|  | /* | 
|  | * Device driver for the thermostats & fan controller of  the | 
|  | * Apple G5 "PowerMac7,2" desktop machines. | 
|  | * | 
|  | * (c) Copyright IBM Corp. 2003-2004 | 
|  | * | 
|  | * Maintained by: Benjamin Herrenschmidt | 
|  | *                <benh@kernel.crashing.org> | 
|  | * | 
|  | * | 
|  | * The algorithm used is the PID control algorithm, used the same | 
|  | * way the published Darwin code does, using the same values that | 
|  | * are present in the Darwin 7.0 snapshot property lists. | 
|  | * | 
|  | * As far as the CPUs control loops are concerned, I use the | 
|  | * calibration & PID constants provided by the EEPROM, | 
|  | * I do _not_ embed any value from the property lists, as the ones | 
|  | * provided by Darwin 7.0 seem to always have an older version that | 
|  | * what I've seen on the actual computers. | 
|  | * It would be interesting to verify that though. Darwin has a | 
|  | * version code of 1.0.0d11 for all control loops it seems, while | 
|  | * so far, the machines EEPROMs contain a dataset versioned 1.0.0f | 
|  | * | 
|  | * Darwin doesn't provide source to all parts, some missing | 
|  | * bits like the AppleFCU driver or the actual scale of some | 
|  | * of the values returned by sensors had to be "guessed" some | 
|  | * way... or based on what Open Firmware does. | 
|  | * | 
|  | * I didn't yet figure out how to get the slots power consumption | 
|  | * out of the FCU, so that part has not been implemented yet and | 
|  | * the slots fan is set to a fixed 50% PWM, hoping this value is | 
|  | * safe enough ... | 
|  | * | 
|  | * Note: I have observed strange oscillations of the CPU control | 
|  | * loop on a dual G5 here. When idle, the CPU exhaust fan tend to | 
|  | * oscillates slowly (over several minutes) between the minimum | 
|  | * of 300RPMs and approx. 1000 RPMs. I don't know what is causing | 
|  | * this, it could be some incorrect constant or an error in the | 
|  | * way I ported the algorithm, or it could be just normal. I | 
|  | * don't have full understanding on the way Apple tweaked the PID | 
|  | * algorithm for the CPU control, it is definitely not a standard | 
|  | * implementation... | 
|  | * | 
|  | * TODO:  - Check MPU structure version/signature | 
|  | *        - Add things like /sbin/overtemp for non-critical | 
|  | *          overtemp conditions so userland can take some policy | 
|  | *          decisions, like slewing down CPUs | 
|  | *	  - Deal with fan and i2c failures in a better way | 
|  | *	  - Maybe do a generic PID based on params used for | 
|  | *	    U3 and Drives ? Definitely need to factor code a bit | 
|  | *          bettter... also make sensor detection more robust using | 
|  | *          the device-tree to probe for them | 
|  | *        - Figure out how to get the slots consumption and set the | 
|  | *          slots fan accordingly | 
|  | * | 
|  | * History: | 
|  | * | 
|  | *  Nov. 13, 2003 : 0.5 | 
|  | *	- First release | 
|  | * | 
|  | *  Nov. 14, 2003 : 0.6 | 
|  | *	- Read fan speed from FCU, low level fan routines now deal | 
|  | *	  with errors & check fan status, though higher level don't | 
|  | *	  do much. | 
|  | *	- Move a bunch of definitions to .h file | 
|  | * | 
|  | *  Nov. 18, 2003 : 0.7 | 
|  | *	- Fix build on ppc64 kernel | 
|  | *	- Move back statics definitions to .c file | 
|  | *	- Avoid calling schedule_timeout with a negative number | 
|  | * | 
|  | *  Dec. 18, 2003 : 0.8 | 
|  | *	- Fix typo when reading back fan speed on 2 CPU machines | 
|  | * | 
|  | *  Mar. 11, 2004 : 0.9 | 
|  | *	- Rework code accessing the ADC chips, make it more robust and | 
|  | *	  closer to the chip spec. Also make sure it is configured properly, | 
|  | *        I've seen yet unexplained cases where on startup, I would have stale | 
|  | *        values in the configuration register | 
|  | *	- Switch back to use of target fan speed for PID, thus lowering | 
|  | *        pressure on i2c | 
|  | * | 
|  | *  Oct. 20, 2004 : 1.1 | 
|  | *	- Add device-tree lookup for fan IDs, should detect liquid cooling | 
|  | *        pumps when present | 
|  | *	- Enable driver for PowerMac7,3 machines | 
|  | *	- Split the U3/Backside cooling on U3 & U3H versions as Darwin does | 
|  | *	- Add new CPU cooling algorithm for machines with liquid cooling | 
|  | *	- Workaround for some PowerMac7,3 with empty "fan" node in the devtree | 
|  | *	- Fix a signed/unsigned compare issue in some PID loops | 
|  | * | 
|  | *  Mar. 10, 2005 : 1.2 | 
|  | *	- Add basic support for Xserve G5 | 
|  | *	- Retreive pumps min/max from EEPROM image in device-tree (broken) | 
|  | *	- Use min/max macros here or there | 
|  | *	- Latest darwin updated U3H min fan speed to 20% PWM | 
|  | * | 
|  | *  July. 06, 2006 : 1.3 | 
|  | *	- Fix setting of RPM fans on Xserve G5 (they were going too fast) | 
|  | *      - Add missing slots fan control loop for Xserve G5 | 
|  | *	- Lower fixed slots fan speed from 50% to 40% on desktop G5s. We | 
|  | *        still can't properly implement the control loop for these, so let's | 
|  | *        reduce the noise a little bit, it appears that 40% still gives us | 
|  | *        a pretty good air flow | 
|  | *	- Add code to "tickle" the FCU regulary so it doesn't think that | 
|  | *        we are gone while in fact, the machine just didn't need any fan | 
|  | *        speed change lately | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/reboot.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/i2c.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/mutex.h> | 
|  | #include <asm/prom.h> | 
|  | #include <asm/machdep.h> | 
|  | #include <asm/io.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/sections.h> | 
|  | #include <asm/of_device.h> | 
|  | #include <asm/macio.h> | 
|  | #include <asm/of_platform.h> | 
|  |  | 
|  | #include "therm_pm72.h" | 
|  |  | 
|  | #define VERSION "1.3" | 
|  |  | 
|  | #undef DEBUG | 
|  |  | 
|  | #ifdef DEBUG | 
|  | #define DBG(args...)	printk(args) | 
|  | #else | 
|  | #define DBG(args...)	do { } while(0) | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Driver statics | 
|  | */ | 
|  |  | 
|  | static struct of_device *		of_dev; | 
|  | static struct i2c_adapter *		u3_0; | 
|  | static struct i2c_adapter *		u3_1; | 
|  | static struct i2c_adapter *		k2; | 
|  | static struct i2c_client *		fcu; | 
|  | static struct cpu_pid_state		cpu_state[2]; | 
|  | static struct basckside_pid_params	backside_params; | 
|  | static struct backside_pid_state	backside_state; | 
|  | static struct drives_pid_state		drives_state; | 
|  | static struct dimm_pid_state		dimms_state; | 
|  | static struct slots_pid_state		slots_state; | 
|  | static int				state; | 
|  | static int				cpu_count; | 
|  | static int				cpu_pid_type; | 
|  | static struct task_struct		*ctrl_task; | 
|  | static struct completion		ctrl_complete; | 
|  | static int				critical_state; | 
|  | static int				rackmac; | 
|  | static s32				dimm_output_clamp; | 
|  | static int 				fcu_rpm_shift; | 
|  | static int				fcu_tickle_ticks; | 
|  | static DEFINE_MUTEX(driver_lock); | 
|  |  | 
|  | /* | 
|  | * We have 3 types of CPU PID control. One is "split" old style control | 
|  | * for intake & exhaust fans, the other is "combined" control for both | 
|  | * CPUs that also deals with the pumps when present. To be "compatible" | 
|  | * with OS X at this point, we only use "COMBINED" on the machines that | 
|  | * are identified as having the pumps (though that identification is at | 
|  | * least dodgy). Ultimately, we could probably switch completely to this | 
|  | * algorithm provided we hack it to deal with the UP case | 
|  | */ | 
|  | #define CPU_PID_TYPE_SPLIT	0 | 
|  | #define CPU_PID_TYPE_COMBINED	1 | 
|  | #define CPU_PID_TYPE_RACKMAC	2 | 
|  |  | 
|  | /* | 
|  | * This table describes all fans in the FCU. The "id" and "type" values | 
|  | * are defaults valid for all earlier machines. Newer machines will | 
|  | * eventually override the table content based on the device-tree | 
|  | */ | 
|  | struct fcu_fan_table | 
|  | { | 
|  | char*	loc;	/* location code */ | 
|  | int	type;	/* 0 = rpm, 1 = pwm, 2 = pump */ | 
|  | int	id;	/* id or -1 */ | 
|  | }; | 
|  |  | 
|  | #define FCU_FAN_RPM		0 | 
|  | #define FCU_FAN_PWM		1 | 
|  |  | 
|  | #define FCU_FAN_ABSENT_ID	-1 | 
|  |  | 
|  | #define FCU_FAN_COUNT		ARRAY_SIZE(fcu_fans) | 
|  |  | 
|  | struct fcu_fan_table	fcu_fans[] = { | 
|  | [BACKSIDE_FAN_PWM_INDEX] = { | 
|  | .loc	= "BACKSIDE,SYS CTRLR FAN", | 
|  | .type	= FCU_FAN_PWM, | 
|  | .id	= BACKSIDE_FAN_PWM_DEFAULT_ID, | 
|  | }, | 
|  | [DRIVES_FAN_RPM_INDEX] = { | 
|  | .loc	= "DRIVE BAY", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= DRIVES_FAN_RPM_DEFAULT_ID, | 
|  | }, | 
|  | [SLOTS_FAN_PWM_INDEX] = { | 
|  | .loc	= "SLOT,PCI FAN", | 
|  | .type	= FCU_FAN_PWM, | 
|  | .id	= SLOTS_FAN_PWM_DEFAULT_ID, | 
|  | }, | 
|  | [CPUA_INTAKE_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU A INTAKE", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= CPUA_INTAKE_FAN_RPM_DEFAULT_ID, | 
|  | }, | 
|  | [CPUA_EXHAUST_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU A EXHAUST", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= CPUA_EXHAUST_FAN_RPM_DEFAULT_ID, | 
|  | }, | 
|  | [CPUB_INTAKE_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU B INTAKE", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= CPUB_INTAKE_FAN_RPM_DEFAULT_ID, | 
|  | }, | 
|  | [CPUB_EXHAUST_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU B EXHAUST", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= CPUB_EXHAUST_FAN_RPM_DEFAULT_ID, | 
|  | }, | 
|  | /* pumps aren't present by default, have to be looked up in the | 
|  | * device-tree | 
|  | */ | 
|  | [CPUA_PUMP_RPM_INDEX] = { | 
|  | .loc	= "CPU A PUMP", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= FCU_FAN_ABSENT_ID, | 
|  | }, | 
|  | [CPUB_PUMP_RPM_INDEX] = { | 
|  | .loc	= "CPU B PUMP", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= FCU_FAN_ABSENT_ID, | 
|  | }, | 
|  | /* Xserve fans */ | 
|  | [CPU_A1_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU A 1", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= FCU_FAN_ABSENT_ID, | 
|  | }, | 
|  | [CPU_A2_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU A 2", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= FCU_FAN_ABSENT_ID, | 
|  | }, | 
|  | [CPU_A3_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU A 3", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= FCU_FAN_ABSENT_ID, | 
|  | }, | 
|  | [CPU_B1_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU B 1", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= FCU_FAN_ABSENT_ID, | 
|  | }, | 
|  | [CPU_B2_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU B 2", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= FCU_FAN_ABSENT_ID, | 
|  | }, | 
|  | [CPU_B3_FAN_RPM_INDEX] = { | 
|  | .loc	= "CPU B 3", | 
|  | .type	= FCU_FAN_RPM, | 
|  | .id	= FCU_FAN_ABSENT_ID, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * i2c_driver structure to attach to the host i2c controller | 
|  | */ | 
|  |  | 
|  | static int therm_pm72_attach(struct i2c_adapter *adapter); | 
|  | static int therm_pm72_detach(struct i2c_adapter *adapter); | 
|  |  | 
|  | static struct i2c_driver therm_pm72_driver = | 
|  | { | 
|  | .driver = { | 
|  | .name	= "therm_pm72", | 
|  | }, | 
|  | .attach_adapter	= therm_pm72_attach, | 
|  | .detach_adapter	= therm_pm72_detach, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Utility function to create an i2c_client structure and | 
|  | * attach it to one of u3 adapters | 
|  | */ | 
|  | static struct i2c_client *attach_i2c_chip(int id, const char *name) | 
|  | { | 
|  | struct i2c_client *clt; | 
|  | struct i2c_adapter *adap; | 
|  |  | 
|  | if (id & 0x200) | 
|  | adap = k2; | 
|  | else if (id & 0x100) | 
|  | adap = u3_1; | 
|  | else | 
|  | adap = u3_0; | 
|  | if (adap == NULL) | 
|  | return NULL; | 
|  |  | 
|  | clt = kzalloc(sizeof(struct i2c_client), GFP_KERNEL); | 
|  | if (clt == NULL) | 
|  | return NULL; | 
|  |  | 
|  | clt->addr = (id >> 1) & 0x7f; | 
|  | clt->adapter = adap; | 
|  | clt->driver = &therm_pm72_driver; | 
|  | strncpy(clt->name, name, I2C_NAME_SIZE-1); | 
|  |  | 
|  | if (i2c_attach_client(clt)) { | 
|  | printk(KERN_ERR "therm_pm72: Failed to attach to i2c ID 0x%x\n", id); | 
|  | kfree(clt); | 
|  | return NULL; | 
|  | } | 
|  | return clt; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Utility function to get rid of the i2c_client structure | 
|  | * (will also detach from the adapter hopepfully) | 
|  | */ | 
|  | static void detach_i2c_chip(struct i2c_client *clt) | 
|  | { | 
|  | i2c_detach_client(clt); | 
|  | kfree(clt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Here are the i2c chip access wrappers | 
|  | */ | 
|  |  | 
|  | static void initialize_adc(struct cpu_pid_state *state) | 
|  | { | 
|  | int rc; | 
|  | u8 buf[2]; | 
|  |  | 
|  | /* Read ADC the configuration register and cache it. We | 
|  | * also make sure Config2 contains proper values, I've seen | 
|  | * cases where we got stale grabage in there, thus preventing | 
|  | * proper reading of conv. values | 
|  | */ | 
|  |  | 
|  | /* Clear Config2 */ | 
|  | buf[0] = 5; | 
|  | buf[1] = 0; | 
|  | i2c_master_send(state->monitor, buf, 2); | 
|  |  | 
|  | /* Read & cache Config1 */ | 
|  | buf[0] = 1; | 
|  | rc = i2c_master_send(state->monitor, buf, 1); | 
|  | if (rc > 0) { | 
|  | rc = i2c_master_recv(state->monitor, buf, 1); | 
|  | if (rc > 0) { | 
|  | state->adc_config = buf[0]; | 
|  | DBG("ADC config reg: %02x\n", state->adc_config); | 
|  | /* Disable shutdown mode */ | 
|  | state->adc_config &= 0xfe; | 
|  | buf[0] = 1; | 
|  | buf[1] = state->adc_config; | 
|  | rc = i2c_master_send(state->monitor, buf, 2); | 
|  | } | 
|  | } | 
|  | if (rc <= 0) | 
|  | printk(KERN_ERR "therm_pm72: Error reading ADC config" | 
|  | " register !\n"); | 
|  | } | 
|  |  | 
|  | static int read_smon_adc(struct cpu_pid_state *state, int chan) | 
|  | { | 
|  | int rc, data, tries = 0; | 
|  | u8 buf[2]; | 
|  |  | 
|  | for (;;) { | 
|  | /* Set channel */ | 
|  | buf[0] = 1; | 
|  | buf[1] = (state->adc_config & 0x1f) | (chan << 5); | 
|  | rc = i2c_master_send(state->monitor, buf, 2); | 
|  | if (rc <= 0) | 
|  | goto error; | 
|  | /* Wait for convertion */ | 
|  | msleep(1); | 
|  | /* Switch to data register */ | 
|  | buf[0] = 4; | 
|  | rc = i2c_master_send(state->monitor, buf, 1); | 
|  | if (rc <= 0) | 
|  | goto error; | 
|  | /* Read result */ | 
|  | rc = i2c_master_recv(state->monitor, buf, 2); | 
|  | if (rc < 0) | 
|  | goto error; | 
|  | data = ((u16)buf[0]) << 8 | (u16)buf[1]; | 
|  | return data >> 6; | 
|  | error: | 
|  | DBG("Error reading ADC, retrying...\n"); | 
|  | if (++tries > 10) { | 
|  | printk(KERN_ERR "therm_pm72: Error reading ADC !\n"); | 
|  | return -1; | 
|  | } | 
|  | msleep(10); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int read_lm87_reg(struct i2c_client * chip, int reg) | 
|  | { | 
|  | int rc, tries = 0; | 
|  | u8 buf; | 
|  |  | 
|  | for (;;) { | 
|  | /* Set address */ | 
|  | buf = (u8)reg; | 
|  | rc = i2c_master_send(chip, &buf, 1); | 
|  | if (rc <= 0) | 
|  | goto error; | 
|  | rc = i2c_master_recv(chip, &buf, 1); | 
|  | if (rc <= 0) | 
|  | goto error; | 
|  | return (int)buf; | 
|  | error: | 
|  | DBG("Error reading LM87, retrying...\n"); | 
|  | if (++tries > 10) { | 
|  | printk(KERN_ERR "therm_pm72: Error reading LM87 !\n"); | 
|  | return -1; | 
|  | } | 
|  | msleep(10); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int fan_read_reg(int reg, unsigned char *buf, int nb) | 
|  | { | 
|  | int tries, nr, nw; | 
|  |  | 
|  | buf[0] = reg; | 
|  | tries = 0; | 
|  | for (;;) { | 
|  | nw = i2c_master_send(fcu, buf, 1); | 
|  | if (nw > 0 || (nw < 0 && nw != -EIO) || tries >= 100) | 
|  | break; | 
|  | msleep(10); | 
|  | ++tries; | 
|  | } | 
|  | if (nw <= 0) { | 
|  | printk(KERN_ERR "Failure writing address to FCU: %d", nw); | 
|  | return -EIO; | 
|  | } | 
|  | tries = 0; | 
|  | for (;;) { | 
|  | nr = i2c_master_recv(fcu, buf, nb); | 
|  | if (nr > 0 || (nr < 0 && nr != ENODEV) || tries >= 100) | 
|  | break; | 
|  | msleep(10); | 
|  | ++tries; | 
|  | } | 
|  | if (nr <= 0) | 
|  | printk(KERN_ERR "Failure reading data from FCU: %d", nw); | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static int fan_write_reg(int reg, const unsigned char *ptr, int nb) | 
|  | { | 
|  | int tries, nw; | 
|  | unsigned char buf[16]; | 
|  |  | 
|  | buf[0] = reg; | 
|  | memcpy(buf+1, ptr, nb); | 
|  | ++nb; | 
|  | tries = 0; | 
|  | for (;;) { | 
|  | nw = i2c_master_send(fcu, buf, nb); | 
|  | if (nw > 0 || (nw < 0 && nw != EIO) || tries >= 100) | 
|  | break; | 
|  | msleep(10); | 
|  | ++tries; | 
|  | } | 
|  | if (nw < 0) | 
|  | printk(KERN_ERR "Failure writing to FCU: %d", nw); | 
|  | return nw; | 
|  | } | 
|  |  | 
|  | static int start_fcu(void) | 
|  | { | 
|  | unsigned char buf = 0xff; | 
|  | int rc; | 
|  |  | 
|  | rc = fan_write_reg(0xe, &buf, 1); | 
|  | if (rc < 0) | 
|  | return -EIO; | 
|  | rc = fan_write_reg(0x2e, &buf, 1); | 
|  | if (rc < 0) | 
|  | return -EIO; | 
|  | rc = fan_read_reg(0, &buf, 1); | 
|  | if (rc < 0) | 
|  | return -EIO; | 
|  | fcu_rpm_shift = (buf == 1) ? 2 : 3; | 
|  | printk(KERN_DEBUG "FCU Initialized, RPM fan shift is %d\n", | 
|  | fcu_rpm_shift); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int set_rpm_fan(int fan_index, int rpm) | 
|  | { | 
|  | unsigned char buf[2]; | 
|  | int rc, id, min, max; | 
|  |  | 
|  | if (fcu_fans[fan_index].type != FCU_FAN_RPM) | 
|  | return -EINVAL; | 
|  | id = fcu_fans[fan_index].id; | 
|  | if (id == FCU_FAN_ABSENT_ID) | 
|  | return -EINVAL; | 
|  |  | 
|  | min = 2400 >> fcu_rpm_shift; | 
|  | max = 56000 >> fcu_rpm_shift; | 
|  |  | 
|  | if (rpm < min) | 
|  | rpm = min; | 
|  | else if (rpm > max) | 
|  | rpm = max; | 
|  | buf[0] = rpm >> (8 - fcu_rpm_shift); | 
|  | buf[1] = rpm << fcu_rpm_shift; | 
|  | rc = fan_write_reg(0x10 + (id * 2), buf, 2); | 
|  | if (rc < 0) | 
|  | return -EIO; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_rpm_fan(int fan_index, int programmed) | 
|  | { | 
|  | unsigned char failure; | 
|  | unsigned char active; | 
|  | unsigned char buf[2]; | 
|  | int rc, id, reg_base; | 
|  |  | 
|  | if (fcu_fans[fan_index].type != FCU_FAN_RPM) | 
|  | return -EINVAL; | 
|  | id = fcu_fans[fan_index].id; | 
|  | if (id == FCU_FAN_ABSENT_ID) | 
|  | return -EINVAL; | 
|  |  | 
|  | rc = fan_read_reg(0xb, &failure, 1); | 
|  | if (rc != 1) | 
|  | return -EIO; | 
|  | if ((failure & (1 << id)) != 0) | 
|  | return -EFAULT; | 
|  | rc = fan_read_reg(0xd, &active, 1); | 
|  | if (rc != 1) | 
|  | return -EIO; | 
|  | if ((active & (1 << id)) == 0) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* Programmed value or real current speed */ | 
|  | reg_base = programmed ? 0x10 : 0x11; | 
|  | rc = fan_read_reg(reg_base + (id * 2), buf, 2); | 
|  | if (rc != 2) | 
|  | return -EIO; | 
|  |  | 
|  | return (buf[0] << (8 - fcu_rpm_shift)) | buf[1] >> fcu_rpm_shift; | 
|  | } | 
|  |  | 
|  | static int set_pwm_fan(int fan_index, int pwm) | 
|  | { | 
|  | unsigned char buf[2]; | 
|  | int rc, id; | 
|  |  | 
|  | if (fcu_fans[fan_index].type != FCU_FAN_PWM) | 
|  | return -EINVAL; | 
|  | id = fcu_fans[fan_index].id; | 
|  | if (id == FCU_FAN_ABSENT_ID) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (pwm < 10) | 
|  | pwm = 10; | 
|  | else if (pwm > 100) | 
|  | pwm = 100; | 
|  | pwm = (pwm * 2559) / 1000; | 
|  | buf[0] = pwm; | 
|  | rc = fan_write_reg(0x30 + (id * 2), buf, 1); | 
|  | if (rc < 0) | 
|  | return rc; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int get_pwm_fan(int fan_index) | 
|  | { | 
|  | unsigned char failure; | 
|  | unsigned char active; | 
|  | unsigned char buf[2]; | 
|  | int rc, id; | 
|  |  | 
|  | if (fcu_fans[fan_index].type != FCU_FAN_PWM) | 
|  | return -EINVAL; | 
|  | id = fcu_fans[fan_index].id; | 
|  | if (id == FCU_FAN_ABSENT_ID) | 
|  | return -EINVAL; | 
|  |  | 
|  | rc = fan_read_reg(0x2b, &failure, 1); | 
|  | if (rc != 1) | 
|  | return -EIO; | 
|  | if ((failure & (1 << id)) != 0) | 
|  | return -EFAULT; | 
|  | rc = fan_read_reg(0x2d, &active, 1); | 
|  | if (rc != 1) | 
|  | return -EIO; | 
|  | if ((active & (1 << id)) == 0) | 
|  | return -ENXIO; | 
|  |  | 
|  | /* Programmed value or real current speed */ | 
|  | rc = fan_read_reg(0x30 + (id * 2), buf, 1); | 
|  | if (rc != 1) | 
|  | return -EIO; | 
|  |  | 
|  | return (buf[0] * 1000) / 2559; | 
|  | } | 
|  |  | 
|  | static void tickle_fcu(void) | 
|  | { | 
|  | int pwm; | 
|  |  | 
|  | pwm = get_pwm_fan(SLOTS_FAN_PWM_INDEX); | 
|  |  | 
|  | DBG("FCU Tickle, slots fan is: %d\n", pwm); | 
|  | if (pwm < 0) | 
|  | pwm = 100; | 
|  |  | 
|  | if (!rackmac) { | 
|  | pwm = SLOTS_FAN_DEFAULT_PWM; | 
|  | } else if (pwm < SLOTS_PID_OUTPUT_MIN) | 
|  | pwm = SLOTS_PID_OUTPUT_MIN; | 
|  |  | 
|  | /* That is hopefully enough to make the FCU happy */ | 
|  | set_pwm_fan(SLOTS_FAN_PWM_INDEX, pwm); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Utility routine to read the CPU calibration EEPROM data | 
|  | * from the device-tree | 
|  | */ | 
|  | static int read_eeprom(int cpu, struct mpu_data *out) | 
|  | { | 
|  | struct device_node *np; | 
|  | char nodename[64]; | 
|  | const u8 *data; | 
|  | int len; | 
|  |  | 
|  | /* prom.c routine for finding a node by path is a bit brain dead | 
|  | * and requires exact @xxx unit numbers. This is a bit ugly but | 
|  | * will work for these machines | 
|  | */ | 
|  | sprintf(nodename, "/u3@0,f8000000/i2c@f8001000/cpuid@a%d", cpu ? 2 : 0); | 
|  | np = of_find_node_by_path(nodename); | 
|  | if (np == NULL) { | 
|  | printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid node from device-tree\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | data = of_get_property(np, "cpuid", &len); | 
|  | if (data == NULL) { | 
|  | printk(KERN_ERR "therm_pm72: Failed to retrieve cpuid property from device-tree\n"); | 
|  | of_node_put(np); | 
|  | return -ENODEV; | 
|  | } | 
|  | memcpy(out, data, sizeof(struct mpu_data)); | 
|  | of_node_put(np); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fetch_cpu_pumps_minmax(void) | 
|  | { | 
|  | struct cpu_pid_state *state0 = &cpu_state[0]; | 
|  | struct cpu_pid_state *state1 = &cpu_state[1]; | 
|  | u16 pump_min = 0, pump_max = 0xffff; | 
|  | u16 tmp[4]; | 
|  |  | 
|  | /* Try to fetch pumps min/max infos from eeprom */ | 
|  |  | 
|  | memcpy(&tmp, &state0->mpu.processor_part_num, 8); | 
|  | if (tmp[0] != 0xffff && tmp[1] != 0xffff) { | 
|  | pump_min = max(pump_min, tmp[0]); | 
|  | pump_max = min(pump_max, tmp[1]); | 
|  | } | 
|  | if (tmp[2] != 0xffff && tmp[3] != 0xffff) { | 
|  | pump_min = max(pump_min, tmp[2]); | 
|  | pump_max = min(pump_max, tmp[3]); | 
|  | } | 
|  |  | 
|  | /* Double check the values, this _IS_ needed as the EEPROM on | 
|  | * some dual 2.5Ghz G5s seem, at least, to have both min & max | 
|  | * same to the same value ... (grrrr) | 
|  | */ | 
|  | if (pump_min == pump_max || pump_min == 0 || pump_max == 0xffff) { | 
|  | pump_min = CPU_PUMP_OUTPUT_MIN; | 
|  | pump_max = CPU_PUMP_OUTPUT_MAX; | 
|  | } | 
|  |  | 
|  | state0->pump_min = state1->pump_min = pump_min; | 
|  | state0->pump_max = state1->pump_max = pump_max; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now, unfortunately, sysfs doesn't give us a nice void * we could | 
|  | * pass around to the attribute functions, so we don't really have | 
|  | * choice but implement a bunch of them... | 
|  | * | 
|  | * That sucks a bit, we take the lock because FIX32TOPRINT evaluates | 
|  | * the input twice... I accept patches :) | 
|  | */ | 
|  | #define BUILD_SHOW_FUNC_FIX(name, data)				\ | 
|  | static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\ | 
|  | {								\ | 
|  | ssize_t r;						\ | 
|  | mutex_lock(&driver_lock);					\ | 
|  | r = sprintf(buf, "%d.%03d", FIX32TOPRINT(data));	\ | 
|  | mutex_unlock(&driver_lock);					\ | 
|  | return r;						\ | 
|  | } | 
|  | #define BUILD_SHOW_FUNC_INT(name, data)				\ | 
|  | static ssize_t show_##name(struct device *dev, struct device_attribute *attr, char *buf)	\ | 
|  | {								\ | 
|  | return sprintf(buf, "%d", data);			\ | 
|  | } | 
|  |  | 
|  | BUILD_SHOW_FUNC_FIX(cpu0_temperature, cpu_state[0].last_temp) | 
|  | BUILD_SHOW_FUNC_FIX(cpu0_voltage, cpu_state[0].voltage) | 
|  | BUILD_SHOW_FUNC_FIX(cpu0_current, cpu_state[0].current_a) | 
|  | BUILD_SHOW_FUNC_INT(cpu0_exhaust_fan_rpm, cpu_state[0].rpm) | 
|  | BUILD_SHOW_FUNC_INT(cpu0_intake_fan_rpm, cpu_state[0].intake_rpm) | 
|  |  | 
|  | BUILD_SHOW_FUNC_FIX(cpu1_temperature, cpu_state[1].last_temp) | 
|  | BUILD_SHOW_FUNC_FIX(cpu1_voltage, cpu_state[1].voltage) | 
|  | BUILD_SHOW_FUNC_FIX(cpu1_current, cpu_state[1].current_a) | 
|  | BUILD_SHOW_FUNC_INT(cpu1_exhaust_fan_rpm, cpu_state[1].rpm) | 
|  | BUILD_SHOW_FUNC_INT(cpu1_intake_fan_rpm, cpu_state[1].intake_rpm) | 
|  |  | 
|  | BUILD_SHOW_FUNC_FIX(backside_temperature, backside_state.last_temp) | 
|  | BUILD_SHOW_FUNC_INT(backside_fan_pwm, backside_state.pwm) | 
|  |  | 
|  | BUILD_SHOW_FUNC_FIX(drives_temperature, drives_state.last_temp) | 
|  | BUILD_SHOW_FUNC_INT(drives_fan_rpm, drives_state.rpm) | 
|  |  | 
|  | BUILD_SHOW_FUNC_FIX(slots_temperature, slots_state.last_temp) | 
|  | BUILD_SHOW_FUNC_INT(slots_fan_pwm, slots_state.pwm) | 
|  |  | 
|  | BUILD_SHOW_FUNC_FIX(dimms_temperature, dimms_state.last_temp) | 
|  |  | 
|  | static DEVICE_ATTR(cpu0_temperature,S_IRUGO,show_cpu0_temperature,NULL); | 
|  | static DEVICE_ATTR(cpu0_voltage,S_IRUGO,show_cpu0_voltage,NULL); | 
|  | static DEVICE_ATTR(cpu0_current,S_IRUGO,show_cpu0_current,NULL); | 
|  | static DEVICE_ATTR(cpu0_exhaust_fan_rpm,S_IRUGO,show_cpu0_exhaust_fan_rpm,NULL); | 
|  | static DEVICE_ATTR(cpu0_intake_fan_rpm,S_IRUGO,show_cpu0_intake_fan_rpm,NULL); | 
|  |  | 
|  | static DEVICE_ATTR(cpu1_temperature,S_IRUGO,show_cpu1_temperature,NULL); | 
|  | static DEVICE_ATTR(cpu1_voltage,S_IRUGO,show_cpu1_voltage,NULL); | 
|  | static DEVICE_ATTR(cpu1_current,S_IRUGO,show_cpu1_current,NULL); | 
|  | static DEVICE_ATTR(cpu1_exhaust_fan_rpm,S_IRUGO,show_cpu1_exhaust_fan_rpm,NULL); | 
|  | static DEVICE_ATTR(cpu1_intake_fan_rpm,S_IRUGO,show_cpu1_intake_fan_rpm,NULL); | 
|  |  | 
|  | static DEVICE_ATTR(backside_temperature,S_IRUGO,show_backside_temperature,NULL); | 
|  | static DEVICE_ATTR(backside_fan_pwm,S_IRUGO,show_backside_fan_pwm,NULL); | 
|  |  | 
|  | static DEVICE_ATTR(drives_temperature,S_IRUGO,show_drives_temperature,NULL); | 
|  | static DEVICE_ATTR(drives_fan_rpm,S_IRUGO,show_drives_fan_rpm,NULL); | 
|  |  | 
|  | static DEVICE_ATTR(slots_temperature,S_IRUGO,show_slots_temperature,NULL); | 
|  | static DEVICE_ATTR(slots_fan_pwm,S_IRUGO,show_slots_fan_pwm,NULL); | 
|  |  | 
|  | static DEVICE_ATTR(dimms_temperature,S_IRUGO,show_dimms_temperature,NULL); | 
|  |  | 
|  | /* | 
|  | * CPUs fans control loop | 
|  | */ | 
|  |  | 
|  | static int do_read_one_cpu_values(struct cpu_pid_state *state, s32 *temp, s32 *power) | 
|  | { | 
|  | s32 ltemp, volts, amps; | 
|  | int index, rc = 0; | 
|  |  | 
|  | /* Default (in case of error) */ | 
|  | *temp = state->cur_temp; | 
|  | *power = state->cur_power; | 
|  |  | 
|  | if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) | 
|  | index = (state->index == 0) ? | 
|  | CPU_A1_FAN_RPM_INDEX : CPU_B1_FAN_RPM_INDEX; | 
|  | else | 
|  | index = (state->index == 0) ? | 
|  | CPUA_EXHAUST_FAN_RPM_INDEX : CPUB_EXHAUST_FAN_RPM_INDEX; | 
|  |  | 
|  | /* Read current fan status */ | 
|  | rc = get_rpm_fan(index, !RPM_PID_USE_ACTUAL_SPEED); | 
|  | if (rc < 0) { | 
|  | /* XXX What do we do now ? Nothing for now, keep old value, but | 
|  | * return error upstream | 
|  | */ | 
|  | DBG("  cpu %d, fan reading error !\n", state->index); | 
|  | } else { | 
|  | state->rpm = rc; | 
|  | DBG("  cpu %d, exhaust RPM: %d\n", state->index, state->rpm); | 
|  | } | 
|  |  | 
|  | /* Get some sensor readings and scale it */ | 
|  | ltemp = read_smon_adc(state, 1); | 
|  | if (ltemp == -1) { | 
|  | /* XXX What do we do now ? */ | 
|  | state->overtemp++; | 
|  | if (rc == 0) | 
|  | rc = -EIO; | 
|  | DBG("  cpu %d, temp reading error !\n", state->index); | 
|  | } else { | 
|  | /* Fixup temperature according to diode calibration | 
|  | */ | 
|  | DBG("  cpu %d, temp raw: %04x, m_diode: %04x, b_diode: %04x\n", | 
|  | state->index, | 
|  | ltemp, state->mpu.mdiode, state->mpu.bdiode); | 
|  | *temp = ((s32)ltemp * (s32)state->mpu.mdiode + ((s32)state->mpu.bdiode << 12)) >> 2; | 
|  | state->last_temp = *temp; | 
|  | DBG("  temp: %d.%03d\n", FIX32TOPRINT((*temp))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Read voltage & current and calculate power | 
|  | */ | 
|  | volts = read_smon_adc(state, 3); | 
|  | amps = read_smon_adc(state, 4); | 
|  |  | 
|  | /* Scale voltage and current raw sensor values according to fixed scales | 
|  | * obtained in Darwin and calculate power from I and V | 
|  | */ | 
|  | volts *= ADC_CPU_VOLTAGE_SCALE; | 
|  | amps *= ADC_CPU_CURRENT_SCALE; | 
|  | *power = (((u64)volts) * ((u64)amps)) >> 16; | 
|  | state->voltage = volts; | 
|  | state->current_a = amps; | 
|  | state->last_power = *power; | 
|  |  | 
|  | DBG("  cpu %d, current: %d.%03d, voltage: %d.%03d, power: %d.%03d W\n", | 
|  | state->index, FIX32TOPRINT(state->current_a), | 
|  | FIX32TOPRINT(state->voltage), FIX32TOPRINT(*power)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void do_cpu_pid(struct cpu_pid_state *state, s32 temp, s32 power) | 
|  | { | 
|  | s32 power_target, integral, derivative, proportional, adj_in_target, sval; | 
|  | s64 integ_p, deriv_p, prop_p, sum; | 
|  | int i; | 
|  |  | 
|  | /* Calculate power target value (could be done once for all) | 
|  | * and convert to a 16.16 fp number | 
|  | */ | 
|  | power_target = ((u32)(state->mpu.pmaxh - state->mpu.padjmax)) << 16; | 
|  | DBG("  power target: %d.%03d, error: %d.%03d\n", | 
|  | FIX32TOPRINT(power_target), FIX32TOPRINT(power_target - power)); | 
|  |  | 
|  | /* Store temperature and power in history array */ | 
|  | state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; | 
|  | state->temp_history[state->cur_temp] = temp; | 
|  | state->cur_power = (state->cur_power + 1) % state->count_power; | 
|  | state->power_history[state->cur_power] = power; | 
|  | state->error_history[state->cur_power] = power_target - power; | 
|  |  | 
|  | /* If first loop, fill the history table */ | 
|  | if (state->first) { | 
|  | for (i = 0; i < (state->count_power - 1); i++) { | 
|  | state->cur_power = (state->cur_power + 1) % state->count_power; | 
|  | state->power_history[state->cur_power] = power; | 
|  | state->error_history[state->cur_power] = power_target - power; | 
|  | } | 
|  | for (i = 0; i < (CPU_TEMP_HISTORY_SIZE - 1); i++) { | 
|  | state->cur_temp = (state->cur_temp + 1) % CPU_TEMP_HISTORY_SIZE; | 
|  | state->temp_history[state->cur_temp] = temp; | 
|  | } | 
|  | state->first = 0; | 
|  | } | 
|  |  | 
|  | /* Calculate the integral term normally based on the "power" values */ | 
|  | sum = 0; | 
|  | integral = 0; | 
|  | for (i = 0; i < state->count_power; i++) | 
|  | integral += state->error_history[i]; | 
|  | integral *= CPU_PID_INTERVAL; | 
|  | DBG("  integral: %08x\n", integral); | 
|  |  | 
|  | /* Calculate the adjusted input (sense value). | 
|  | *   G_r is 12.20 | 
|  | *   integ is 16.16 | 
|  | *   so the result is 28.36 | 
|  | * | 
|  | * input target is mpu.ttarget, input max is mpu.tmax | 
|  | */ | 
|  | integ_p = ((s64)state->mpu.pid_gr) * (s64)integral; | 
|  | DBG("   integ_p: %d\n", (int)(integ_p >> 36)); | 
|  | sval = (state->mpu.tmax << 16) - ((integ_p >> 20) & 0xffffffff); | 
|  | adj_in_target = (state->mpu.ttarget << 16); | 
|  | if (adj_in_target > sval) | 
|  | adj_in_target = sval; | 
|  | DBG("   adj_in_target: %d.%03d, ttarget: %d\n", FIX32TOPRINT(adj_in_target), | 
|  | state->mpu.ttarget); | 
|  |  | 
|  | /* Calculate the derivative term */ | 
|  | derivative = state->temp_history[state->cur_temp] - | 
|  | state->temp_history[(state->cur_temp + CPU_TEMP_HISTORY_SIZE - 1) | 
|  | % CPU_TEMP_HISTORY_SIZE]; | 
|  | derivative /= CPU_PID_INTERVAL; | 
|  | deriv_p = ((s64)state->mpu.pid_gd) * (s64)derivative; | 
|  | DBG("   deriv_p: %d\n", (int)(deriv_p >> 36)); | 
|  | sum += deriv_p; | 
|  |  | 
|  | /* Calculate the proportional term */ | 
|  | proportional = temp - adj_in_target; | 
|  | prop_p = ((s64)state->mpu.pid_gp) * (s64)proportional; | 
|  | DBG("   prop_p: %d\n", (int)(prop_p >> 36)); | 
|  | sum += prop_p; | 
|  |  | 
|  | /* Scale sum */ | 
|  | sum >>= 36; | 
|  |  | 
|  | DBG("   sum: %d\n", (int)sum); | 
|  | state->rpm += (s32)sum; | 
|  | } | 
|  |  | 
|  | static void do_monitor_cpu_combined(void) | 
|  | { | 
|  | struct cpu_pid_state *state0 = &cpu_state[0]; | 
|  | struct cpu_pid_state *state1 = &cpu_state[1]; | 
|  | s32 temp0, power0, temp1, power1; | 
|  | s32 temp_combi, power_combi; | 
|  | int rc, intake, pump; | 
|  |  | 
|  | rc = do_read_one_cpu_values(state0, &temp0, &power0); | 
|  | if (rc < 0) { | 
|  | /* XXX What do we do now ? */ | 
|  | } | 
|  | state1->overtemp = 0; | 
|  | rc = do_read_one_cpu_values(state1, &temp1, &power1); | 
|  | if (rc < 0) { | 
|  | /* XXX What do we do now ? */ | 
|  | } | 
|  | if (state1->overtemp) | 
|  | state0->overtemp++; | 
|  |  | 
|  | temp_combi = max(temp0, temp1); | 
|  | power_combi = max(power0, power1); | 
|  |  | 
|  | /* Check tmax, increment overtemp if we are there. At tmax+8, we go | 
|  | * full blown immediately and try to trigger a shutdown | 
|  | */ | 
|  | if (temp_combi >= ((state0->mpu.tmax + 8) << 16)) { | 
|  | printk(KERN_WARNING "Warning ! Temperature way above maximum (%d) !\n", | 
|  | temp_combi >> 16); | 
|  | state0->overtemp += CPU_MAX_OVERTEMP / 4; | 
|  | } else if (temp_combi > (state0->mpu.tmax << 16)) | 
|  | state0->overtemp++; | 
|  | else | 
|  | state0->overtemp = 0; | 
|  | if (state0->overtemp >= CPU_MAX_OVERTEMP) | 
|  | critical_state = 1; | 
|  | if (state0->overtemp > 0) { | 
|  | state0->rpm = state0->mpu.rmaxn_exhaust_fan; | 
|  | state0->intake_rpm = intake = state0->mpu.rmaxn_intake_fan; | 
|  | pump = state0->pump_max; | 
|  | goto do_set_fans; | 
|  | } | 
|  |  | 
|  | /* Do the PID */ | 
|  | do_cpu_pid(state0, temp_combi, power_combi); | 
|  |  | 
|  | /* Range check */ | 
|  | state0->rpm = max(state0->rpm, (int)state0->mpu.rminn_exhaust_fan); | 
|  | state0->rpm = min(state0->rpm, (int)state0->mpu.rmaxn_exhaust_fan); | 
|  |  | 
|  | /* Calculate intake fan speed */ | 
|  | intake = (state0->rpm * CPU_INTAKE_SCALE) >> 16; | 
|  | intake = max(intake, (int)state0->mpu.rminn_intake_fan); | 
|  | intake = min(intake, (int)state0->mpu.rmaxn_intake_fan); | 
|  | state0->intake_rpm = intake; | 
|  |  | 
|  | /* Calculate pump speed */ | 
|  | pump = (state0->rpm * state0->pump_max) / | 
|  | state0->mpu.rmaxn_exhaust_fan; | 
|  | pump = min(pump, state0->pump_max); | 
|  | pump = max(pump, state0->pump_min); | 
|  |  | 
|  | do_set_fans: | 
|  | /* We copy values from state 0 to state 1 for /sysfs */ | 
|  | state1->rpm = state0->rpm; | 
|  | state1->intake_rpm = state0->intake_rpm; | 
|  |  | 
|  | DBG("** CPU %d RPM: %d Ex, %d, Pump: %d, In, overtemp: %d\n", | 
|  | state1->index, (int)state1->rpm, intake, pump, state1->overtemp); | 
|  |  | 
|  | /* We should check for errors, shouldn't we ? But then, what | 
|  | * do we do once the error occurs ? For FCU notified fan | 
|  | * failures (-EFAULT) we probably want to notify userland | 
|  | * some way... | 
|  | */ | 
|  | set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); | 
|  | set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state0->rpm); | 
|  | set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); | 
|  | set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state0->rpm); | 
|  |  | 
|  | if (fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) | 
|  | set_rpm_fan(CPUA_PUMP_RPM_INDEX, pump); | 
|  | if (fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) | 
|  | set_rpm_fan(CPUB_PUMP_RPM_INDEX, pump); | 
|  | } | 
|  |  | 
|  | static void do_monitor_cpu_split(struct cpu_pid_state *state) | 
|  | { | 
|  | s32 temp, power; | 
|  | int rc, intake; | 
|  |  | 
|  | /* Read current fan status */ | 
|  | rc = do_read_one_cpu_values(state, &temp, &power); | 
|  | if (rc < 0) { | 
|  | /* XXX What do we do now ? */ | 
|  | } | 
|  |  | 
|  | /* Check tmax, increment overtemp if we are there. At tmax+8, we go | 
|  | * full blown immediately and try to trigger a shutdown | 
|  | */ | 
|  | if (temp >= ((state->mpu.tmax + 8) << 16)) { | 
|  | printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum" | 
|  | " (%d) !\n", | 
|  | state->index, temp >> 16); | 
|  | state->overtemp += CPU_MAX_OVERTEMP / 4; | 
|  | } else if (temp > (state->mpu.tmax << 16)) | 
|  | state->overtemp++; | 
|  | else | 
|  | state->overtemp = 0; | 
|  | if (state->overtemp >= CPU_MAX_OVERTEMP) | 
|  | critical_state = 1; | 
|  | if (state->overtemp > 0) { | 
|  | state->rpm = state->mpu.rmaxn_exhaust_fan; | 
|  | state->intake_rpm = intake = state->mpu.rmaxn_intake_fan; | 
|  | goto do_set_fans; | 
|  | } | 
|  |  | 
|  | /* Do the PID */ | 
|  | do_cpu_pid(state, temp, power); | 
|  |  | 
|  | /* Range check */ | 
|  | state->rpm = max(state->rpm, (int)state->mpu.rminn_exhaust_fan); | 
|  | state->rpm = min(state->rpm, (int)state->mpu.rmaxn_exhaust_fan); | 
|  |  | 
|  | /* Calculate intake fan */ | 
|  | intake = (state->rpm * CPU_INTAKE_SCALE) >> 16; | 
|  | intake = max(intake, (int)state->mpu.rminn_intake_fan); | 
|  | intake = min(intake, (int)state->mpu.rmaxn_intake_fan); | 
|  | state->intake_rpm = intake; | 
|  |  | 
|  | do_set_fans: | 
|  | DBG("** CPU %d RPM: %d Ex, %d In, overtemp: %d\n", | 
|  | state->index, (int)state->rpm, intake, state->overtemp); | 
|  |  | 
|  | /* We should check for errors, shouldn't we ? But then, what | 
|  | * do we do once the error occurs ? For FCU notified fan | 
|  | * failures (-EFAULT) we probably want to notify userland | 
|  | * some way... | 
|  | */ | 
|  | if (state->index == 0) { | 
|  | set_rpm_fan(CPUA_INTAKE_FAN_RPM_INDEX, intake); | 
|  | set_rpm_fan(CPUA_EXHAUST_FAN_RPM_INDEX, state->rpm); | 
|  | } else { | 
|  | set_rpm_fan(CPUB_INTAKE_FAN_RPM_INDEX, intake); | 
|  | set_rpm_fan(CPUB_EXHAUST_FAN_RPM_INDEX, state->rpm); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void do_monitor_cpu_rack(struct cpu_pid_state *state) | 
|  | { | 
|  | s32 temp, power, fan_min; | 
|  | int rc; | 
|  |  | 
|  | /* Read current fan status */ | 
|  | rc = do_read_one_cpu_values(state, &temp, &power); | 
|  | if (rc < 0) { | 
|  | /* XXX What do we do now ? */ | 
|  | } | 
|  |  | 
|  | /* Check tmax, increment overtemp if we are there. At tmax+8, we go | 
|  | * full blown immediately and try to trigger a shutdown | 
|  | */ | 
|  | if (temp >= ((state->mpu.tmax + 8) << 16)) { | 
|  | printk(KERN_WARNING "Warning ! CPU %d temperature way above maximum" | 
|  | " (%d) !\n", | 
|  | state->index, temp >> 16); | 
|  | state->overtemp = CPU_MAX_OVERTEMP / 4; | 
|  | } else if (temp > (state->mpu.tmax << 16)) | 
|  | state->overtemp++; | 
|  | else | 
|  | state->overtemp = 0; | 
|  | if (state->overtemp >= CPU_MAX_OVERTEMP) | 
|  | critical_state = 1; | 
|  | if (state->overtemp > 0) { | 
|  | state->rpm = state->intake_rpm = state->mpu.rmaxn_intake_fan; | 
|  | goto do_set_fans; | 
|  | } | 
|  |  | 
|  | /* Do the PID */ | 
|  | do_cpu_pid(state, temp, power); | 
|  |  | 
|  | /* Check clamp from dimms */ | 
|  | fan_min = dimm_output_clamp; | 
|  | fan_min = max(fan_min, (int)state->mpu.rminn_intake_fan); | 
|  |  | 
|  | DBG(" CPU min mpu = %d, min dimm = %d\n", | 
|  | state->mpu.rminn_intake_fan, dimm_output_clamp); | 
|  |  | 
|  | state->rpm = max(state->rpm, (int)fan_min); | 
|  | state->rpm = min(state->rpm, (int)state->mpu.rmaxn_intake_fan); | 
|  | state->intake_rpm = state->rpm; | 
|  |  | 
|  | do_set_fans: | 
|  | DBG("** CPU %d RPM: %d overtemp: %d\n", | 
|  | state->index, (int)state->rpm, state->overtemp); | 
|  |  | 
|  | /* We should check for errors, shouldn't we ? But then, what | 
|  | * do we do once the error occurs ? For FCU notified fan | 
|  | * failures (-EFAULT) we probably want to notify userland | 
|  | * some way... | 
|  | */ | 
|  | if (state->index == 0) { | 
|  | set_rpm_fan(CPU_A1_FAN_RPM_INDEX, state->rpm); | 
|  | set_rpm_fan(CPU_A2_FAN_RPM_INDEX, state->rpm); | 
|  | set_rpm_fan(CPU_A3_FAN_RPM_INDEX, state->rpm); | 
|  | } else { | 
|  | set_rpm_fan(CPU_B1_FAN_RPM_INDEX, state->rpm); | 
|  | set_rpm_fan(CPU_B2_FAN_RPM_INDEX, state->rpm); | 
|  | set_rpm_fan(CPU_B3_FAN_RPM_INDEX, state->rpm); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the state structure for one CPU control loop | 
|  | */ | 
|  | static int init_cpu_state(struct cpu_pid_state *state, int index) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | state->index = index; | 
|  | state->first = 1; | 
|  | state->rpm = (cpu_pid_type == CPU_PID_TYPE_RACKMAC) ? 4000 : 1000; | 
|  | state->overtemp = 0; | 
|  | state->adc_config = 0x00; | 
|  |  | 
|  |  | 
|  | if (index == 0) | 
|  | state->monitor = attach_i2c_chip(SUPPLY_MONITOR_ID, "CPU0_monitor"); | 
|  | else if (index == 1) | 
|  | state->monitor = attach_i2c_chip(SUPPLY_MONITORB_ID, "CPU1_monitor"); | 
|  | if (state->monitor == NULL) | 
|  | goto fail; | 
|  |  | 
|  | if (read_eeprom(index, &state->mpu)) | 
|  | goto fail; | 
|  |  | 
|  | state->count_power = state->mpu.tguardband; | 
|  | if (state->count_power > CPU_POWER_HISTORY_SIZE) { | 
|  | printk(KERN_WARNING "Warning ! too many power history slots\n"); | 
|  | state->count_power = CPU_POWER_HISTORY_SIZE; | 
|  | } | 
|  | DBG("CPU %d Using %d power history entries\n", index, state->count_power); | 
|  |  | 
|  | if (index == 0) { | 
|  | err = device_create_file(&of_dev->dev, &dev_attr_cpu0_temperature); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_voltage); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_current); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); | 
|  | } else { | 
|  | err = device_create_file(&of_dev->dev, &dev_attr_cpu1_temperature); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_voltage); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_current); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); | 
|  | } | 
|  | if (err) | 
|  | printk(KERN_WARNING "Failed to create some of the atribute" | 
|  | "files for CPU %d\n", index); | 
|  |  | 
|  | return 0; | 
|  | fail: | 
|  | if (state->monitor) | 
|  | detach_i2c_chip(state->monitor); | 
|  | state->monitor = NULL; | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispose of the state data for one CPU control loop | 
|  | */ | 
|  | static void dispose_cpu_state(struct cpu_pid_state *state) | 
|  | { | 
|  | if (state->monitor == NULL) | 
|  | return; | 
|  |  | 
|  | if (state->index == 0) { | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu0_temperature); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu0_voltage); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu0_current); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu0_exhaust_fan_rpm); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu0_intake_fan_rpm); | 
|  | } else { | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu1_temperature); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu1_voltage); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu1_current); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu1_exhaust_fan_rpm); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_cpu1_intake_fan_rpm); | 
|  | } | 
|  |  | 
|  | detach_i2c_chip(state->monitor); | 
|  | state->monitor = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Motherboard backside & U3 heatsink fan control loop | 
|  | */ | 
|  | static void do_monitor_backside(struct backside_pid_state *state) | 
|  | { | 
|  | s32 temp, integral, derivative, fan_min; | 
|  | s64 integ_p, deriv_p, prop_p, sum; | 
|  | int i, rc; | 
|  |  | 
|  | if (--state->ticks != 0) | 
|  | return; | 
|  | state->ticks = backside_params.interval; | 
|  |  | 
|  | DBG("backside:\n"); | 
|  |  | 
|  | /* Check fan status */ | 
|  | rc = get_pwm_fan(BACKSIDE_FAN_PWM_INDEX); | 
|  | if (rc < 0) { | 
|  | printk(KERN_WARNING "Error %d reading backside fan !\n", rc); | 
|  | /* XXX What do we do now ? */ | 
|  | } else | 
|  | state->pwm = rc; | 
|  | DBG("  current pwm: %d\n", state->pwm); | 
|  |  | 
|  | /* Get some sensor readings */ | 
|  | temp = i2c_smbus_read_byte_data(state->monitor, MAX6690_EXT_TEMP) << 16; | 
|  | state->last_temp = temp; | 
|  | DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), | 
|  | FIX32TOPRINT(backside_params.input_target)); | 
|  |  | 
|  | /* Store temperature and error in history array */ | 
|  | state->cur_sample = (state->cur_sample + 1) % BACKSIDE_PID_HISTORY_SIZE; | 
|  | state->sample_history[state->cur_sample] = temp; | 
|  | state->error_history[state->cur_sample] = temp - backside_params.input_target; | 
|  |  | 
|  | /* If first loop, fill the history table */ | 
|  | if (state->first) { | 
|  | for (i = 0; i < (BACKSIDE_PID_HISTORY_SIZE - 1); i++) { | 
|  | state->cur_sample = (state->cur_sample + 1) % | 
|  | BACKSIDE_PID_HISTORY_SIZE; | 
|  | state->sample_history[state->cur_sample] = temp; | 
|  | state->error_history[state->cur_sample] = | 
|  | temp - backside_params.input_target; | 
|  | } | 
|  | state->first = 0; | 
|  | } | 
|  |  | 
|  | /* Calculate the integral term */ | 
|  | sum = 0; | 
|  | integral = 0; | 
|  | for (i = 0; i < BACKSIDE_PID_HISTORY_SIZE; i++) | 
|  | integral += state->error_history[i]; | 
|  | integral *= backside_params.interval; | 
|  | DBG("  integral: %08x\n", integral); | 
|  | integ_p = ((s64)backside_params.G_r) * (s64)integral; | 
|  | DBG("   integ_p: %d\n", (int)(integ_p >> 36)); | 
|  | sum += integ_p; | 
|  |  | 
|  | /* Calculate the derivative term */ | 
|  | derivative = state->error_history[state->cur_sample] - | 
|  | state->error_history[(state->cur_sample + BACKSIDE_PID_HISTORY_SIZE - 1) | 
|  | % BACKSIDE_PID_HISTORY_SIZE]; | 
|  | derivative /= backside_params.interval; | 
|  | deriv_p = ((s64)backside_params.G_d) * (s64)derivative; | 
|  | DBG("   deriv_p: %d\n", (int)(deriv_p >> 36)); | 
|  | sum += deriv_p; | 
|  |  | 
|  | /* Calculate the proportional term */ | 
|  | prop_p = ((s64)backside_params.G_p) * (s64)(state->error_history[state->cur_sample]); | 
|  | DBG("   prop_p: %d\n", (int)(prop_p >> 36)); | 
|  | sum += prop_p; | 
|  |  | 
|  | /* Scale sum */ | 
|  | sum >>= 36; | 
|  |  | 
|  | DBG("   sum: %d\n", (int)sum); | 
|  | if (backside_params.additive) | 
|  | state->pwm += (s32)sum; | 
|  | else | 
|  | state->pwm = sum; | 
|  |  | 
|  | /* Check for clamp */ | 
|  | fan_min = (dimm_output_clamp * 100) / 14000; | 
|  | fan_min = max(fan_min, backside_params.output_min); | 
|  |  | 
|  | state->pwm = max(state->pwm, fan_min); | 
|  | state->pwm = min(state->pwm, backside_params.output_max); | 
|  |  | 
|  | DBG("** BACKSIDE PWM: %d\n", (int)state->pwm); | 
|  | set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, state->pwm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the state structure for the backside fan control loop | 
|  | */ | 
|  | static int init_backside_state(struct backside_pid_state *state) | 
|  | { | 
|  | struct device_node *u3; | 
|  | int u3h = 1; /* conservative by default */ | 
|  | int err; | 
|  |  | 
|  | /* | 
|  | * There are different PID params for machines with U3 and machines | 
|  | * with U3H, pick the right ones now | 
|  | */ | 
|  | u3 = of_find_node_by_path("/u3@0,f8000000"); | 
|  | if (u3 != NULL) { | 
|  | const u32 *vers = of_get_property(u3, "device-rev", NULL); | 
|  | if (vers) | 
|  | if (((*vers) & 0x3f) < 0x34) | 
|  | u3h = 0; | 
|  | of_node_put(u3); | 
|  | } | 
|  |  | 
|  | if (rackmac) { | 
|  | backside_params.G_d = BACKSIDE_PID_RACK_G_d; | 
|  | backside_params.input_target = BACKSIDE_PID_RACK_INPUT_TARGET; | 
|  | backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; | 
|  | backside_params.interval = BACKSIDE_PID_RACK_INTERVAL; | 
|  | backside_params.G_p = BACKSIDE_PID_RACK_G_p; | 
|  | backside_params.G_r = BACKSIDE_PID_G_r; | 
|  | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; | 
|  | backside_params.additive = 0; | 
|  | } else if (u3h) { | 
|  | backside_params.G_d = BACKSIDE_PID_U3H_G_d; | 
|  | backside_params.input_target = BACKSIDE_PID_U3H_INPUT_TARGET; | 
|  | backside_params.output_min = BACKSIDE_PID_U3H_OUTPUT_MIN; | 
|  | backside_params.interval = BACKSIDE_PID_INTERVAL; | 
|  | backside_params.G_p = BACKSIDE_PID_G_p; | 
|  | backside_params.G_r = BACKSIDE_PID_G_r; | 
|  | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; | 
|  | backside_params.additive = 1; | 
|  | } else { | 
|  | backside_params.G_d = BACKSIDE_PID_U3_G_d; | 
|  | backside_params.input_target = BACKSIDE_PID_U3_INPUT_TARGET; | 
|  | backside_params.output_min = BACKSIDE_PID_U3_OUTPUT_MIN; | 
|  | backside_params.interval = BACKSIDE_PID_INTERVAL; | 
|  | backside_params.G_p = BACKSIDE_PID_G_p; | 
|  | backside_params.G_r = BACKSIDE_PID_G_r; | 
|  | backside_params.output_max = BACKSIDE_PID_OUTPUT_MAX; | 
|  | backside_params.additive = 1; | 
|  | } | 
|  |  | 
|  | state->ticks = 1; | 
|  | state->first = 1; | 
|  | state->pwm = 50; | 
|  |  | 
|  | state->monitor = attach_i2c_chip(BACKSIDE_MAX_ID, "backside_temp"); | 
|  | if (state->monitor == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | err = device_create_file(&of_dev->dev, &dev_attr_backside_temperature); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_backside_fan_pwm); | 
|  | if (err) | 
|  | printk(KERN_WARNING "Failed to create attribute file(s)" | 
|  | " for backside fan\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispose of the state data for the backside control loop | 
|  | */ | 
|  | static void dispose_backside_state(struct backside_pid_state *state) | 
|  | { | 
|  | if (state->monitor == NULL) | 
|  | return; | 
|  |  | 
|  | device_remove_file(&of_dev->dev, &dev_attr_backside_temperature); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_backside_fan_pwm); | 
|  |  | 
|  | detach_i2c_chip(state->monitor); | 
|  | state->monitor = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Drives bay fan control loop | 
|  | */ | 
|  | static void do_monitor_drives(struct drives_pid_state *state) | 
|  | { | 
|  | s32 temp, integral, derivative; | 
|  | s64 integ_p, deriv_p, prop_p, sum; | 
|  | int i, rc; | 
|  |  | 
|  | if (--state->ticks != 0) | 
|  | return; | 
|  | state->ticks = DRIVES_PID_INTERVAL; | 
|  |  | 
|  | DBG("drives:\n"); | 
|  |  | 
|  | /* Check fan status */ | 
|  | rc = get_rpm_fan(DRIVES_FAN_RPM_INDEX, !RPM_PID_USE_ACTUAL_SPEED); | 
|  | if (rc < 0) { | 
|  | printk(KERN_WARNING "Error %d reading drives fan !\n", rc); | 
|  | /* XXX What do we do now ? */ | 
|  | } else | 
|  | state->rpm = rc; | 
|  | DBG("  current rpm: %d\n", state->rpm); | 
|  |  | 
|  | /* Get some sensor readings */ | 
|  | temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, | 
|  | DS1775_TEMP)) << 8; | 
|  | state->last_temp = temp; | 
|  | DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), | 
|  | FIX32TOPRINT(DRIVES_PID_INPUT_TARGET)); | 
|  |  | 
|  | /* Store temperature and error in history array */ | 
|  | state->cur_sample = (state->cur_sample + 1) % DRIVES_PID_HISTORY_SIZE; | 
|  | state->sample_history[state->cur_sample] = temp; | 
|  | state->error_history[state->cur_sample] = temp - DRIVES_PID_INPUT_TARGET; | 
|  |  | 
|  | /* If first loop, fill the history table */ | 
|  | if (state->first) { | 
|  | for (i = 0; i < (DRIVES_PID_HISTORY_SIZE - 1); i++) { | 
|  | state->cur_sample = (state->cur_sample + 1) % | 
|  | DRIVES_PID_HISTORY_SIZE; | 
|  | state->sample_history[state->cur_sample] = temp; | 
|  | state->error_history[state->cur_sample] = | 
|  | temp - DRIVES_PID_INPUT_TARGET; | 
|  | } | 
|  | state->first = 0; | 
|  | } | 
|  |  | 
|  | /* Calculate the integral term */ | 
|  | sum = 0; | 
|  | integral = 0; | 
|  | for (i = 0; i < DRIVES_PID_HISTORY_SIZE; i++) | 
|  | integral += state->error_history[i]; | 
|  | integral *= DRIVES_PID_INTERVAL; | 
|  | DBG("  integral: %08x\n", integral); | 
|  | integ_p = ((s64)DRIVES_PID_G_r) * (s64)integral; | 
|  | DBG("   integ_p: %d\n", (int)(integ_p >> 36)); | 
|  | sum += integ_p; | 
|  |  | 
|  | /* Calculate the derivative term */ | 
|  | derivative = state->error_history[state->cur_sample] - | 
|  | state->error_history[(state->cur_sample + DRIVES_PID_HISTORY_SIZE - 1) | 
|  | % DRIVES_PID_HISTORY_SIZE]; | 
|  | derivative /= DRIVES_PID_INTERVAL; | 
|  | deriv_p = ((s64)DRIVES_PID_G_d) * (s64)derivative; | 
|  | DBG("   deriv_p: %d\n", (int)(deriv_p >> 36)); | 
|  | sum += deriv_p; | 
|  |  | 
|  | /* Calculate the proportional term */ | 
|  | prop_p = ((s64)DRIVES_PID_G_p) * (s64)(state->error_history[state->cur_sample]); | 
|  | DBG("   prop_p: %d\n", (int)(prop_p >> 36)); | 
|  | sum += prop_p; | 
|  |  | 
|  | /* Scale sum */ | 
|  | sum >>= 36; | 
|  |  | 
|  | DBG("   sum: %d\n", (int)sum); | 
|  | state->rpm += (s32)sum; | 
|  |  | 
|  | state->rpm = max(state->rpm, DRIVES_PID_OUTPUT_MIN); | 
|  | state->rpm = min(state->rpm, DRIVES_PID_OUTPUT_MAX); | 
|  |  | 
|  | DBG("** DRIVES RPM: %d\n", (int)state->rpm); | 
|  | set_rpm_fan(DRIVES_FAN_RPM_INDEX, state->rpm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the state structure for the drives bay fan control loop | 
|  | */ | 
|  | static int init_drives_state(struct drives_pid_state *state) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | state->ticks = 1; | 
|  | state->first = 1; | 
|  | state->rpm = 1000; | 
|  |  | 
|  | state->monitor = attach_i2c_chip(DRIVES_DALLAS_ID, "drives_temp"); | 
|  | if (state->monitor == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | err = device_create_file(&of_dev->dev, &dev_attr_drives_temperature); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_drives_fan_rpm); | 
|  | if (err) | 
|  | printk(KERN_WARNING "Failed to create attribute file(s)" | 
|  | " for drives bay fan\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispose of the state data for the drives control loop | 
|  | */ | 
|  | static void dispose_drives_state(struct drives_pid_state *state) | 
|  | { | 
|  | if (state->monitor == NULL) | 
|  | return; | 
|  |  | 
|  | device_remove_file(&of_dev->dev, &dev_attr_drives_temperature); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_drives_fan_rpm); | 
|  |  | 
|  | detach_i2c_chip(state->monitor); | 
|  | state->monitor = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DIMMs temp control loop | 
|  | */ | 
|  | static void do_monitor_dimms(struct dimm_pid_state *state) | 
|  | { | 
|  | s32 temp, integral, derivative, fan_min; | 
|  | s64 integ_p, deriv_p, prop_p, sum; | 
|  | int i; | 
|  |  | 
|  | if (--state->ticks != 0) | 
|  | return; | 
|  | state->ticks = DIMM_PID_INTERVAL; | 
|  |  | 
|  | DBG("DIMM:\n"); | 
|  |  | 
|  | DBG("  current value: %d\n", state->output); | 
|  |  | 
|  | temp = read_lm87_reg(state->monitor, LM87_INT_TEMP); | 
|  | if (temp < 0) | 
|  | return; | 
|  | temp <<= 16; | 
|  | state->last_temp = temp; | 
|  | DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), | 
|  | FIX32TOPRINT(DIMM_PID_INPUT_TARGET)); | 
|  |  | 
|  | /* Store temperature and error in history array */ | 
|  | state->cur_sample = (state->cur_sample + 1) % DIMM_PID_HISTORY_SIZE; | 
|  | state->sample_history[state->cur_sample] = temp; | 
|  | state->error_history[state->cur_sample] = temp - DIMM_PID_INPUT_TARGET; | 
|  |  | 
|  | /* If first loop, fill the history table */ | 
|  | if (state->first) { | 
|  | for (i = 0; i < (DIMM_PID_HISTORY_SIZE - 1); i++) { | 
|  | state->cur_sample = (state->cur_sample + 1) % | 
|  | DIMM_PID_HISTORY_SIZE; | 
|  | state->sample_history[state->cur_sample] = temp; | 
|  | state->error_history[state->cur_sample] = | 
|  | temp - DIMM_PID_INPUT_TARGET; | 
|  | } | 
|  | state->first = 0; | 
|  | } | 
|  |  | 
|  | /* Calculate the integral term */ | 
|  | sum = 0; | 
|  | integral = 0; | 
|  | for (i = 0; i < DIMM_PID_HISTORY_SIZE; i++) | 
|  | integral += state->error_history[i]; | 
|  | integral *= DIMM_PID_INTERVAL; | 
|  | DBG("  integral: %08x\n", integral); | 
|  | integ_p = ((s64)DIMM_PID_G_r) * (s64)integral; | 
|  | DBG("   integ_p: %d\n", (int)(integ_p >> 36)); | 
|  | sum += integ_p; | 
|  |  | 
|  | /* Calculate the derivative term */ | 
|  | derivative = state->error_history[state->cur_sample] - | 
|  | state->error_history[(state->cur_sample + DIMM_PID_HISTORY_SIZE - 1) | 
|  | % DIMM_PID_HISTORY_SIZE]; | 
|  | derivative /= DIMM_PID_INTERVAL; | 
|  | deriv_p = ((s64)DIMM_PID_G_d) * (s64)derivative; | 
|  | DBG("   deriv_p: %d\n", (int)(deriv_p >> 36)); | 
|  | sum += deriv_p; | 
|  |  | 
|  | /* Calculate the proportional term */ | 
|  | prop_p = ((s64)DIMM_PID_G_p) * (s64)(state->error_history[state->cur_sample]); | 
|  | DBG("   prop_p: %d\n", (int)(prop_p >> 36)); | 
|  | sum += prop_p; | 
|  |  | 
|  | /* Scale sum */ | 
|  | sum >>= 36; | 
|  |  | 
|  | DBG("   sum: %d\n", (int)sum); | 
|  | state->output = (s32)sum; | 
|  | state->output = max(state->output, DIMM_PID_OUTPUT_MIN); | 
|  | state->output = min(state->output, DIMM_PID_OUTPUT_MAX); | 
|  | dimm_output_clamp = state->output; | 
|  |  | 
|  | DBG("** DIMM clamp value: %d\n", (int)state->output); | 
|  |  | 
|  | /* Backside PID is only every 5 seconds, force backside fan clamping now */ | 
|  | fan_min = (dimm_output_clamp * 100) / 14000; | 
|  | fan_min = max(fan_min, backside_params.output_min); | 
|  | if (backside_state.pwm < fan_min) { | 
|  | backside_state.pwm = fan_min; | 
|  | DBG(" -> applying clamp to backside fan now: %d  !\n", fan_min); | 
|  | set_pwm_fan(BACKSIDE_FAN_PWM_INDEX, fan_min); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the state structure for the DIMM temp control loop | 
|  | */ | 
|  | static int init_dimms_state(struct dimm_pid_state *state) | 
|  | { | 
|  | state->ticks = 1; | 
|  | state->first = 1; | 
|  | state->output = 4000; | 
|  |  | 
|  | state->monitor = attach_i2c_chip(XSERVE_DIMMS_LM87, "dimms_temp"); | 
|  | if (state->monitor == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (device_create_file(&of_dev->dev, &dev_attr_dimms_temperature)) | 
|  | printk(KERN_WARNING "Failed to create attribute file" | 
|  | " for DIMM temperature\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispose of the state data for the DIMM control loop | 
|  | */ | 
|  | static void dispose_dimms_state(struct dimm_pid_state *state) | 
|  | { | 
|  | if (state->monitor == NULL) | 
|  | return; | 
|  |  | 
|  | device_remove_file(&of_dev->dev, &dev_attr_dimms_temperature); | 
|  |  | 
|  | detach_i2c_chip(state->monitor); | 
|  | state->monitor = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Slots fan control loop | 
|  | */ | 
|  | static void do_monitor_slots(struct slots_pid_state *state) | 
|  | { | 
|  | s32 temp, integral, derivative; | 
|  | s64 integ_p, deriv_p, prop_p, sum; | 
|  | int i, rc; | 
|  |  | 
|  | if (--state->ticks != 0) | 
|  | return; | 
|  | state->ticks = SLOTS_PID_INTERVAL; | 
|  |  | 
|  | DBG("slots:\n"); | 
|  |  | 
|  | /* Check fan status */ | 
|  | rc = get_pwm_fan(SLOTS_FAN_PWM_INDEX); | 
|  | if (rc < 0) { | 
|  | printk(KERN_WARNING "Error %d reading slots fan !\n", rc); | 
|  | /* XXX What do we do now ? */ | 
|  | } else | 
|  | state->pwm = rc; | 
|  | DBG("  current pwm: %d\n", state->pwm); | 
|  |  | 
|  | /* Get some sensor readings */ | 
|  | temp = le16_to_cpu(i2c_smbus_read_word_data(state->monitor, | 
|  | DS1775_TEMP)) << 8; | 
|  | state->last_temp = temp; | 
|  | DBG("  temp: %d.%03d, target: %d.%03d\n", FIX32TOPRINT(temp), | 
|  | FIX32TOPRINT(SLOTS_PID_INPUT_TARGET)); | 
|  |  | 
|  | /* Store temperature and error in history array */ | 
|  | state->cur_sample = (state->cur_sample + 1) % SLOTS_PID_HISTORY_SIZE; | 
|  | state->sample_history[state->cur_sample] = temp; | 
|  | state->error_history[state->cur_sample] = temp - SLOTS_PID_INPUT_TARGET; | 
|  |  | 
|  | /* If first loop, fill the history table */ | 
|  | if (state->first) { | 
|  | for (i = 0; i < (SLOTS_PID_HISTORY_SIZE - 1); i++) { | 
|  | state->cur_sample = (state->cur_sample + 1) % | 
|  | SLOTS_PID_HISTORY_SIZE; | 
|  | state->sample_history[state->cur_sample] = temp; | 
|  | state->error_history[state->cur_sample] = | 
|  | temp - SLOTS_PID_INPUT_TARGET; | 
|  | } | 
|  | state->first = 0; | 
|  | } | 
|  |  | 
|  | /* Calculate the integral term */ | 
|  | sum = 0; | 
|  | integral = 0; | 
|  | for (i = 0; i < SLOTS_PID_HISTORY_SIZE; i++) | 
|  | integral += state->error_history[i]; | 
|  | integral *= SLOTS_PID_INTERVAL; | 
|  | DBG("  integral: %08x\n", integral); | 
|  | integ_p = ((s64)SLOTS_PID_G_r) * (s64)integral; | 
|  | DBG("   integ_p: %d\n", (int)(integ_p >> 36)); | 
|  | sum += integ_p; | 
|  |  | 
|  | /* Calculate the derivative term */ | 
|  | derivative = state->error_history[state->cur_sample] - | 
|  | state->error_history[(state->cur_sample + SLOTS_PID_HISTORY_SIZE - 1) | 
|  | % SLOTS_PID_HISTORY_SIZE]; | 
|  | derivative /= SLOTS_PID_INTERVAL; | 
|  | deriv_p = ((s64)SLOTS_PID_G_d) * (s64)derivative; | 
|  | DBG("   deriv_p: %d\n", (int)(deriv_p >> 36)); | 
|  | sum += deriv_p; | 
|  |  | 
|  | /* Calculate the proportional term */ | 
|  | prop_p = ((s64)SLOTS_PID_G_p) * (s64)(state->error_history[state->cur_sample]); | 
|  | DBG("   prop_p: %d\n", (int)(prop_p >> 36)); | 
|  | sum += prop_p; | 
|  |  | 
|  | /* Scale sum */ | 
|  | sum >>= 36; | 
|  |  | 
|  | DBG("   sum: %d\n", (int)sum); | 
|  | state->pwm = (s32)sum; | 
|  |  | 
|  | state->pwm = max(state->pwm, SLOTS_PID_OUTPUT_MIN); | 
|  | state->pwm = min(state->pwm, SLOTS_PID_OUTPUT_MAX); | 
|  |  | 
|  | DBG("** DRIVES PWM: %d\n", (int)state->pwm); | 
|  | set_pwm_fan(SLOTS_FAN_PWM_INDEX, state->pwm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the state structure for the slots bay fan control loop | 
|  | */ | 
|  | static int init_slots_state(struct slots_pid_state *state) | 
|  | { | 
|  | int err; | 
|  |  | 
|  | state->ticks = 1; | 
|  | state->first = 1; | 
|  | state->pwm = 50; | 
|  |  | 
|  | state->monitor = attach_i2c_chip(XSERVE_SLOTS_LM75, "slots_temp"); | 
|  | if (state->monitor == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | err = device_create_file(&of_dev->dev, &dev_attr_slots_temperature); | 
|  | err |= device_create_file(&of_dev->dev, &dev_attr_slots_fan_pwm); | 
|  | if (err) | 
|  | printk(KERN_WARNING "Failed to create attribute file(s)" | 
|  | " for slots bay fan\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispose of the state data for the slots control loop | 
|  | */ | 
|  | static void dispose_slots_state(struct slots_pid_state *state) | 
|  | { | 
|  | if (state->monitor == NULL) | 
|  | return; | 
|  |  | 
|  | device_remove_file(&of_dev->dev, &dev_attr_slots_temperature); | 
|  | device_remove_file(&of_dev->dev, &dev_attr_slots_fan_pwm); | 
|  |  | 
|  | detach_i2c_chip(state->monitor); | 
|  | state->monitor = NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | static int call_critical_overtemp(void) | 
|  | { | 
|  | char *argv[] = { critical_overtemp_path, NULL }; | 
|  | static char *envp[] = { "HOME=/", | 
|  | "TERM=linux", | 
|  | "PATH=/sbin:/usr/sbin:/bin:/usr/bin", | 
|  | NULL }; | 
|  |  | 
|  | return call_usermodehelper(critical_overtemp_path, | 
|  | argv, envp, UMH_WAIT_EXEC); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Here's the kernel thread that calls the various control loops | 
|  | */ | 
|  | static int main_control_loop(void *x) | 
|  | { | 
|  | DBG("main_control_loop started\n"); | 
|  |  | 
|  | mutex_lock(&driver_lock); | 
|  |  | 
|  | if (start_fcu() < 0) { | 
|  | printk(KERN_ERR "kfand: failed to start FCU\n"); | 
|  | mutex_unlock(&driver_lock); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Set the PCI fan once for now on non-RackMac */ | 
|  | if (!rackmac) | 
|  | set_pwm_fan(SLOTS_FAN_PWM_INDEX, SLOTS_FAN_DEFAULT_PWM); | 
|  |  | 
|  | /* Initialize ADCs */ | 
|  | initialize_adc(&cpu_state[0]); | 
|  | if (cpu_state[1].monitor != NULL) | 
|  | initialize_adc(&cpu_state[1]); | 
|  |  | 
|  | fcu_tickle_ticks = FCU_TICKLE_TICKS; | 
|  |  | 
|  | mutex_unlock(&driver_lock); | 
|  |  | 
|  | while (state == state_attached) { | 
|  | unsigned long elapsed, start; | 
|  |  | 
|  | start = jiffies; | 
|  |  | 
|  | mutex_lock(&driver_lock); | 
|  |  | 
|  | /* Tickle the FCU just in case */ | 
|  | if (--fcu_tickle_ticks < 0) { | 
|  | fcu_tickle_ticks = FCU_TICKLE_TICKS; | 
|  | tickle_fcu(); | 
|  | } | 
|  |  | 
|  | /* First, we always calculate the new DIMMs state on an Xserve */ | 
|  | if (rackmac) | 
|  | do_monitor_dimms(&dimms_state); | 
|  |  | 
|  | /* Then, the CPUs */ | 
|  | if (cpu_pid_type == CPU_PID_TYPE_COMBINED) | 
|  | do_monitor_cpu_combined(); | 
|  | else if (cpu_pid_type == CPU_PID_TYPE_RACKMAC) { | 
|  | do_monitor_cpu_rack(&cpu_state[0]); | 
|  | if (cpu_state[1].monitor != NULL) | 
|  | do_monitor_cpu_rack(&cpu_state[1]); | 
|  | // better deal with UP | 
|  | } else { | 
|  | do_monitor_cpu_split(&cpu_state[0]); | 
|  | if (cpu_state[1].monitor != NULL) | 
|  | do_monitor_cpu_split(&cpu_state[1]); | 
|  | // better deal with UP | 
|  | } | 
|  | /* Then, the rest */ | 
|  | do_monitor_backside(&backside_state); | 
|  | if (rackmac) | 
|  | do_monitor_slots(&slots_state); | 
|  | else | 
|  | do_monitor_drives(&drives_state); | 
|  | mutex_unlock(&driver_lock); | 
|  |  | 
|  | if (critical_state == 1) { | 
|  | printk(KERN_WARNING "Temperature control detected a critical condition\n"); | 
|  | printk(KERN_WARNING "Attempting to shut down...\n"); | 
|  | if (call_critical_overtemp()) { | 
|  | printk(KERN_WARNING "Can't call %s, power off now!\n", | 
|  | critical_overtemp_path); | 
|  | machine_power_off(); | 
|  | } | 
|  | } | 
|  | if (critical_state > 0) | 
|  | critical_state++; | 
|  | if (critical_state > MAX_CRITICAL_STATE) { | 
|  | printk(KERN_WARNING "Shutdown timed out, power off now !\n"); | 
|  | machine_power_off(); | 
|  | } | 
|  |  | 
|  | // FIXME: Deal with signals | 
|  | elapsed = jiffies - start; | 
|  | if (elapsed < HZ) | 
|  | schedule_timeout_interruptible(HZ - elapsed); | 
|  | } | 
|  |  | 
|  | out: | 
|  | DBG("main_control_loop ended\n"); | 
|  |  | 
|  | ctrl_task = 0; | 
|  | complete_and_exit(&ctrl_complete, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Dispose the control loops when tearing down | 
|  | */ | 
|  | static void dispose_control_loops(void) | 
|  | { | 
|  | dispose_cpu_state(&cpu_state[0]); | 
|  | dispose_cpu_state(&cpu_state[1]); | 
|  | dispose_backside_state(&backside_state); | 
|  | dispose_drives_state(&drives_state); | 
|  | dispose_slots_state(&slots_state); | 
|  | dispose_dimms_state(&dimms_state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the control loops. U3-0 i2c bus is up, so we can now | 
|  | * get to the various sensors | 
|  | */ | 
|  | static int create_control_loops(void) | 
|  | { | 
|  | struct device_node *np; | 
|  |  | 
|  | /* Count CPUs from the device-tree, we don't care how many are | 
|  | * actually used by Linux | 
|  | */ | 
|  | cpu_count = 0; | 
|  | for (np = NULL; NULL != (np = of_find_node_by_type(np, "cpu"));) | 
|  | cpu_count++; | 
|  |  | 
|  | DBG("counted %d CPUs in the device-tree\n", cpu_count); | 
|  |  | 
|  | /* Decide the type of PID algorithm to use based on the presence of | 
|  | * the pumps, though that may not be the best way, that is good enough | 
|  | * for now | 
|  | */ | 
|  | if (rackmac) | 
|  | cpu_pid_type = CPU_PID_TYPE_RACKMAC; | 
|  | else if (machine_is_compatible("PowerMac7,3") | 
|  | && (cpu_count > 1) | 
|  | && fcu_fans[CPUA_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID | 
|  | && fcu_fans[CPUB_PUMP_RPM_INDEX].id != FCU_FAN_ABSENT_ID) { | 
|  | printk(KERN_INFO "Liquid cooling pumps detected, using new algorithm !\n"); | 
|  | cpu_pid_type = CPU_PID_TYPE_COMBINED; | 
|  | } else | 
|  | cpu_pid_type = CPU_PID_TYPE_SPLIT; | 
|  |  | 
|  | /* Create control loops for everything. If any fail, everything | 
|  | * fails | 
|  | */ | 
|  | if (init_cpu_state(&cpu_state[0], 0)) | 
|  | goto fail; | 
|  | if (cpu_pid_type == CPU_PID_TYPE_COMBINED) | 
|  | fetch_cpu_pumps_minmax(); | 
|  |  | 
|  | if (cpu_count > 1 && init_cpu_state(&cpu_state[1], 1)) | 
|  | goto fail; | 
|  | if (init_backside_state(&backside_state)) | 
|  | goto fail; | 
|  | if (rackmac && init_dimms_state(&dimms_state)) | 
|  | goto fail; | 
|  | if (rackmac && init_slots_state(&slots_state)) | 
|  | goto fail; | 
|  | if (!rackmac && init_drives_state(&drives_state)) | 
|  | goto fail; | 
|  |  | 
|  | DBG("all control loops up !\n"); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | DBG("failure creating control loops, disposing\n"); | 
|  |  | 
|  | dispose_control_loops(); | 
|  |  | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start the control loops after everything is up, that is create | 
|  | * the thread that will make them run | 
|  | */ | 
|  | static void start_control_loops(void) | 
|  | { | 
|  | init_completion(&ctrl_complete); | 
|  |  | 
|  | ctrl_task = kthread_run(main_control_loop, NULL, "kfand"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop the control loops when tearing down | 
|  | */ | 
|  | static void stop_control_loops(void) | 
|  | { | 
|  | if (ctrl_task) | 
|  | wait_for_completion(&ctrl_complete); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach to the i2c FCU after detecting U3-1 bus | 
|  | */ | 
|  | static int attach_fcu(void) | 
|  | { | 
|  | fcu = attach_i2c_chip(FAN_CTRLER_ID, "fcu"); | 
|  | if (fcu == NULL) | 
|  | return -ENODEV; | 
|  |  | 
|  | DBG("FCU attached\n"); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detach from the i2c FCU when tearing down | 
|  | */ | 
|  | static void detach_fcu(void) | 
|  | { | 
|  | if (fcu) | 
|  | detach_i2c_chip(fcu); | 
|  | fcu = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attach to the i2c controller. We probe the various chips based | 
|  | * on the device-tree nodes and build everything for the driver to | 
|  | * run, we then kick the driver monitoring thread | 
|  | */ | 
|  | static int therm_pm72_attach(struct i2c_adapter *adapter) | 
|  | { | 
|  | mutex_lock(&driver_lock); | 
|  |  | 
|  | /* Check state */ | 
|  | if (state == state_detached) | 
|  | state = state_attaching; | 
|  | if (state != state_attaching) { | 
|  | mutex_unlock(&driver_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check if we are looking for one of these */ | 
|  | if (u3_0 == NULL && !strcmp(adapter->name, "u3 0")) { | 
|  | u3_0 = adapter; | 
|  | DBG("found U3-0\n"); | 
|  | if (k2 || !rackmac) | 
|  | if (create_control_loops()) | 
|  | u3_0 = NULL; | 
|  | } else if (u3_1 == NULL && !strcmp(adapter->name, "u3 1")) { | 
|  | u3_1 = adapter; | 
|  | DBG("found U3-1, attaching FCU\n"); | 
|  | if (attach_fcu()) | 
|  | u3_1 = NULL; | 
|  | } else if (k2 == NULL && !strcmp(adapter->name, "mac-io 0")) { | 
|  | k2 = adapter; | 
|  | DBG("Found K2\n"); | 
|  | if (u3_0 && rackmac) | 
|  | if (create_control_loops()) | 
|  | k2 = NULL; | 
|  | } | 
|  | /* We got all we need, start control loops */ | 
|  | if (u3_0 != NULL && u3_1 != NULL && (k2 || !rackmac)) { | 
|  | DBG("everything up, starting control loops\n"); | 
|  | state = state_attached; | 
|  | start_control_loops(); | 
|  | } | 
|  | mutex_unlock(&driver_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called on every adapter when the driver or the i2c controller | 
|  | * is going away. | 
|  | */ | 
|  | static int therm_pm72_detach(struct i2c_adapter *adapter) | 
|  | { | 
|  | mutex_lock(&driver_lock); | 
|  |  | 
|  | if (state != state_detached) | 
|  | state = state_detaching; | 
|  |  | 
|  | /* Stop control loops if any */ | 
|  | DBG("stopping control loops\n"); | 
|  | mutex_unlock(&driver_lock); | 
|  | stop_control_loops(); | 
|  | mutex_lock(&driver_lock); | 
|  |  | 
|  | if (u3_0 != NULL && !strcmp(adapter->name, "u3 0")) { | 
|  | DBG("lost U3-0, disposing control loops\n"); | 
|  | dispose_control_loops(); | 
|  | u3_0 = NULL; | 
|  | } | 
|  |  | 
|  | if (u3_1 != NULL && !strcmp(adapter->name, "u3 1")) { | 
|  | DBG("lost U3-1, detaching FCU\n"); | 
|  | detach_fcu(); | 
|  | u3_1 = NULL; | 
|  | } | 
|  | if (u3_0 == NULL && u3_1 == NULL) | 
|  | state = state_detached; | 
|  |  | 
|  | mutex_unlock(&driver_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int fan_check_loc_match(const char *loc, int fan) | 
|  | { | 
|  | char	tmp[64]; | 
|  | char	*c, *e; | 
|  |  | 
|  | strlcpy(tmp, fcu_fans[fan].loc, 64); | 
|  |  | 
|  | c = tmp; | 
|  | for (;;) { | 
|  | e = strchr(c, ','); | 
|  | if (e) | 
|  | *e = 0; | 
|  | if (strcmp(loc, c) == 0) | 
|  | return 1; | 
|  | if (e == NULL) | 
|  | break; | 
|  | c = e + 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void fcu_lookup_fans(struct device_node *fcu_node) | 
|  | { | 
|  | struct device_node *np = NULL; | 
|  | int i; | 
|  |  | 
|  | /* The table is filled by default with values that are suitable | 
|  | * for the old machines without device-tree informations. We scan | 
|  | * the device-tree and override those values with whatever is | 
|  | * there | 
|  | */ | 
|  |  | 
|  | DBG("Looking up FCU controls in device-tree...\n"); | 
|  |  | 
|  | while ((np = of_get_next_child(fcu_node, np)) != NULL) { | 
|  | int type = -1; | 
|  | const char *loc; | 
|  | const u32 *reg; | 
|  |  | 
|  | DBG(" control: %s, type: %s\n", np->name, np->type); | 
|  |  | 
|  | /* Detect control type */ | 
|  | if (!strcmp(np->type, "fan-rpm-control") || | 
|  | !strcmp(np->type, "fan-rpm")) | 
|  | type = FCU_FAN_RPM; | 
|  | if (!strcmp(np->type, "fan-pwm-control") || | 
|  | !strcmp(np->type, "fan-pwm")) | 
|  | type = FCU_FAN_PWM; | 
|  | /* Only care about fans for now */ | 
|  | if (type == -1) | 
|  | continue; | 
|  |  | 
|  | /* Lookup for a matching location */ | 
|  | loc = of_get_property(np, "location", NULL); | 
|  | reg = of_get_property(np, "reg", NULL); | 
|  | if (loc == NULL || reg == NULL) | 
|  | continue; | 
|  | DBG(" matching location: %s, reg: 0x%08x\n", loc, *reg); | 
|  |  | 
|  | for (i = 0; i < FCU_FAN_COUNT; i++) { | 
|  | int fan_id; | 
|  |  | 
|  | if (!fan_check_loc_match(loc, i)) | 
|  | continue; | 
|  | DBG(" location match, index: %d\n", i); | 
|  | fcu_fans[i].id = FCU_FAN_ABSENT_ID; | 
|  | if (type != fcu_fans[i].type) { | 
|  | printk(KERN_WARNING "therm_pm72: Fan type mismatch " | 
|  | "in device-tree for %s\n", np->full_name); | 
|  | break; | 
|  | } | 
|  | if (type == FCU_FAN_RPM) | 
|  | fan_id = ((*reg) - 0x10) / 2; | 
|  | else | 
|  | fan_id = ((*reg) - 0x30) / 2; | 
|  | if (fan_id > 7) { | 
|  | printk(KERN_WARNING "therm_pm72: Can't parse " | 
|  | "fan ID in device-tree for %s\n", np->full_name); | 
|  | break; | 
|  | } | 
|  | DBG(" fan id -> %d, type -> %d\n", fan_id, type); | 
|  | fcu_fans[i].id = fan_id; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now dump the array */ | 
|  | printk(KERN_INFO "Detected fan controls:\n"); | 
|  | for (i = 0; i < FCU_FAN_COUNT; i++) { | 
|  | if (fcu_fans[i].id == FCU_FAN_ABSENT_ID) | 
|  | continue; | 
|  | printk(KERN_INFO "  %d: %s fan, id %d, location: %s\n", i, | 
|  | fcu_fans[i].type == FCU_FAN_RPM ? "RPM" : "PWM", | 
|  | fcu_fans[i].id, fcu_fans[i].loc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int fcu_of_probe(struct of_device* dev, const struct of_device_id *match) | 
|  | { | 
|  | state = state_detached; | 
|  |  | 
|  | /* Lookup the fans in the device tree */ | 
|  | fcu_lookup_fans(dev->node); | 
|  |  | 
|  | /* Add the driver */ | 
|  | return i2c_add_driver(&therm_pm72_driver); | 
|  | } | 
|  |  | 
|  | static int fcu_of_remove(struct of_device* dev) | 
|  | { | 
|  | i2c_del_driver(&therm_pm72_driver); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct of_device_id fcu_match[] = | 
|  | { | 
|  | { | 
|  | .type		= "fcu", | 
|  | }, | 
|  | {}, | 
|  | }; | 
|  |  | 
|  | static struct of_platform_driver fcu_of_platform_driver = | 
|  | { | 
|  | .name 		= "temperature", | 
|  | .match_table	= fcu_match, | 
|  | .probe		= fcu_of_probe, | 
|  | .remove		= fcu_of_remove | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Check machine type, attach to i2c controller | 
|  | */ | 
|  | static int __init therm_pm72_init(void) | 
|  | { | 
|  | struct device_node *np; | 
|  |  | 
|  | rackmac = machine_is_compatible("RackMac3,1"); | 
|  |  | 
|  | if (!machine_is_compatible("PowerMac7,2") && | 
|  | !machine_is_compatible("PowerMac7,3") && | 
|  | !rackmac) | 
|  | return -ENODEV; | 
|  |  | 
|  | printk(KERN_INFO "PowerMac G5 Thermal control driver %s\n", VERSION); | 
|  |  | 
|  | np = of_find_node_by_type(NULL, "fcu"); | 
|  | if (np == NULL) { | 
|  | /* Some machines have strangely broken device-tree */ | 
|  | np = of_find_node_by_path("/u3@0,f8000000/i2c@f8001000/fan@15e"); | 
|  | if (np == NULL) { | 
|  | printk(KERN_ERR "Can't find FCU in device-tree !\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  | } | 
|  | of_dev = of_platform_device_create(np, "temperature", NULL); | 
|  | if (of_dev == NULL) { | 
|  | printk(KERN_ERR "Can't register FCU platform device !\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | of_register_platform_driver(&fcu_of_platform_driver); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __exit therm_pm72_exit(void) | 
|  | { | 
|  | of_unregister_platform_driver(&fcu_of_platform_driver); | 
|  |  | 
|  | if (of_dev) | 
|  | of_device_unregister(of_dev); | 
|  | } | 
|  |  | 
|  | module_init(therm_pm72_init); | 
|  | module_exit(therm_pm72_exit); | 
|  |  | 
|  | MODULE_AUTHOR("Benjamin Herrenschmidt <benh@kernel.crashing.org>"); | 
|  | MODULE_DESCRIPTION("Driver for Apple's PowerMac G5 thermal control"); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  |