can't access device - SMBI bit is set.\n"); | 
|  | return -E1000_ERR_RESET; | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * | 
|  | * Release semaphore bit (SMBI). | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | ***************************************************************************/ | 
|  | static void e1000_release_software_semaphore(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  |  | 
|  | DEBUGFUNC("e1000_release_software_semaphore"); | 
|  |  | 
|  | if (hw->mac_type != e1000_80003es2lan) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | swsm = er32(SWSM); | 
|  | /* Release the SW semaphores.*/ | 
|  | swsm &= ~E1000_SWSM_SMBI; | 
|  | ew32(SWSM, swsm); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Checks if PHY reset is blocked due to SOL/IDER session, for example. | 
|  | * Returning E1000_BLK_PHY_RESET isn't necessarily an error.  But it's up to | 
|  | * the caller to figure out how to deal with it. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * returns: - E1000_BLK_PHY_RESET | 
|  | *            E1000_SUCCESS | 
|  | * | 
|  | *****************************************************************************/ | 
|  | s32 e1000_check_phy_reset_block(struct e1000_hw *hw) | 
|  | { | 
|  | u32 manc = 0; | 
|  | u32 fwsm = 0; | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | fwsm = er32(FWSM); | 
|  | return (fwsm & E1000_FWSM_RSPCIPHY) ? E1000_SUCCESS | 
|  | : E1000_BLK_PHY_RESET; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type > e1000_82547_rev_2) | 
|  | manc = er32(MANC); | 
|  | return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? | 
|  | E1000_BLK_PHY_RESET : E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | static u8 e1000_arc_subsystem_valid(struct e1000_hw *hw) | 
|  | { | 
|  | u32 fwsm; | 
|  |  | 
|  | /* On 8257x silicon, registers in the range of 0x8800 - 0x8FFC | 
|  | * may not be provided a DMA clock when no manageability features are | 
|  | * enabled.  We do not want to perform any reads/writes to these registers | 
|  | * if this is the case.  We read FWSM to determine the manageability mode. | 
|  | */ | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | case e1000_82573: | 
|  | case e1000_80003es2lan: | 
|  | fwsm = er32(FWSM); | 
|  | if ((fwsm & E1000_FWSM_MODE_MASK) != 0) | 
|  | return true; | 
|  | break; | 
|  | case e1000_ich8lan: | 
|  | return true; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Configure PCI-Ex no-snoop | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code. | 
|  | * no_snoop - Bitmap of no-snoop events. | 
|  | * | 
|  | * returns: E1000_SUCCESS | 
|  | * | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_set_pci_ex_no_snoop(struct e1000_hw *hw, u32 no_snoop) | 
|  | { | 
|  | u32 gcr_reg = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_set_pci_ex_no_snoop"); | 
|  |  | 
|  | if (hw->bus_type == e1000_bus_type_unknown) | 
|  | e1000_get_bus_info(hw); | 
|  |  | 
|  | if (hw->bus_type != e1000_bus_type_pci_express) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | if (no_snoop) { | 
|  | gcr_reg = er32(GCR); | 
|  | gcr_reg &= ~(PCI_EX_NO_SNOOP_ALL); | 
|  | gcr_reg |= no_snoop; | 
|  | ew32(GCR, gcr_reg); | 
|  | } | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | u32 ctrl_ext; | 
|  |  | 
|  | ew32(GCR, PCI_EX_82566_SNOOP_ALL); | 
|  |  | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_RO_DIS; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * | 
|  | * Get software semaphore FLAG bit (SWFLAG). | 
|  | * SWFLAG is used to synchronize the access to all shared resource between | 
|  | * SW, FW and HW. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | ***************************************************************************/ | 
|  | static s32 e1000_get_software_flag(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = PHY_CFG_TIMEOUT; | 
|  | u32 extcnf_ctrl; | 
|  |  | 
|  | DEBUGFUNC("e1000_get_software_flag"); | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | while (timeout) { | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG; | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  |  | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) | 
|  | break; | 
|  | mdelay(1); | 
|  | timeout--; | 
|  | } | 
|  |  | 
|  | if (!timeout) { | 
|  | DEBUGOUT("FW or HW locks the resource too long.\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * | 
|  | * Release software semaphore FLAG bit (SWFLAG). | 
|  | * SWFLAG is used to synchronize the access to all shared resource between | 
|  | * SW, FW and HW. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | * | 
|  | ***************************************************************************/ | 
|  | static void e1000_release_software_flag(struct e1000_hw *hw) | 
|  | { | 
|  | u32 extcnf_ctrl; | 
|  |  | 
|  | DEBUGFUNC("e1000_release_software_flag"); | 
|  |  | 
|  | if (hw->mac_type == e1000_ich8lan) { | 
|  | extcnf_ctrl= er32(EXTCNF_CTRL); | 
|  | extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG; | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  | } | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads a 16 bit word or words from the EEPROM using the ICH8's flash access | 
|  | * register. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset of word in the EEPROM to read | 
|  | * data - word read from the EEPROM | 
|  | * words - number of words to read | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_read_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | s32  error = E1000_SUCCESS; | 
|  | u32 flash_bank = 0; | 
|  | u32 act_offset = 0; | 
|  | u32 bank_offset = 0; | 
|  | u16 word = 0; | 
|  | u16 i = 0; | 
|  |  | 
|  | /* We need to know which is the valid flash bank.  In the event | 
|  | * that we didn't allocate eeprom_shadow_ram, we may not be | 
|  | * managing flash_bank.  So it cannot be trusted and needs | 
|  | * to be updated with each read. | 
|  | */ | 
|  | /* Value of bit 22 corresponds to the flash bank we're on. */ | 
|  | flash_bank = (er32(EECD) & E1000_EECD_SEC1VAL) ? 1 : 0; | 
|  |  | 
|  | /* Adjust offset appropriately if we're on bank 1 - adjust for word size */ | 
|  | bank_offset = flash_bank * (hw->flash_bank_size * 2); | 
|  |  | 
|  | error = e1000_get_software_flag(hw); | 
|  | if (error != E1000_SUCCESS) | 
|  | return error; | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | if (hw->eeprom_shadow_ram != NULL && | 
|  | hw->eeprom_shadow_ram[offset+i].modified) { | 
|  | data[i] = hw->eeprom_shadow_ram[offset+i].eeprom_word; | 
|  | } else { | 
|  | /* The NVM part needs a byte offset, hence * 2 */ | 
|  | act_offset = bank_offset + ((offset + i) * 2); | 
|  | error = e1000_read_ich8_word(hw, act_offset, &word); | 
|  | if (error != E1000_SUCCESS) | 
|  | break; | 
|  | data[i] = word; | 
|  | } | 
|  | } | 
|  |  | 
|  | e1000_release_software_flag(hw); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a 16 bit word or words to the EEPROM using the ICH8's flash access | 
|  | * register.  Actually, writes are written to the shadow ram cache in the hw | 
|  | * structure hw->e1000_shadow_ram.  e1000_commit_shadow_ram flushes this to | 
|  | * the NVM, which occurs when the NVM checksum is updated. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset of word in the EEPROM to write | 
|  | * words - number of words to write | 
|  | * data - words to write to the EEPROM | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_write_eeprom_ich8(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | u32 i = 0; | 
|  | s32 error = E1000_SUCCESS; | 
|  |  | 
|  | error = e1000_get_software_flag(hw); | 
|  | if (error != E1000_SUCCESS) | 
|  | return error; | 
|  |  | 
|  | /* A driver can write to the NVM only if it has eeprom_shadow_ram | 
|  | * allocated.  Subsequent reads to the modified words are read from | 
|  | * this cached structure as well.  Writes will only go into this | 
|  | * cached structure unless it's followed by a call to | 
|  | * e1000_update_eeprom_checksum() where it will commit the changes | 
|  | * and clear the "modified" field. | 
|  | */ | 
|  | if (hw->eeprom_shadow_ram != NULL) { | 
|  | for (i = 0; i < words; i++) { | 
|  | if ((offset + i) < E1000_SHADOW_RAM_WORDS) { | 
|  | hw->eeprom_shadow_ram[offset+i].modified = true; | 
|  | hw->eeprom_shadow_ram[offset+i].eeprom_word = data[i]; | 
|  | } else { | 
|  | error = -E1000_ERR_EEPROM; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | /* Drivers have the option to not allocate eeprom_shadow_ram as long | 
|  | * as they don't perform any NVM writes.  An attempt in doing so | 
|  | * will result in this error. | 
|  | */ | 
|  | error = -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | e1000_release_software_flag(hw); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * This function does initial flash setup so that a new read/write/erase cycle | 
|  | * can be started. | 
|  | * | 
|  | * hw - The pointer to the hw structure | 
|  | ****************************************************************************/ | 
|  | static s32 e1000_ich8_cycle_init(struct e1000_hw *hw) | 
|  | { | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | s32 error = E1000_ERR_EEPROM; | 
|  | s32 i     = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_ich8_cycle_init"); | 
|  |  | 
|  | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | 
|  |  | 
|  | /* May be check the Flash Des Valid bit in Hw status */ | 
|  | if (hsfsts.hsf_status.fldesvalid == 0) { | 
|  | DEBUGOUT("Flash descriptor invalid.  SW Sequencing must be used."); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* Clear FCERR in Hw status by writing 1 */ | 
|  | /* Clear DAEL in Hw status by writing a 1 */ | 
|  | hsfsts.hsf_status.flcerr = 1; | 
|  | hsfsts.hsf_status.dael = 1; | 
|  |  | 
|  | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | 
|  |  | 
|  | /* Either we should have a hardware SPI cycle in progress bit to check | 
|  | * against, in order to start a new cycle or FDONE bit should be changed | 
|  | * in the hardware so that it is 1 after harware reset, which can then be | 
|  | * used as an indication whether a cycle is in progress or has been | 
|  | * completed .. we should also have some software semaphore mechanism to | 
|  | * guard FDONE or the cycle in progress bit so that two threads access to | 
|  | * those bits can be sequentiallized or a way so that 2 threads dont | 
|  | * start the cycle at the same time */ | 
|  |  | 
|  | if (hsfsts.hsf_status.flcinprog == 0) { | 
|  | /* There is no cycle running at present, so we can start a cycle */ | 
|  | /* Begin by setting Flash Cycle Done. */ | 
|  | hsfsts.hsf_status.flcdone = 1; | 
|  | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | 
|  | error = E1000_SUCCESS; | 
|  | } else { | 
|  | /* otherwise poll for sometime so the current cycle has a chance | 
|  | * to end before giving up. */ | 
|  | for (i = 0; i < ICH_FLASH_COMMAND_TIMEOUT; i++) { | 
|  | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcinprog == 0) { | 
|  | error = E1000_SUCCESS; | 
|  | break; | 
|  | } | 
|  | udelay(1); | 
|  | } | 
|  | if (error == E1000_SUCCESS) { | 
|  | /* Successful in waiting for previous cycle to timeout, | 
|  | * now set the Flash Cycle Done. */ | 
|  | hsfsts.hsf_status.flcdone = 1; | 
|  | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS, hsfsts.regval); | 
|  | } else { | 
|  | DEBUGOUT("Flash controller busy, cannot get access"); | 
|  | } | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * This function starts a flash cycle and waits for its completion | 
|  | * | 
|  | * hw - The pointer to the hw structure | 
|  | ****************************************************************************/ | 
|  | static s32 e1000_ich8_flash_cycle(struct e1000_hw *hw, u32 timeout) | 
|  | { | 
|  | union ich8_hws_flash_ctrl hsflctl; | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | s32 error = E1000_ERR_EEPROM; | 
|  | u32 i = 0; | 
|  |  | 
|  | /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */ | 
|  | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | 
|  | hsflctl.hsf_ctrl.flcgo = 1; | 
|  | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | 
|  |  | 
|  | /* wait till FDONE bit is set to 1 */ | 
|  | do { | 
|  | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcdone == 1) | 
|  | break; | 
|  | udelay(1); | 
|  | i++; | 
|  | } while (i < timeout); | 
|  | if (hsfsts.hsf_status.flcdone == 1 && hsfsts.hsf_status.flcerr == 0) { | 
|  | error = E1000_SUCCESS; | 
|  | } | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads a byte or word from the NVM using the ICH8 flash access registers. | 
|  | * | 
|  | * hw - The pointer to the hw structure | 
|  | * index - The index of the byte or word to read. | 
|  | * size - Size of data to read, 1=byte 2=word | 
|  | * data - Pointer to the word to store the value read. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_read_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | 
|  | u16 *data) | 
|  | { | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | union ich8_hws_flash_ctrl hsflctl; | 
|  | u32 flash_linear_address; | 
|  | u32 flash_data = 0; | 
|  | s32 error = -E1000_ERR_EEPROM; | 
|  | s32 count = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_read_ich8_data"); | 
|  |  | 
|  | if (size < 1  || size > 2 || data == NULL || | 
|  | index > ICH_FLASH_LINEAR_ADDR_MASK) | 
|  | return error; | 
|  |  | 
|  | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + | 
|  | hw->flash_base_addr; | 
|  |  | 
|  | do { | 
|  | udelay(1); | 
|  | /* Steps */ | 
|  | error = e1000_ich8_cycle_init(hw); | 
|  | if (error != E1000_SUCCESS) | 
|  | break; | 
|  |  | 
|  | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | 
|  | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | 
|  | hsflctl.hsf_ctrl.fldbcount = size - 1; | 
|  | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ; | 
|  | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | 
|  |  | 
|  | /* Write the last 24 bits of index into Flash Linear address field in | 
|  | * Flash Address */ | 
|  | /* TODO: TBD maybe check the index against the size of flash */ | 
|  |  | 
|  | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | 
|  |  | 
|  | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); | 
|  |  | 
|  | /* Check if FCERR is set to 1, if set to 1, clear it and try the whole | 
|  | * sequence a few more times, else read in (shift in) the Flash Data0, | 
|  | * the order is least significant byte first msb to lsb */ | 
|  | if (error == E1000_SUCCESS) { | 
|  | flash_data = E1000_READ_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0); | 
|  | if (size == 1) { | 
|  | *data = (u8)(flash_data & 0x000000FF); | 
|  | } else if (size == 2) { | 
|  | *data = (u16)(flash_data & 0x0000FFFF); | 
|  | } | 
|  | break; | 
|  | } else { | 
|  | /* If we've gotten here, then things are probably completely hosed, | 
|  | * but if the error condition is detected, it won't hurt to give | 
|  | * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | 
|  | */ | 
|  | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcerr == 1) { | 
|  | /* Repeat for some time before giving up. */ | 
|  | continue; | 
|  | } else if (hsfsts.hsf_status.flcdone == 0) { | 
|  | DEBUGOUT("Timeout error - flash cycle did not complete."); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes One /two bytes to the NVM using the ICH8 flash access registers. | 
|  | * | 
|  | * hw - The pointer to the hw structure | 
|  | * index - The index of the byte/word to read. | 
|  | * size - Size of data to read, 1=byte 2=word | 
|  | * data - The byte(s) to write to the NVM. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_write_ich8_data(struct e1000_hw *hw, u32 index, u32 size, | 
|  | u16 data) | 
|  | { | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | union ich8_hws_flash_ctrl hsflctl; | 
|  | u32 flash_linear_address; | 
|  | u32 flash_data = 0; | 
|  | s32 error = -E1000_ERR_EEPROM; | 
|  | s32 count = 0; | 
|  |  | 
|  | DEBUGFUNC("e1000_write_ich8_data"); | 
|  |  | 
|  | if (size < 1  || size > 2 || data > size * 0xff || | 
|  | index > ICH_FLASH_LINEAR_ADDR_MASK) | 
|  | return error; | 
|  |  | 
|  | flash_linear_address = (ICH_FLASH_LINEAR_ADDR_MASK & index) + | 
|  | hw->flash_base_addr; | 
|  |  | 
|  | do { | 
|  | udelay(1); | 
|  | /* Steps */ | 
|  | error = e1000_ich8_cycle_init(hw); | 
|  | if (error != E1000_SUCCESS) | 
|  | break; | 
|  |  | 
|  | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | 
|  | /* 0b/1b corresponds to 1 or 2 byte size, respectively. */ | 
|  | hsflctl.hsf_ctrl.fldbcount = size -1; | 
|  | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE; | 
|  | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | 
|  |  | 
|  | /* Write the last 24 bits of index into Flash Linear address field in | 
|  | * Flash Address */ | 
|  | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | 
|  |  | 
|  | if (size == 1) | 
|  | flash_data = (u32)data & 0x00FF; | 
|  | else | 
|  | flash_data = (u32)data; | 
|  |  | 
|  | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FDATA0, flash_data); | 
|  |  | 
|  | /* check if FCERR is set to 1 , if set to 1, clear it and try the whole | 
|  | * sequence a few more times else done */ | 
|  | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_COMMAND_TIMEOUT); | 
|  | if (error == E1000_SUCCESS) { | 
|  | break; | 
|  | } else { | 
|  | /* If we're here, then things are most likely completely hosed, | 
|  | * but if the error condition is detected, it won't hurt to give | 
|  | * it another try...ICH_FLASH_CYCLE_REPEAT_COUNT times. | 
|  | */ | 
|  | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcerr == 1) { | 
|  | /* Repeat for some time before giving up. */ | 
|  | continue; | 
|  | } else if (hsfsts.hsf_status.flcdone == 0) { | 
|  | DEBUGOUT("Timeout error - flash cycle did not complete."); | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads a single byte from the NVM using the ICH8 flash access registers. | 
|  | * | 
|  | * hw - pointer to e1000_hw structure | 
|  | * index - The index of the byte to read. | 
|  | * data - Pointer to a byte to store the value read. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_read_ich8_byte(struct e1000_hw *hw, u32 index, u8 *data) | 
|  | { | 
|  | s32 status = E1000_SUCCESS; | 
|  | u16 word = 0; | 
|  |  | 
|  | status = e1000_read_ich8_data(hw, index, 1, &word); | 
|  | if (status == E1000_SUCCESS) { | 
|  | *data = (u8)word; | 
|  | } | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a single byte to the NVM using the ICH8 flash access registers. | 
|  | * Performs verification by reading back the value and then going through | 
|  | * a retry algorithm before giving up. | 
|  | * | 
|  | * hw - pointer to e1000_hw structure | 
|  | * index - The index of the byte to write. | 
|  | * byte - The byte to write to the NVM. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_verify_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 byte) | 
|  | { | 
|  | s32 error = E1000_SUCCESS; | 
|  | s32 program_retries = 0; | 
|  |  | 
|  | DEBUGOUT2("Byte := %2.2X Offset := %d\n", byte, index); | 
|  |  | 
|  | error = e1000_write_ich8_byte(hw, index, byte); | 
|  |  | 
|  | if (error != E1000_SUCCESS) { | 
|  | for (program_retries = 0; program_retries < 100; program_retries++) { | 
|  | DEBUGOUT2("Retrying \t Byte := %2.2X Offset := %d\n", byte, index); | 
|  | error = e1000_write_ich8_byte(hw, index, byte); | 
|  | udelay(100); | 
|  | if (error == E1000_SUCCESS) | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (program_retries == 100) | 
|  | error = E1000_ERR_EEPROM; | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a single byte to the NVM using the ICH8 flash access registers. | 
|  | * | 
|  | * hw - pointer to e1000_hw structure | 
|  | * index - The index of the byte to read. | 
|  | * data - The byte to write to the NVM. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_write_ich8_byte(struct e1000_hw *hw, u32 index, u8 data) | 
|  | { | 
|  | s32 status = E1000_SUCCESS; | 
|  | u16 word = (u16)data; | 
|  |  | 
|  | status = e1000_write_ich8_data(hw, index, 1, word); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads a word from the NVM using the ICH8 flash access registers. | 
|  | * | 
|  | * hw - pointer to e1000_hw structure | 
|  | * index - The starting byte index of the word to read. | 
|  | * data - Pointer to a word to store the value read. | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_read_ich8_word(struct e1000_hw *hw, u32 index, u16 *data) | 
|  | { | 
|  | s32 status = E1000_SUCCESS; | 
|  | status = e1000_read_ich8_data(hw, index, 2, data); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Erases the bank specified. Each bank may be a 4, 8 or 64k block. Banks are 0 | 
|  | * based. | 
|  | * | 
|  | * hw - pointer to e1000_hw structure | 
|  | * bank - 0 for first bank, 1 for second bank | 
|  | * | 
|  | * Note that this function may actually erase as much as 8 or 64 KBytes.  The | 
|  | * amount of NVM used in each bank is a *minimum* of 4 KBytes, but in fact the | 
|  | * bank size may be 4, 8 or 64 KBytes | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_erase_ich8_4k_segment(struct e1000_hw *hw, u32 bank) | 
|  | { | 
|  | union ich8_hws_flash_status hsfsts; | 
|  | union ich8_hws_flash_ctrl hsflctl; | 
|  | u32 flash_linear_address; | 
|  | s32  count = 0; | 
|  | s32  error = E1000_ERR_EEPROM; | 
|  | s32  iteration; | 
|  | s32  sub_sector_size = 0; | 
|  | s32  bank_size; | 
|  | s32  j = 0; | 
|  | s32  error_flag = 0; | 
|  |  | 
|  | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | 
|  |  | 
|  | /* Determine HW Sector size: Read BERASE bits of Hw flash Status register */ | 
|  | /* 00: The Hw sector is 256 bytes, hence we need to erase 16 | 
|  | *     consecutive sectors.  The start index for the nth Hw sector can be | 
|  | *     calculated as bank * 4096 + n * 256 | 
|  | * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector. | 
|  | *     The start index for the nth Hw sector can be calculated | 
|  | *     as bank * 4096 | 
|  | * 10: The HW sector is 8K bytes | 
|  | * 11: The Hw sector size is 64K bytes */ | 
|  | if (hsfsts.hsf_status.berasesz == 0x0) { | 
|  | /* Hw sector size 256 */ | 
|  | sub_sector_size = ICH_FLASH_SEG_SIZE_256; | 
|  | bank_size = ICH_FLASH_SECTOR_SIZE; | 
|  | iteration = ICH_FLASH_SECTOR_SIZE / ICH_FLASH_SEG_SIZE_256; | 
|  | } else if (hsfsts.hsf_status.berasesz == 0x1) { | 
|  | bank_size = ICH_FLASH_SEG_SIZE_4K; | 
|  | iteration = 1; | 
|  | } else if (hsfsts.hsf_status.berasesz == 0x3) { | 
|  | bank_size = ICH_FLASH_SEG_SIZE_64K; | 
|  | iteration = 1; | 
|  | } else { | 
|  | return error; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < iteration ; j++) { | 
|  | do { | 
|  | count++; | 
|  | /* Steps */ | 
|  | error = e1000_ich8_cycle_init(hw); | 
|  | if (error != E1000_SUCCESS) { | 
|  | error_flag = 1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Write a value 11 (block Erase) in Flash Cycle field in Hw flash | 
|  | * Control */ | 
|  | hsflctl.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL); | 
|  | hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE; | 
|  | E1000_WRITE_ICH_FLASH_REG16(hw, ICH_FLASH_HSFCTL, hsflctl.regval); | 
|  |  | 
|  | /* Write the last 24 bits of an index within the block into Flash | 
|  | * Linear address field in Flash Address.  This probably needs to | 
|  | * be calculated here based off the on-chip erase sector size and | 
|  | * the software bank size (4, 8 or 64 KBytes) */ | 
|  | flash_linear_address = bank * bank_size + j * sub_sector_size; | 
|  | flash_linear_address += hw->flash_base_addr; | 
|  | flash_linear_address &= ICH_FLASH_LINEAR_ADDR_MASK; | 
|  |  | 
|  | E1000_WRITE_ICH_FLASH_REG(hw, ICH_FLASH_FADDR, flash_linear_address); | 
|  |  | 
|  | error = e1000_ich8_flash_cycle(hw, ICH_FLASH_ERASE_TIMEOUT); | 
|  | /* Check if FCERR is set to 1.  If 1, clear it and try the whole | 
|  | * sequence a few more times else Done */ | 
|  | if (error == E1000_SUCCESS) { | 
|  | break; | 
|  | } else { | 
|  | hsfsts.regval = E1000_READ_ICH_FLASH_REG16(hw, ICH_FLASH_HSFSTS); | 
|  | if (hsfsts.hsf_status.flcerr == 1) { | 
|  | /* repeat for some time before giving up */ | 
|  | continue; | 
|  | } else if (hsfsts.hsf_status.flcdone == 0) { | 
|  | error_flag = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while ((count < ICH_FLASH_CYCLE_REPEAT_COUNT) && !error_flag); | 
|  | if (error_flag == 1) | 
|  | break; | 
|  | } | 
|  | if (error_flag != 1) | 
|  | error = E1000_SUCCESS; | 
|  | return error; | 
|  | } | 
|  |  | 
|  | static s32 e1000_init_lcd_from_nvm_config_region(struct e1000_hw *hw, | 
|  | u32 cnf_base_addr, | 
|  | u32 cnf_size) | 
|  | { | 
|  | u32 ret_val = E1000_SUCCESS; | 
|  | u16 word_addr, reg_data, reg_addr; | 
|  | u16 i; | 
|  |  | 
|  | /* cnf_base_addr is in DWORD */ | 
|  | word_addr = (u16)(cnf_base_addr << 1); | 
|  |  | 
|  | /* cnf_size is returned in size of dwords */ | 
|  | for (i = 0; i < cnf_size; i++) { | 
|  | ret_val = e1000_read_eeprom(hw, (word_addr + i*2), 1, ®_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_read_eeprom(hw, (word_addr + i*2 + 1), 1, ®_addr); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_get_software_flag(hw); | 
|  | if (ret_val != E1000_SUCCESS) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000_write_phy_reg_ex(hw, (u32)reg_addr, reg_data); | 
|  |  | 
|  | e1000_release_software_flag(hw); | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  |  | 
|  | /****************************************************************************** | 
|  | * This function initializes the PHY from the NVM on ICH8 platforms. This | 
|  | * is needed due to an issue where the NVM configuration is not properly | 
|  | * autoloaded after power transitions. Therefore, after each PHY reset, we | 
|  | * will load the configuration data out of the NVM manually. | 
|  | * | 
|  | * hw: Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static s32 e1000_init_lcd_from_nvm(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg_data, cnf_base_addr, cnf_size, ret_val, loop; | 
|  |  | 
|  | if (hw->phy_type != e1000_phy_igp_3) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Check if SW needs configure the PHY */ | 
|  | reg_data = er32(FEXTNVM); | 
|  | if (!(reg_data & FEXTNVM_SW_CONFIG)) | 
|  | return E1000_SUCCESS; | 
|  |  | 
|  | /* Wait for basic configuration completes before proceeding*/ | 
|  | loop = 0; | 
|  | do { | 
|  | reg_data = er32(STATUS) & E1000_STATUS_LAN_INIT_DONE; | 
|  | udelay(100); | 
|  | loop++; | 
|  | } while ((!reg_data) && (loop < 50)); | 
|  |  | 
|  | /* Clear the Init Done bit for the next init event */ | 
|  | reg_data = er32(STATUS); | 
|  | reg_data &= ~E1000_STATUS_LAN_INIT_DONE; | 
|  | ew32(STATUS, reg_data); | 
|  |  | 
|  | /* Make sure HW does not configure LCD from PHY extended configuration | 
|  | before SW configuration */ | 
|  | reg_data = er32(EXTCNF_CTRL); | 
|  | if ((reg_data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE) == 0x0000) { | 
|  | reg_data = er32(EXTCNF_SIZE); | 
|  | cnf_size = reg_data & E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH; | 
|  | cnf_size >>= 16; | 
|  | if (cnf_size) { | 
|  | reg_data = er32(EXTCNF_CTRL); | 
|  | cnf_base_addr = reg_data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER; | 
|  | /* cnf_base_addr is in DWORD */ | 
|  | cnf_base_addr >>= 16; | 
|  |  | 
|  | /* Configure LCD from extended configuration region. */ | 
|  | ret_val = e1000_init_lcd_from_nvm_config_region(hw, cnf_base_addr, | 
|  | cnf_size); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  |