|  | #ifndef _LINUX_MM_H | 
|  | #define _LINUX_MM_H | 
|  |  | 
|  | #include <linux/errno.h> | 
|  |  | 
|  | #ifdef __KERNEL__ | 
|  |  | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/list.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/rbtree.h> | 
|  | #include <linux/prio_tree.h> | 
|  | #include <linux/debug_locks.h> | 
|  | #include <linux/mm_types.h> | 
|  | #include <linux/security.h> | 
|  |  | 
|  | struct mempolicy; | 
|  | struct anon_vma; | 
|  | struct file_ra_state; | 
|  | struct user_struct; | 
|  | struct writeback_control; | 
|  |  | 
|  | #ifndef CONFIG_DISCONTIGMEM          /* Don't use mapnrs, do it properly */ | 
|  | extern unsigned long max_mapnr; | 
|  | #endif | 
|  |  | 
|  | extern unsigned long num_physpages; | 
|  | extern void * high_memory; | 
|  | extern int page_cluster; | 
|  |  | 
|  | #ifdef CONFIG_SYSCTL | 
|  | extern int sysctl_legacy_va_layout; | 
|  | #else | 
|  | #define sysctl_legacy_va_layout 0 | 
|  | #endif | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/processor.h> | 
|  |  | 
|  | #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n)) | 
|  |  | 
|  | /* | 
|  | * Linux kernel virtual memory manager primitives. | 
|  | * The idea being to have a "virtual" mm in the same way | 
|  | * we have a virtual fs - giving a cleaner interface to the | 
|  | * mm details, and allowing different kinds of memory mappings | 
|  | * (from shared memory to executable loading to arbitrary | 
|  | * mmap() functions). | 
|  | */ | 
|  |  | 
|  | extern struct kmem_cache *vm_area_cachep; | 
|  |  | 
|  | /* | 
|  | * This struct defines the per-mm list of VMAs for uClinux. If CONFIG_MMU is | 
|  | * disabled, then there's a single shared list of VMAs maintained by the | 
|  | * system, and mm's subscribe to these individually | 
|  | */ | 
|  | struct vm_list_struct { | 
|  | struct vm_list_struct	*next; | 
|  | struct vm_area_struct	*vma; | 
|  | }; | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | extern struct rb_root nommu_vma_tree; | 
|  | extern struct rw_semaphore nommu_vma_sem; | 
|  |  | 
|  | extern unsigned int kobjsize(const void *objp); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * vm_flags.. | 
|  | */ | 
|  | #define VM_READ		0x00000001	/* currently active flags */ | 
|  | #define VM_WRITE	0x00000002 | 
|  | #define VM_EXEC		0x00000004 | 
|  | #define VM_SHARED	0x00000008 | 
|  |  | 
|  | /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */ | 
|  | #define VM_MAYREAD	0x00000010	/* limits for mprotect() etc */ | 
|  | #define VM_MAYWRITE	0x00000020 | 
|  | #define VM_MAYEXEC	0x00000040 | 
|  | #define VM_MAYSHARE	0x00000080 | 
|  |  | 
|  | #define VM_GROWSDOWN	0x00000100	/* general info on the segment */ | 
|  | #define VM_GROWSUP	0x00000200 | 
|  | #define VM_PFNMAP	0x00000400	/* Page-ranges managed without "struct page", just pure PFN */ | 
|  | #define VM_DENYWRITE	0x00000800	/* ETXTBSY on write attempts.. */ | 
|  |  | 
|  | #define VM_EXECUTABLE	0x00001000 | 
|  | #define VM_LOCKED	0x00002000 | 
|  | #define VM_IO           0x00004000	/* Memory mapped I/O or similar */ | 
|  |  | 
|  | /* Used by sys_madvise() */ | 
|  | #define VM_SEQ_READ	0x00008000	/* App will access data sequentially */ | 
|  | #define VM_RAND_READ	0x00010000	/* App will not benefit from clustered reads */ | 
|  |  | 
|  | #define VM_DONTCOPY	0x00020000      /* Do not copy this vma on fork */ | 
|  | #define VM_DONTEXPAND	0x00040000	/* Cannot expand with mremap() */ | 
|  | #define VM_RESERVED	0x00080000	/* Count as reserved_vm like IO */ | 
|  | #define VM_ACCOUNT	0x00100000	/* Is a VM accounted object */ | 
|  | #define VM_HUGETLB	0x00400000	/* Huge TLB Page VM */ | 
|  | #define VM_NONLINEAR	0x00800000	/* Is non-linear (remap_file_pages) */ | 
|  | #define VM_MAPPED_COPY	0x01000000	/* T if mapped copy of data (nommu mmap) */ | 
|  | #define VM_INSERTPAGE	0x02000000	/* The vma has had "vm_insert_page()" done on it */ | 
|  | #define VM_ALWAYSDUMP	0x04000000	/* Always include in core dumps */ | 
|  |  | 
|  | #define VM_CAN_NONLINEAR 0x08000000	/* Has ->fault & does nonlinear pages */ | 
|  |  | 
|  | #ifndef VM_STACK_DEFAULT_FLAGS		/* arch can override this */ | 
|  | #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | #define VM_STACK_FLAGS	(VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 
|  | #else | 
|  | #define VM_STACK_FLAGS	(VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT) | 
|  | #endif | 
|  |  | 
|  | #define VM_READHINTMASK			(VM_SEQ_READ | VM_RAND_READ) | 
|  | #define VM_ClearReadHint(v)		(v)->vm_flags &= ~VM_READHINTMASK | 
|  | #define VM_NormalReadHint(v)		(!((v)->vm_flags & VM_READHINTMASK)) | 
|  | #define VM_SequentialReadHint(v)	((v)->vm_flags & VM_SEQ_READ) | 
|  | #define VM_RandomReadHint(v)		((v)->vm_flags & VM_RAND_READ) | 
|  |  | 
|  | /* | 
|  | * mapping from the currently active vm_flags protection bits (the | 
|  | * low four bits) to a page protection mask.. | 
|  | */ | 
|  | extern pgprot_t protection_map[16]; | 
|  |  | 
|  | #define FAULT_FLAG_WRITE	0x01	/* Fault was a write access */ | 
|  | #define FAULT_FLAG_NONLINEAR	0x02	/* Fault was via a nonlinear mapping */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * vm_fault is filled by the the pagefault handler and passed to the vma's | 
|  | * ->fault function. The vma's ->fault is responsible for returning a bitmask | 
|  | * of VM_FAULT_xxx flags that give details about how the fault was handled. | 
|  | * | 
|  | * pgoff should be used in favour of virtual_address, if possible. If pgoff | 
|  | * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear | 
|  | * mapping support. | 
|  | */ | 
|  | struct vm_fault { | 
|  | unsigned int flags;		/* FAULT_FLAG_xxx flags */ | 
|  | pgoff_t pgoff;			/* Logical page offset based on vma */ | 
|  | void __user *virtual_address;	/* Faulting virtual address */ | 
|  |  | 
|  | struct page *page;		/* ->fault handlers should return a | 
|  | * page here, unless VM_FAULT_NOPAGE | 
|  | * is set (which is also implied by | 
|  | * VM_FAULT_ERROR). | 
|  | */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * These are the virtual MM functions - opening of an area, closing and | 
|  | * unmapping it (needed to keep files on disk up-to-date etc), pointer | 
|  | * to the functions called when a no-page or a wp-page exception occurs. | 
|  | */ | 
|  | struct vm_operations_struct { | 
|  | void (*open)(struct vm_area_struct * area); | 
|  | void (*close)(struct vm_area_struct * area); | 
|  | int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf); | 
|  | struct page *(*nopage)(struct vm_area_struct *area, | 
|  | unsigned long address, int *type); | 
|  | unsigned long (*nopfn)(struct vm_area_struct *area, | 
|  | unsigned long address); | 
|  |  | 
|  | /* notification that a previously read-only page is about to become | 
|  | * writable, if an error is returned it will cause a SIGBUS */ | 
|  | int (*page_mkwrite)(struct vm_area_struct *vma, struct page *page); | 
|  | #ifdef CONFIG_NUMA | 
|  | int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new); | 
|  | struct mempolicy *(*get_policy)(struct vm_area_struct *vma, | 
|  | unsigned long addr); | 
|  | int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from, | 
|  | const nodemask_t *to, unsigned long flags); | 
|  | #endif | 
|  | }; | 
|  |  | 
|  | struct mmu_gather; | 
|  | struct inode; | 
|  |  | 
|  | #define page_private(page)		((page)->private) | 
|  | #define set_page_private(page, v)	((page)->private = (v)) | 
|  |  | 
|  | /* | 
|  | * FIXME: take this include out, include page-flags.h in | 
|  | * files which need it (119 of them) | 
|  | */ | 
|  | #include <linux/page-flags.h> | 
|  |  | 
|  | #ifdef CONFIG_DEBUG_VM | 
|  | #define VM_BUG_ON(cond) BUG_ON(cond) | 
|  | #else | 
|  | #define VM_BUG_ON(condition) do { } while(0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Methods to modify the page usage count. | 
|  | * | 
|  | * What counts for a page usage: | 
|  | * - cache mapping   (page->mapping) | 
|  | * - private data    (page->private) | 
|  | * - page mapped in a task's page tables, each mapping | 
|  | *   is counted separately | 
|  | * | 
|  | * Also, many kernel routines increase the page count before a critical | 
|  | * routine so they can be sure the page doesn't go away from under them. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Drop a ref, return true if the refcount fell to zero (the page has no users) | 
|  | */ | 
|  | static inline int put_page_testzero(struct page *page) | 
|  | { | 
|  | VM_BUG_ON(atomic_read(&page->_count) == 0); | 
|  | return atomic_dec_and_test(&page->_count); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Try to grab a ref unless the page has a refcount of zero, return false if | 
|  | * that is the case. | 
|  | */ | 
|  | static inline int get_page_unless_zero(struct page *page) | 
|  | { | 
|  | VM_BUG_ON(PageCompound(page)); | 
|  | return atomic_inc_not_zero(&page->_count); | 
|  | } | 
|  |  | 
|  | static inline struct page *compound_head(struct page *page) | 
|  | { | 
|  | if (unlikely(PageTail(page))) | 
|  | return page->first_page; | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static inline int page_count(struct page *page) | 
|  | { | 
|  | return atomic_read(&compound_head(page)->_count); | 
|  | } | 
|  |  | 
|  | static inline void get_page(struct page *page) | 
|  | { | 
|  | page = compound_head(page); | 
|  | VM_BUG_ON(atomic_read(&page->_count) == 0); | 
|  | atomic_inc(&page->_count); | 
|  | } | 
|  |  | 
|  | static inline struct page *virt_to_head_page(const void *x) | 
|  | { | 
|  | struct page *page = virt_to_page(x); | 
|  | return compound_head(page); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setup the page count before being freed into the page allocator for | 
|  | * the first time (boot or memory hotplug) | 
|  | */ | 
|  | static inline void init_page_count(struct page *page) | 
|  | { | 
|  | atomic_set(&page->_count, 1); | 
|  | } | 
|  |  | 
|  | void put_page(struct page *page); | 
|  | void put_pages_list(struct list_head *pages); | 
|  |  | 
|  | void split_page(struct page *page, unsigned int order); | 
|  |  | 
|  | /* | 
|  | * Compound pages have a destructor function.  Provide a | 
|  | * prototype for that function and accessor functions. | 
|  | * These are _only_ valid on the head of a PG_compound page. | 
|  | */ | 
|  | typedef void compound_page_dtor(struct page *); | 
|  |  | 
|  | static inline void set_compound_page_dtor(struct page *page, | 
|  | compound_page_dtor *dtor) | 
|  | { | 
|  | page[1].lru.next = (void *)dtor; | 
|  | } | 
|  |  | 
|  | static inline compound_page_dtor *get_compound_page_dtor(struct page *page) | 
|  | { | 
|  | return (compound_page_dtor *)page[1].lru.next; | 
|  | } | 
|  |  | 
|  | static inline int compound_order(struct page *page) | 
|  | { | 
|  | if (!PageHead(page)) | 
|  | return 0; | 
|  | return (unsigned long)page[1].lru.prev; | 
|  | } | 
|  |  | 
|  | static inline void set_compound_order(struct page *page, unsigned long order) | 
|  | { | 
|  | page[1].lru.prev = (void *)order; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Multiple processes may "see" the same page. E.g. for untouched | 
|  | * mappings of /dev/null, all processes see the same page full of | 
|  | * zeroes, and text pages of executables and shared libraries have | 
|  | * only one copy in memory, at most, normally. | 
|  | * | 
|  | * For the non-reserved pages, page_count(page) denotes a reference count. | 
|  | *   page_count() == 0 means the page is free. page->lru is then used for | 
|  | *   freelist management in the buddy allocator. | 
|  | *   page_count() > 0  means the page has been allocated. | 
|  | * | 
|  | * Pages are allocated by the slab allocator in order to provide memory | 
|  | * to kmalloc and kmem_cache_alloc. In this case, the management of the | 
|  | * page, and the fields in 'struct page' are the responsibility of mm/slab.c | 
|  | * unless a particular usage is carefully commented. (the responsibility of | 
|  | * freeing the kmalloc memory is the caller's, of course). | 
|  | * | 
|  | * A page may be used by anyone else who does a __get_free_page(). | 
|  | * In this case, page_count still tracks the references, and should only | 
|  | * be used through the normal accessor functions. The top bits of page->flags | 
|  | * and page->virtual store page management information, but all other fields | 
|  | * are unused and could be used privately, carefully. The management of this | 
|  | * page is the responsibility of the one who allocated it, and those who have | 
|  | * subsequently been given references to it. | 
|  | * | 
|  | * The other pages (we may call them "pagecache pages") are completely | 
|  | * managed by the Linux memory manager: I/O, buffers, swapping etc. | 
|  | * The following discussion applies only to them. | 
|  | * | 
|  | * A pagecache page contains an opaque `private' member, which belongs to the | 
|  | * page's address_space. Usually, this is the address of a circular list of | 
|  | * the page's disk buffers. PG_private must be set to tell the VM to call | 
|  | * into the filesystem to release these pages. | 
|  | * | 
|  | * A page may belong to an inode's memory mapping. In this case, page->mapping | 
|  | * is the pointer to the inode, and page->index is the file offset of the page, | 
|  | * in units of PAGE_CACHE_SIZE. | 
|  | * | 
|  | * If pagecache pages are not associated with an inode, they are said to be | 
|  | * anonymous pages. These may become associated with the swapcache, and in that | 
|  | * case PG_swapcache is set, and page->private is an offset into the swapcache. | 
|  | * | 
|  | * In either case (swapcache or inode backed), the pagecache itself holds one | 
|  | * reference to the page. Setting PG_private should also increment the | 
|  | * refcount. The each user mapping also has a reference to the page. | 
|  | * | 
|  | * The pagecache pages are stored in a per-mapping radix tree, which is | 
|  | * rooted at mapping->page_tree, and indexed by offset. | 
|  | * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space | 
|  | * lists, we instead now tag pages as dirty/writeback in the radix tree. | 
|  | * | 
|  | * All pagecache pages may be subject to I/O: | 
|  | * - inode pages may need to be read from disk, | 
|  | * - inode pages which have been modified and are MAP_SHARED may need | 
|  | *   to be written back to the inode on disk, | 
|  | * - anonymous pages (including MAP_PRIVATE file mappings) which have been | 
|  | *   modified may need to be swapped out to swap space and (later) to be read | 
|  | *   back into memory. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The zone field is never updated after free_area_init_core() | 
|  | * sets it, so none of the operations on it need to be atomic. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * page->flags layout: | 
|  | * | 
|  | * There are three possibilities for how page->flags get | 
|  | * laid out.  The first is for the normal case, without | 
|  | * sparsemem.  The second is for sparsemem when there is | 
|  | * plenty of space for node and section.  The last is when | 
|  | * we have run out of space and have to fall back to an | 
|  | * alternate (slower) way of determining the node. | 
|  | * | 
|  | *        No sparsemem: |       NODE     | ZONE | ... | FLAGS | | 
|  | * with space for node: | SECTION | NODE | ZONE | ... | FLAGS | | 
|  | *   no space for node: | SECTION |     ZONE    | ... | FLAGS | | 
|  | */ | 
|  | #ifdef CONFIG_SPARSEMEM | 
|  | #define SECTIONS_WIDTH		SECTIONS_SHIFT | 
|  | #else | 
|  | #define SECTIONS_WIDTH		0 | 
|  | #endif | 
|  |  | 
|  | #define ZONES_WIDTH		ZONES_SHIFT | 
|  |  | 
|  | #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= FLAGS_RESERVED | 
|  | #define NODES_WIDTH		NODES_SHIFT | 
|  | #else | 
|  | #define NODES_WIDTH		0 | 
|  | #endif | 
|  |  | 
|  | /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */ | 
|  | #define SECTIONS_PGOFF		((sizeof(unsigned long)*8) - SECTIONS_WIDTH) | 
|  | #define NODES_PGOFF		(SECTIONS_PGOFF - NODES_WIDTH) | 
|  | #define ZONES_PGOFF		(NODES_PGOFF - ZONES_WIDTH) | 
|  |  | 
|  | /* | 
|  | * We are going to use the flags for the page to node mapping if its in | 
|  | * there.  This includes the case where there is no node, so it is implicit. | 
|  | */ | 
|  | #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0) | 
|  | #define NODE_NOT_IN_PAGE_FLAGS | 
|  | #endif | 
|  |  | 
|  | #ifndef PFN_SECTION_SHIFT | 
|  | #define PFN_SECTION_SHIFT 0 | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Define the bit shifts to access each section.  For non-existant | 
|  | * sections we define the shift as 0; that plus a 0 mask ensures | 
|  | * the compiler will optimise away reference to them. | 
|  | */ | 
|  | #define SECTIONS_PGSHIFT	(SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) | 
|  | #define NODES_PGSHIFT		(NODES_PGOFF * (NODES_WIDTH != 0)) | 
|  | #define ZONES_PGSHIFT		(ZONES_PGOFF * (ZONES_WIDTH != 0)) | 
|  |  | 
|  | /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */ | 
|  | #ifdef NODE_NOT_IN_PAGEFLAGS | 
|  | #define ZONEID_SHIFT		(SECTIONS_SHIFT + ZONES_SHIFT) | 
|  | #define ZONEID_PGOFF		((SECTIONS_PGOFF < ZONES_PGOFF)? \ | 
|  | SECTIONS_PGOFF : ZONES_PGOFF) | 
|  | #else | 
|  | #define ZONEID_SHIFT		(NODES_SHIFT + ZONES_SHIFT) | 
|  | #define ZONEID_PGOFF		((NODES_PGOFF < ZONES_PGOFF)? \ | 
|  | NODES_PGOFF : ZONES_PGOFF) | 
|  | #endif | 
|  |  | 
|  | #define ZONEID_PGSHIFT		(ZONEID_PGOFF * (ZONEID_SHIFT != 0)) | 
|  |  | 
|  | #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED | 
|  | #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > FLAGS_RESERVED | 
|  | #endif | 
|  |  | 
|  | #define ZONES_MASK		((1UL << ZONES_WIDTH) - 1) | 
|  | #define NODES_MASK		((1UL << NODES_WIDTH) - 1) | 
|  | #define SECTIONS_MASK		((1UL << SECTIONS_WIDTH) - 1) | 
|  | #define ZONEID_MASK		((1UL << ZONEID_SHIFT) - 1) | 
|  |  | 
|  | static inline enum zone_type page_zonenum(struct page *page) | 
|  | { | 
|  | return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The identification function is only used by the buddy allocator for | 
|  | * determining if two pages could be buddies. We are not really | 
|  | * identifying a zone since we could be using a the section number | 
|  | * id if we have not node id available in page flags. | 
|  | * We guarantee only that it will return the same value for two | 
|  | * combinable pages in a zone. | 
|  | */ | 
|  | static inline int page_zone_id(struct page *page) | 
|  | { | 
|  | return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK; | 
|  | } | 
|  |  | 
|  | static inline int zone_to_nid(struct zone *zone) | 
|  | { | 
|  | #ifdef CONFIG_NUMA | 
|  | return zone->node; | 
|  | #else | 
|  | return 0; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef NODE_NOT_IN_PAGE_FLAGS | 
|  | extern int page_to_nid(struct page *page); | 
|  | #else | 
|  | static inline int page_to_nid(struct page *page) | 
|  | { | 
|  | return (page->flags >> NODES_PGSHIFT) & NODES_MASK; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | static inline struct zone *page_zone(struct page *page) | 
|  | { | 
|  | return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)]; | 
|  | } | 
|  |  | 
|  | static inline unsigned long page_to_section(struct page *page) | 
|  | { | 
|  | return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK; | 
|  | } | 
|  |  | 
|  | static inline void set_page_zone(struct page *page, enum zone_type zone) | 
|  | { | 
|  | page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT); | 
|  | page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT; | 
|  | } | 
|  |  | 
|  | static inline void set_page_node(struct page *page, unsigned long node) | 
|  | { | 
|  | page->flags &= ~(NODES_MASK << NODES_PGSHIFT); | 
|  | page->flags |= (node & NODES_MASK) << NODES_PGSHIFT; | 
|  | } | 
|  |  | 
|  | static inline void set_page_section(struct page *page, unsigned long section) | 
|  | { | 
|  | page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT); | 
|  | page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT; | 
|  | } | 
|  |  | 
|  | static inline void set_page_links(struct page *page, enum zone_type zone, | 
|  | unsigned long node, unsigned long pfn) | 
|  | { | 
|  | set_page_zone(page, zone); | 
|  | set_page_node(page, node); | 
|  | set_page_section(page, pfn_to_section_nr(pfn)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If a hint addr is less than mmap_min_addr change hint to be as | 
|  | * low as possible but still greater than mmap_min_addr | 
|  | */ | 
|  | static inline unsigned long round_hint_to_min(unsigned long hint) | 
|  | { | 
|  | #ifdef CONFIG_SECURITY | 
|  | hint &= PAGE_MASK; | 
|  | if (((void *)hint != NULL) && | 
|  | (hint < mmap_min_addr)) | 
|  | return PAGE_ALIGN(mmap_min_addr); | 
|  | #endif | 
|  | return hint; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Some inline functions in vmstat.h depend on page_zone() | 
|  | */ | 
|  | #include <linux/vmstat.h> | 
|  |  | 
|  | static __always_inline void *lowmem_page_address(struct page *page) | 
|  | { | 
|  | return __va(page_to_pfn(page) << PAGE_SHIFT); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL) | 
|  | #define HASHED_PAGE_VIRTUAL | 
|  | #endif | 
|  |  | 
|  | #if defined(WANT_PAGE_VIRTUAL) | 
|  | #define page_address(page) ((page)->virtual) | 
|  | #define set_page_address(page, address)			\ | 
|  | do {						\ | 
|  | (page)->virtual = (address);		\ | 
|  | } while(0) | 
|  | #define page_address_init()  do { } while(0) | 
|  | #endif | 
|  |  | 
|  | #if defined(HASHED_PAGE_VIRTUAL) | 
|  | void *page_address(struct page *page); | 
|  | void set_page_address(struct page *page, void *virtual); | 
|  | void page_address_init(void); | 
|  | #endif | 
|  |  | 
|  | #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL) | 
|  | #define page_address(page) lowmem_page_address(page) | 
|  | #define set_page_address(page, address)  do { } while(0) | 
|  | #define page_address_init()  do { } while(0) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * On an anonymous page mapped into a user virtual memory area, | 
|  | * page->mapping points to its anon_vma, not to a struct address_space; | 
|  | * with the PAGE_MAPPING_ANON bit set to distinguish it. | 
|  | * | 
|  | * Please note that, confusingly, "page_mapping" refers to the inode | 
|  | * address_space which maps the page from disk; whereas "page_mapped" | 
|  | * refers to user virtual address space into which the page is mapped. | 
|  | */ | 
|  | #define PAGE_MAPPING_ANON	1 | 
|  |  | 
|  | extern struct address_space swapper_space; | 
|  | static inline struct address_space *page_mapping(struct page *page) | 
|  | { | 
|  | struct address_space *mapping = page->mapping; | 
|  |  | 
|  | VM_BUG_ON(PageSlab(page)); | 
|  | if (unlikely(PageSwapCache(page))) | 
|  | mapping = &swapper_space; | 
|  | else if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON)) | 
|  | mapping = NULL; | 
|  | return mapping; | 
|  | } | 
|  |  | 
|  | static inline int PageAnon(struct page *page) | 
|  | { | 
|  | return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return the pagecache index of the passed page.  Regular pagecache pages | 
|  | * use ->index whereas swapcache pages use ->private | 
|  | */ | 
|  | static inline pgoff_t page_index(struct page *page) | 
|  | { | 
|  | if (unlikely(PageSwapCache(page))) | 
|  | return page_private(page); | 
|  | return page->index; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The atomic page->_mapcount, like _count, starts from -1: | 
|  | * so that transitions both from it and to it can be tracked, | 
|  | * using atomic_inc_and_test and atomic_add_negative(-1). | 
|  | */ | 
|  | static inline void reset_page_mapcount(struct page *page) | 
|  | { | 
|  | atomic_set(&(page)->_mapcount, -1); | 
|  | } | 
|  |  | 
|  | static inline int page_mapcount(struct page *page) | 
|  | { | 
|  | return atomic_read(&(page)->_mapcount) + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Return true if this page is mapped into pagetables. | 
|  | */ | 
|  | static inline int page_mapped(struct page *page) | 
|  | { | 
|  | return atomic_read(&(page)->_mapcount) >= 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Error return values for the *_nopage functions | 
|  | */ | 
|  | #define NOPAGE_SIGBUS	(NULL) | 
|  | #define NOPAGE_OOM	((struct page *) (-1)) | 
|  |  | 
|  | /* | 
|  | * Error return values for the *_nopfn functions | 
|  | */ | 
|  | #define NOPFN_SIGBUS	((unsigned long) -1) | 
|  | #define NOPFN_OOM	((unsigned long) -2) | 
|  | #define NOPFN_REFAULT	((unsigned long) -3) | 
|  |  | 
|  | /* | 
|  | * Different kinds of faults, as returned by handle_mm_fault(). | 
|  | * Used to decide whether a process gets delivered SIGBUS or | 
|  | * just gets major/minor fault counters bumped up. | 
|  | */ | 
|  |  | 
|  | #define VM_FAULT_MINOR	0 /* For backwards compat. Remove me quickly. */ | 
|  |  | 
|  | #define VM_FAULT_OOM	0x0001 | 
|  | #define VM_FAULT_SIGBUS	0x0002 | 
|  | #define VM_FAULT_MAJOR	0x0004 | 
|  | #define VM_FAULT_WRITE	0x0008	/* Special case for get_user_pages */ | 
|  |  | 
|  | #define VM_FAULT_NOPAGE	0x0100	/* ->fault installed the pte, not return page */ | 
|  | #define VM_FAULT_LOCKED	0x0200	/* ->fault locked the returned page */ | 
|  |  | 
|  | #define VM_FAULT_ERROR	(VM_FAULT_OOM | VM_FAULT_SIGBUS) | 
|  |  | 
|  | #define offset_in_page(p)	((unsigned long)(p) & ~PAGE_MASK) | 
|  |  | 
|  | extern void show_free_areas(void); | 
|  |  | 
|  | #ifdef CONFIG_SHMEM | 
|  | int shmem_lock(struct file *file, int lock, struct user_struct *user); | 
|  | #else | 
|  | static inline int shmem_lock(struct file *file, int lock, | 
|  | struct user_struct *user) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #endif | 
|  | struct file *shmem_file_setup(char *name, loff_t size, unsigned long flags); | 
|  |  | 
|  | int shmem_zero_setup(struct vm_area_struct *); | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | extern unsigned long shmem_get_unmapped_area(struct file *file, | 
|  | unsigned long addr, | 
|  | unsigned long len, | 
|  | unsigned long pgoff, | 
|  | unsigned long flags); | 
|  | #endif | 
|  |  | 
|  | extern int can_do_mlock(void); | 
|  | extern int user_shm_lock(size_t, struct user_struct *); | 
|  | extern void user_shm_unlock(size_t, struct user_struct *); | 
|  |  | 
|  | /* | 
|  | * Parameter block passed down to zap_pte_range in exceptional cases. | 
|  | */ | 
|  | struct zap_details { | 
|  | struct vm_area_struct *nonlinear_vma;	/* Check page->index if set */ | 
|  | struct address_space *check_mapping;	/* Check page->mapping if set */ | 
|  | pgoff_t	first_index;			/* Lowest page->index to unmap */ | 
|  | pgoff_t last_index;			/* Highest page->index to unmap */ | 
|  | spinlock_t *i_mmap_lock;		/* For unmap_mapping_range: */ | 
|  | unsigned long truncate_count;		/* Compare vm_truncate_count */ | 
|  | }; | 
|  |  | 
|  | struct page *vm_normal_page(struct vm_area_struct *, unsigned long, pte_t); | 
|  | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
|  | unsigned long size, struct zap_details *); | 
|  | unsigned long unmap_vmas(struct mmu_gather **tlb, | 
|  | struct vm_area_struct *start_vma, unsigned long start_addr, | 
|  | unsigned long end_addr, unsigned long *nr_accounted, | 
|  | struct zap_details *); | 
|  | void free_pgd_range(struct mmu_gather **tlb, unsigned long addr, | 
|  | unsigned long end, unsigned long floor, unsigned long ceiling); | 
|  | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *start_vma, | 
|  | unsigned long floor, unsigned long ceiling); | 
|  | int copy_page_range(struct mm_struct *dst, struct mm_struct *src, | 
|  | struct vm_area_struct *vma); | 
|  | void unmap_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen, int even_cows); | 
|  |  | 
|  | static inline void unmap_shared_mapping_range(struct address_space *mapping, | 
|  | loff_t const holebegin, loff_t const holelen) | 
|  | { | 
|  | unmap_mapping_range(mapping, holebegin, holelen, 0); | 
|  | } | 
|  |  | 
|  | extern int vmtruncate(struct inode * inode, loff_t offset); | 
|  | extern int vmtruncate_range(struct inode * inode, loff_t offset, loff_t end); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma, | 
|  | unsigned long address, int write_access); | 
|  | #else | 
|  | static inline int handle_mm_fault(struct mm_struct *mm, | 
|  | struct vm_area_struct *vma, unsigned long address, | 
|  | int write_access) | 
|  | { | 
|  | /* should never happen if there's no MMU */ | 
|  | BUG(); | 
|  | return VM_FAULT_SIGBUS; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | extern int make_pages_present(unsigned long addr, unsigned long end); | 
|  | extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write); | 
|  |  | 
|  | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, unsigned long start, | 
|  | int len, int write, int force, struct page **pages, struct vm_area_struct **vmas); | 
|  | void print_bad_pte(struct vm_area_struct *, pte_t, unsigned long); | 
|  |  | 
|  | extern int try_to_release_page(struct page * page, gfp_t gfp_mask); | 
|  | extern void do_invalidatepage(struct page *page, unsigned long offset); | 
|  |  | 
|  | int __set_page_dirty_nobuffers(struct page *page); | 
|  | int __set_page_dirty_no_writeback(struct page *page); | 
|  | int redirty_page_for_writepage(struct writeback_control *wbc, | 
|  | struct page *page); | 
|  | int FASTCALL(set_page_dirty(struct page *page)); | 
|  | int set_page_dirty_lock(struct page *page); | 
|  | int clear_page_dirty_for_io(struct page *page); | 
|  |  | 
|  | extern unsigned long move_page_tables(struct vm_area_struct *vma, | 
|  | unsigned long old_addr, struct vm_area_struct *new_vma, | 
|  | unsigned long new_addr, unsigned long len); | 
|  | extern unsigned long do_mremap(unsigned long addr, | 
|  | unsigned long old_len, unsigned long new_len, | 
|  | unsigned long flags, unsigned long new_addr); | 
|  | extern int mprotect_fixup(struct vm_area_struct *vma, | 
|  | struct vm_area_struct **pprev, unsigned long start, | 
|  | unsigned long end, unsigned long newflags); | 
|  |  | 
|  | /* | 
|  | * A callback you can register to apply pressure to ageable caches. | 
|  | * | 
|  | * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'.  It should | 
|  | * look through the least-recently-used 'nr_to_scan' entries and | 
|  | * attempt to free them up.  It should return the number of objects | 
|  | * which remain in the cache.  If it returns -1, it means it cannot do | 
|  | * any scanning at this time (eg. there is a risk of deadlock). | 
|  | * | 
|  | * The 'gfpmask' refers to the allocation we are currently trying to | 
|  | * fulfil. | 
|  | * | 
|  | * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is | 
|  | * querying the cache size, so a fastpath for that case is appropriate. | 
|  | */ | 
|  | struct shrinker { | 
|  | int (*shrink)(int nr_to_scan, gfp_t gfp_mask); | 
|  | int seeks;	/* seeks to recreate an obj */ | 
|  |  | 
|  | /* These are for internal use */ | 
|  | struct list_head list; | 
|  | long nr;	/* objs pending delete */ | 
|  | }; | 
|  | #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */ | 
|  | extern void register_shrinker(struct shrinker *); | 
|  | extern void unregister_shrinker(struct shrinker *); | 
|  |  | 
|  | int vma_wants_writenotify(struct vm_area_struct *vma); | 
|  |  | 
|  | extern pte_t *FASTCALL(get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl)); | 
|  |  | 
|  | #ifdef __PAGETABLE_PUD_FOLDED | 
|  | static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, | 
|  | unsigned long address) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address); | 
|  | #endif | 
|  |  | 
|  | #ifdef __PAGETABLE_PMD_FOLDED | 
|  | static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud, | 
|  | unsigned long address) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address); | 
|  | #endif | 
|  |  | 
|  | int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address); | 
|  | int __pte_alloc_kernel(pmd_t *pmd, unsigned long address); | 
|  |  | 
|  | /* | 
|  | * The following ifdef needed to get the 4level-fixup.h header to work. | 
|  | * Remove it when 4level-fixup.h has been removed. | 
|  | */ | 
|  | #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK) | 
|  | static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
|  | { | 
|  | return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))? | 
|  | NULL: pud_offset(pgd, address); | 
|  | } | 
|  |  | 
|  | static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
|  | { | 
|  | return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))? | 
|  | NULL: pmd_offset(pud, address); | 
|  | } | 
|  | #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */ | 
|  |  | 
|  | #if NR_CPUS >= CONFIG_SPLIT_PTLOCK_CPUS | 
|  | /* | 
|  | * We tuck a spinlock to guard each pagetable page into its struct page, | 
|  | * at page->private, with BUILD_BUG_ON to make sure that this will not | 
|  | * overflow into the next struct page (as it might with DEBUG_SPINLOCK). | 
|  | * When freeing, reset page->mapping so free_pages_check won't complain. | 
|  | */ | 
|  | #define __pte_lockptr(page)	&((page)->ptl) | 
|  | #define pte_lock_init(_page)	do {					\ | 
|  | spin_lock_init(__pte_lockptr(_page));				\ | 
|  | } while (0) | 
|  | #define pte_lock_deinit(page)	((page)->mapping = NULL) | 
|  | #define pte_lockptr(mm, pmd)	({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));}) | 
|  | #else | 
|  | /* | 
|  | * We use mm->page_table_lock to guard all pagetable pages of the mm. | 
|  | */ | 
|  | #define pte_lock_init(page)	do {} while (0) | 
|  | #define pte_lock_deinit(page)	do {} while (0) | 
|  | #define pte_lockptr(mm, pmd)	({(void)(pmd); &(mm)->page_table_lock;}) | 
|  | #endif /* NR_CPUS < CONFIG_SPLIT_PTLOCK_CPUS */ | 
|  |  | 
|  | #define pte_offset_map_lock(mm, pmd, address, ptlp)	\ | 
|  | ({							\ | 
|  | spinlock_t *__ptl = pte_lockptr(mm, pmd);	\ | 
|  | pte_t *__pte = pte_offset_map(pmd, address);	\ | 
|  | *(ptlp) = __ptl;				\ | 
|  | spin_lock(__ptl);				\ | 
|  | __pte;						\ | 
|  | }) | 
|  |  | 
|  | #define pte_unmap_unlock(pte, ptl)	do {		\ | 
|  | spin_unlock(ptl);				\ | 
|  | pte_unmap(pte);					\ | 
|  | } while (0) | 
|  |  | 
|  | #define pte_alloc_map(mm, pmd, address)			\ | 
|  | ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ | 
|  | NULL: pte_offset_map(pmd, address)) | 
|  |  | 
|  | #define pte_alloc_map_lock(mm, pmd, address, ptlp)	\ | 
|  | ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \ | 
|  | NULL: pte_offset_map_lock(mm, pmd, address, ptlp)) | 
|  |  | 
|  | #define pte_alloc_kernel(pmd, address)			\ | 
|  | ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \ | 
|  | NULL: pte_offset_kernel(pmd, address)) | 
|  |  | 
|  | extern void free_area_init(unsigned long * zones_size); | 
|  | extern void free_area_init_node(int nid, pg_data_t *pgdat, | 
|  | unsigned long * zones_size, unsigned long zone_start_pfn, | 
|  | unsigned long *zholes_size); | 
|  | #ifdef CONFIG_ARCH_POPULATES_NODE_MAP | 
|  | /* | 
|  | * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its | 
|  | * zones, allocate the backing mem_map and account for memory holes in a more | 
|  | * architecture independent manner. This is a substitute for creating the | 
|  | * zone_sizes[] and zholes_size[] arrays and passing them to | 
|  | * free_area_init_node() | 
|  | * | 
|  | * An architecture is expected to register range of page frames backed by | 
|  | * physical memory with add_active_range() before calling | 
|  | * free_area_init_nodes() passing in the PFN each zone ends at. At a basic | 
|  | * usage, an architecture is expected to do something like | 
|  | * | 
|  | * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn, | 
|  | * 							 max_highmem_pfn}; | 
|  | * for_each_valid_physical_page_range() | 
|  | * 	add_active_range(node_id, start_pfn, end_pfn) | 
|  | * free_area_init_nodes(max_zone_pfns); | 
|  | * | 
|  | * If the architecture guarantees that there are no holes in the ranges | 
|  | * registered with add_active_range(), free_bootmem_active_regions() | 
|  | * will call free_bootmem_node() for each registered physical page range. | 
|  | * Similarly sparse_memory_present_with_active_regions() calls | 
|  | * memory_present() for each range when SPARSEMEM is enabled. | 
|  | * | 
|  | * See mm/page_alloc.c for more information on each function exposed by | 
|  | * CONFIG_ARCH_POPULATES_NODE_MAP | 
|  | */ | 
|  | extern void free_area_init_nodes(unsigned long *max_zone_pfn); | 
|  | extern void add_active_range(unsigned int nid, unsigned long start_pfn, | 
|  | unsigned long end_pfn); | 
|  | extern void shrink_active_range(unsigned int nid, unsigned long old_end_pfn, | 
|  | unsigned long new_end_pfn); | 
|  | extern void push_node_boundaries(unsigned int nid, unsigned long start_pfn, | 
|  | unsigned long end_pfn); | 
|  | extern void remove_all_active_ranges(void); | 
|  | extern unsigned long absent_pages_in_range(unsigned long start_pfn, | 
|  | unsigned long end_pfn); | 
|  | extern void get_pfn_range_for_nid(unsigned int nid, | 
|  | unsigned long *start_pfn, unsigned long *end_pfn); | 
|  | extern unsigned long find_min_pfn_with_active_regions(void); | 
|  | extern unsigned long find_max_pfn_with_active_regions(void); | 
|  | extern void free_bootmem_with_active_regions(int nid, | 
|  | unsigned long max_low_pfn); | 
|  | extern void sparse_memory_present_with_active_regions(int nid); | 
|  | #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID | 
|  | extern int early_pfn_to_nid(unsigned long pfn); | 
|  | #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ | 
|  | #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */ | 
|  | extern void set_dma_reserve(unsigned long new_dma_reserve); | 
|  | extern void memmap_init_zone(unsigned long, int, unsigned long, | 
|  | unsigned long, enum memmap_context); | 
|  | extern void setup_per_zone_pages_min(void); | 
|  | extern void mem_init(void); | 
|  | extern void show_mem(void); | 
|  | extern void si_meminfo(struct sysinfo * val); | 
|  | extern void si_meminfo_node(struct sysinfo *val, int nid); | 
|  |  | 
|  | #ifdef CONFIG_NUMA | 
|  | extern void setup_per_cpu_pageset(void); | 
|  | #else | 
|  | static inline void setup_per_cpu_pageset(void) {} | 
|  | #endif | 
|  |  | 
|  | /* prio_tree.c */ | 
|  | void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old); | 
|  | void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *); | 
|  | void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *); | 
|  | struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma, | 
|  | struct prio_tree_iter *iter); | 
|  |  | 
|  | #define vma_prio_tree_foreach(vma, iter, root, begin, end)	\ | 
|  | for (prio_tree_iter_init(iter, root, begin, end), vma = NULL;	\ | 
|  | (vma = vma_prio_tree_next(vma, iter)); ) | 
|  |  | 
|  | static inline void vma_nonlinear_insert(struct vm_area_struct *vma, | 
|  | struct list_head *list) | 
|  | { | 
|  | vma->shared.vm_set.parent = NULL; | 
|  | list_add_tail(&vma->shared.vm_set.list, list); | 
|  | } | 
|  |  | 
|  | /* mmap.c */ | 
|  | extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin); | 
|  | extern void vma_adjust(struct vm_area_struct *vma, unsigned long start, | 
|  | unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert); | 
|  | extern struct vm_area_struct *vma_merge(struct mm_struct *, | 
|  | struct vm_area_struct *prev, unsigned long addr, unsigned long end, | 
|  | unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t, | 
|  | struct mempolicy *); | 
|  | extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *); | 
|  | extern int split_vma(struct mm_struct *, | 
|  | struct vm_area_struct *, unsigned long addr, int new_below); | 
|  | extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *); | 
|  | extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *, | 
|  | struct rb_node **, struct rb_node *); | 
|  | extern void unlink_file_vma(struct vm_area_struct *); | 
|  | extern struct vm_area_struct *copy_vma(struct vm_area_struct **, | 
|  | unsigned long addr, unsigned long len, pgoff_t pgoff); | 
|  | extern void exit_mmap(struct mm_struct *); | 
|  | extern int may_expand_vm(struct mm_struct *mm, unsigned long npages); | 
|  | extern int install_special_mapping(struct mm_struct *mm, | 
|  | unsigned long addr, unsigned long len, | 
|  | unsigned long flags, struct page **pages); | 
|  |  | 
|  | extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long); | 
|  |  | 
|  | extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flag, unsigned long pgoff); | 
|  | extern unsigned long mmap_region(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long flags, | 
|  | unsigned int vm_flags, unsigned long pgoff, | 
|  | int accountable); | 
|  |  | 
|  | static inline unsigned long do_mmap(struct file *file, unsigned long addr, | 
|  | unsigned long len, unsigned long prot, | 
|  | unsigned long flag, unsigned long offset) | 
|  | { | 
|  | unsigned long ret = -EINVAL; | 
|  | if ((offset + PAGE_ALIGN(len)) < offset) | 
|  | goto out; | 
|  | if (!(offset & ~PAGE_MASK)) | 
|  | ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT); | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | extern int do_munmap(struct mm_struct *, unsigned long, size_t); | 
|  |  | 
|  | extern unsigned long do_brk(unsigned long, unsigned long); | 
|  |  | 
|  | /* filemap.c */ | 
|  | extern unsigned long page_unuse(struct page *); | 
|  | extern void truncate_inode_pages(struct address_space *, loff_t); | 
|  | extern void truncate_inode_pages_range(struct address_space *, | 
|  | loff_t lstart, loff_t lend); | 
|  |  | 
|  | /* generic vm_area_ops exported for stackable file systems */ | 
|  | extern int filemap_fault(struct vm_area_struct *, struct vm_fault *); | 
|  |  | 
|  | /* mm/page-writeback.c */ | 
|  | int write_one_page(struct page *page, int wait); | 
|  |  | 
|  | /* readahead.c */ | 
|  | #define VM_MAX_READAHEAD	128	/* kbytes */ | 
|  | #define VM_MIN_READAHEAD	16	/* kbytes (includes current page) */ | 
|  |  | 
|  | int do_page_cache_readahead(struct address_space *mapping, struct file *filp, | 
|  | pgoff_t offset, unsigned long nr_to_read); | 
|  | int force_page_cache_readahead(struct address_space *mapping, struct file *filp, | 
|  | pgoff_t offset, unsigned long nr_to_read); | 
|  |  | 
|  | void page_cache_sync_readahead(struct address_space *mapping, | 
|  | struct file_ra_state *ra, | 
|  | struct file *filp, | 
|  | pgoff_t offset, | 
|  | unsigned long size); | 
|  |  | 
|  | void page_cache_async_readahead(struct address_space *mapping, | 
|  | struct file_ra_state *ra, | 
|  | struct file *filp, | 
|  | struct page *pg, | 
|  | pgoff_t offset, | 
|  | unsigned long size); | 
|  |  | 
|  | unsigned long max_sane_readahead(unsigned long nr); | 
|  |  | 
|  | /* Do stack extension */ | 
|  | extern int expand_stack(struct vm_area_struct *vma, unsigned long address); | 
|  | #ifdef CONFIG_IA64 | 
|  | extern int expand_upwards(struct vm_area_struct *vma, unsigned long address); | 
|  | #endif | 
|  | extern int expand_stack_downwards(struct vm_area_struct *vma, | 
|  | unsigned long address); | 
|  |  | 
|  | /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */ | 
|  | extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr); | 
|  | extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr, | 
|  | struct vm_area_struct **pprev); | 
|  |  | 
|  | /* Look up the first VMA which intersects the interval start_addr..end_addr-1, | 
|  | NULL if none.  Assume start_addr < end_addr. */ | 
|  | static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr) | 
|  | { | 
|  | struct vm_area_struct * vma = find_vma(mm,start_addr); | 
|  |  | 
|  | if (vma && end_addr <= vma->vm_start) | 
|  | vma = NULL; | 
|  | return vma; | 
|  | } | 
|  |  | 
|  | static inline unsigned long vma_pages(struct vm_area_struct *vma) | 
|  | { | 
|  | return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT; | 
|  | } | 
|  |  | 
|  | pgprot_t vm_get_page_prot(unsigned long vm_flags); | 
|  | struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr); | 
|  | struct page *vmalloc_to_page(void *addr); | 
|  | unsigned long vmalloc_to_pfn(void *addr); | 
|  | int remap_pfn_range(struct vm_area_struct *, unsigned long addr, | 
|  | unsigned long pfn, unsigned long size, pgprot_t); | 
|  | int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *); | 
|  | int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr, | 
|  | unsigned long pfn); | 
|  |  | 
|  | struct page *follow_page(struct vm_area_struct *, unsigned long address, | 
|  | unsigned int foll_flags); | 
|  | #define FOLL_WRITE	0x01	/* check pte is writable */ | 
|  | #define FOLL_TOUCH	0x02	/* mark page accessed */ | 
|  | #define FOLL_GET	0x04	/* do get_page on page */ | 
|  | #define FOLL_ANON	0x08	/* give ZERO_PAGE if no pgtable */ | 
|  |  | 
|  | typedef int (*pte_fn_t)(pte_t *pte, struct page *pmd_page, unsigned long addr, | 
|  | void *data); | 
|  | extern int apply_to_page_range(struct mm_struct *mm, unsigned long address, | 
|  | unsigned long size, pte_fn_t fn, void *data); | 
|  |  | 
|  | #ifdef CONFIG_PROC_FS | 
|  | void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long); | 
|  | #else | 
|  | static inline void vm_stat_account(struct mm_struct *mm, | 
|  | unsigned long flags, struct file *file, long pages) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_PROC_FS */ | 
|  |  | 
|  | #ifndef CONFIG_DEBUG_PAGEALLOC | 
|  | static inline void | 
|  | kernel_map_pages(struct page *page, int numpages, int enable) {} | 
|  | #endif | 
|  |  | 
|  | extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk); | 
|  | #ifdef	__HAVE_ARCH_GATE_AREA | 
|  | int in_gate_area_no_task(unsigned long addr); | 
|  | int in_gate_area(struct task_struct *task, unsigned long addr); | 
|  | #else | 
|  | int in_gate_area_no_task(unsigned long addr); | 
|  | #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);}) | 
|  | #endif	/* __HAVE_ARCH_GATE_AREA */ | 
|  |  | 
|  | int drop_caches_sysctl_handler(struct ctl_table *, int, struct file *, | 
|  | void __user *, size_t *, loff_t *); | 
|  | unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask, | 
|  | unsigned long lru_pages); | 
|  | void drop_pagecache(void); | 
|  | void drop_slab(void); | 
|  |  | 
|  | #ifndef CONFIG_MMU | 
|  | #define randomize_va_space 0 | 
|  | #else | 
|  | extern int randomize_va_space; | 
|  | #endif | 
|  |  | 
|  | const char * arch_vma_name(struct vm_area_struct *vma); | 
|  |  | 
|  | struct page *sparse_mem_map_populate(unsigned long pnum, int nid); | 
|  | pgd_t *vmemmap_pgd_populate(unsigned long addr, int node); | 
|  | pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node); | 
|  | pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node); | 
|  | pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node); | 
|  | void *vmemmap_alloc_block(unsigned long size, int node); | 
|  | void vmemmap_verify(pte_t *, int, unsigned long, unsigned long); | 
|  | int vmemmap_populate_basepages(struct page *start_page, | 
|  | unsigned long pages, int node); | 
|  | int vmemmap_populate(struct page *start_page, unsigned long pages, int node); | 
|  |  | 
|  | #endif /* __KERNEL__ */ | 
|  | #endif /* _LINUX_MM_H */ |