|  | /* | 
|  | * Copyright (C) 1994 Linus Torvalds | 
|  | * | 
|  | * Pentium III FXSR, SSE support | 
|  | * General FPU state handling cleanups | 
|  | *	Gareth Hughes <gareth@valinux.com>, May 2000 | 
|  | * x86-64 work by Andi Kleen 2002 | 
|  | */ | 
|  |  | 
|  | #ifndef _ASM_X86_I387_H | 
|  | #define _ASM_X86_I387_H | 
|  |  | 
|  | #ifndef __ASSEMBLY__ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/hardirq.h> | 
|  |  | 
|  | struct pt_regs; | 
|  | struct user_i387_struct; | 
|  |  | 
|  | extern int init_fpu(struct task_struct *child); | 
|  | extern void fpu_finit(struct fpu *fpu); | 
|  | extern int dump_fpu(struct pt_regs *, struct user_i387_struct *); | 
|  | extern void math_state_restore(void); | 
|  |  | 
|  | extern bool irq_fpu_usable(void); | 
|  |  | 
|  | /* | 
|  | * Careful: __kernel_fpu_begin/end() must be called with preempt disabled | 
|  | * and they don't touch the preempt state on their own. | 
|  | * If you enable preemption after __kernel_fpu_begin(), preempt notifier | 
|  | * should call the __kernel_fpu_end() to prevent the kernel/user FPU | 
|  | * state from getting corrupted. KVM for example uses this model. | 
|  | * | 
|  | * All other cases use kernel_fpu_begin/end() which disable preemption | 
|  | * during kernel FPU usage. | 
|  | */ | 
|  | extern void __kernel_fpu_begin(void); | 
|  | extern void __kernel_fpu_end(void); | 
|  |  | 
|  | static inline void kernel_fpu_begin(void) | 
|  | { | 
|  | WARN_ON_ONCE(!irq_fpu_usable()); | 
|  | preempt_disable(); | 
|  | __kernel_fpu_begin(); | 
|  | } | 
|  |  | 
|  | static inline void kernel_fpu_end(void) | 
|  | { | 
|  | __kernel_fpu_end(); | 
|  | preempt_enable(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some instructions like VIA's padlock instructions generate a spurious | 
|  | * DNA fault but don't modify SSE registers. And these instructions | 
|  | * get used from interrupt context as well. To prevent these kernel instructions | 
|  | * in interrupt context interacting wrongly with other user/kernel fpu usage, we | 
|  | * should use them only in the context of irq_ts_save/restore() | 
|  | */ | 
|  | static inline int irq_ts_save(void) | 
|  | { | 
|  | /* | 
|  | * If in process context and not atomic, we can take a spurious DNA fault. | 
|  | * Otherwise, doing clts() in process context requires disabling preemption | 
|  | * or some heavy lifting like kernel_fpu_begin() | 
|  | */ | 
|  | if (!in_atomic()) | 
|  | return 0; | 
|  |  | 
|  | if (read_cr0() & X86_CR0_TS) { | 
|  | clts(); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void irq_ts_restore(int TS_state) | 
|  | { | 
|  | if (TS_state) | 
|  | stts(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The question "does this thread have fpu access?" | 
|  | * is slightly racy, since preemption could come in | 
|  | * and revoke it immediately after the test. | 
|  | * | 
|  | * However, even in that very unlikely scenario, | 
|  | * we can just assume we have FPU access - typically | 
|  | * to save the FP state - we'll just take a #NM | 
|  | * fault and get the FPU access back. | 
|  | */ | 
|  | static inline int user_has_fpu(void) | 
|  | { | 
|  | return current->thread.fpu.has_fpu; | 
|  | } | 
|  |  | 
|  | extern void unlazy_fpu(struct task_struct *tsk); | 
|  |  | 
|  | #endif /* __ASSEMBLY__ */ | 
|  |  | 
|  | #endif /* _ASM_X86_I387_H */ |