| /* | 
 |  * Copyright (C) 2011, 2012 STRATO.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include <linux/ratelimit.h> | 
 | #include "ctree.h" | 
 | #include "volumes.h" | 
 | #include "disk-io.h" | 
 | #include "ordered-data.h" | 
 | #include "transaction.h" | 
 | #include "backref.h" | 
 | #include "extent_io.h" | 
 | #include "dev-replace.h" | 
 | #include "check-integrity.h" | 
 | #include "rcu-string.h" | 
 | #include "raid56.h" | 
 |  | 
 | /* | 
 |  * This is only the first step towards a full-features scrub. It reads all | 
 |  * extent and super block and verifies the checksums. In case a bad checksum | 
 |  * is found or the extent cannot be read, good data will be written back if | 
 |  * any can be found. | 
 |  * | 
 |  * Future enhancements: | 
 |  *  - In case an unrepairable extent is encountered, track which files are | 
 |  *    affected and report them | 
 |  *  - track and record media errors, throw out bad devices | 
 |  *  - add a mode to also read unallocated space | 
 |  */ | 
 |  | 
 | struct scrub_block; | 
 | struct scrub_ctx; | 
 |  | 
 | /* | 
 |  * the following three values only influence the performance. | 
 |  * The last one configures the number of parallel and outstanding I/O | 
 |  * operations. The first two values configure an upper limit for the number | 
 |  * of (dynamically allocated) pages that are added to a bio. | 
 |  */ | 
 | #define SCRUB_PAGES_PER_RD_BIO	32	/* 128k per bio */ | 
 | #define SCRUB_PAGES_PER_WR_BIO	32	/* 128k per bio */ | 
 | #define SCRUB_BIOS_PER_SCTX	64	/* 8MB per device in flight */ | 
 |  | 
 | /* | 
 |  * the following value times PAGE_SIZE needs to be large enough to match the | 
 |  * largest node/leaf/sector size that shall be supported. | 
 |  * Values larger than BTRFS_STRIPE_LEN are not supported. | 
 |  */ | 
 | #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */ | 
 |  | 
 | struct scrub_page { | 
 | 	struct scrub_block	*sblock; | 
 | 	struct page		*page; | 
 | 	struct btrfs_device	*dev; | 
 | 	u64			flags;  /* extent flags */ | 
 | 	u64			generation; | 
 | 	u64			logical; | 
 | 	u64			physical; | 
 | 	u64			physical_for_dev_replace; | 
 | 	atomic_t		ref_count; | 
 | 	struct { | 
 | 		unsigned int	mirror_num:8; | 
 | 		unsigned int	have_csum:1; | 
 | 		unsigned int	io_error:1; | 
 | 	}; | 
 | 	u8			csum[BTRFS_CSUM_SIZE]; | 
 | }; | 
 |  | 
 | struct scrub_bio { | 
 | 	int			index; | 
 | 	struct scrub_ctx	*sctx; | 
 | 	struct btrfs_device	*dev; | 
 | 	struct bio		*bio; | 
 | 	int			err; | 
 | 	u64			logical; | 
 | 	u64			physical; | 
 | #if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO | 
 | 	struct scrub_page	*pagev[SCRUB_PAGES_PER_WR_BIO]; | 
 | #else | 
 | 	struct scrub_page	*pagev[SCRUB_PAGES_PER_RD_BIO]; | 
 | #endif | 
 | 	int			page_count; | 
 | 	int			next_free; | 
 | 	struct btrfs_work	work; | 
 | }; | 
 |  | 
 | struct scrub_block { | 
 | 	struct scrub_page	*pagev[SCRUB_MAX_PAGES_PER_BLOCK]; | 
 | 	int			page_count; | 
 | 	atomic_t		outstanding_pages; | 
 | 	atomic_t		ref_count; /* free mem on transition to zero */ | 
 | 	struct scrub_ctx	*sctx; | 
 | 	struct { | 
 | 		unsigned int	header_error:1; | 
 | 		unsigned int	checksum_error:1; | 
 | 		unsigned int	no_io_error_seen:1; | 
 | 		unsigned int	generation_error:1; /* also sets header_error */ | 
 | 	}; | 
 | }; | 
 |  | 
 | struct scrub_wr_ctx { | 
 | 	struct scrub_bio *wr_curr_bio; | 
 | 	struct btrfs_device *tgtdev; | 
 | 	int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */ | 
 | 	atomic_t flush_all_writes; | 
 | 	struct mutex wr_lock; | 
 | }; | 
 |  | 
 | struct scrub_ctx { | 
 | 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX]; | 
 | 	struct btrfs_root	*dev_root; | 
 | 	int			first_free; | 
 | 	int			curr; | 
 | 	atomic_t		bios_in_flight; | 
 | 	atomic_t		workers_pending; | 
 | 	spinlock_t		list_lock; | 
 | 	wait_queue_head_t	list_wait; | 
 | 	u16			csum_size; | 
 | 	struct list_head	csum_list; | 
 | 	atomic_t		cancel_req; | 
 | 	int			readonly; | 
 | 	int			pages_per_rd_bio; | 
 | 	u32			sectorsize; | 
 | 	u32			nodesize; | 
 | 	u32			leafsize; | 
 |  | 
 | 	int			is_dev_replace; | 
 | 	struct scrub_wr_ctx	wr_ctx; | 
 |  | 
 | 	/* | 
 | 	 * statistics | 
 | 	 */ | 
 | 	struct btrfs_scrub_progress stat; | 
 | 	spinlock_t		stat_lock; | 
 | }; | 
 |  | 
 | struct scrub_fixup_nodatasum { | 
 | 	struct scrub_ctx	*sctx; | 
 | 	struct btrfs_device	*dev; | 
 | 	u64			logical; | 
 | 	struct btrfs_root	*root; | 
 | 	struct btrfs_work	work; | 
 | 	int			mirror_num; | 
 | }; | 
 |  | 
 | struct scrub_copy_nocow_ctx { | 
 | 	struct scrub_ctx	*sctx; | 
 | 	u64			logical; | 
 | 	u64			len; | 
 | 	int			mirror_num; | 
 | 	u64			physical_for_dev_replace; | 
 | 	struct btrfs_work	work; | 
 | }; | 
 |  | 
 | struct scrub_warning { | 
 | 	struct btrfs_path	*path; | 
 | 	u64			extent_item_size; | 
 | 	char			*scratch_buf; | 
 | 	char			*msg_buf; | 
 | 	const char		*errstr; | 
 | 	sector_t		sector; | 
 | 	u64			logical; | 
 | 	struct btrfs_device	*dev; | 
 | 	int			msg_bufsize; | 
 | 	int			scratch_bufsize; | 
 | }; | 
 |  | 
 |  | 
 | static void scrub_pending_bio_inc(struct scrub_ctx *sctx); | 
 | static void scrub_pending_bio_dec(struct scrub_ctx *sctx); | 
 | static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx); | 
 | static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx); | 
 | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); | 
 | static int scrub_setup_recheck_block(struct scrub_ctx *sctx, | 
 | 				     struct btrfs_fs_info *fs_info, | 
 | 				     struct scrub_block *original_sblock, | 
 | 				     u64 length, u64 logical, | 
 | 				     struct scrub_block *sblocks_for_recheck); | 
 | static void scrub_recheck_block(struct btrfs_fs_info *fs_info, | 
 | 				struct scrub_block *sblock, int is_metadata, | 
 | 				int have_csum, u8 *csum, u64 generation, | 
 | 				u16 csum_size); | 
 | static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, | 
 | 					 struct scrub_block *sblock, | 
 | 					 int is_metadata, int have_csum, | 
 | 					 const u8 *csum, u64 generation, | 
 | 					 u16 csum_size); | 
 | static void scrub_complete_bio_end_io(struct bio *bio, int err); | 
 | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | 
 | 					     struct scrub_block *sblock_good, | 
 | 					     int force_write); | 
 | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | 
 | 					    struct scrub_block *sblock_good, | 
 | 					    int page_num, int force_write); | 
 | static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); | 
 | static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, | 
 | 					   int page_num); | 
 | static int scrub_checksum_data(struct scrub_block *sblock); | 
 | static int scrub_checksum_tree_block(struct scrub_block *sblock); | 
 | static int scrub_checksum_super(struct scrub_block *sblock); | 
 | static void scrub_block_get(struct scrub_block *sblock); | 
 | static void scrub_block_put(struct scrub_block *sblock); | 
 | static void scrub_page_get(struct scrub_page *spage); | 
 | static void scrub_page_put(struct scrub_page *spage); | 
 | static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, | 
 | 				    struct scrub_page *spage); | 
 | static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, | 
 | 		       u64 physical, struct btrfs_device *dev, u64 flags, | 
 | 		       u64 gen, int mirror_num, u8 *csum, int force, | 
 | 		       u64 physical_for_dev_replace); | 
 | static void scrub_bio_end_io(struct bio *bio, int err); | 
 | static void scrub_bio_end_io_worker(struct btrfs_work *work); | 
 | static void scrub_block_complete(struct scrub_block *sblock); | 
 | static void scrub_remap_extent(struct btrfs_fs_info *fs_info, | 
 | 			       u64 extent_logical, u64 extent_len, | 
 | 			       u64 *extent_physical, | 
 | 			       struct btrfs_device **extent_dev, | 
 | 			       int *extent_mirror_num); | 
 | static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, | 
 | 			      struct scrub_wr_ctx *wr_ctx, | 
 | 			      struct btrfs_fs_info *fs_info, | 
 | 			      struct btrfs_device *dev, | 
 | 			      int is_dev_replace); | 
 | static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx); | 
 | static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, | 
 | 				    struct scrub_page *spage); | 
 | static void scrub_wr_submit(struct scrub_ctx *sctx); | 
 | static void scrub_wr_bio_end_io(struct bio *bio, int err); | 
 | static void scrub_wr_bio_end_io_worker(struct btrfs_work *work); | 
 | static int write_page_nocow(struct scrub_ctx *sctx, | 
 | 			    u64 physical_for_dev_replace, struct page *page); | 
 | static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, | 
 | 				      void *ctx); | 
 | static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, | 
 | 			    int mirror_num, u64 physical_for_dev_replace); | 
 | static void copy_nocow_pages_worker(struct btrfs_work *work); | 
 |  | 
 |  | 
 | static void scrub_pending_bio_inc(struct scrub_ctx *sctx) | 
 | { | 
 | 	atomic_inc(&sctx->bios_in_flight); | 
 | } | 
 |  | 
 | static void scrub_pending_bio_dec(struct scrub_ctx *sctx) | 
 | { | 
 | 	atomic_dec(&sctx->bios_in_flight); | 
 | 	wake_up(&sctx->list_wait); | 
 | } | 
 |  | 
 | /* | 
 |  * used for workers that require transaction commits (i.e., for the | 
 |  * NOCOW case) | 
 |  */ | 
 | static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; | 
 |  | 
 | 	/* | 
 | 	 * increment scrubs_running to prevent cancel requests from | 
 | 	 * completing as long as a worker is running. we must also | 
 | 	 * increment scrubs_paused to prevent deadlocking on pause | 
 | 	 * requests used for transactions commits (as the worker uses a | 
 | 	 * transaction context). it is safe to regard the worker | 
 | 	 * as paused for all matters practical. effectively, we only | 
 | 	 * avoid cancellation requests from completing. | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	atomic_inc(&fs_info->scrubs_running); | 
 | 	atomic_inc(&fs_info->scrubs_paused); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | 	atomic_inc(&sctx->workers_pending); | 
 | } | 
 |  | 
 | /* used for workers that require transaction commits */ | 
 | static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; | 
 |  | 
 | 	/* | 
 | 	 * see scrub_pending_trans_workers_inc() why we're pretending | 
 | 	 * to be paused in the scrub counters | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	atomic_dec(&fs_info->scrubs_running); | 
 | 	atomic_dec(&fs_info->scrubs_paused); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | 	atomic_dec(&sctx->workers_pending); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 | 	wake_up(&sctx->list_wait); | 
 | } | 
 |  | 
 | static void scrub_free_csums(struct scrub_ctx *sctx) | 
 | { | 
 | 	while (!list_empty(&sctx->csum_list)) { | 
 | 		struct btrfs_ordered_sum *sum; | 
 | 		sum = list_first_entry(&sctx->csum_list, | 
 | 				       struct btrfs_ordered_sum, list); | 
 | 		list_del(&sum->list); | 
 | 		kfree(sum); | 
 | 	} | 
 | } | 
 |  | 
 | static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!sctx) | 
 | 		return; | 
 |  | 
 | 	scrub_free_wr_ctx(&sctx->wr_ctx); | 
 |  | 
 | 	/* this can happen when scrub is cancelled */ | 
 | 	if (sctx->curr != -1) { | 
 | 		struct scrub_bio *sbio = sctx->bios[sctx->curr]; | 
 |  | 
 | 		for (i = 0; i < sbio->page_count; i++) { | 
 | 			WARN_ON(!sbio->pagev[i]->page); | 
 | 			scrub_block_put(sbio->pagev[i]->sblock); | 
 | 		} | 
 | 		bio_put(sbio->bio); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { | 
 | 		struct scrub_bio *sbio = sctx->bios[i]; | 
 |  | 
 | 		if (!sbio) | 
 | 			break; | 
 | 		kfree(sbio); | 
 | 	} | 
 |  | 
 | 	scrub_free_csums(sctx); | 
 | 	kfree(sctx); | 
 | } | 
 |  | 
 | static noinline_for_stack | 
 | struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace) | 
 | { | 
 | 	struct scrub_ctx *sctx; | 
 | 	int		i; | 
 | 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; | 
 | 	int pages_per_rd_bio; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * the setting of pages_per_rd_bio is correct for scrub but might | 
 | 	 * be wrong for the dev_replace code where we might read from | 
 | 	 * different devices in the initial huge bios. However, that | 
 | 	 * code is able to correctly handle the case when adding a page | 
 | 	 * to a bio fails. | 
 | 	 */ | 
 | 	if (dev->bdev) | 
 | 		pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO, | 
 | 					 bio_get_nr_vecs(dev->bdev)); | 
 | 	else | 
 | 		pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO; | 
 | 	sctx = kzalloc(sizeof(*sctx), GFP_NOFS); | 
 | 	if (!sctx) | 
 | 		goto nomem; | 
 | 	sctx->is_dev_replace = is_dev_replace; | 
 | 	sctx->pages_per_rd_bio = pages_per_rd_bio; | 
 | 	sctx->curr = -1; | 
 | 	sctx->dev_root = dev->dev_root; | 
 | 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { | 
 | 		struct scrub_bio *sbio; | 
 |  | 
 | 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS); | 
 | 		if (!sbio) | 
 | 			goto nomem; | 
 | 		sctx->bios[i] = sbio; | 
 |  | 
 | 		sbio->index = i; | 
 | 		sbio->sctx = sctx; | 
 | 		sbio->page_count = 0; | 
 | 		sbio->work.func = scrub_bio_end_io_worker; | 
 |  | 
 | 		if (i != SCRUB_BIOS_PER_SCTX - 1) | 
 | 			sctx->bios[i]->next_free = i + 1; | 
 | 		else | 
 | 			sctx->bios[i]->next_free = -1; | 
 | 	} | 
 | 	sctx->first_free = 0; | 
 | 	sctx->nodesize = dev->dev_root->nodesize; | 
 | 	sctx->leafsize = dev->dev_root->leafsize; | 
 | 	sctx->sectorsize = dev->dev_root->sectorsize; | 
 | 	atomic_set(&sctx->bios_in_flight, 0); | 
 | 	atomic_set(&sctx->workers_pending, 0); | 
 | 	atomic_set(&sctx->cancel_req, 0); | 
 | 	sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 | 	INIT_LIST_HEAD(&sctx->csum_list); | 
 |  | 
 | 	spin_lock_init(&sctx->list_lock); | 
 | 	spin_lock_init(&sctx->stat_lock); | 
 | 	init_waitqueue_head(&sctx->list_wait); | 
 |  | 
 | 	ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info, | 
 | 				 fs_info->dev_replace.tgtdev, is_dev_replace); | 
 | 	if (ret) { | 
 | 		scrub_free_ctx(sctx); | 
 | 		return ERR_PTR(ret); | 
 | 	} | 
 | 	return sctx; | 
 |  | 
 | nomem: | 
 | 	scrub_free_ctx(sctx); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, | 
 | 				     void *warn_ctx) | 
 | { | 
 | 	u64 isize; | 
 | 	u32 nlink; | 
 | 	int ret; | 
 | 	int i; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct scrub_warning *swarn = warn_ctx; | 
 | 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; | 
 | 	struct inode_fs_paths *ipath = NULL; | 
 | 	struct btrfs_root *local_root; | 
 | 	struct btrfs_key root_key; | 
 |  | 
 | 	root_key.objectid = root; | 
 | 	root_key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	root_key.offset = (u64)-1; | 
 | 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); | 
 | 	if (IS_ERR(local_root)) { | 
 | 		ret = PTR_ERR(local_root); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	ret = inode_item_info(inum, 0, local_root, swarn->path); | 
 | 	if (ret) { | 
 | 		btrfs_release_path(swarn->path); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	eb = swarn->path->nodes[0]; | 
 | 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], | 
 | 					struct btrfs_inode_item); | 
 | 	isize = btrfs_inode_size(eb, inode_item); | 
 | 	nlink = btrfs_inode_nlink(eb, inode_item); | 
 | 	btrfs_release_path(swarn->path); | 
 |  | 
 | 	ipath = init_ipath(4096, local_root, swarn->path); | 
 | 	if (IS_ERR(ipath)) { | 
 | 		ret = PTR_ERR(ipath); | 
 | 		ipath = NULL; | 
 | 		goto err; | 
 | 	} | 
 | 	ret = paths_from_inode(inum, ipath); | 
 |  | 
 | 	if (ret < 0) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * we deliberately ignore the bit ipath might have been too small to | 
 | 	 * hold all of the paths here | 
 | 	 */ | 
 | 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) | 
 | 		printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " | 
 | 			"%s, sector %llu, root %llu, inode %llu, offset %llu, " | 
 | 			"length %llu, links %u (path: %s)\n", swarn->errstr, | 
 | 			swarn->logical, rcu_str_deref(swarn->dev->name), | 
 | 			(unsigned long long)swarn->sector, root, inum, offset, | 
 | 			min(isize - offset, (u64)PAGE_SIZE), nlink, | 
 | 			(char *)(unsigned long)ipath->fspath->val[i]); | 
 |  | 
 | 	free_ipath(ipath); | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev " | 
 | 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path " | 
 | 		"resolving failed with ret=%d\n", swarn->errstr, | 
 | 		swarn->logical, rcu_str_deref(swarn->dev->name), | 
 | 		(unsigned long long)swarn->sector, root, inum, offset, ret); | 
 |  | 
 | 	free_ipath(ipath); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) | 
 | { | 
 | 	struct btrfs_device *dev; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct scrub_warning swarn; | 
 | 	unsigned long ptr = 0; | 
 | 	u64 extent_item_pos; | 
 | 	u64 flags = 0; | 
 | 	u64 ref_root; | 
 | 	u32 item_size; | 
 | 	u8 ref_level; | 
 | 	const int bufsize = 4096; | 
 | 	int ret; | 
 |  | 
 | 	WARN_ON(sblock->page_count < 1); | 
 | 	dev = sblock->pagev[0]->dev; | 
 | 	fs_info = sblock->sctx->dev_root->fs_info; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 |  | 
 | 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); | 
 | 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); | 
 | 	swarn.sector = (sblock->pagev[0]->physical) >> 9; | 
 | 	swarn.logical = sblock->pagev[0]->logical; | 
 | 	swarn.errstr = errstr; | 
 | 	swarn.dev = NULL; | 
 | 	swarn.msg_bufsize = bufsize; | 
 | 	swarn.scratch_bufsize = bufsize; | 
 |  | 
 | 	if (!path || !swarn.scratch_buf || !swarn.msg_buf) | 
 | 		goto out; | 
 |  | 
 | 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, | 
 | 				  &flags); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	extent_item_pos = swarn.logical - found_key.objectid; | 
 | 	swarn.extent_item_size = found_key.offset; | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | 
 | 	item_size = btrfs_item_size_nr(eb, path->slots[0]); | 
 |  | 
 | 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
 | 		do { | 
 | 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size, | 
 | 							&ref_root, &ref_level); | 
 | 			printk_in_rcu(KERN_WARNING | 
 | 				"btrfs: %s at logical %llu on dev %s, " | 
 | 				"sector %llu: metadata %s (level %d) in tree " | 
 | 				"%llu\n", errstr, swarn.logical, | 
 | 				rcu_str_deref(dev->name), | 
 | 				(unsigned long long)swarn.sector, | 
 | 				ref_level ? "node" : "leaf", | 
 | 				ret < 0 ? -1 : ref_level, | 
 | 				ret < 0 ? -1 : ref_root); | 
 | 		} while (ret != 1); | 
 | 		btrfs_release_path(path); | 
 | 	} else { | 
 | 		btrfs_release_path(path); | 
 | 		swarn.path = path; | 
 | 		swarn.dev = dev; | 
 | 		iterate_extent_inodes(fs_info, found_key.objectid, | 
 | 					extent_item_pos, 1, | 
 | 					scrub_print_warning_inode, &swarn); | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	kfree(swarn.scratch_buf); | 
 | 	kfree(swarn.msg_buf); | 
 | } | 
 |  | 
 | static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	unsigned long index; | 
 | 	struct scrub_fixup_nodatasum *fixup = fixup_ctx; | 
 | 	int ret; | 
 | 	int corrected = 0; | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode = NULL; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	u64 end = offset + PAGE_SIZE - 1; | 
 | 	struct btrfs_root *local_root; | 
 | 	int srcu_index; | 
 |  | 
 | 	key.objectid = root; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	fs_info = fixup->root->fs_info; | 
 | 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu); | 
 |  | 
 | 	local_root = btrfs_read_fs_root_no_name(fs_info, &key); | 
 | 	if (IS_ERR(local_root)) { | 
 | 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); | 
 | 		return PTR_ERR(local_root); | 
 | 	} | 
 |  | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.objectid = inum; | 
 | 	key.offset = 0; | 
 | 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); | 
 | 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); | 
 | 	if (IS_ERR(inode)) | 
 | 		return PTR_ERR(inode); | 
 |  | 
 | 	index = offset >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | 
 | 	if (!page) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (PageUptodate(page)) { | 
 | 		if (PageDirty(page)) { | 
 | 			/* | 
 | 			 * we need to write the data to the defect sector. the | 
 | 			 * data that was in that sector is not in memory, | 
 | 			 * because the page was modified. we must not write the | 
 | 			 * modified page to that sector. | 
 | 			 * | 
 | 			 * TODO: what could be done here: wait for the delalloc | 
 | 			 *       runner to write out that page (might involve | 
 | 			 *       COW) and see whether the sector is still | 
 | 			 *       referenced afterwards. | 
 | 			 * | 
 | 			 * For the meantime, we'll treat this error | 
 | 			 * incorrectable, although there is a chance that a | 
 | 			 * later scrub will find the bad sector again and that | 
 | 			 * there's no dirty page in memory, then. | 
 | 			 */ | 
 | 			ret = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 		fs_info = BTRFS_I(inode)->root->fs_info; | 
 | 		ret = repair_io_failure(fs_info, offset, PAGE_SIZE, | 
 | 					fixup->logical, page, | 
 | 					fixup->mirror_num); | 
 | 		unlock_page(page); | 
 | 		corrected = !ret; | 
 | 	} else { | 
 | 		/* | 
 | 		 * we need to get good data first. the general readpage path | 
 | 		 * will call repair_io_failure for us, we just have to make | 
 | 		 * sure we read the bad mirror. | 
 | 		 */ | 
 | 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | 
 | 					EXTENT_DAMAGED, GFP_NOFS); | 
 | 		if (ret) { | 
 | 			/* set_extent_bits should give proper error */ | 
 | 			WARN_ON(ret > 0); | 
 | 			if (ret > 0) | 
 | 				ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, | 
 | 						btrfs_get_extent, | 
 | 						fixup->mirror_num); | 
 | 		wait_on_page_locked(page); | 
 |  | 
 | 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, | 
 | 						end, EXTENT_DAMAGED, 0, NULL); | 
 | 		if (!corrected) | 
 | 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | 
 | 						EXTENT_DAMAGED, GFP_NOFS); | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (page) | 
 | 		put_page(page); | 
 | 	if (inode) | 
 | 		iput(inode); | 
 |  | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (ret == 0 && corrected) { | 
 | 		/* | 
 | 		 * we only need to call readpage for one of the inodes belonging | 
 | 		 * to this extent. so make iterate_extent_inodes stop | 
 | 		 */ | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static void scrub_fixup_nodatasum(struct btrfs_work *work) | 
 | { | 
 | 	int ret; | 
 | 	struct scrub_fixup_nodatasum *fixup; | 
 | 	struct scrub_ctx *sctx; | 
 | 	struct btrfs_trans_handle *trans = NULL; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	int uncorrectable = 0; | 
 |  | 
 | 	fixup = container_of(work, struct scrub_fixup_nodatasum, work); | 
 | 	sctx = fixup->sctx; | 
 | 	fs_info = fixup->root->fs_info; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		++sctx->stat.malloc_errors; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		uncorrectable = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trans = btrfs_join_transaction(fixup->root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		uncorrectable = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the idea is to trigger a regular read through the standard path. we | 
 | 	 * read a page from the (failed) logical address by specifying the | 
 | 	 * corresponding copynum of the failed sector. thus, that readpage is | 
 | 	 * expected to fail. | 
 | 	 * that is the point where on-the-fly error correction will kick in | 
 | 	 * (once it's finished) and rewrite the failed sector if a good copy | 
 | 	 * can be found. | 
 | 	 */ | 
 | 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, | 
 | 						path, scrub_fixup_readpage, | 
 | 						fixup); | 
 | 	if (ret < 0) { | 
 | 		uncorrectable = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	WARN_ON(ret != 1); | 
 |  | 
 | 	spin_lock(&sctx->stat_lock); | 
 | 	++sctx->stat.corrected_errors; | 
 | 	spin_unlock(&sctx->stat_lock); | 
 |  | 
 | out: | 
 | 	if (trans && !IS_ERR(trans)) | 
 | 		btrfs_end_transaction(trans, fixup->root); | 
 | 	if (uncorrectable) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		++sctx->stat.uncorrectable_errors; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		btrfs_dev_replace_stats_inc( | 
 | 			&sctx->dev_root->fs_info->dev_replace. | 
 | 			num_uncorrectable_read_errors); | 
 | 		printk_ratelimited_in_rcu(KERN_ERR | 
 | 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n", | 
 | 			(unsigned long long)fixup->logical, | 
 | 			rcu_str_deref(fixup->dev->name)); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	kfree(fixup); | 
 |  | 
 | 	scrub_pending_trans_workers_dec(sctx); | 
 | } | 
 |  | 
 | /* | 
 |  * scrub_handle_errored_block gets called when either verification of the | 
 |  * pages failed or the bio failed to read, e.g. with EIO. In the latter | 
 |  * case, this function handles all pages in the bio, even though only one | 
 |  * may be bad. | 
 |  * The goal of this function is to repair the errored block by using the | 
 |  * contents of one of the mirrors. | 
 |  */ | 
 | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) | 
 | { | 
 | 	struct scrub_ctx *sctx = sblock_to_check->sctx; | 
 | 	struct btrfs_device *dev; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	u64 length; | 
 | 	u64 logical; | 
 | 	u64 generation; | 
 | 	unsigned int failed_mirror_index; | 
 | 	unsigned int is_metadata; | 
 | 	unsigned int have_csum; | 
 | 	u8 *csum; | 
 | 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ | 
 | 	struct scrub_block *sblock_bad; | 
 | 	int ret; | 
 | 	int mirror_index; | 
 | 	int page_num; | 
 | 	int success; | 
 | 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, | 
 | 				      DEFAULT_RATELIMIT_BURST); | 
 |  | 
 | 	BUG_ON(sblock_to_check->page_count < 1); | 
 | 	fs_info = sctx->dev_root->fs_info; | 
 | 	if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { | 
 | 		/* | 
 | 		 * if we find an error in a super block, we just report it. | 
 | 		 * They will get written with the next transaction commit | 
 | 		 * anyway | 
 | 		 */ | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		++sctx->stat.super_errors; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		return 0; | 
 | 	} | 
 | 	length = sblock_to_check->page_count * PAGE_SIZE; | 
 | 	logical = sblock_to_check->pagev[0]->logical; | 
 | 	generation = sblock_to_check->pagev[0]->generation; | 
 | 	BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1); | 
 | 	failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1; | 
 | 	is_metadata = !(sblock_to_check->pagev[0]->flags & | 
 | 			BTRFS_EXTENT_FLAG_DATA); | 
 | 	have_csum = sblock_to_check->pagev[0]->have_csum; | 
 | 	csum = sblock_to_check->pagev[0]->csum; | 
 | 	dev = sblock_to_check->pagev[0]->dev; | 
 |  | 
 | 	if (sctx->is_dev_replace && !is_metadata && !have_csum) { | 
 | 		sblocks_for_recheck = NULL; | 
 | 		goto nodatasum_case; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * read all mirrors one after the other. This includes to | 
 | 	 * re-read the extent or metadata block that failed (that was | 
 | 	 * the cause that this fixup code is called) another time, | 
 | 	 * page by page this time in order to know which pages | 
 | 	 * caused I/O errors and which ones are good (for all mirrors). | 
 | 	 * It is the goal to handle the situation when more than one | 
 | 	 * mirror contains I/O errors, but the errors do not | 
 | 	 * overlap, i.e. the data can be repaired by selecting the | 
 | 	 * pages from those mirrors without I/O error on the | 
 | 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) | 
 | 	 * would be that mirror #1 has an I/O error on the first page, | 
 | 	 * the second page is good, and mirror #2 has an I/O error on | 
 | 	 * the second page, but the first page is good. | 
 | 	 * Then the first page of the first mirror can be repaired by | 
 | 	 * taking the first page of the second mirror, and the | 
 | 	 * second page of the second mirror can be repaired by | 
 | 	 * copying the contents of the 2nd page of the 1st mirror. | 
 | 	 * One more note: if the pages of one mirror contain I/O | 
 | 	 * errors, the checksum cannot be verified. In order to get | 
 | 	 * the best data for repairing, the first attempt is to find | 
 | 	 * a mirror without I/O errors and with a validated checksum. | 
 | 	 * Only if this is not possible, the pages are picked from | 
 | 	 * mirrors with I/O errors without considering the checksum. | 
 | 	 * If the latter is the case, at the end, the checksum of the | 
 | 	 * repaired area is verified in order to correctly maintain | 
 | 	 * the statistics. | 
 | 	 */ | 
 |  | 
 | 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * | 
 | 				     sizeof(*sblocks_for_recheck), | 
 | 				     GFP_NOFS); | 
 | 	if (!sblocks_for_recheck) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.malloc_errors++; | 
 | 		sctx->stat.read_errors++; | 
 | 		sctx->stat.uncorrectable_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* setup the context, map the logical blocks and alloc the pages */ | 
 | 	ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length, | 
 | 					logical, sblocks_for_recheck); | 
 | 	if (ret) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.read_errors++; | 
 | 		sctx->stat.uncorrectable_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); | 
 | 		goto out; | 
 | 	} | 
 | 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); | 
 | 	sblock_bad = sblocks_for_recheck + failed_mirror_index; | 
 |  | 
 | 	/* build and submit the bios for the failed mirror, check checksums */ | 
 | 	scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, | 
 | 			    csum, generation, sctx->csum_size); | 
 |  | 
 | 	if (!sblock_bad->header_error && !sblock_bad->checksum_error && | 
 | 	    sblock_bad->no_io_error_seen) { | 
 | 		/* | 
 | 		 * the error disappeared after reading page by page, or | 
 | 		 * the area was part of a huge bio and other parts of the | 
 | 		 * bio caused I/O errors, or the block layer merged several | 
 | 		 * read requests into one and the error is caused by a | 
 | 		 * different bio (usually one of the two latter cases is | 
 | 		 * the cause) | 
 | 		 */ | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.unverified_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 |  | 
 | 		if (sctx->is_dev_replace) | 
 | 			scrub_write_block_to_dev_replace(sblock_bad); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!sblock_bad->no_io_error_seen) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.read_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		if (__ratelimit(&_rs)) | 
 | 			scrub_print_warning("i/o error", sblock_to_check); | 
 | 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); | 
 | 	} else if (sblock_bad->checksum_error) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.csum_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		if (__ratelimit(&_rs)) | 
 | 			scrub_print_warning("checksum error", sblock_to_check); | 
 | 		btrfs_dev_stat_inc_and_print(dev, | 
 | 					     BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
 | 	} else if (sblock_bad->header_error) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.verify_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		if (__ratelimit(&_rs)) | 
 | 			scrub_print_warning("checksum/header error", | 
 | 					    sblock_to_check); | 
 | 		if (sblock_bad->generation_error) | 
 | 			btrfs_dev_stat_inc_and_print(dev, | 
 | 				BTRFS_DEV_STAT_GENERATION_ERRS); | 
 | 		else | 
 | 			btrfs_dev_stat_inc_and_print(dev, | 
 | 				BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
 | 	} | 
 |  | 
 | 	if (sctx->readonly && !sctx->is_dev_replace) | 
 | 		goto did_not_correct_error; | 
 |  | 
 | 	if (!is_metadata && !have_csum) { | 
 | 		struct scrub_fixup_nodatasum *fixup_nodatasum; | 
 |  | 
 | nodatasum_case: | 
 | 		WARN_ON(sctx->is_dev_replace); | 
 |  | 
 | 		/* | 
 | 		 * !is_metadata and !have_csum, this means that the data | 
 | 		 * might not be COW'ed, that it might be modified | 
 | 		 * concurrently. The general strategy to work on the | 
 | 		 * commit root does not help in the case when COW is not | 
 | 		 * used. | 
 | 		 */ | 
 | 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); | 
 | 		if (!fixup_nodatasum) | 
 | 			goto did_not_correct_error; | 
 | 		fixup_nodatasum->sctx = sctx; | 
 | 		fixup_nodatasum->dev = dev; | 
 | 		fixup_nodatasum->logical = logical; | 
 | 		fixup_nodatasum->root = fs_info->extent_root; | 
 | 		fixup_nodatasum->mirror_num = failed_mirror_index + 1; | 
 | 		scrub_pending_trans_workers_inc(sctx); | 
 | 		fixup_nodatasum->work.func = scrub_fixup_nodatasum; | 
 | 		btrfs_queue_worker(&fs_info->scrub_workers, | 
 | 				   &fixup_nodatasum->work); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * now build and submit the bios for the other mirrors, check | 
 | 	 * checksums. | 
 | 	 * First try to pick the mirror which is completely without I/O | 
 | 	 * errors and also does not have a checksum error. | 
 | 	 * If one is found, and if a checksum is present, the full block | 
 | 	 * that is known to contain an error is rewritten. Afterwards | 
 | 	 * the block is known to be corrected. | 
 | 	 * If a mirror is found which is completely correct, and no | 
 | 	 * checksum is present, only those pages are rewritten that had | 
 | 	 * an I/O error in the block to be repaired, since it cannot be | 
 | 	 * determined, which copy of the other pages is better (and it | 
 | 	 * could happen otherwise that a correct page would be | 
 | 	 * overwritten by a bad one). | 
 | 	 */ | 
 | 	for (mirror_index = 0; | 
 | 	     mirror_index < BTRFS_MAX_MIRRORS && | 
 | 	     sblocks_for_recheck[mirror_index].page_count > 0; | 
 | 	     mirror_index++) { | 
 | 		struct scrub_block *sblock_other; | 
 |  | 
 | 		if (mirror_index == failed_mirror_index) | 
 | 			continue; | 
 | 		sblock_other = sblocks_for_recheck + mirror_index; | 
 |  | 
 | 		/* build and submit the bios, check checksums */ | 
 | 		scrub_recheck_block(fs_info, sblock_other, is_metadata, | 
 | 				    have_csum, csum, generation, | 
 | 				    sctx->csum_size); | 
 |  | 
 | 		if (!sblock_other->header_error && | 
 | 		    !sblock_other->checksum_error && | 
 | 		    sblock_other->no_io_error_seen) { | 
 | 			if (sctx->is_dev_replace) { | 
 | 				scrub_write_block_to_dev_replace(sblock_other); | 
 | 			} else { | 
 | 				int force_write = is_metadata || have_csum; | 
 |  | 
 | 				ret = scrub_repair_block_from_good_copy( | 
 | 						sblock_bad, sblock_other, | 
 | 						force_write); | 
 | 			} | 
 | 			if (0 == ret) | 
 | 				goto corrected_error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * for dev_replace, pick good pages and write to the target device. | 
 | 	 */ | 
 | 	if (sctx->is_dev_replace) { | 
 | 		success = 1; | 
 | 		for (page_num = 0; page_num < sblock_bad->page_count; | 
 | 		     page_num++) { | 
 | 			int sub_success; | 
 |  | 
 | 			sub_success = 0; | 
 | 			for (mirror_index = 0; | 
 | 			     mirror_index < BTRFS_MAX_MIRRORS && | 
 | 			     sblocks_for_recheck[mirror_index].page_count > 0; | 
 | 			     mirror_index++) { | 
 | 				struct scrub_block *sblock_other = | 
 | 					sblocks_for_recheck + mirror_index; | 
 | 				struct scrub_page *page_other = | 
 | 					sblock_other->pagev[page_num]; | 
 |  | 
 | 				if (!page_other->io_error) { | 
 | 					ret = scrub_write_page_to_dev_replace( | 
 | 							sblock_other, page_num); | 
 | 					if (ret == 0) { | 
 | 						/* succeeded for this page */ | 
 | 						sub_success = 1; | 
 | 						break; | 
 | 					} else { | 
 | 						btrfs_dev_replace_stats_inc( | 
 | 							&sctx->dev_root-> | 
 | 							fs_info->dev_replace. | 
 | 							num_write_errors); | 
 | 					} | 
 | 				} | 
 | 			} | 
 |  | 
 | 			if (!sub_success) { | 
 | 				/* | 
 | 				 * did not find a mirror to fetch the page | 
 | 				 * from. scrub_write_page_to_dev_replace() | 
 | 				 * handles this case (page->io_error), by | 
 | 				 * filling the block with zeros before | 
 | 				 * submitting the write request | 
 | 				 */ | 
 | 				success = 0; | 
 | 				ret = scrub_write_page_to_dev_replace( | 
 | 						sblock_bad, page_num); | 
 | 				if (ret) | 
 | 					btrfs_dev_replace_stats_inc( | 
 | 						&sctx->dev_root->fs_info-> | 
 | 						dev_replace.num_write_errors); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * for regular scrub, repair those pages that are errored. | 
 | 	 * In case of I/O errors in the area that is supposed to be | 
 | 	 * repaired, continue by picking good copies of those pages. | 
 | 	 * Select the good pages from mirrors to rewrite bad pages from | 
 | 	 * the area to fix. Afterwards verify the checksum of the block | 
 | 	 * that is supposed to be repaired. This verification step is | 
 | 	 * only done for the purpose of statistic counting and for the | 
 | 	 * final scrub report, whether errors remain. | 
 | 	 * A perfect algorithm could make use of the checksum and try | 
 | 	 * all possible combinations of pages from the different mirrors | 
 | 	 * until the checksum verification succeeds. For example, when | 
 | 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page | 
 | 	 * of mirror #2 is readable but the final checksum test fails, | 
 | 	 * then the 2nd page of mirror #3 could be tried, whether now | 
 | 	 * the final checksum succeedes. But this would be a rare | 
 | 	 * exception and is therefore not implemented. At least it is | 
 | 	 * avoided that the good copy is overwritten. | 
 | 	 * A more useful improvement would be to pick the sectors | 
 | 	 * without I/O error based on sector sizes (512 bytes on legacy | 
 | 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one | 
 | 	 * mirror could be repaired by taking 512 byte of a different | 
 | 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE | 
 | 	 * area are unreadable. | 
 | 	 */ | 
 |  | 
 | 	/* can only fix I/O errors from here on */ | 
 | 	if (sblock_bad->no_io_error_seen) | 
 | 		goto did_not_correct_error; | 
 |  | 
 | 	success = 1; | 
 | 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { | 
 | 		struct scrub_page *page_bad = sblock_bad->pagev[page_num]; | 
 |  | 
 | 		if (!page_bad->io_error) | 
 | 			continue; | 
 |  | 
 | 		for (mirror_index = 0; | 
 | 		     mirror_index < BTRFS_MAX_MIRRORS && | 
 | 		     sblocks_for_recheck[mirror_index].page_count > 0; | 
 | 		     mirror_index++) { | 
 | 			struct scrub_block *sblock_other = sblocks_for_recheck + | 
 | 							   mirror_index; | 
 | 			struct scrub_page *page_other = sblock_other->pagev[ | 
 | 							page_num]; | 
 |  | 
 | 			if (!page_other->io_error) { | 
 | 				ret = scrub_repair_page_from_good_copy( | 
 | 					sblock_bad, sblock_other, page_num, 0); | 
 | 				if (0 == ret) { | 
 | 					page_bad->io_error = 0; | 
 | 					break; /* succeeded for this page */ | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (page_bad->io_error) { | 
 | 			/* did not find a mirror to copy the page from */ | 
 | 			success = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (success) { | 
 | 		if (is_metadata || have_csum) { | 
 | 			/* | 
 | 			 * need to verify the checksum now that all | 
 | 			 * sectors on disk are repaired (the write | 
 | 			 * request for data to be repaired is on its way). | 
 | 			 * Just be lazy and use scrub_recheck_block() | 
 | 			 * which re-reads the data before the checksum | 
 | 			 * is verified, but most likely the data comes out | 
 | 			 * of the page cache. | 
 | 			 */ | 
 | 			scrub_recheck_block(fs_info, sblock_bad, | 
 | 					    is_metadata, have_csum, csum, | 
 | 					    generation, sctx->csum_size); | 
 | 			if (!sblock_bad->header_error && | 
 | 			    !sblock_bad->checksum_error && | 
 | 			    sblock_bad->no_io_error_seen) | 
 | 				goto corrected_error; | 
 | 			else | 
 | 				goto did_not_correct_error; | 
 | 		} else { | 
 | corrected_error: | 
 | 			spin_lock(&sctx->stat_lock); | 
 | 			sctx->stat.corrected_errors++; | 
 | 			spin_unlock(&sctx->stat_lock); | 
 | 			printk_ratelimited_in_rcu(KERN_ERR | 
 | 				"btrfs: fixed up error at logical %llu on dev %s\n", | 
 | 				(unsigned long long)logical, | 
 | 				rcu_str_deref(dev->name)); | 
 | 		} | 
 | 	} else { | 
 | did_not_correct_error: | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.uncorrectable_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		printk_ratelimited_in_rcu(KERN_ERR | 
 | 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n", | 
 | 			(unsigned long long)logical, | 
 | 			rcu_str_deref(dev->name)); | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (sblocks_for_recheck) { | 
 | 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; | 
 | 		     mirror_index++) { | 
 | 			struct scrub_block *sblock = sblocks_for_recheck + | 
 | 						     mirror_index; | 
 | 			int page_index; | 
 |  | 
 | 			for (page_index = 0; page_index < sblock->page_count; | 
 | 			     page_index++) { | 
 | 				sblock->pagev[page_index]->sblock = NULL; | 
 | 				scrub_page_put(sblock->pagev[page_index]); | 
 | 			} | 
 | 		} | 
 | 		kfree(sblocks_for_recheck); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int scrub_setup_recheck_block(struct scrub_ctx *sctx, | 
 | 				     struct btrfs_fs_info *fs_info, | 
 | 				     struct scrub_block *original_sblock, | 
 | 				     u64 length, u64 logical, | 
 | 				     struct scrub_block *sblocks_for_recheck) | 
 | { | 
 | 	int page_index; | 
 | 	int mirror_index; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * note: the two members ref_count and outstanding_pages | 
 | 	 * are not used (and not set) in the blocks that are used for | 
 | 	 * the recheck procedure | 
 | 	 */ | 
 |  | 
 | 	page_index = 0; | 
 | 	while (length > 0) { | 
 | 		u64 sublen = min_t(u64, length, PAGE_SIZE); | 
 | 		u64 mapped_length = sublen; | 
 | 		struct btrfs_bio *bbio = NULL; | 
 |  | 
 | 		/* | 
 | 		 * with a length of PAGE_SIZE, each returned stripe | 
 | 		 * represents one mirror | 
 | 		 */ | 
 | 		ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical, | 
 | 				      &mapped_length, &bbio, 0); | 
 | 		if (ret || !bbio || mapped_length < sublen) { | 
 | 			kfree(bbio); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO); | 
 | 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; | 
 | 		     mirror_index++) { | 
 | 			struct scrub_block *sblock; | 
 | 			struct scrub_page *page; | 
 |  | 
 | 			if (mirror_index >= BTRFS_MAX_MIRRORS) | 
 | 				continue; | 
 |  | 
 | 			sblock = sblocks_for_recheck + mirror_index; | 
 | 			sblock->sctx = sctx; | 
 | 			page = kzalloc(sizeof(*page), GFP_NOFS); | 
 | 			if (!page) { | 
 | leave_nomem: | 
 | 				spin_lock(&sctx->stat_lock); | 
 | 				sctx->stat.malloc_errors++; | 
 | 				spin_unlock(&sctx->stat_lock); | 
 | 				kfree(bbio); | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 			scrub_page_get(page); | 
 | 			sblock->pagev[page_index] = page; | 
 | 			page->logical = logical; | 
 | 			page->physical = bbio->stripes[mirror_index].physical; | 
 | 			BUG_ON(page_index >= original_sblock->page_count); | 
 | 			page->physical_for_dev_replace = | 
 | 				original_sblock->pagev[page_index]-> | 
 | 				physical_for_dev_replace; | 
 | 			/* for missing devices, dev->bdev is NULL */ | 
 | 			page->dev = bbio->stripes[mirror_index].dev; | 
 | 			page->mirror_num = mirror_index + 1; | 
 | 			sblock->page_count++; | 
 | 			page->page = alloc_page(GFP_NOFS); | 
 | 			if (!page->page) | 
 | 				goto leave_nomem; | 
 | 		} | 
 | 		kfree(bbio); | 
 | 		length -= sublen; | 
 | 		logical += sublen; | 
 | 		page_index++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this function will check the on disk data for checksum errors, header | 
 |  * errors and read I/O errors. If any I/O errors happen, the exact pages | 
 |  * which are errored are marked as being bad. The goal is to enable scrub | 
 |  * to take those pages that are not errored from all the mirrors so that | 
 |  * the pages that are errored in the just handled mirror can be repaired. | 
 |  */ | 
 | static void scrub_recheck_block(struct btrfs_fs_info *fs_info, | 
 | 				struct scrub_block *sblock, int is_metadata, | 
 | 				int have_csum, u8 *csum, u64 generation, | 
 | 				u16 csum_size) | 
 | { | 
 | 	int page_num; | 
 |  | 
 | 	sblock->no_io_error_seen = 1; | 
 | 	sblock->header_error = 0; | 
 | 	sblock->checksum_error = 0; | 
 |  | 
 | 	for (page_num = 0; page_num < sblock->page_count; page_num++) { | 
 | 		struct bio *bio; | 
 | 		struct scrub_page *page = sblock->pagev[page_num]; | 
 | 		DECLARE_COMPLETION_ONSTACK(complete); | 
 |  | 
 | 		if (page->dev->bdev == NULL) { | 
 | 			page->io_error = 1; | 
 | 			sblock->no_io_error_seen = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		WARN_ON(!page->page); | 
 | 		bio = bio_alloc(GFP_NOFS, 1); | 
 | 		if (!bio) { | 
 | 			page->io_error = 1; | 
 | 			sblock->no_io_error_seen = 0; | 
 | 			continue; | 
 | 		} | 
 | 		bio->bi_bdev = page->dev->bdev; | 
 | 		bio->bi_sector = page->physical >> 9; | 
 | 		bio->bi_end_io = scrub_complete_bio_end_io; | 
 | 		bio->bi_private = &complete; | 
 |  | 
 | 		bio_add_page(bio, page->page, PAGE_SIZE, 0); | 
 | 		btrfsic_submit_bio(READ, bio); | 
 |  | 
 | 		/* this will also unplug the queue */ | 
 | 		wait_for_completion(&complete); | 
 |  | 
 | 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
 | 			sblock->no_io_error_seen = 0; | 
 | 		bio_put(bio); | 
 | 	} | 
 |  | 
 | 	if (sblock->no_io_error_seen) | 
 | 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata, | 
 | 					     have_csum, csum, generation, | 
 | 					     csum_size); | 
 |  | 
 | 	return; | 
 | } | 
 |  | 
 | static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, | 
 | 					 struct scrub_block *sblock, | 
 | 					 int is_metadata, int have_csum, | 
 | 					 const u8 *csum, u64 generation, | 
 | 					 u16 csum_size) | 
 | { | 
 | 	int page_num; | 
 | 	u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
 | 	u32 crc = ~(u32)0; | 
 | 	struct btrfs_root *root = fs_info->extent_root; | 
 | 	void *mapped_buffer; | 
 |  | 
 | 	WARN_ON(!sblock->pagev[0]->page); | 
 | 	if (is_metadata) { | 
 | 		struct btrfs_header *h; | 
 |  | 
 | 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page); | 
 | 		h = (struct btrfs_header *)mapped_buffer; | 
 |  | 
 | 		if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) || | 
 | 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || | 
 | 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | 
 | 			   BTRFS_UUID_SIZE)) { | 
 | 			sblock->header_error = 1; | 
 | 		} else if (generation != le64_to_cpu(h->generation)) { | 
 | 			sblock->header_error = 1; | 
 | 			sblock->generation_error = 1; | 
 | 		} | 
 | 		csum = h->csum; | 
 | 	} else { | 
 | 		if (!have_csum) | 
 | 			return; | 
 |  | 
 | 		mapped_buffer = kmap_atomic(sblock->pagev[0]->page); | 
 | 	} | 
 |  | 
 | 	for (page_num = 0;;) { | 
 | 		if (page_num == 0 && is_metadata) | 
 | 			crc = btrfs_csum_data(root, | 
 | 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, | 
 | 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE); | 
 | 		else | 
 | 			crc = btrfs_csum_data(root, mapped_buffer, crc, | 
 | 					      PAGE_SIZE); | 
 |  | 
 | 		kunmap_atomic(mapped_buffer); | 
 | 		page_num++; | 
 | 		if (page_num >= sblock->page_count) | 
 | 			break; | 
 | 		WARN_ON(!sblock->pagev[page_num]->page); | 
 |  | 
 | 		mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page); | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, calculated_csum); | 
 | 	if (memcmp(calculated_csum, csum, csum_size)) | 
 | 		sblock->checksum_error = 1; | 
 | } | 
 |  | 
 | static void scrub_complete_bio_end_io(struct bio *bio, int err) | 
 | { | 
 | 	complete((struct completion *)bio->bi_private); | 
 | } | 
 |  | 
 | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | 
 | 					     struct scrub_block *sblock_good, | 
 | 					     int force_write) | 
 | { | 
 | 	int page_num; | 
 | 	int ret = 0; | 
 |  | 
 | 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { | 
 | 		int ret_sub; | 
 |  | 
 | 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad, | 
 | 							   sblock_good, | 
 | 							   page_num, | 
 | 							   force_write); | 
 | 		if (ret_sub) | 
 | 			ret = ret_sub; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | 
 | 					    struct scrub_block *sblock_good, | 
 | 					    int page_num, int force_write) | 
 | { | 
 | 	struct scrub_page *page_bad = sblock_bad->pagev[page_num]; | 
 | 	struct scrub_page *page_good = sblock_good->pagev[page_num]; | 
 |  | 
 | 	BUG_ON(page_bad->page == NULL); | 
 | 	BUG_ON(page_good->page == NULL); | 
 | 	if (force_write || sblock_bad->header_error || | 
 | 	    sblock_bad->checksum_error || page_bad->io_error) { | 
 | 		struct bio *bio; | 
 | 		int ret; | 
 | 		DECLARE_COMPLETION_ONSTACK(complete); | 
 |  | 
 | 		if (!page_bad->dev->bdev) { | 
 | 			printk_ratelimited(KERN_WARNING | 
 | 				"btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n"); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		bio = bio_alloc(GFP_NOFS, 1); | 
 | 		if (!bio) | 
 | 			return -EIO; | 
 | 		bio->bi_bdev = page_bad->dev->bdev; | 
 | 		bio->bi_sector = page_bad->physical >> 9; | 
 | 		bio->bi_end_io = scrub_complete_bio_end_io; | 
 | 		bio->bi_private = &complete; | 
 |  | 
 | 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); | 
 | 		if (PAGE_SIZE != ret) { | 
 | 			bio_put(bio); | 
 | 			return -EIO; | 
 | 		} | 
 | 		btrfsic_submit_bio(WRITE, bio); | 
 |  | 
 | 		/* this will also unplug the queue */ | 
 | 		wait_for_completion(&complete); | 
 | 		if (!bio_flagged(bio, BIO_UPTODATE)) { | 
 | 			btrfs_dev_stat_inc_and_print(page_bad->dev, | 
 | 				BTRFS_DEV_STAT_WRITE_ERRS); | 
 | 			btrfs_dev_replace_stats_inc( | 
 | 				&sblock_bad->sctx->dev_root->fs_info-> | 
 | 				dev_replace.num_write_errors); | 
 | 			bio_put(bio); | 
 | 			return -EIO; | 
 | 		} | 
 | 		bio_put(bio); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) | 
 | { | 
 | 	int page_num; | 
 |  | 
 | 	for (page_num = 0; page_num < sblock->page_count; page_num++) { | 
 | 		int ret; | 
 |  | 
 | 		ret = scrub_write_page_to_dev_replace(sblock, page_num); | 
 | 		if (ret) | 
 | 			btrfs_dev_replace_stats_inc( | 
 | 				&sblock->sctx->dev_root->fs_info->dev_replace. | 
 | 				num_write_errors); | 
 | 	} | 
 | } | 
 |  | 
 | static int scrub_write_page_to_dev_replace(struct scrub_block *sblock, | 
 | 					   int page_num) | 
 | { | 
 | 	struct scrub_page *spage = sblock->pagev[page_num]; | 
 |  | 
 | 	BUG_ON(spage->page == NULL); | 
 | 	if (spage->io_error) { | 
 | 		void *mapped_buffer = kmap_atomic(spage->page); | 
 |  | 
 | 		memset(mapped_buffer, 0, PAGE_CACHE_SIZE); | 
 | 		flush_dcache_page(spage->page); | 
 | 		kunmap_atomic(mapped_buffer); | 
 | 	} | 
 | 	return scrub_add_page_to_wr_bio(sblock->sctx, spage); | 
 | } | 
 |  | 
 | static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx, | 
 | 				    struct scrub_page *spage) | 
 | { | 
 | 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; | 
 | 	struct scrub_bio *sbio; | 
 | 	int ret; | 
 |  | 
 | 	mutex_lock(&wr_ctx->wr_lock); | 
 | again: | 
 | 	if (!wr_ctx->wr_curr_bio) { | 
 | 		wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio), | 
 | 					      GFP_NOFS); | 
 | 		if (!wr_ctx->wr_curr_bio) { | 
 | 			mutex_unlock(&wr_ctx->wr_lock); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		wr_ctx->wr_curr_bio->sctx = sctx; | 
 | 		wr_ctx->wr_curr_bio->page_count = 0; | 
 | 	} | 
 | 	sbio = wr_ctx->wr_curr_bio; | 
 | 	if (sbio->page_count == 0) { | 
 | 		struct bio *bio; | 
 |  | 
 | 		sbio->physical = spage->physical_for_dev_replace; | 
 | 		sbio->logical = spage->logical; | 
 | 		sbio->dev = wr_ctx->tgtdev; | 
 | 		bio = sbio->bio; | 
 | 		if (!bio) { | 
 | 			bio = bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio); | 
 | 			if (!bio) { | 
 | 				mutex_unlock(&wr_ctx->wr_lock); | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 			sbio->bio = bio; | 
 | 		} | 
 |  | 
 | 		bio->bi_private = sbio; | 
 | 		bio->bi_end_io = scrub_wr_bio_end_io; | 
 | 		bio->bi_bdev = sbio->dev->bdev; | 
 | 		bio->bi_sector = sbio->physical >> 9; | 
 | 		sbio->err = 0; | 
 | 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE != | 
 | 		   spage->physical_for_dev_replace || | 
 | 		   sbio->logical + sbio->page_count * PAGE_SIZE != | 
 | 		   spage->logical) { | 
 | 		scrub_wr_submit(sctx); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); | 
 | 	if (ret != PAGE_SIZE) { | 
 | 		if (sbio->page_count < 1) { | 
 | 			bio_put(sbio->bio); | 
 | 			sbio->bio = NULL; | 
 | 			mutex_unlock(&wr_ctx->wr_lock); | 
 | 			return -EIO; | 
 | 		} | 
 | 		scrub_wr_submit(sctx); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	sbio->pagev[sbio->page_count] = spage; | 
 | 	scrub_page_get(spage); | 
 | 	sbio->page_count++; | 
 | 	if (sbio->page_count == wr_ctx->pages_per_wr_bio) | 
 | 		scrub_wr_submit(sctx); | 
 | 	mutex_unlock(&wr_ctx->wr_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_wr_submit(struct scrub_ctx *sctx) | 
 | { | 
 | 	struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx; | 
 | 	struct scrub_bio *sbio; | 
 |  | 
 | 	if (!wr_ctx->wr_curr_bio) | 
 | 		return; | 
 |  | 
 | 	sbio = wr_ctx->wr_curr_bio; | 
 | 	wr_ctx->wr_curr_bio = NULL; | 
 | 	WARN_ON(!sbio->bio->bi_bdev); | 
 | 	scrub_pending_bio_inc(sctx); | 
 | 	/* process all writes in a single worker thread. Then the block layer | 
 | 	 * orders the requests before sending them to the driver which | 
 | 	 * doubled the write performance on spinning disks when measured | 
 | 	 * with Linux 3.5 */ | 
 | 	btrfsic_submit_bio(WRITE, sbio->bio); | 
 | } | 
 |  | 
 | static void scrub_wr_bio_end_io(struct bio *bio, int err) | 
 | { | 
 | 	struct scrub_bio *sbio = bio->bi_private; | 
 | 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; | 
 |  | 
 | 	sbio->err = err; | 
 | 	sbio->bio = bio; | 
 |  | 
 | 	sbio->work.func = scrub_wr_bio_end_io_worker; | 
 | 	btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work); | 
 | } | 
 |  | 
 | static void scrub_wr_bio_end_io_worker(struct btrfs_work *work) | 
 | { | 
 | 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); | 
 | 	struct scrub_ctx *sctx = sbio->sctx; | 
 | 	int i; | 
 |  | 
 | 	WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO); | 
 | 	if (sbio->err) { | 
 | 		struct btrfs_dev_replace *dev_replace = | 
 | 			&sbio->sctx->dev_root->fs_info->dev_replace; | 
 |  | 
 | 		for (i = 0; i < sbio->page_count; i++) { | 
 | 			struct scrub_page *spage = sbio->pagev[i]; | 
 |  | 
 | 			spage->io_error = 1; | 
 | 			btrfs_dev_replace_stats_inc(&dev_replace-> | 
 | 						    num_write_errors); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < sbio->page_count; i++) | 
 | 		scrub_page_put(sbio->pagev[i]); | 
 |  | 
 | 	bio_put(sbio->bio); | 
 | 	kfree(sbio); | 
 | 	scrub_pending_bio_dec(sctx); | 
 | } | 
 |  | 
 | static int scrub_checksum(struct scrub_block *sblock) | 
 | { | 
 | 	u64 flags; | 
 | 	int ret; | 
 |  | 
 | 	WARN_ON(sblock->page_count < 1); | 
 | 	flags = sblock->pagev[0]->flags; | 
 | 	ret = 0; | 
 | 	if (flags & BTRFS_EXTENT_FLAG_DATA) | 
 | 		ret = scrub_checksum_data(sblock); | 
 | 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
 | 		ret = scrub_checksum_tree_block(sblock); | 
 | 	else if (flags & BTRFS_EXTENT_FLAG_SUPER) | 
 | 		(void)scrub_checksum_super(sblock); | 
 | 	else | 
 | 		WARN_ON(1); | 
 | 	if (ret) | 
 | 		scrub_handle_errored_block(sblock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int scrub_checksum_data(struct scrub_block *sblock) | 
 | { | 
 | 	struct scrub_ctx *sctx = sblock->sctx; | 
 | 	u8 csum[BTRFS_CSUM_SIZE]; | 
 | 	u8 *on_disk_csum; | 
 | 	struct page *page; | 
 | 	void *buffer; | 
 | 	u32 crc = ~(u32)0; | 
 | 	int fail = 0; | 
 | 	struct btrfs_root *root = sctx->dev_root; | 
 | 	u64 len; | 
 | 	int index; | 
 |  | 
 | 	BUG_ON(sblock->page_count < 1); | 
 | 	if (!sblock->pagev[0]->have_csum) | 
 | 		return 0; | 
 |  | 
 | 	on_disk_csum = sblock->pagev[0]->csum; | 
 | 	page = sblock->pagev[0]->page; | 
 | 	buffer = kmap_atomic(page); | 
 |  | 
 | 	len = sctx->sectorsize; | 
 | 	index = 0; | 
 | 	for (;;) { | 
 | 		u64 l = min_t(u64, len, PAGE_SIZE); | 
 |  | 
 | 		crc = btrfs_csum_data(root, buffer, crc, l); | 
 | 		kunmap_atomic(buffer); | 
 | 		len -= l; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		index++; | 
 | 		BUG_ON(index >= sblock->page_count); | 
 | 		BUG_ON(!sblock->pagev[index]->page); | 
 | 		page = sblock->pagev[index]->page; | 
 | 		buffer = kmap_atomic(page); | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, csum); | 
 | 	if (memcmp(csum, on_disk_csum, sctx->csum_size)) | 
 | 		fail = 1; | 
 |  | 
 | 	return fail; | 
 | } | 
 |  | 
 | static int scrub_checksum_tree_block(struct scrub_block *sblock) | 
 | { | 
 | 	struct scrub_ctx *sctx = sblock->sctx; | 
 | 	struct btrfs_header *h; | 
 | 	struct btrfs_root *root = sctx->dev_root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
 | 	u8 on_disk_csum[BTRFS_CSUM_SIZE]; | 
 | 	struct page *page; | 
 | 	void *mapped_buffer; | 
 | 	u64 mapped_size; | 
 | 	void *p; | 
 | 	u32 crc = ~(u32)0; | 
 | 	int fail = 0; | 
 | 	int crc_fail = 0; | 
 | 	u64 len; | 
 | 	int index; | 
 |  | 
 | 	BUG_ON(sblock->page_count < 1); | 
 | 	page = sblock->pagev[0]->page; | 
 | 	mapped_buffer = kmap_atomic(page); | 
 | 	h = (struct btrfs_header *)mapped_buffer; | 
 | 	memcpy(on_disk_csum, h->csum, sctx->csum_size); | 
 |  | 
 | 	/* | 
 | 	 * we don't use the getter functions here, as we | 
 | 	 * a) don't have an extent buffer and | 
 | 	 * b) the page is already kmapped | 
 | 	 */ | 
 |  | 
 | 	if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr)) | 
 | 		++fail; | 
 |  | 
 | 	if (sblock->pagev[0]->generation != le64_to_cpu(h->generation)) | 
 | 		++fail; | 
 |  | 
 | 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) | 
 | 		++fail; | 
 |  | 
 | 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | 
 | 		   BTRFS_UUID_SIZE)) | 
 | 		++fail; | 
 |  | 
 | 	WARN_ON(sctx->nodesize != sctx->leafsize); | 
 | 	len = sctx->nodesize - BTRFS_CSUM_SIZE; | 
 | 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | 
 | 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | 
 | 	index = 0; | 
 | 	for (;;) { | 
 | 		u64 l = min_t(u64, len, mapped_size); | 
 |  | 
 | 		crc = btrfs_csum_data(root, p, crc, l); | 
 | 		kunmap_atomic(mapped_buffer); | 
 | 		len -= l; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		index++; | 
 | 		BUG_ON(index >= sblock->page_count); | 
 | 		BUG_ON(!sblock->pagev[index]->page); | 
 | 		page = sblock->pagev[index]->page; | 
 | 		mapped_buffer = kmap_atomic(page); | 
 | 		mapped_size = PAGE_SIZE; | 
 | 		p = mapped_buffer; | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, calculated_csum); | 
 | 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) | 
 | 		++crc_fail; | 
 |  | 
 | 	return fail || crc_fail; | 
 | } | 
 |  | 
 | static int scrub_checksum_super(struct scrub_block *sblock) | 
 | { | 
 | 	struct btrfs_super_block *s; | 
 | 	struct scrub_ctx *sctx = sblock->sctx; | 
 | 	struct btrfs_root *root = sctx->dev_root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
 | 	u8 on_disk_csum[BTRFS_CSUM_SIZE]; | 
 | 	struct page *page; | 
 | 	void *mapped_buffer; | 
 | 	u64 mapped_size; | 
 | 	void *p; | 
 | 	u32 crc = ~(u32)0; | 
 | 	int fail_gen = 0; | 
 | 	int fail_cor = 0; | 
 | 	u64 len; | 
 | 	int index; | 
 |  | 
 | 	BUG_ON(sblock->page_count < 1); | 
 | 	page = sblock->pagev[0]->page; | 
 | 	mapped_buffer = kmap_atomic(page); | 
 | 	s = (struct btrfs_super_block *)mapped_buffer; | 
 | 	memcpy(on_disk_csum, s->csum, sctx->csum_size); | 
 |  | 
 | 	if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr)) | 
 | 		++fail_cor; | 
 |  | 
 | 	if (sblock->pagev[0]->generation != le64_to_cpu(s->generation)) | 
 | 		++fail_gen; | 
 |  | 
 | 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) | 
 | 		++fail_cor; | 
 |  | 
 | 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; | 
 | 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | 
 | 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | 
 | 	index = 0; | 
 | 	for (;;) { | 
 | 		u64 l = min_t(u64, len, mapped_size); | 
 |  | 
 | 		crc = btrfs_csum_data(root, p, crc, l); | 
 | 		kunmap_atomic(mapped_buffer); | 
 | 		len -= l; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		index++; | 
 | 		BUG_ON(index >= sblock->page_count); | 
 | 		BUG_ON(!sblock->pagev[index]->page); | 
 | 		page = sblock->pagev[index]->page; | 
 | 		mapped_buffer = kmap_atomic(page); | 
 | 		mapped_size = PAGE_SIZE; | 
 | 		p = mapped_buffer; | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, calculated_csum); | 
 | 	if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size)) | 
 | 		++fail_cor; | 
 |  | 
 | 	if (fail_cor + fail_gen) { | 
 | 		/* | 
 | 		 * if we find an error in a super block, we just report it. | 
 | 		 * They will get written with the next transaction commit | 
 | 		 * anyway | 
 | 		 */ | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		++sctx->stat.super_errors; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		if (fail_cor) | 
 | 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, | 
 | 				BTRFS_DEV_STAT_CORRUPTION_ERRS); | 
 | 		else | 
 | 			btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev, | 
 | 				BTRFS_DEV_STAT_GENERATION_ERRS); | 
 | 	} | 
 |  | 
 | 	return fail_cor + fail_gen; | 
 | } | 
 |  | 
 | static void scrub_block_get(struct scrub_block *sblock) | 
 | { | 
 | 	atomic_inc(&sblock->ref_count); | 
 | } | 
 |  | 
 | static void scrub_block_put(struct scrub_block *sblock) | 
 | { | 
 | 	if (atomic_dec_and_test(&sblock->ref_count)) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < sblock->page_count; i++) | 
 | 			scrub_page_put(sblock->pagev[i]); | 
 | 		kfree(sblock); | 
 | 	} | 
 | } | 
 |  | 
 | static void scrub_page_get(struct scrub_page *spage) | 
 | { | 
 | 	atomic_inc(&spage->ref_count); | 
 | } | 
 |  | 
 | static void scrub_page_put(struct scrub_page *spage) | 
 | { | 
 | 	if (atomic_dec_and_test(&spage->ref_count)) { | 
 | 		if (spage->page) | 
 | 			__free_page(spage->page); | 
 | 		kfree(spage); | 
 | 	} | 
 | } | 
 |  | 
 | static void scrub_submit(struct scrub_ctx *sctx) | 
 | { | 
 | 	struct scrub_bio *sbio; | 
 |  | 
 | 	if (sctx->curr == -1) | 
 | 		return; | 
 |  | 
 | 	sbio = sctx->bios[sctx->curr]; | 
 | 	sctx->curr = -1; | 
 | 	scrub_pending_bio_inc(sctx); | 
 |  | 
 | 	if (!sbio->bio->bi_bdev) { | 
 | 		/* | 
 | 		 * this case should not happen. If btrfs_map_block() is | 
 | 		 * wrong, it could happen for dev-replace operations on | 
 | 		 * missing devices when no mirrors are available, but in | 
 | 		 * this case it should already fail the mount. | 
 | 		 * This case is handled correctly (but _very_ slowly). | 
 | 		 */ | 
 | 		printk_ratelimited(KERN_WARNING | 
 | 			"btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n"); | 
 | 		bio_endio(sbio->bio, -EIO); | 
 | 	} else { | 
 | 		btrfsic_submit_bio(READ, sbio->bio); | 
 | 	} | 
 | } | 
 |  | 
 | static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx, | 
 | 				    struct scrub_page *spage) | 
 | { | 
 | 	struct scrub_block *sblock = spage->sblock; | 
 | 	struct scrub_bio *sbio; | 
 | 	int ret; | 
 |  | 
 | again: | 
 | 	/* | 
 | 	 * grab a fresh bio or wait for one to become available | 
 | 	 */ | 
 | 	while (sctx->curr == -1) { | 
 | 		spin_lock(&sctx->list_lock); | 
 | 		sctx->curr = sctx->first_free; | 
 | 		if (sctx->curr != -1) { | 
 | 			sctx->first_free = sctx->bios[sctx->curr]->next_free; | 
 | 			sctx->bios[sctx->curr]->next_free = -1; | 
 | 			sctx->bios[sctx->curr]->page_count = 0; | 
 | 			spin_unlock(&sctx->list_lock); | 
 | 		} else { | 
 | 			spin_unlock(&sctx->list_lock); | 
 | 			wait_event(sctx->list_wait, sctx->first_free != -1); | 
 | 		} | 
 | 	} | 
 | 	sbio = sctx->bios[sctx->curr]; | 
 | 	if (sbio->page_count == 0) { | 
 | 		struct bio *bio; | 
 |  | 
 | 		sbio->physical = spage->physical; | 
 | 		sbio->logical = spage->logical; | 
 | 		sbio->dev = spage->dev; | 
 | 		bio = sbio->bio; | 
 | 		if (!bio) { | 
 | 			bio = bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio); | 
 | 			if (!bio) | 
 | 				return -ENOMEM; | 
 | 			sbio->bio = bio; | 
 | 		} | 
 |  | 
 | 		bio->bi_private = sbio; | 
 | 		bio->bi_end_io = scrub_bio_end_io; | 
 | 		bio->bi_bdev = sbio->dev->bdev; | 
 | 		bio->bi_sector = sbio->physical >> 9; | 
 | 		sbio->err = 0; | 
 | 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE != | 
 | 		   spage->physical || | 
 | 		   sbio->logical + sbio->page_count * PAGE_SIZE != | 
 | 		   spage->logical || | 
 | 		   sbio->dev != spage->dev) { | 
 | 		scrub_submit(sctx); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	sbio->pagev[sbio->page_count] = spage; | 
 | 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); | 
 | 	if (ret != PAGE_SIZE) { | 
 | 		if (sbio->page_count < 1) { | 
 | 			bio_put(sbio->bio); | 
 | 			sbio->bio = NULL; | 
 | 			return -EIO; | 
 | 		} | 
 | 		scrub_submit(sctx); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	scrub_block_get(sblock); /* one for the page added to the bio */ | 
 | 	atomic_inc(&sblock->outstanding_pages); | 
 | 	sbio->page_count++; | 
 | 	if (sbio->page_count == sctx->pages_per_rd_bio) | 
 | 		scrub_submit(sctx); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len, | 
 | 		       u64 physical, struct btrfs_device *dev, u64 flags, | 
 | 		       u64 gen, int mirror_num, u8 *csum, int force, | 
 | 		       u64 physical_for_dev_replace) | 
 | { | 
 | 	struct scrub_block *sblock; | 
 | 	int index; | 
 |  | 
 | 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS); | 
 | 	if (!sblock) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.malloc_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* one ref inside this function, plus one for each page added to | 
 | 	 * a bio later on */ | 
 | 	atomic_set(&sblock->ref_count, 1); | 
 | 	sblock->sctx = sctx; | 
 | 	sblock->no_io_error_seen = 1; | 
 |  | 
 | 	for (index = 0; len > 0; index++) { | 
 | 		struct scrub_page *spage; | 
 | 		u64 l = min_t(u64, len, PAGE_SIZE); | 
 |  | 
 | 		spage = kzalloc(sizeof(*spage), GFP_NOFS); | 
 | 		if (!spage) { | 
 | leave_nomem: | 
 | 			spin_lock(&sctx->stat_lock); | 
 | 			sctx->stat.malloc_errors++; | 
 | 			spin_unlock(&sctx->stat_lock); | 
 | 			scrub_block_put(sblock); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); | 
 | 		scrub_page_get(spage); | 
 | 		sblock->pagev[index] = spage; | 
 | 		spage->sblock = sblock; | 
 | 		spage->dev = dev; | 
 | 		spage->flags = flags; | 
 | 		spage->generation = gen; | 
 | 		spage->logical = logical; | 
 | 		spage->physical = physical; | 
 | 		spage->physical_for_dev_replace = physical_for_dev_replace; | 
 | 		spage->mirror_num = mirror_num; | 
 | 		if (csum) { | 
 | 			spage->have_csum = 1; | 
 | 			memcpy(spage->csum, csum, sctx->csum_size); | 
 | 		} else { | 
 | 			spage->have_csum = 0; | 
 | 		} | 
 | 		sblock->page_count++; | 
 | 		spage->page = alloc_page(GFP_NOFS); | 
 | 		if (!spage->page) | 
 | 			goto leave_nomem; | 
 | 		len -= l; | 
 | 		logical += l; | 
 | 		physical += l; | 
 | 		physical_for_dev_replace += l; | 
 | 	} | 
 |  | 
 | 	WARN_ON(sblock->page_count == 0); | 
 | 	for (index = 0; index < sblock->page_count; index++) { | 
 | 		struct scrub_page *spage = sblock->pagev[index]; | 
 | 		int ret; | 
 |  | 
 | 		ret = scrub_add_page_to_rd_bio(sctx, spage); | 
 | 		if (ret) { | 
 | 			scrub_block_put(sblock); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (force) | 
 | 		scrub_submit(sctx); | 
 |  | 
 | 	/* last one frees, either here or in bio completion for last page */ | 
 | 	scrub_block_put(sblock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_bio_end_io(struct bio *bio, int err) | 
 | { | 
 | 	struct scrub_bio *sbio = bio->bi_private; | 
 | 	struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info; | 
 |  | 
 | 	sbio->err = err; | 
 | 	sbio->bio = bio; | 
 |  | 
 | 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); | 
 | } | 
 |  | 
 | static void scrub_bio_end_io_worker(struct btrfs_work *work) | 
 | { | 
 | 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); | 
 | 	struct scrub_ctx *sctx = sbio->sctx; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO); | 
 | 	if (sbio->err) { | 
 | 		for (i = 0; i < sbio->page_count; i++) { | 
 | 			struct scrub_page *spage = sbio->pagev[i]; | 
 |  | 
 | 			spage->io_error = 1; | 
 | 			spage->sblock->no_io_error_seen = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* now complete the scrub_block items that have all pages completed */ | 
 | 	for (i = 0; i < sbio->page_count; i++) { | 
 | 		struct scrub_page *spage = sbio->pagev[i]; | 
 | 		struct scrub_block *sblock = spage->sblock; | 
 |  | 
 | 		if (atomic_dec_and_test(&sblock->outstanding_pages)) | 
 | 			scrub_block_complete(sblock); | 
 | 		scrub_block_put(sblock); | 
 | 	} | 
 |  | 
 | 	bio_put(sbio->bio); | 
 | 	sbio->bio = NULL; | 
 | 	spin_lock(&sctx->list_lock); | 
 | 	sbio->next_free = sctx->first_free; | 
 | 	sctx->first_free = sbio->index; | 
 | 	spin_unlock(&sctx->list_lock); | 
 |  | 
 | 	if (sctx->is_dev_replace && | 
 | 	    atomic_read(&sctx->wr_ctx.flush_all_writes)) { | 
 | 		mutex_lock(&sctx->wr_ctx.wr_lock); | 
 | 		scrub_wr_submit(sctx); | 
 | 		mutex_unlock(&sctx->wr_ctx.wr_lock); | 
 | 	} | 
 |  | 
 | 	scrub_pending_bio_dec(sctx); | 
 | } | 
 |  | 
 | static void scrub_block_complete(struct scrub_block *sblock) | 
 | { | 
 | 	if (!sblock->no_io_error_seen) { | 
 | 		scrub_handle_errored_block(sblock); | 
 | 	} else { | 
 | 		/* | 
 | 		 * if has checksum error, write via repair mechanism in | 
 | 		 * dev replace case, otherwise write here in dev replace | 
 | 		 * case. | 
 | 		 */ | 
 | 		if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace) | 
 | 			scrub_write_block_to_dev_replace(sblock); | 
 | 	} | 
 | } | 
 |  | 
 | static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len, | 
 | 			   u8 *csum) | 
 | { | 
 | 	struct btrfs_ordered_sum *sum = NULL; | 
 | 	int ret = 0; | 
 | 	unsigned long i; | 
 | 	unsigned long num_sectors; | 
 |  | 
 | 	while (!list_empty(&sctx->csum_list)) { | 
 | 		sum = list_first_entry(&sctx->csum_list, | 
 | 				       struct btrfs_ordered_sum, list); | 
 | 		if (sum->bytenr > logical) | 
 | 			return 0; | 
 | 		if (sum->bytenr + sum->len > logical) | 
 | 			break; | 
 |  | 
 | 		++sctx->stat.csum_discards; | 
 | 		list_del(&sum->list); | 
 | 		kfree(sum); | 
 | 		sum = NULL; | 
 | 	} | 
 | 	if (!sum) | 
 | 		return 0; | 
 |  | 
 | 	num_sectors = sum->len / sctx->sectorsize; | 
 | 	for (i = 0; i < num_sectors; ++i) { | 
 | 		if (sum->sums[i].bytenr == logical) { | 
 | 			memcpy(csum, &sum->sums[i].sum, sctx->csum_size); | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (ret && i == num_sectors - 1) { | 
 | 		list_del(&sum->list); | 
 | 		kfree(sum); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* scrub extent tries to collect up to 64 kB for each bio */ | 
 | static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len, | 
 | 			u64 physical, struct btrfs_device *dev, u64 flags, | 
 | 			u64 gen, int mirror_num, u64 physical_for_dev_replace) | 
 | { | 
 | 	int ret; | 
 | 	u8 csum[BTRFS_CSUM_SIZE]; | 
 | 	u32 blocksize; | 
 |  | 
 | 	if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
 | 		blocksize = sctx->sectorsize; | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.data_extents_scrubbed++; | 
 | 		sctx->stat.data_bytes_scrubbed += len; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
 | 		WARN_ON(sctx->nodesize != sctx->leafsize); | 
 | 		blocksize = sctx->nodesize; | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.tree_extents_scrubbed++; | 
 | 		sctx->stat.tree_bytes_scrubbed += len; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 	} else { | 
 | 		blocksize = sctx->sectorsize; | 
 | 		WARN_ON(1); | 
 | 	} | 
 |  | 
 | 	while (len) { | 
 | 		u64 l = min_t(u64, len, blocksize); | 
 | 		int have_csum = 0; | 
 |  | 
 | 		if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
 | 			/* push csums to sbio */ | 
 | 			have_csum = scrub_find_csum(sctx, logical, l, csum); | 
 | 			if (have_csum == 0) | 
 | 				++sctx->stat.no_csum; | 
 | 			if (sctx->is_dev_replace && !have_csum) { | 
 | 				ret = copy_nocow_pages(sctx, logical, l, | 
 | 						       mirror_num, | 
 | 						      physical_for_dev_replace); | 
 | 				goto behind_scrub_pages; | 
 | 			} | 
 | 		} | 
 | 		ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen, | 
 | 				  mirror_num, have_csum ? csum : NULL, 0, | 
 | 				  physical_for_dev_replace); | 
 | behind_scrub_pages: | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		len -= l; | 
 | 		logical += l; | 
 | 		physical += l; | 
 | 		physical_for_dev_replace += l; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, | 
 | 					   struct map_lookup *map, | 
 | 					   struct btrfs_device *scrub_dev, | 
 | 					   int num, u64 base, u64 length, | 
 | 					   int is_dev_replace) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; | 
 | 	struct btrfs_root *root = fs_info->extent_root; | 
 | 	struct btrfs_root *csum_root = fs_info->csum_root; | 
 | 	struct btrfs_extent_item *extent; | 
 | 	struct blk_plug plug; | 
 | 	u64 flags; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	int i; | 
 | 	u64 nstripes; | 
 | 	struct extent_buffer *l; | 
 | 	struct btrfs_key key; | 
 | 	u64 physical; | 
 | 	u64 logical; | 
 | 	u64 generation; | 
 | 	int mirror_num; | 
 | 	struct reada_control *reada1; | 
 | 	struct reada_control *reada2; | 
 | 	struct btrfs_key key_start; | 
 | 	struct btrfs_key key_end; | 
 | 	u64 increment = map->stripe_len; | 
 | 	u64 offset; | 
 | 	u64 extent_logical; | 
 | 	u64 extent_physical; | 
 | 	u64 extent_len; | 
 | 	struct btrfs_device *extent_dev; | 
 | 	int extent_mirror_num; | 
 |  | 
 | 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | | 
 | 			 BTRFS_BLOCK_GROUP_RAID6)) { | 
 | 		if (num >= nr_data_stripes(map)) { | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	nstripes = length; | 
 | 	offset = 0; | 
 | 	do_div(nstripes, map->stripe_len); | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 		offset = map->stripe_len * num; | 
 | 		increment = map->stripe_len * map->num_stripes; | 
 | 		mirror_num = 1; | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 		int factor = map->num_stripes / map->sub_stripes; | 
 | 		offset = map->stripe_len * (num / map->sub_stripes); | 
 | 		increment = map->stripe_len * factor; | 
 | 		mirror_num = num % map->sub_stripes + 1; | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | 
 | 		increment = map->stripe_len; | 
 | 		mirror_num = num % map->num_stripes + 1; | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | 
 | 		increment = map->stripe_len; | 
 | 		mirror_num = num % map->num_stripes + 1; | 
 | 	} else { | 
 | 		increment = map->stripe_len; | 
 | 		mirror_num = 1; | 
 | 	} | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * work on commit root. The related disk blocks are static as | 
 | 	 * long as COW is applied. This means, it is save to rewrite | 
 | 	 * them to repair disk errors without any race conditions | 
 | 	 */ | 
 | 	path->search_commit_root = 1; | 
 | 	path->skip_locking = 1; | 
 |  | 
 | 	/* | 
 | 	 * trigger the readahead for extent tree csum tree and wait for | 
 | 	 * completion. During readahead, the scrub is officially paused | 
 | 	 * to not hold off transaction commits | 
 | 	 */ | 
 | 	logical = base + offset; | 
 |  | 
 | 	wait_event(sctx->list_wait, | 
 | 		   atomic_read(&sctx->bios_in_flight) == 0); | 
 | 	atomic_inc(&fs_info->scrubs_paused); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 |  | 
 | 	/* FIXME it might be better to start readahead at commit root */ | 
 | 	key_start.objectid = logical; | 
 | 	key_start.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 	key_start.offset = (u64)0; | 
 | 	key_end.objectid = base + offset + nstripes * increment; | 
 | 	key_end.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 	key_end.offset = (u64)0; | 
 | 	reada1 = btrfs_reada_add(root, &key_start, &key_end); | 
 |  | 
 | 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
 | 	key_start.type = BTRFS_EXTENT_CSUM_KEY; | 
 | 	key_start.offset = logical; | 
 | 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
 | 	key_end.type = BTRFS_EXTENT_CSUM_KEY; | 
 | 	key_end.offset = base + offset + nstripes * increment; | 
 | 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); | 
 |  | 
 | 	if (!IS_ERR(reada1)) | 
 | 		btrfs_reada_wait(reada1); | 
 | 	if (!IS_ERR(reada2)) | 
 | 		btrfs_reada_wait(reada2); | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	while (atomic_read(&fs_info->scrub_pause_req)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wait_event(fs_info->scrub_pause_wait, | 
 | 		   atomic_read(&fs_info->scrub_pause_req) == 0); | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 	} | 
 | 	atomic_dec(&fs_info->scrubs_paused); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 |  | 
 | 	/* | 
 | 	 * collect all data csums for the stripe to avoid seeking during | 
 | 	 * the scrub. This might currently (crc32) end up to be about 1MB | 
 | 	 */ | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	/* | 
 | 	 * now find all extents for each stripe and scrub them | 
 | 	 */ | 
 | 	logical = base + offset; | 
 | 	physical = map->stripes[num].physical; | 
 | 	ret = 0; | 
 | 	for (i = 0; i < nstripes; ++i) { | 
 | 		/* | 
 | 		 * canceled? | 
 | 		 */ | 
 | 		if (atomic_read(&fs_info->scrub_cancel_req) || | 
 | 		    atomic_read(&sctx->cancel_req)) { | 
 | 			ret = -ECANCELED; | 
 | 			goto out; | 
 | 		} | 
 | 		/* | 
 | 		 * check to see if we have to pause | 
 | 		 */ | 
 | 		if (atomic_read(&fs_info->scrub_pause_req)) { | 
 | 			/* push queued extents */ | 
 | 			atomic_set(&sctx->wr_ctx.flush_all_writes, 1); | 
 | 			scrub_submit(sctx); | 
 | 			mutex_lock(&sctx->wr_ctx.wr_lock); | 
 | 			scrub_wr_submit(sctx); | 
 | 			mutex_unlock(&sctx->wr_ctx.wr_lock); | 
 | 			wait_event(sctx->list_wait, | 
 | 				   atomic_read(&sctx->bios_in_flight) == 0); | 
 | 			atomic_set(&sctx->wr_ctx.flush_all_writes, 0); | 
 | 			atomic_inc(&fs_info->scrubs_paused); | 
 | 			wake_up(&fs_info->scrub_pause_wait); | 
 | 			mutex_lock(&fs_info->scrub_lock); | 
 | 			while (atomic_read(&fs_info->scrub_pause_req)) { | 
 | 				mutex_unlock(&fs_info->scrub_lock); | 
 | 				wait_event(fs_info->scrub_pause_wait, | 
 | 				   atomic_read(&fs_info->scrub_pause_req) == 0); | 
 | 				mutex_lock(&fs_info->scrub_lock); | 
 | 			} | 
 | 			atomic_dec(&fs_info->scrubs_paused); | 
 | 			mutex_unlock(&fs_info->scrub_lock); | 
 | 			wake_up(&fs_info->scrub_pause_wait); | 
 | 		} | 
 |  | 
 | 		ret = btrfs_lookup_csums_range(csum_root, logical, | 
 | 					       logical + map->stripe_len - 1, | 
 | 					       &sctx->csum_list, 1); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		key.objectid = logical; | 
 | 		key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 		key.offset = (u64)0; | 
 |  | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret > 0) { | 
 | 			ret = btrfs_previous_item(root, path, 0, | 
 | 						  BTRFS_EXTENT_ITEM_KEY); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret > 0) { | 
 | 				/* there's no smaller item, so stick with the | 
 | 				 * larger one */ | 
 | 				btrfs_release_path(path); | 
 | 				ret = btrfs_search_slot(NULL, root, &key, | 
 | 							path, 0, 0); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		while (1) { | 
 | 			l = path->nodes[0]; | 
 | 			slot = path->slots[0]; | 
 | 			if (slot >= btrfs_header_nritems(l)) { | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 				if (ret == 0) | 
 | 					continue; | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 |  | 
 | 				break; | 
 | 			} | 
 | 			btrfs_item_key_to_cpu(l, &key, slot); | 
 |  | 
 | 			if (key.objectid + key.offset <= logical) | 
 | 				goto next; | 
 |  | 
 | 			if (key.objectid >= logical + map->stripe_len) | 
 | 				break; | 
 |  | 
 | 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) | 
 | 				goto next; | 
 |  | 
 | 			extent = btrfs_item_ptr(l, slot, | 
 | 						struct btrfs_extent_item); | 
 | 			flags = btrfs_extent_flags(l, extent); | 
 | 			generation = btrfs_extent_generation(l, extent); | 
 |  | 
 | 			if (key.objectid < logical && | 
 | 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { | 
 | 				printk(KERN_ERR | 
 | 				       "btrfs scrub: tree block %llu spanning " | 
 | 				       "stripes, ignored. logical=%llu\n", | 
 | 				       (unsigned long long)key.objectid, | 
 | 				       (unsigned long long)logical); | 
 | 				goto next; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * trim extent to this stripe | 
 | 			 */ | 
 | 			if (key.objectid < logical) { | 
 | 				key.offset -= logical - key.objectid; | 
 | 				key.objectid = logical; | 
 | 			} | 
 | 			if (key.objectid + key.offset > | 
 | 			    logical + map->stripe_len) { | 
 | 				key.offset = logical + map->stripe_len - | 
 | 					     key.objectid; | 
 | 			} | 
 |  | 
 | 			extent_logical = key.objectid; | 
 | 			extent_physical = key.objectid - logical + physical; | 
 | 			extent_len = key.offset; | 
 | 			extent_dev = scrub_dev; | 
 | 			extent_mirror_num = mirror_num; | 
 | 			if (is_dev_replace) | 
 | 				scrub_remap_extent(fs_info, extent_logical, | 
 | 						   extent_len, &extent_physical, | 
 | 						   &extent_dev, | 
 | 						   &extent_mirror_num); | 
 | 			ret = scrub_extent(sctx, extent_logical, extent_len, | 
 | 					   extent_physical, extent_dev, flags, | 
 | 					   generation, extent_mirror_num, | 
 | 					   key.objectid - logical + physical); | 
 | 			if (ret) | 
 | 				goto out; | 
 |  | 
 | next: | 
 | 			path->slots[0]++; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 | 		logical += increment; | 
 | 		physical += map->stripe_len; | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.last_physical = physical; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 	} | 
 | out: | 
 | 	/* push queued extents */ | 
 | 	scrub_submit(sctx); | 
 | 	mutex_lock(&sctx->wr_ctx.wr_lock); | 
 | 	scrub_wr_submit(sctx); | 
 | 	mutex_unlock(&sctx->wr_ctx.wr_lock); | 
 |  | 
 | 	blk_finish_plug(&plug); | 
 | 	btrfs_free_path(path); | 
 | 	return ret < 0 ? ret : 0; | 
 | } | 
 |  | 
 | static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, | 
 | 					  struct btrfs_device *scrub_dev, | 
 | 					  u64 chunk_tree, u64 chunk_objectid, | 
 | 					  u64 chunk_offset, u64 length, | 
 | 					  u64 dev_offset, int is_dev_replace) | 
 | { | 
 | 	struct btrfs_mapping_tree *map_tree = | 
 | 		&sctx->dev_root->fs_info->mapping_tree; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map *em; | 
 | 	int i; | 
 | 	int ret = 0; | 
 |  | 
 | 	read_lock(&map_tree->map_tree.lock); | 
 | 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | 
 | 	read_unlock(&map_tree->map_tree.lock); | 
 |  | 
 | 	if (!em) | 
 | 		return -EINVAL; | 
 |  | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	if (em->start != chunk_offset) | 
 | 		goto out; | 
 |  | 
 | 	if (em->len < length) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; ++i) { | 
 | 		if (map->stripes[i].dev->bdev == scrub_dev->bdev && | 
 | 		    map->stripes[i].physical == dev_offset) { | 
 | 			ret = scrub_stripe(sctx, map, scrub_dev, i, | 
 | 					   chunk_offset, length, | 
 | 					   is_dev_replace); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	free_extent_map(em); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline_for_stack | 
 | int scrub_enumerate_chunks(struct scrub_ctx *sctx, | 
 | 			   struct btrfs_device *scrub_dev, u64 start, u64 end, | 
 | 			   int is_dev_replace) | 
 | { | 
 | 	struct btrfs_dev_extent *dev_extent = NULL; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = sctx->dev_root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u64 length; | 
 | 	u64 chunk_tree; | 
 | 	u64 chunk_objectid; | 
 | 	u64 chunk_offset; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	struct extent_buffer *l; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_block_group_cache *cache; | 
 | 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->reada = 2; | 
 | 	path->search_commit_root = 1; | 
 | 	path->skip_locking = 1; | 
 |  | 
 | 	key.objectid = scrub_dev->devid; | 
 | 	key.offset = 0ull; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0) { | 
 | 			if (path->slots[0] >= | 
 | 			    btrfs_header_nritems(path->nodes[0])) { | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 |  | 
 | 		btrfs_item_key_to_cpu(l, &found_key, slot); | 
 |  | 
 | 		if (found_key.objectid != scrub_dev->devid) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) | 
 | 			break; | 
 |  | 
 | 		if (found_key.offset >= end) | 
 | 			break; | 
 |  | 
 | 		if (found_key.offset < key.offset) | 
 | 			break; | 
 |  | 
 | 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
 | 		length = btrfs_dev_extent_length(l, dev_extent); | 
 |  | 
 | 		if (found_key.offset + length <= start) { | 
 | 			key.offset = found_key.offset + length; | 
 | 			btrfs_release_path(path); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | 
 | 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | 
 | 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
 |  | 
 | 		/* | 
 | 		 * get a reference on the corresponding block group to prevent | 
 | 		 * the chunk from going away while we scrub it | 
 | 		 */ | 
 | 		cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
 | 		if (!cache) { | 
 | 			ret = -ENOENT; | 
 | 			break; | 
 | 		} | 
 | 		dev_replace->cursor_right = found_key.offset + length; | 
 | 		dev_replace->cursor_left = found_key.offset; | 
 | 		dev_replace->item_needs_writeback = 1; | 
 | 		ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid, | 
 | 				  chunk_offset, length, found_key.offset, | 
 | 				  is_dev_replace); | 
 |  | 
 | 		/* | 
 | 		 * flush, submit all pending read and write bios, afterwards | 
 | 		 * wait for them. | 
 | 		 * Note that in the dev replace case, a read request causes | 
 | 		 * write requests that are submitted in the read completion | 
 | 		 * worker. Therefore in the current situation, it is required | 
 | 		 * that all write requests are flushed, so that all read and | 
 | 		 * write requests are really completed when bios_in_flight | 
 | 		 * changes to 0. | 
 | 		 */ | 
 | 		atomic_set(&sctx->wr_ctx.flush_all_writes, 1); | 
 | 		scrub_submit(sctx); | 
 | 		mutex_lock(&sctx->wr_ctx.wr_lock); | 
 | 		scrub_wr_submit(sctx); | 
 | 		mutex_unlock(&sctx->wr_ctx.wr_lock); | 
 |  | 
 | 		wait_event(sctx->list_wait, | 
 | 			   atomic_read(&sctx->bios_in_flight) == 0); | 
 | 		atomic_set(&sctx->wr_ctx.flush_all_writes, 0); | 
 | 		atomic_inc(&fs_info->scrubs_paused); | 
 | 		wake_up(&fs_info->scrub_pause_wait); | 
 | 		wait_event(sctx->list_wait, | 
 | 			   atomic_read(&sctx->workers_pending) == 0); | 
 |  | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 		while (atomic_read(&fs_info->scrub_pause_req)) { | 
 | 			mutex_unlock(&fs_info->scrub_lock); | 
 | 			wait_event(fs_info->scrub_pause_wait, | 
 | 			   atomic_read(&fs_info->scrub_pause_req) == 0); | 
 | 			mutex_lock(&fs_info->scrub_lock); | 
 | 		} | 
 | 		atomic_dec(&fs_info->scrubs_paused); | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wake_up(&fs_info->scrub_pause_wait); | 
 |  | 
 | 		dev_replace->cursor_left = dev_replace->cursor_right; | 
 | 		dev_replace->item_needs_writeback = 1; | 
 | 		btrfs_put_block_group(cache); | 
 | 		if (ret) | 
 | 			break; | 
 | 		if (is_dev_replace && | 
 | 		    atomic64_read(&dev_replace->num_write_errors) > 0) { | 
 | 			ret = -EIO; | 
 | 			break; | 
 | 		} | 
 | 		if (sctx->stat.malloc_errors > 0) { | 
 | 			ret = -ENOMEM; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		key.offset = found_key.offset + length; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	/* | 
 | 	 * ret can still be 1 from search_slot or next_leaf, | 
 | 	 * that's not an error | 
 | 	 */ | 
 | 	return ret < 0 ? ret : 0; | 
 | } | 
 |  | 
 | static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, | 
 | 					   struct btrfs_device *scrub_dev) | 
 | { | 
 | 	int	i; | 
 | 	u64	bytenr; | 
 | 	u64	gen; | 
 | 	int	ret; | 
 | 	struct btrfs_root *root = sctx->dev_root; | 
 |  | 
 | 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) | 
 | 		return -EIO; | 
 |  | 
 | 	gen = root->fs_info->last_trans_committed; | 
 |  | 
 | 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
 | 		bytenr = btrfs_sb_offset(i); | 
 | 		if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes) | 
 | 			break; | 
 |  | 
 | 		ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, | 
 | 				  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, | 
 | 				  NULL, 1, bytenr); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * get a reference count on fs_info->scrub_workers. start worker if necessary | 
 |  */ | 
 | static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, | 
 | 						int is_dev_replace) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	if (fs_info->scrub_workers_refcnt == 0) { | 
 | 		if (is_dev_replace) | 
 | 			btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1, | 
 | 					&fs_info->generic_worker); | 
 | 		else | 
 | 			btrfs_init_workers(&fs_info->scrub_workers, "scrub", | 
 | 					fs_info->thread_pool_size, | 
 | 					&fs_info->generic_worker); | 
 | 		fs_info->scrub_workers.idle_thresh = 4; | 
 | 		ret = btrfs_start_workers(&fs_info->scrub_workers); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		btrfs_init_workers(&fs_info->scrub_wr_completion_workers, | 
 | 				   "scrubwrc", | 
 | 				   fs_info->thread_pool_size, | 
 | 				   &fs_info->generic_worker); | 
 | 		fs_info->scrub_wr_completion_workers.idle_thresh = 2; | 
 | 		ret = btrfs_start_workers( | 
 | 				&fs_info->scrub_wr_completion_workers); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 		btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1, | 
 | 				   &fs_info->generic_worker); | 
 | 		ret = btrfs_start_workers(&fs_info->scrub_nocow_workers); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 | 	++fs_info->scrub_workers_refcnt; | 
 | out: | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	if (--fs_info->scrub_workers_refcnt == 0) { | 
 | 		btrfs_stop_workers(&fs_info->scrub_workers); | 
 | 		btrfs_stop_workers(&fs_info->scrub_wr_completion_workers); | 
 | 		btrfs_stop_workers(&fs_info->scrub_nocow_workers); | 
 | 	} | 
 | 	WARN_ON(fs_info->scrub_workers_refcnt < 0); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | } | 
 |  | 
 | int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, | 
 | 		    u64 end, struct btrfs_scrub_progress *progress, | 
 | 		    int readonly, int is_dev_replace) | 
 | { | 
 | 	struct scrub_ctx *sctx; | 
 | 	int ret; | 
 | 	struct btrfs_device *dev; | 
 |  | 
 | 	if (btrfs_fs_closing(fs_info)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * check some assumptions | 
 | 	 */ | 
 | 	if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) { | 
 | 		printk(KERN_ERR | 
 | 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n", | 
 | 		       fs_info->chunk_root->nodesize, | 
 | 		       fs_info->chunk_root->leafsize); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) { | 
 | 		/* | 
 | 		 * in this case scrub is unable to calculate the checksum | 
 | 		 * the way scrub is implemented. Do not handle this | 
 | 		 * situation at all because it won't ever happen. | 
 | 		 */ | 
 | 		printk(KERN_ERR | 
 | 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n", | 
 | 		       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (fs_info->chunk_root->sectorsize != PAGE_SIZE) { | 
 | 		/* not supported for data w/o checksums */ | 
 | 		printk(KERN_ERR | 
 | 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n", | 
 | 		       fs_info->chunk_root->sectorsize, | 
 | 		       (unsigned long long)PAGE_SIZE); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (fs_info->chunk_root->nodesize > | 
 | 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK || | 
 | 	    fs_info->chunk_root->sectorsize > | 
 | 	    PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) { | 
 | 		/* | 
 | 		 * would exhaust the array bounds of pagev member in | 
 | 		 * struct scrub_block | 
 | 		 */ | 
 | 		pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n", | 
 | 		       fs_info->chunk_root->nodesize, | 
 | 		       SCRUB_MAX_PAGES_PER_BLOCK, | 
 | 		       fs_info->chunk_root->sectorsize, | 
 | 		       SCRUB_MAX_PAGES_PER_BLOCK); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = scrub_workers_get(fs_info, is_dev_replace); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
 | 	dev = btrfs_find_device(fs_info, devid, NULL, NULL); | 
 | 	if (!dev || (dev->missing && !is_dev_replace)) { | 
 | 		mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | 		scrub_workers_put(fs_info); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 |  | 
 | 	if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | 		scrub_workers_put(fs_info); | 
 | 		return -EIO; | 
 | 	} | 
 |  | 
 | 	btrfs_dev_replace_lock(&fs_info->dev_replace); | 
 | 	if (dev->scrub_device || | 
 | 	    (!is_dev_replace && | 
 | 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { | 
 | 		btrfs_dev_replace_unlock(&fs_info->dev_replace); | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | 		scrub_workers_put(fs_info); | 
 | 		return -EINPROGRESS; | 
 | 	} | 
 | 	btrfs_dev_replace_unlock(&fs_info->dev_replace); | 
 | 	sctx = scrub_setup_ctx(dev, is_dev_replace); | 
 | 	if (IS_ERR(sctx)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | 		scrub_workers_put(fs_info); | 
 | 		return PTR_ERR(sctx); | 
 | 	} | 
 | 	sctx->readonly = readonly; | 
 | 	dev->scrub_device = sctx; | 
 |  | 
 | 	atomic_inc(&fs_info->scrubs_running); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | 	mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	if (!is_dev_replace) { | 
 | 		down_read(&fs_info->scrub_super_lock); | 
 | 		ret = scrub_supers(sctx, dev); | 
 | 		up_read(&fs_info->scrub_super_lock); | 
 | 	} | 
 |  | 
 | 	if (!ret) | 
 | 		ret = scrub_enumerate_chunks(sctx, dev, start, end, | 
 | 					     is_dev_replace); | 
 |  | 
 | 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); | 
 | 	atomic_dec(&fs_info->scrubs_running); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 |  | 
 | 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); | 
 |  | 
 | 	if (progress) | 
 | 		memcpy(progress, &sctx->stat, sizeof(*progress)); | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	dev->scrub_device = NULL; | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 |  | 
 | 	scrub_free_ctx(sctx); | 
 | 	scrub_workers_put(fs_info); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_scrub_pause(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	atomic_inc(&fs_info->scrub_pause_req); | 
 | 	while (atomic_read(&fs_info->scrubs_paused) != | 
 | 	       atomic_read(&fs_info->scrubs_running)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wait_event(fs_info->scrub_pause_wait, | 
 | 			   atomic_read(&fs_info->scrubs_paused) == | 
 | 			   atomic_read(&fs_info->scrubs_running)); | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 	} | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | } | 
 |  | 
 | void btrfs_scrub_continue(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	atomic_dec(&fs_info->scrub_pause_req); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 | } | 
 |  | 
 | void btrfs_scrub_pause_super(struct btrfs_root *root) | 
 | { | 
 | 	down_write(&root->fs_info->scrub_super_lock); | 
 | } | 
 |  | 
 | void btrfs_scrub_continue_super(struct btrfs_root *root) | 
 | { | 
 | 	up_write(&root->fs_info->scrub_super_lock); | 
 | } | 
 |  | 
 | int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) | 
 | { | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	if (!atomic_read(&fs_info->scrubs_running)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		return -ENOTCONN; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&fs_info->scrub_cancel_req); | 
 | 	while (atomic_read(&fs_info->scrubs_running)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wait_event(fs_info->scrub_pause_wait, | 
 | 			   atomic_read(&fs_info->scrubs_running) == 0); | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 	} | 
 | 	atomic_dec(&fs_info->scrub_cancel_req); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info, | 
 | 			   struct btrfs_device *dev) | 
 | { | 
 | 	struct scrub_ctx *sctx; | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	sctx = dev->scrub_device; | 
 | 	if (!sctx) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		return -ENOTCONN; | 
 | 	} | 
 | 	atomic_inc(&sctx->cancel_req); | 
 | 	while (dev->scrub_device) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wait_event(fs_info->scrub_pause_wait, | 
 | 			   dev->scrub_device == NULL); | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 	} | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_device *dev; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * we have to hold the device_list_mutex here so the device | 
 | 	 * does not go away in cancel_dev. FIXME: find a better solution | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
 | 	dev = btrfs_find_device(fs_info, devid, NULL, NULL); | 
 | 	if (!dev) { | 
 | 		mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	ret = btrfs_scrub_cancel_dev(fs_info, dev); | 
 | 	mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, | 
 | 			 struct btrfs_scrub_progress *progress) | 
 | { | 
 | 	struct btrfs_device *dev; | 
 | 	struct scrub_ctx *sctx = NULL; | 
 |  | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	dev = btrfs_find_device(root->fs_info, devid, NULL, NULL); | 
 | 	if (dev) | 
 | 		sctx = dev->scrub_device; | 
 | 	if (sctx) | 
 | 		memcpy(progress, &sctx->stat, sizeof(*progress)); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; | 
 | } | 
 |  | 
 | static void scrub_remap_extent(struct btrfs_fs_info *fs_info, | 
 | 			       u64 extent_logical, u64 extent_len, | 
 | 			       u64 *extent_physical, | 
 | 			       struct btrfs_device **extent_dev, | 
 | 			       int *extent_mirror_num) | 
 | { | 
 | 	u64 mapped_length; | 
 | 	struct btrfs_bio *bbio = NULL; | 
 | 	int ret; | 
 |  | 
 | 	mapped_length = extent_len; | 
 | 	ret = btrfs_map_block(fs_info, READ, extent_logical, | 
 | 			      &mapped_length, &bbio, 0); | 
 | 	if (ret || !bbio || mapped_length < extent_len || | 
 | 	    !bbio->stripes[0].dev->bdev) { | 
 | 		kfree(bbio); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	*extent_physical = bbio->stripes[0].physical; | 
 | 	*extent_mirror_num = bbio->mirror_num; | 
 | 	*extent_dev = bbio->stripes[0].dev; | 
 | 	kfree(bbio); | 
 | } | 
 |  | 
 | static int scrub_setup_wr_ctx(struct scrub_ctx *sctx, | 
 | 			      struct scrub_wr_ctx *wr_ctx, | 
 | 			      struct btrfs_fs_info *fs_info, | 
 | 			      struct btrfs_device *dev, | 
 | 			      int is_dev_replace) | 
 | { | 
 | 	WARN_ON(wr_ctx->wr_curr_bio != NULL); | 
 |  | 
 | 	mutex_init(&wr_ctx->wr_lock); | 
 | 	wr_ctx->wr_curr_bio = NULL; | 
 | 	if (!is_dev_replace) | 
 | 		return 0; | 
 |  | 
 | 	WARN_ON(!dev->bdev); | 
 | 	wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO, | 
 | 					 bio_get_nr_vecs(dev->bdev)); | 
 | 	wr_ctx->tgtdev = dev; | 
 | 	atomic_set(&wr_ctx->flush_all_writes, 0); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx) | 
 | { | 
 | 	mutex_lock(&wr_ctx->wr_lock); | 
 | 	kfree(wr_ctx->wr_curr_bio); | 
 | 	wr_ctx->wr_curr_bio = NULL; | 
 | 	mutex_unlock(&wr_ctx->wr_lock); | 
 | } | 
 |  | 
 | static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len, | 
 | 			    int mirror_num, u64 physical_for_dev_replace) | 
 | { | 
 | 	struct scrub_copy_nocow_ctx *nocow_ctx; | 
 | 	struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info; | 
 |  | 
 | 	nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS); | 
 | 	if (!nocow_ctx) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.malloc_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	scrub_pending_trans_workers_inc(sctx); | 
 |  | 
 | 	nocow_ctx->sctx = sctx; | 
 | 	nocow_ctx->logical = logical; | 
 | 	nocow_ctx->len = len; | 
 | 	nocow_ctx->mirror_num = mirror_num; | 
 | 	nocow_ctx->physical_for_dev_replace = physical_for_dev_replace; | 
 | 	nocow_ctx->work.func = copy_nocow_pages_worker; | 
 | 	btrfs_queue_worker(&fs_info->scrub_nocow_workers, | 
 | 			   &nocow_ctx->work); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void copy_nocow_pages_worker(struct btrfs_work *work) | 
 | { | 
 | 	struct scrub_copy_nocow_ctx *nocow_ctx = | 
 | 		container_of(work, struct scrub_copy_nocow_ctx, work); | 
 | 	struct scrub_ctx *sctx = nocow_ctx->sctx; | 
 | 	u64 logical = nocow_ctx->logical; | 
 | 	u64 len = nocow_ctx->len; | 
 | 	int mirror_num = nocow_ctx->mirror_num; | 
 | 	u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; | 
 | 	int ret; | 
 | 	struct btrfs_trans_handle *trans = NULL; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root; | 
 | 	int not_written = 0; | 
 |  | 
 | 	fs_info = sctx->dev_root->fs_info; | 
 | 	root = fs_info->extent_root; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.malloc_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		not_written = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trans = btrfs_join_transaction(root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		not_written = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	ret = iterate_inodes_from_logical(logical, fs_info, path, | 
 | 					  copy_nocow_pages_for_inode, | 
 | 					  nocow_ctx); | 
 | 	if (ret != 0 && ret != -ENOENT) { | 
 | 		pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n", | 
 | 			(unsigned long long)logical, | 
 | 			(unsigned long long)physical_for_dev_replace, | 
 | 			(unsigned long long)len, | 
 | 			(unsigned long long)mirror_num, ret); | 
 | 		not_written = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (trans && !IS_ERR(trans)) | 
 | 		btrfs_end_transaction(trans, root); | 
 | 	if (not_written) | 
 | 		btrfs_dev_replace_stats_inc(&fs_info->dev_replace. | 
 | 					    num_uncorrectable_read_errors); | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	kfree(nocow_ctx); | 
 |  | 
 | 	scrub_pending_trans_workers_dec(sctx); | 
 | } | 
 |  | 
 | static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx) | 
 | { | 
 | 	unsigned long index; | 
 | 	struct scrub_copy_nocow_ctx *nocow_ctx = ctx; | 
 | 	int ret = 0; | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode = NULL; | 
 | 	struct btrfs_root *local_root; | 
 | 	u64 physical_for_dev_replace; | 
 | 	u64 len; | 
 | 	struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info; | 
 | 	int srcu_index; | 
 |  | 
 | 	key.objectid = root; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 |  | 
 | 	srcu_index = srcu_read_lock(&fs_info->subvol_srcu); | 
 |  | 
 | 	local_root = btrfs_read_fs_root_no_name(fs_info, &key); | 
 | 	if (IS_ERR(local_root)) { | 
 | 		srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); | 
 | 		return PTR_ERR(local_root); | 
 | 	} | 
 |  | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.objectid = inum; | 
 | 	key.offset = 0; | 
 | 	inode = btrfs_iget(fs_info->sb, &key, local_root, NULL); | 
 | 	srcu_read_unlock(&fs_info->subvol_srcu, srcu_index); | 
 | 	if (IS_ERR(inode)) | 
 | 		return PTR_ERR(inode); | 
 |  | 
 | 	physical_for_dev_replace = nocow_ctx->physical_for_dev_replace; | 
 | 	len = nocow_ctx->len; | 
 | 	while (len >= PAGE_CACHE_SIZE) { | 
 | 		struct page *page = NULL; | 
 | 		int ret_sub; | 
 |  | 
 | 		index = offset >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 		page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | 
 | 		if (!page) { | 
 | 			pr_err("find_or_create_page() failed\n"); | 
 | 			ret = -ENOMEM; | 
 | 			goto next_page; | 
 | 		} | 
 |  | 
 | 		if (PageUptodate(page)) { | 
 | 			if (PageDirty(page)) | 
 | 				goto next_page; | 
 | 		} else { | 
 | 			ClearPageError(page); | 
 | 			ret_sub = extent_read_full_page(&BTRFS_I(inode)-> | 
 | 							 io_tree, | 
 | 							page, btrfs_get_extent, | 
 | 							nocow_ctx->mirror_num); | 
 | 			if (ret_sub) { | 
 | 				ret = ret_sub; | 
 | 				goto next_page; | 
 | 			} | 
 | 			wait_on_page_locked(page); | 
 | 			if (!PageUptodate(page)) { | 
 | 				ret = -EIO; | 
 | 				goto next_page; | 
 | 			} | 
 | 		} | 
 | 		ret_sub = write_page_nocow(nocow_ctx->sctx, | 
 | 					   physical_for_dev_replace, page); | 
 | 		if (ret_sub) { | 
 | 			ret = ret_sub; | 
 | 			goto next_page; | 
 | 		} | 
 |  | 
 | next_page: | 
 | 		if (page) { | 
 | 			unlock_page(page); | 
 | 			put_page(page); | 
 | 		} | 
 | 		offset += PAGE_CACHE_SIZE; | 
 | 		physical_for_dev_replace += PAGE_CACHE_SIZE; | 
 | 		len -= PAGE_CACHE_SIZE; | 
 | 	} | 
 |  | 
 | 	if (inode) | 
 | 		iput(inode); | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int write_page_nocow(struct scrub_ctx *sctx, | 
 | 			    u64 physical_for_dev_replace, struct page *page) | 
 | { | 
 | 	struct bio *bio; | 
 | 	struct btrfs_device *dev; | 
 | 	int ret; | 
 | 	DECLARE_COMPLETION_ONSTACK(compl); | 
 |  | 
 | 	dev = sctx->wr_ctx.tgtdev; | 
 | 	if (!dev) | 
 | 		return -EIO; | 
 | 	if (!dev->bdev) { | 
 | 		printk_ratelimited(KERN_WARNING | 
 | 			"btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n"); | 
 | 		return -EIO; | 
 | 	} | 
 | 	bio = bio_alloc(GFP_NOFS, 1); | 
 | 	if (!bio) { | 
 | 		spin_lock(&sctx->stat_lock); | 
 | 		sctx->stat.malloc_errors++; | 
 | 		spin_unlock(&sctx->stat_lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 | 	bio->bi_private = &compl; | 
 | 	bio->bi_end_io = scrub_complete_bio_end_io; | 
 | 	bio->bi_size = 0; | 
 | 	bio->bi_sector = physical_for_dev_replace >> 9; | 
 | 	bio->bi_bdev = dev->bdev; | 
 | 	ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0); | 
 | 	if (ret != PAGE_CACHE_SIZE) { | 
 | leave_with_eio: | 
 | 		bio_put(bio); | 
 | 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); | 
 | 		return -EIO; | 
 | 	} | 
 | 	btrfsic_submit_bio(WRITE_SYNC, bio); | 
 | 	wait_for_completion(&compl); | 
 |  | 
 | 	if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
 | 		goto leave_with_eio; | 
 |  | 
 | 	bio_put(bio); | 
 | 	return 0; | 
 | } |