| /** | 
 |  * eCryptfs: Linux filesystem encryption layer | 
 |  * | 
 |  * Copyright (C) 1997-2004 Erez Zadok | 
 |  * Copyright (C) 2001-2004 Stony Brook University | 
 |  * Copyright (C) 2004-2007 International Business Machines Corp. | 
 |  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com> | 
 |  *   		Michael C. Thompson <mcthomps@us.ibm.com> | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation; either version 2 of the | 
 |  * License, or (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, but | 
 |  * WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA | 
 |  * 02111-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/fs.h> | 
 | #include <linux/mount.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/random.h> | 
 | #include <linux/compiler.h> | 
 | #include <linux/key.h> | 
 | #include <linux/namei.h> | 
 | #include <linux/crypto.h> | 
 | #include <linux/file.h> | 
 | #include <linux/scatterlist.h> | 
 | #include "ecryptfs_kernel.h" | 
 |  | 
 | static int | 
 | ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			     struct page *dst_page, int dst_offset, | 
 | 			     struct page *src_page, int src_offset, int size, | 
 | 			     unsigned char *iv); | 
 | static int | 
 | ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			     struct page *dst_page, int dst_offset, | 
 | 			     struct page *src_page, int src_offset, int size, | 
 | 			     unsigned char *iv); | 
 |  | 
 | /** | 
 |  * ecryptfs_to_hex | 
 |  * @dst: Buffer to take hex character representation of contents of | 
 |  *       src; must be at least of size (src_size * 2) | 
 |  * @src: Buffer to be converted to a hex string respresentation | 
 |  * @src_size: number of bytes to convert | 
 |  */ | 
 | void ecryptfs_to_hex(char *dst, char *src, size_t src_size) | 
 | { | 
 | 	int x; | 
 |  | 
 | 	for (x = 0; x < src_size; x++) | 
 | 		sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]); | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_from_hex | 
 |  * @dst: Buffer to take the bytes from src hex; must be at least of | 
 |  *       size (src_size / 2) | 
 |  * @src: Buffer to be converted from a hex string respresentation to raw value | 
 |  * @dst_size: size of dst buffer, or number of hex characters pairs to convert | 
 |  */ | 
 | void ecryptfs_from_hex(char *dst, char *src, int dst_size) | 
 | { | 
 | 	int x; | 
 | 	char tmp[3] = { 0, }; | 
 |  | 
 | 	for (x = 0; x < dst_size; x++) { | 
 | 		tmp[0] = src[x * 2]; | 
 | 		tmp[1] = src[x * 2 + 1]; | 
 | 		dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_calculate_md5 - calculates the md5 of @src | 
 |  * @dst: Pointer to 16 bytes of allocated memory | 
 |  * @crypt_stat: Pointer to crypt_stat struct for the current inode | 
 |  * @src: Data to be md5'd | 
 |  * @len: Length of @src | 
 |  * | 
 |  * Uses the allocated crypto context that crypt_stat references to | 
 |  * generate the MD5 sum of the contents of src. | 
 |  */ | 
 | static int ecryptfs_calculate_md5(char *dst, | 
 | 				  struct ecryptfs_crypt_stat *crypt_stat, | 
 | 				  char *src, int len) | 
 | { | 
 | 	struct scatterlist sg; | 
 | 	struct hash_desc desc = { | 
 | 		.tfm = crypt_stat->hash_tfm, | 
 | 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP | 
 | 	}; | 
 | 	int rc = 0; | 
 |  | 
 | 	mutex_lock(&crypt_stat->cs_hash_tfm_mutex); | 
 | 	sg_init_one(&sg, (u8 *)src, len); | 
 | 	if (!desc.tfm) { | 
 | 		desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0, | 
 | 					     CRYPTO_ALG_ASYNC); | 
 | 		if (IS_ERR(desc.tfm)) { | 
 | 			rc = PTR_ERR(desc.tfm); | 
 | 			ecryptfs_printk(KERN_ERR, "Error attempting to " | 
 | 					"allocate crypto context; rc = [%d]\n", | 
 | 					rc); | 
 | 			goto out; | 
 | 		} | 
 | 		crypt_stat->hash_tfm = desc.tfm; | 
 | 	} | 
 | 	crypto_hash_init(&desc); | 
 | 	crypto_hash_update(&desc, &sg, len); | 
 | 	crypto_hash_final(&desc, dst); | 
 | 	mutex_unlock(&crypt_stat->cs_hash_tfm_mutex); | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | int ecryptfs_crypto_api_algify_cipher_name(char **algified_name, | 
 | 					   char *cipher_name, | 
 | 					   char *chaining_modifier) | 
 | { | 
 | 	int cipher_name_len = strlen(cipher_name); | 
 | 	int chaining_modifier_len = strlen(chaining_modifier); | 
 | 	int algified_name_len; | 
 | 	int rc; | 
 |  | 
 | 	algified_name_len = (chaining_modifier_len + cipher_name_len + 3); | 
 | 	(*algified_name) = kmalloc(algified_name_len, GFP_KERNEL); | 
 | 	if (!(*algified_name)) { | 
 | 		rc = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	snprintf((*algified_name), algified_name_len, "%s(%s)", | 
 | 		 chaining_modifier, cipher_name); | 
 | 	rc = 0; | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_derive_iv | 
 |  * @iv: destination for the derived iv vale | 
 |  * @crypt_stat: Pointer to crypt_stat struct for the current inode | 
 |  * @offset: Offset of the page whose's iv we are to derive | 
 |  * | 
 |  * Generate the initialization vector from the given root IV and page | 
 |  * offset. | 
 |  * | 
 |  * Returns zero on success; non-zero on error. | 
 |  */ | 
 | static int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			      pgoff_t offset) | 
 | { | 
 | 	int rc = 0; | 
 | 	char dst[MD5_DIGEST_SIZE]; | 
 | 	char src[ECRYPTFS_MAX_IV_BYTES + 16]; | 
 |  | 
 | 	if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 		ecryptfs_printk(KERN_DEBUG, "root iv:\n"); | 
 | 		ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes); | 
 | 	} | 
 | 	/* TODO: It is probably secure to just cast the least | 
 | 	 * significant bits of the root IV into an unsigned long and | 
 | 	 * add the offset to that rather than go through all this | 
 | 	 * hashing business. -Halcrow */ | 
 | 	memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes); | 
 | 	memset((src + crypt_stat->iv_bytes), 0, 16); | 
 | 	snprintf((src + crypt_stat->iv_bytes), 16, "%ld", offset); | 
 | 	if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 		ecryptfs_printk(KERN_DEBUG, "source:\n"); | 
 | 		ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16)); | 
 | 	} | 
 | 	rc = ecryptfs_calculate_md5(dst, crypt_stat, src, | 
 | 				    (crypt_stat->iv_bytes + 16)); | 
 | 	if (rc) { | 
 | 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute " | 
 | 				"MD5 while generating IV for a page\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	memcpy(iv, dst, crypt_stat->iv_bytes); | 
 | 	if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 		ecryptfs_printk(KERN_DEBUG, "derived iv:\n"); | 
 | 		ecryptfs_dump_hex(iv, crypt_stat->iv_bytes); | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_init_crypt_stat | 
 |  * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
 |  * | 
 |  * Initialize the crypt_stat structure. | 
 |  */ | 
 | void | 
 | ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); | 
 | 	mutex_init(&crypt_stat->cs_mutex); | 
 | 	mutex_init(&crypt_stat->cs_tfm_mutex); | 
 | 	mutex_init(&crypt_stat->cs_hash_tfm_mutex); | 
 | 	crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_destruct_crypt_stat | 
 |  * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
 |  * | 
 |  * Releases all memory associated with a crypt_stat struct. | 
 |  */ | 
 | void ecryptfs_destruct_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	if (crypt_stat->tfm) | 
 | 		crypto_free_blkcipher(crypt_stat->tfm); | 
 | 	if (crypt_stat->hash_tfm) | 
 | 		crypto_free_hash(crypt_stat->hash_tfm); | 
 | 	memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat)); | 
 | } | 
 |  | 
 | void ecryptfs_destruct_mount_crypt_stat( | 
 | 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
 | { | 
 | 	if (mount_crypt_stat->global_auth_tok_key) | 
 | 		key_put(mount_crypt_stat->global_auth_tok_key); | 
 | 	if (mount_crypt_stat->global_key_tfm) | 
 | 		crypto_free_blkcipher(mount_crypt_stat->global_key_tfm); | 
 | 	memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat)); | 
 | } | 
 |  | 
 | /** | 
 |  * virt_to_scatterlist | 
 |  * @addr: Virtual address | 
 |  * @size: Size of data; should be an even multiple of the block size | 
 |  * @sg: Pointer to scatterlist array; set to NULL to obtain only | 
 |  *      the number of scatterlist structs required in array | 
 |  * @sg_size: Max array size | 
 |  * | 
 |  * Fills in a scatterlist array with page references for a passed | 
 |  * virtual address. | 
 |  * | 
 |  * Returns the number of scatterlist structs in array used | 
 |  */ | 
 | int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg, | 
 | 			int sg_size) | 
 | { | 
 | 	int i = 0; | 
 | 	struct page *pg; | 
 | 	int offset; | 
 | 	int remainder_of_page; | 
 |  | 
 | 	while (size > 0 && i < sg_size) { | 
 | 		pg = virt_to_page(addr); | 
 | 		offset = offset_in_page(addr); | 
 | 		if (sg) { | 
 | 			sg[i].page = pg; | 
 | 			sg[i].offset = offset; | 
 | 		} | 
 | 		remainder_of_page = PAGE_CACHE_SIZE - offset; | 
 | 		if (size >= remainder_of_page) { | 
 | 			if (sg) | 
 | 				sg[i].length = remainder_of_page; | 
 | 			addr += remainder_of_page; | 
 | 			size -= remainder_of_page; | 
 | 		} else { | 
 | 			if (sg) | 
 | 				sg[i].length = size; | 
 | 			addr += size; | 
 | 			size = 0; | 
 | 		} | 
 | 		i++; | 
 | 	} | 
 | 	if (size > 0) | 
 | 		return -ENOMEM; | 
 | 	return i; | 
 | } | 
 |  | 
 | /** | 
 |  * encrypt_scatterlist | 
 |  * @crypt_stat: Pointer to the crypt_stat struct to initialize. | 
 |  * @dest_sg: Destination of encrypted data | 
 |  * @src_sg: Data to be encrypted | 
 |  * @size: Length of data to be encrypted | 
 |  * @iv: iv to use during encryption | 
 |  * | 
 |  * Returns the number of bytes encrypted; negative value on error | 
 |  */ | 
 | static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			       struct scatterlist *dest_sg, | 
 | 			       struct scatterlist *src_sg, int size, | 
 | 			       unsigned char *iv) | 
 | { | 
 | 	struct blkcipher_desc desc = { | 
 | 		.tfm = crypt_stat->tfm, | 
 | 		.info = iv, | 
 | 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP | 
 | 	}; | 
 | 	int rc = 0; | 
 |  | 
 | 	BUG_ON(!crypt_stat || !crypt_stat->tfm | 
 | 	       || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED)); | 
 | 	if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 		ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n", | 
 | 				crypt_stat->key_size); | 
 | 		ecryptfs_dump_hex(crypt_stat->key, | 
 | 				  crypt_stat->key_size); | 
 | 	} | 
 | 	/* Consider doing this once, when the file is opened */ | 
 | 	mutex_lock(&crypt_stat->cs_tfm_mutex); | 
 | 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, | 
 | 				     crypt_stat->key_size); | 
 | 	if (rc) { | 
 | 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", | 
 | 				rc); | 
 | 		mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size); | 
 | 	crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size); | 
 | 	mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void | 
 | ecryptfs_extent_to_lwr_pg_idx_and_offset(unsigned long *lower_page_idx, | 
 | 					 int *byte_offset, | 
 | 					 struct ecryptfs_crypt_stat *crypt_stat, | 
 | 					 unsigned long extent_num) | 
 | { | 
 | 	unsigned long lower_extent_num; | 
 | 	int extents_occupied_by_headers_at_front; | 
 | 	int bytes_occupied_by_headers_at_front; | 
 | 	int extent_offset; | 
 | 	int extents_per_page; | 
 |  | 
 | 	bytes_occupied_by_headers_at_front = | 
 | 		( crypt_stat->header_extent_size | 
 | 		  * crypt_stat->num_header_extents_at_front ); | 
 | 	extents_occupied_by_headers_at_front = | 
 | 		( bytes_occupied_by_headers_at_front | 
 | 		  / crypt_stat->extent_size ); | 
 | 	lower_extent_num = extents_occupied_by_headers_at_front + extent_num; | 
 | 	extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; | 
 | 	(*lower_page_idx) = lower_extent_num / extents_per_page; | 
 | 	extent_offset = lower_extent_num % extents_per_page; | 
 | 	(*byte_offset) = extent_offset * crypt_stat->extent_size; | 
 | 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->header_extent_size = " | 
 | 			"[%d]\n", crypt_stat->header_extent_size); | 
 | 	ecryptfs_printk(KERN_DEBUG, " * crypt_stat->" | 
 | 			"num_header_extents_at_front = [%d]\n", | 
 | 			crypt_stat->num_header_extents_at_front); | 
 | 	ecryptfs_printk(KERN_DEBUG, " * extents_occupied_by_headers_at_" | 
 | 			"front = [%d]\n", extents_occupied_by_headers_at_front); | 
 | 	ecryptfs_printk(KERN_DEBUG, " * lower_extent_num = [0x%.16x]\n", | 
 | 			lower_extent_num); | 
 | 	ecryptfs_printk(KERN_DEBUG, " * extents_per_page = [%d]\n", | 
 | 			extents_per_page); | 
 | 	ecryptfs_printk(KERN_DEBUG, " * (*lower_page_idx) = [0x%.16x]\n", | 
 | 			(*lower_page_idx)); | 
 | 	ecryptfs_printk(KERN_DEBUG, " * extent_offset = [%d]\n", | 
 | 			extent_offset); | 
 | 	ecryptfs_printk(KERN_DEBUG, " * (*byte_offset) = [%d]\n", | 
 | 			(*byte_offset)); | 
 | } | 
 |  | 
 | static int ecryptfs_write_out_page(struct ecryptfs_page_crypt_context *ctx, | 
 | 				   struct page *lower_page, | 
 | 				   struct inode *lower_inode, | 
 | 				   int byte_offset_in_page, int bytes_to_write) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) { | 
 | 		rc = ecryptfs_commit_lower_page(lower_page, lower_inode, | 
 | 						ctx->param.lower_file, | 
 | 						byte_offset_in_page, | 
 | 						bytes_to_write); | 
 | 		if (rc) { | 
 | 			ecryptfs_printk(KERN_ERR, "Error calling lower " | 
 | 					"commit; rc = [%d]\n", rc); | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		rc = ecryptfs_writepage_and_release_lower_page(lower_page, | 
 | 							       lower_inode, | 
 | 							       ctx->param.wbc); | 
 | 		if (rc) { | 
 | 			ecryptfs_printk(KERN_ERR, "Error calling lower " | 
 | 					"writepage(); rc = [%d]\n", rc); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int ecryptfs_read_in_page(struct ecryptfs_page_crypt_context *ctx, | 
 | 				 struct page **lower_page, | 
 | 				 struct inode *lower_inode, | 
 | 				 unsigned long lower_page_idx, | 
 | 				 int byte_offset_in_page) | 
 | { | 
 | 	int rc = 0; | 
 |  | 
 | 	if (ctx->mode == ECRYPTFS_PREPARE_COMMIT_MODE) { | 
 | 		/* TODO: Limit this to only the data extents that are | 
 | 		 * needed */ | 
 | 		rc = ecryptfs_get_lower_page(lower_page, lower_inode, | 
 | 					     ctx->param.lower_file, | 
 | 					     lower_page_idx, | 
 | 					     byte_offset_in_page, | 
 | 					     (PAGE_CACHE_SIZE | 
 | 					      - byte_offset_in_page)); | 
 | 		if (rc) { | 
 | 			ecryptfs_printk( | 
 | 				KERN_ERR, "Error attempting to grab, map, " | 
 | 				"and prepare_write lower page with index " | 
 | 				"[0x%.16x]; rc = [%d]\n", lower_page_idx, rc); | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		*lower_page = grab_cache_page(lower_inode->i_mapping, | 
 | 					      lower_page_idx); | 
 | 		if (!(*lower_page)) { | 
 | 			rc = -EINVAL; | 
 | 			ecryptfs_printk( | 
 | 				KERN_ERR, "Error attempting to grab and map " | 
 | 				"lower page with index [0x%.16x]; rc = [%d]\n", | 
 | 				lower_page_idx, rc); | 
 | 			goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_encrypt_page | 
 |  * @ctx: The context of the page | 
 |  * | 
 |  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note | 
 |  * that eCryptfs pages may straddle the lower pages -- for instance, | 
 |  * if the file was created on a machine with an 8K page size | 
 |  * (resulting in an 8K header), and then the file is copied onto a | 
 |  * host with a 32K page size, then when reading page 0 of the eCryptfs | 
 |  * file, 24K of page 0 of the lower file will be read and decrypted, | 
 |  * and then 8K of page 1 of the lower file will be read and decrypted. | 
 |  * | 
 |  * The actual operations performed on each page depends on the | 
 |  * contents of the ecryptfs_page_crypt_context struct. | 
 |  * | 
 |  * Returns zero on success; negative on error | 
 |  */ | 
 | int ecryptfs_encrypt_page(struct ecryptfs_page_crypt_context *ctx) | 
 | { | 
 | 	char extent_iv[ECRYPTFS_MAX_IV_BYTES]; | 
 | 	unsigned long base_extent; | 
 | 	unsigned long extent_offset = 0; | 
 | 	unsigned long lower_page_idx = 0; | 
 | 	unsigned long prior_lower_page_idx = 0; | 
 | 	struct page *lower_page; | 
 | 	struct inode *lower_inode; | 
 | 	struct ecryptfs_inode_info *inode_info; | 
 | 	struct ecryptfs_crypt_stat *crypt_stat; | 
 | 	int rc = 0; | 
 | 	int lower_byte_offset = 0; | 
 | 	int orig_byte_offset = 0; | 
 | 	int num_extents_per_page; | 
 | #define ECRYPTFS_PAGE_STATE_UNREAD    0 | 
 | #define ECRYPTFS_PAGE_STATE_READ      1 | 
 | #define ECRYPTFS_PAGE_STATE_MODIFIED  2 | 
 | #define ECRYPTFS_PAGE_STATE_WRITTEN   3 | 
 | 	int page_state; | 
 |  | 
 | 	lower_inode = ecryptfs_inode_to_lower(ctx->page->mapping->host); | 
 | 	inode_info = ecryptfs_inode_to_private(ctx->page->mapping->host); | 
 | 	crypt_stat = &inode_info->crypt_stat; | 
 | 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { | 
 | 		rc = ecryptfs_copy_page_to_lower(ctx->page, lower_inode, | 
 | 						 ctx->param.lower_file); | 
 | 		if (rc) | 
 | 			ecryptfs_printk(KERN_ERR, "Error attempting to copy " | 
 | 					"page at index [0x%.16x]\n", | 
 | 					ctx->page->index); | 
 | 		goto out; | 
 | 	} | 
 | 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; | 
 | 	base_extent = (ctx->page->index * num_extents_per_page); | 
 | 	page_state = ECRYPTFS_PAGE_STATE_UNREAD; | 
 | 	while (extent_offset < num_extents_per_page) { | 
 | 		ecryptfs_extent_to_lwr_pg_idx_and_offset( | 
 | 			&lower_page_idx, &lower_byte_offset, crypt_stat, | 
 | 			(base_extent + extent_offset)); | 
 | 		if (prior_lower_page_idx != lower_page_idx | 
 | 		    && page_state == ECRYPTFS_PAGE_STATE_MODIFIED) { | 
 | 			rc = ecryptfs_write_out_page(ctx, lower_page, | 
 | 						     lower_inode, | 
 | 						     orig_byte_offset, | 
 | 						     (PAGE_CACHE_SIZE | 
 | 						      - orig_byte_offset)); | 
 | 			if (rc) { | 
 | 				ecryptfs_printk(KERN_ERR, "Error attempting " | 
 | 						"to write out page; rc = [%d]" | 
 | 						"\n", rc); | 
 | 				goto out; | 
 | 			} | 
 | 			page_state = ECRYPTFS_PAGE_STATE_WRITTEN; | 
 | 		} | 
 | 		if (page_state == ECRYPTFS_PAGE_STATE_UNREAD | 
 | 		    || page_state == ECRYPTFS_PAGE_STATE_WRITTEN) { | 
 | 			rc = ecryptfs_read_in_page(ctx, &lower_page, | 
 | 						   lower_inode, lower_page_idx, | 
 | 						   lower_byte_offset); | 
 | 			if (rc) { | 
 | 				ecryptfs_printk(KERN_ERR, "Error attempting " | 
 | 						"to read in lower page with " | 
 | 						"index [0x%.16x]; rc = [%d]\n", | 
 | 						lower_page_idx, rc); | 
 | 				goto out; | 
 | 			} | 
 | 			orig_byte_offset = lower_byte_offset; | 
 | 			prior_lower_page_idx = lower_page_idx; | 
 | 			page_state = ECRYPTFS_PAGE_STATE_READ; | 
 | 		} | 
 | 		BUG_ON(!(page_state == ECRYPTFS_PAGE_STATE_MODIFIED | 
 | 			 || page_state == ECRYPTFS_PAGE_STATE_READ)); | 
 | 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat, | 
 | 					(base_extent + extent_offset)); | 
 | 		if (rc) { | 
 | 			ecryptfs_printk(KERN_ERR, "Error attempting to " | 
 | 					"derive IV for extent [0x%.16x]; " | 
 | 					"rc = [%d]\n", | 
 | 					(base_extent + extent_offset), rc); | 
 | 			goto out; | 
 | 		} | 
 | 		if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 			ecryptfs_printk(KERN_DEBUG, "Encrypting extent " | 
 | 					"with iv:\n"); | 
 | 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); | 
 | 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " | 
 | 					"encryption:\n"); | 
 | 			ecryptfs_dump_hex((char *) | 
 | 					  (page_address(ctx->page) | 
 | 					   + (extent_offset | 
 | 					      * crypt_stat->extent_size)), 8); | 
 | 		} | 
 | 		rc = ecryptfs_encrypt_page_offset( | 
 | 			crypt_stat, lower_page, lower_byte_offset, ctx->page, | 
 | 			(extent_offset * crypt_stat->extent_size), | 
 | 			crypt_stat->extent_size, extent_iv); | 
 | 		ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; " | 
 | 				"rc = [%d]\n", | 
 | 				(base_extent + extent_offset), rc); | 
 | 		if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " | 
 | 					"encryption:\n"); | 
 | 			ecryptfs_dump_hex((char *)(page_address(lower_page) | 
 | 						   + lower_byte_offset), 8); | 
 | 		} | 
 | 		page_state = ECRYPTFS_PAGE_STATE_MODIFIED; | 
 | 		extent_offset++; | 
 | 	} | 
 | 	BUG_ON(orig_byte_offset != 0); | 
 | 	rc = ecryptfs_write_out_page(ctx, lower_page, lower_inode, 0, | 
 | 				     (lower_byte_offset | 
 | 				      + crypt_stat->extent_size)); | 
 | 	if (rc) { | 
 | 		ecryptfs_printk(KERN_ERR, "Error attempting to write out " | 
 | 				"page; rc = [%d]\n", rc); | 
 | 				goto out; | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_decrypt_page | 
 |  * @file: The ecryptfs file | 
 |  * @page: The page in ecryptfs to decrypt | 
 |  * | 
 |  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note | 
 |  * that eCryptfs pages may straddle the lower pages -- for instance, | 
 |  * if the file was created on a machine with an 8K page size | 
 |  * (resulting in an 8K header), and then the file is copied onto a | 
 |  * host with a 32K page size, then when reading page 0 of the eCryptfs | 
 |  * file, 24K of page 0 of the lower file will be read and decrypted, | 
 |  * and then 8K of page 1 of the lower file will be read and decrypted. | 
 |  * | 
 |  * Returns zero on success; negative on error | 
 |  */ | 
 | int ecryptfs_decrypt_page(struct file *file, struct page *page) | 
 | { | 
 | 	char extent_iv[ECRYPTFS_MAX_IV_BYTES]; | 
 | 	unsigned long base_extent; | 
 | 	unsigned long extent_offset = 0; | 
 | 	unsigned long lower_page_idx = 0; | 
 | 	unsigned long prior_lower_page_idx = 0; | 
 | 	struct page *lower_page; | 
 | 	char *lower_page_virt = NULL; | 
 | 	struct inode *lower_inode; | 
 | 	struct ecryptfs_crypt_stat *crypt_stat; | 
 | 	int rc = 0; | 
 | 	int byte_offset; | 
 | 	int num_extents_per_page; | 
 | 	int page_state; | 
 |  | 
 | 	crypt_stat = &(ecryptfs_inode_to_private( | 
 | 			       page->mapping->host)->crypt_stat); | 
 | 	lower_inode = ecryptfs_inode_to_lower(page->mapping->host); | 
 | 	if (!(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { | 
 | 		rc = ecryptfs_do_readpage(file, page, page->index); | 
 | 		if (rc) | 
 | 			ecryptfs_printk(KERN_ERR, "Error attempting to copy " | 
 | 					"page at index [0x%.16x]\n", | 
 | 					page->index); | 
 | 		goto out; | 
 | 	} | 
 | 	num_extents_per_page = PAGE_CACHE_SIZE / crypt_stat->extent_size; | 
 | 	base_extent = (page->index * num_extents_per_page); | 
 | 	lower_page_virt = kmem_cache_alloc(ecryptfs_lower_page_cache, | 
 | 					   GFP_KERNEL); | 
 | 	if (!lower_page_virt) { | 
 | 		rc = -ENOMEM; | 
 | 		ecryptfs_printk(KERN_ERR, "Error getting page for encrypted " | 
 | 				"lower page(s)\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	lower_page = virt_to_page(lower_page_virt); | 
 | 	page_state = ECRYPTFS_PAGE_STATE_UNREAD; | 
 | 	while (extent_offset < num_extents_per_page) { | 
 | 		ecryptfs_extent_to_lwr_pg_idx_and_offset( | 
 | 			&lower_page_idx, &byte_offset, crypt_stat, | 
 | 			(base_extent + extent_offset)); | 
 | 		if (prior_lower_page_idx != lower_page_idx | 
 | 		    || page_state == ECRYPTFS_PAGE_STATE_UNREAD) { | 
 | 			rc = ecryptfs_do_readpage(file, lower_page, | 
 | 						  lower_page_idx); | 
 | 			if (rc) { | 
 | 				ecryptfs_printk(KERN_ERR, "Error reading " | 
 | 						"lower encrypted page; rc = " | 
 | 						"[%d]\n", rc); | 
 | 				goto out; | 
 | 			} | 
 | 			prior_lower_page_idx = lower_page_idx; | 
 | 			page_state = ECRYPTFS_PAGE_STATE_READ; | 
 | 		} | 
 | 		rc = ecryptfs_derive_iv(extent_iv, crypt_stat, | 
 | 					(base_extent + extent_offset)); | 
 | 		if (rc) { | 
 | 			ecryptfs_printk(KERN_ERR, "Error attempting to " | 
 | 					"derive IV for extent [0x%.16x]; rc = " | 
 | 					"[%d]\n", | 
 | 					(base_extent + extent_offset), rc); | 
 | 			goto out; | 
 | 		} | 
 | 		if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 			ecryptfs_printk(KERN_DEBUG, "Decrypting extent " | 
 | 					"with iv:\n"); | 
 | 			ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes); | 
 | 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes before " | 
 | 					"decryption:\n"); | 
 | 			ecryptfs_dump_hex((lower_page_virt + byte_offset), 8); | 
 | 		} | 
 | 		rc = ecryptfs_decrypt_page_offset(crypt_stat, page, | 
 | 						  (extent_offset | 
 | 						   * crypt_stat->extent_size), | 
 | 						  lower_page, byte_offset, | 
 | 						  crypt_stat->extent_size, | 
 | 						  extent_iv); | 
 | 		if (rc != crypt_stat->extent_size) { | 
 | 			ecryptfs_printk(KERN_ERR, "Error attempting to " | 
 | 					"decrypt extent [0x%.16x]\n", | 
 | 					(base_extent + extent_offset)); | 
 | 			goto out; | 
 | 		} | 
 | 		rc = 0; | 
 | 		if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 			ecryptfs_printk(KERN_DEBUG, "First 8 bytes after " | 
 | 					"decryption:\n"); | 
 | 			ecryptfs_dump_hex((char *)(page_address(page) | 
 | 						   + byte_offset), 8); | 
 | 		} | 
 | 		extent_offset++; | 
 | 	} | 
 | out: | 
 | 	if (lower_page_virt) | 
 | 		kmem_cache_free(ecryptfs_lower_page_cache, lower_page_virt); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * decrypt_scatterlist | 
 |  * | 
 |  * Returns the number of bytes decrypted; negative value on error | 
 |  */ | 
 | static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			       struct scatterlist *dest_sg, | 
 | 			       struct scatterlist *src_sg, int size, | 
 | 			       unsigned char *iv) | 
 | { | 
 | 	struct blkcipher_desc desc = { | 
 | 		.tfm = crypt_stat->tfm, | 
 | 		.info = iv, | 
 | 		.flags = CRYPTO_TFM_REQ_MAY_SLEEP | 
 | 	}; | 
 | 	int rc = 0; | 
 |  | 
 | 	/* Consider doing this once, when the file is opened */ | 
 | 	mutex_lock(&crypt_stat->cs_tfm_mutex); | 
 | 	rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key, | 
 | 				     crypt_stat->key_size); | 
 | 	if (rc) { | 
 | 		ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n", | 
 | 				rc); | 
 | 		mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size); | 
 | 	rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size); | 
 | 	mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
 | 	if (rc) { | 
 | 		ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n", | 
 | 				rc); | 
 | 		goto out; | 
 | 	} | 
 | 	rc = size; | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_encrypt_page_offset | 
 |  * | 
 |  * Returns the number of bytes encrypted | 
 |  */ | 
 | static int | 
 | ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			     struct page *dst_page, int dst_offset, | 
 | 			     struct page *src_page, int src_offset, int size, | 
 | 			     unsigned char *iv) | 
 | { | 
 | 	struct scatterlist src_sg, dst_sg; | 
 |  | 
 | 	src_sg.page = src_page; | 
 | 	src_sg.offset = src_offset; | 
 | 	src_sg.length = size; | 
 | 	dst_sg.page = dst_page; | 
 | 	dst_sg.offset = dst_offset; | 
 | 	dst_sg.length = size; | 
 | 	return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_decrypt_page_offset | 
 |  * | 
 |  * Returns the number of bytes decrypted | 
 |  */ | 
 | static int | 
 | ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			     struct page *dst_page, int dst_offset, | 
 | 			     struct page *src_page, int src_offset, int size, | 
 | 			     unsigned char *iv) | 
 | { | 
 | 	struct scatterlist src_sg, dst_sg; | 
 |  | 
 | 	src_sg.page = src_page; | 
 | 	src_sg.offset = src_offset; | 
 | 	src_sg.length = size; | 
 | 	dst_sg.page = dst_page; | 
 | 	dst_sg.offset = dst_offset; | 
 | 	dst_sg.length = size; | 
 | 	return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv); | 
 | } | 
 |  | 
 | #define ECRYPTFS_MAX_SCATTERLIST_LEN 4 | 
 |  | 
 | /** | 
 |  * ecryptfs_init_crypt_ctx | 
 |  * @crypt_stat: Uninitilized crypt stats structure | 
 |  * | 
 |  * Initialize the crypto context. | 
 |  * | 
 |  * TODO: Performance: Keep a cache of initialized cipher contexts; | 
 |  * only init if needed | 
 |  */ | 
 | int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	char *full_alg_name; | 
 | 	int rc = -EINVAL; | 
 |  | 
 | 	if (!crypt_stat->cipher) { | 
 | 		ecryptfs_printk(KERN_ERR, "No cipher specified\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	ecryptfs_printk(KERN_DEBUG, | 
 | 			"Initializing cipher [%s]; strlen = [%d]; " | 
 | 			"key_size_bits = [%d]\n", | 
 | 			crypt_stat->cipher, (int)strlen(crypt_stat->cipher), | 
 | 			crypt_stat->key_size << 3); | 
 | 	if (crypt_stat->tfm) { | 
 | 		rc = 0; | 
 | 		goto out; | 
 | 	} | 
 | 	mutex_lock(&crypt_stat->cs_tfm_mutex); | 
 | 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, | 
 | 						    crypt_stat->cipher, "cbc"); | 
 | 	if (rc) | 
 | 		goto out; | 
 | 	crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0, | 
 | 						 CRYPTO_ALG_ASYNC); | 
 | 	kfree(full_alg_name); | 
 | 	if (IS_ERR(crypt_stat->tfm)) { | 
 | 		rc = PTR_ERR(crypt_stat->tfm); | 
 | 		ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): " | 
 | 				"Error initializing cipher [%s]\n", | 
 | 				crypt_stat->cipher); | 
 | 		mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
 | 		goto out; | 
 | 	} | 
 | 	crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY); | 
 | 	mutex_unlock(&crypt_stat->cs_tfm_mutex); | 
 | 	rc = 0; | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	int extent_size_tmp; | 
 |  | 
 | 	crypt_stat->extent_mask = 0xFFFFFFFF; | 
 | 	crypt_stat->extent_shift = 0; | 
 | 	if (crypt_stat->extent_size == 0) | 
 | 		return; | 
 | 	extent_size_tmp = crypt_stat->extent_size; | 
 | 	while ((extent_size_tmp & 0x01) == 0) { | 
 | 		extent_size_tmp >>= 1; | 
 | 		crypt_stat->extent_mask <<= 1; | 
 | 		crypt_stat->extent_shift++; | 
 | 	} | 
 | } | 
 |  | 
 | void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	/* Default values; may be overwritten as we are parsing the | 
 | 	 * packets. */ | 
 | 	crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE; | 
 | 	set_extent_mask_and_shift(crypt_stat); | 
 | 	crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES; | 
 | 	if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE) { | 
 | 		crypt_stat->header_extent_size = | 
 | 			ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE; | 
 | 	} else | 
 | 		crypt_stat->header_extent_size = PAGE_CACHE_SIZE; | 
 | 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) | 
 | 		crypt_stat->num_header_extents_at_front = 0; | 
 | 	else | 
 | 		crypt_stat->num_header_extents_at_front = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_compute_root_iv | 
 |  * @crypt_stats | 
 |  * | 
 |  * On error, sets the root IV to all 0's. | 
 |  */ | 
 | int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	int rc = 0; | 
 | 	char dst[MD5_DIGEST_SIZE]; | 
 |  | 
 | 	BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE); | 
 | 	BUG_ON(crypt_stat->iv_bytes <= 0); | 
 | 	if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { | 
 | 		rc = -EINVAL; | 
 | 		ecryptfs_printk(KERN_WARNING, "Session key not valid; " | 
 | 				"cannot generate root IV\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key, | 
 | 				    crypt_stat->key_size); | 
 | 	if (rc) { | 
 | 		ecryptfs_printk(KERN_WARNING, "Error attempting to compute " | 
 | 				"MD5 while generating root IV\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes); | 
 | out: | 
 | 	if (rc) { | 
 | 		memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes); | 
 | 		crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING; | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	get_random_bytes(crypt_stat->key, crypt_stat->key_size); | 
 | 	crypt_stat->flags |= ECRYPTFS_KEY_VALID; | 
 | 	ecryptfs_compute_root_iv(crypt_stat); | 
 | 	if (unlikely(ecryptfs_verbosity > 0)) { | 
 | 		ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n"); | 
 | 		ecryptfs_dump_hex(crypt_stat->key, | 
 | 				  crypt_stat->key_size); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_copy_mount_wide_flags_to_inode_flags | 
 |  * | 
 |  * This function propagates the mount-wide flags to individual inode | 
 |  * flags. | 
 |  */ | 
 | static void ecryptfs_copy_mount_wide_flags_to_inode_flags( | 
 | 	struct ecryptfs_crypt_stat *crypt_stat, | 
 | 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
 | { | 
 | 	if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED) | 
 | 		crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; | 
 | 	if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) | 
 | 		crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_set_default_crypt_stat_vals | 
 |  * @crypt_stat | 
 |  * | 
 |  * Default values in the event that policy does not override them. | 
 |  */ | 
 | static void ecryptfs_set_default_crypt_stat_vals( | 
 | 	struct ecryptfs_crypt_stat *crypt_stat, | 
 | 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat) | 
 | { | 
 | 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
 | 						      mount_crypt_stat); | 
 | 	ecryptfs_set_default_sizes(crypt_stat); | 
 | 	strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER); | 
 | 	crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES; | 
 | 	crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID); | 
 | 	crypt_stat->file_version = ECRYPTFS_FILE_VERSION; | 
 | 	crypt_stat->mount_crypt_stat = mount_crypt_stat; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_new_file_context | 
 |  * @ecryptfs_dentry | 
 |  * | 
 |  * If the crypto context for the file has not yet been established, | 
 |  * this is where we do that.  Establishing a new crypto context | 
 |  * involves the following decisions: | 
 |  *  - What cipher to use? | 
 |  *  - What set of authentication tokens to use? | 
 |  * Here we just worry about getting enough information into the | 
 |  * authentication tokens so that we know that they are available. | 
 |  * We associate the available authentication tokens with the new file | 
 |  * via the set of signatures in the crypt_stat struct.  Later, when | 
 |  * the headers are actually written out, we may again defer to | 
 |  * userspace to perform the encryption of the session key; for the | 
 |  * foreseeable future, this will be the case with public key packets. | 
 |  * | 
 |  * Returns zero on success; non-zero otherwise | 
 |  */ | 
 | /* Associate an authentication token(s) with the file */ | 
 | int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry) | 
 | { | 
 | 	int rc = 0; | 
 | 	struct ecryptfs_crypt_stat *crypt_stat = | 
 | 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; | 
 | 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | 
 | 	    &ecryptfs_superblock_to_private( | 
 | 		    ecryptfs_dentry->d_sb)->mount_crypt_stat; | 
 | 	int cipher_name_len; | 
 |  | 
 | 	ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat); | 
 | 	/* See if there are mount crypt options */ | 
 | 	if (mount_crypt_stat->global_auth_tok) { | 
 | 		ecryptfs_printk(KERN_DEBUG, "Initializing context for new " | 
 | 				"file using mount_crypt_stat\n"); | 
 | 		crypt_stat->flags |= ECRYPTFS_ENCRYPTED; | 
 | 		crypt_stat->flags |= ECRYPTFS_KEY_VALID; | 
 | 		ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
 | 							      mount_crypt_stat); | 
 | 		memcpy(crypt_stat->keysigs[crypt_stat->num_keysigs++], | 
 | 		       mount_crypt_stat->global_auth_tok_sig, | 
 | 		       ECRYPTFS_SIG_SIZE_HEX); | 
 | 		cipher_name_len = | 
 | 		    strlen(mount_crypt_stat->global_default_cipher_name); | 
 | 		memcpy(crypt_stat->cipher, | 
 | 		       mount_crypt_stat->global_default_cipher_name, | 
 | 		       cipher_name_len); | 
 | 		crypt_stat->cipher[cipher_name_len] = '\0'; | 
 | 		crypt_stat->key_size = | 
 | 			mount_crypt_stat->global_default_cipher_key_size; | 
 | 		ecryptfs_generate_new_key(crypt_stat); | 
 | 	} else | 
 | 		/* We should not encounter this scenario since we | 
 | 		 * should detect lack of global_auth_tok at mount time | 
 | 		 * TODO: Applies to 0.1 release only; remove in future | 
 | 		 * release */ | 
 | 		BUG(); | 
 | 	rc = ecryptfs_init_crypt_ctx(crypt_stat); | 
 | 	if (rc) | 
 | 		ecryptfs_printk(KERN_ERR, "Error initializing cryptographic " | 
 | 				"context for cipher [%s]: rc = [%d]\n", | 
 | 				crypt_stat->cipher, rc); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * contains_ecryptfs_marker - check for the ecryptfs marker | 
 |  * @data: The data block in which to check | 
 |  * | 
 |  * Returns one if marker found; zero if not found | 
 |  */ | 
 | static int contains_ecryptfs_marker(char *data) | 
 | { | 
 | 	u32 m_1, m_2; | 
 |  | 
 | 	memcpy(&m_1, data, 4); | 
 | 	m_1 = be32_to_cpu(m_1); | 
 | 	memcpy(&m_2, (data + 4), 4); | 
 | 	m_2 = be32_to_cpu(m_2); | 
 | 	if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2) | 
 | 		return 1; | 
 | 	ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; " | 
 | 			"MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2, | 
 | 			MAGIC_ECRYPTFS_MARKER); | 
 | 	ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = " | 
 | 			"[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER)); | 
 | 	return 0; | 
 | } | 
 |  | 
 | struct ecryptfs_flag_map_elem { | 
 | 	u32 file_flag; | 
 | 	u32 local_flag; | 
 | }; | 
 |  | 
 | /* Add support for additional flags by adding elements here. */ | 
 | static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = { | 
 | 	{0x00000001, ECRYPTFS_ENABLE_HMAC}, | 
 | 	{0x00000002, ECRYPTFS_ENCRYPTED}, | 
 | 	{0x00000004, ECRYPTFS_METADATA_IN_XATTR} | 
 | }; | 
 |  | 
 | /** | 
 |  * ecryptfs_process_flags | 
 |  * @crypt_stat | 
 |  * @page_virt: Source data to be parsed | 
 |  * @bytes_read: Updated with the number of bytes read | 
 |  * | 
 |  * Returns zero on success; non-zero if the flag set is invalid | 
 |  */ | 
 | static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 				  char *page_virt, int *bytes_read) | 
 | { | 
 | 	int rc = 0; | 
 | 	int i; | 
 | 	u32 flags; | 
 |  | 
 | 	memcpy(&flags, page_virt, 4); | 
 | 	flags = be32_to_cpu(flags); | 
 | 	for (i = 0; i < ((sizeof(ecryptfs_flag_map) | 
 | 			  / sizeof(struct ecryptfs_flag_map_elem))); i++) | 
 | 		if (flags & ecryptfs_flag_map[i].file_flag) { | 
 | 			crypt_stat->flags |= ecryptfs_flag_map[i].local_flag; | 
 | 		} else | 
 | 			crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag); | 
 | 	/* Version is in top 8 bits of the 32-bit flag vector */ | 
 | 	crypt_stat->file_version = ((flags >> 24) & 0xFF); | 
 | 	(*bytes_read) = 4; | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * write_ecryptfs_marker | 
 |  * @page_virt: The pointer to in a page to begin writing the marker | 
 |  * @written: Number of bytes written | 
 |  * | 
 |  * Marker = 0x3c81b7f5 | 
 |  */ | 
 | static void write_ecryptfs_marker(char *page_virt, size_t *written) | 
 | { | 
 | 	u32 m_1, m_2; | 
 |  | 
 | 	get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); | 
 | 	m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER); | 
 | 	m_1 = cpu_to_be32(m_1); | 
 | 	memcpy(page_virt, &m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); | 
 | 	m_2 = cpu_to_be32(m_2); | 
 | 	memcpy(page_virt + (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2), &m_2, | 
 | 	       (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2)); | 
 | 	(*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; | 
 | } | 
 |  | 
 | static void | 
 | write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat, | 
 | 		     size_t *written) | 
 | { | 
 | 	u32 flags = 0; | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < ((sizeof(ecryptfs_flag_map) | 
 | 			  / sizeof(struct ecryptfs_flag_map_elem))); i++) | 
 | 		if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag) | 
 | 			flags |= ecryptfs_flag_map[i].file_flag; | 
 | 	/* Version is in top 8 bits of the 32-bit flag vector */ | 
 | 	flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000); | 
 | 	flags = cpu_to_be32(flags); | 
 | 	memcpy(page_virt, &flags, 4); | 
 | 	(*written) = 4; | 
 | } | 
 |  | 
 | struct ecryptfs_cipher_code_str_map_elem { | 
 | 	char cipher_str[16]; | 
 | 	u16 cipher_code; | 
 | }; | 
 |  | 
 | /* Add support for additional ciphers by adding elements here. The | 
 |  * cipher_code is whatever OpenPGP applicatoins use to identify the | 
 |  * ciphers. List in order of probability. */ | 
 | static struct ecryptfs_cipher_code_str_map_elem | 
 | ecryptfs_cipher_code_str_map[] = { | 
 | 	{"aes",RFC2440_CIPHER_AES_128 }, | 
 | 	{"blowfish", RFC2440_CIPHER_BLOWFISH}, | 
 | 	{"des3_ede", RFC2440_CIPHER_DES3_EDE}, | 
 | 	{"cast5", RFC2440_CIPHER_CAST_5}, | 
 | 	{"twofish", RFC2440_CIPHER_TWOFISH}, | 
 | 	{"cast6", RFC2440_CIPHER_CAST_6}, | 
 | 	{"aes", RFC2440_CIPHER_AES_192}, | 
 | 	{"aes", RFC2440_CIPHER_AES_256} | 
 | }; | 
 |  | 
 | /** | 
 |  * ecryptfs_code_for_cipher_string | 
 |  * @str: The string representing the cipher name | 
 |  * | 
 |  * Returns zero on no match, or the cipher code on match | 
 |  */ | 
 | u16 ecryptfs_code_for_cipher_string(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	int i; | 
 | 	u16 code = 0; | 
 | 	struct ecryptfs_cipher_code_str_map_elem *map = | 
 | 		ecryptfs_cipher_code_str_map; | 
 |  | 
 | 	if (strcmp(crypt_stat->cipher, "aes") == 0) { | 
 | 		switch (crypt_stat->key_size) { | 
 | 		case 16: | 
 | 			code = RFC2440_CIPHER_AES_128; | 
 | 			break; | 
 | 		case 24: | 
 | 			code = RFC2440_CIPHER_AES_192; | 
 | 			break; | 
 | 		case 32: | 
 | 			code = RFC2440_CIPHER_AES_256; | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) | 
 | 			if (strcmp(crypt_stat->cipher, map[i].cipher_str) == 0){ | 
 | 				code = map[i].cipher_code; | 
 | 				break; | 
 | 			} | 
 | 	} | 
 | 	return code; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_cipher_code_to_string | 
 |  * @str: Destination to write out the cipher name | 
 |  * @cipher_code: The code to convert to cipher name string | 
 |  * | 
 |  * Returns zero on success | 
 |  */ | 
 | int ecryptfs_cipher_code_to_string(char *str, u16 cipher_code) | 
 | { | 
 | 	int rc = 0; | 
 | 	int i; | 
 |  | 
 | 	str[0] = '\0'; | 
 | 	for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++) | 
 | 		if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code) | 
 | 			strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str); | 
 | 	if (str[0] == '\0') { | 
 | 		ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: " | 
 | 				"[%d]\n", cipher_code); | 
 | 		rc = -EINVAL; | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_read_header_region | 
 |  * @data | 
 |  * @dentry | 
 |  * @nd | 
 |  * | 
 |  * Returns zero on success; non-zero otherwise | 
 |  */ | 
 | static int ecryptfs_read_header_region(char *data, struct dentry *dentry, | 
 | 				       struct vfsmount *mnt) | 
 | { | 
 | 	struct file *lower_file; | 
 | 	mm_segment_t oldfs; | 
 | 	int rc; | 
 |  | 
 | 	if ((rc = ecryptfs_open_lower_file(&lower_file, dentry, mnt, | 
 | 					   O_RDONLY))) { | 
 | 		printk(KERN_ERR | 
 | 		       "Error opening lower_file to read header region\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	lower_file->f_pos = 0; | 
 | 	oldfs = get_fs(); | 
 | 	set_fs(get_ds()); | 
 | 	/* For releases 0.1 and 0.2, all of the header information | 
 | 	 * fits in the first data extent-sized region. */ | 
 | 	rc = lower_file->f_op->read(lower_file, (char __user *)data, | 
 | 			      ECRYPTFS_DEFAULT_EXTENT_SIZE, &lower_file->f_pos); | 
 | 	set_fs(oldfs); | 
 | 	if ((rc = ecryptfs_close_lower_file(lower_file))) { | 
 | 		printk(KERN_ERR "Error closing lower_file\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	rc = 0; | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | int ecryptfs_read_and_validate_header_region(char *data, struct dentry *dentry, | 
 | 					     struct vfsmount *mnt) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = ecryptfs_read_header_region(data, dentry, mnt); | 
 | 	if (rc) | 
 | 		goto out; | 
 | 	if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) | 
 | 		rc = -EINVAL; | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 |  | 
 | void | 
 | ecryptfs_write_header_metadata(char *virt, | 
 | 			       struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			       size_t *written) | 
 | { | 
 | 	u32 header_extent_size; | 
 | 	u16 num_header_extents_at_front; | 
 |  | 
 | 	header_extent_size = (u32)crypt_stat->header_extent_size; | 
 | 	num_header_extents_at_front = | 
 | 		(u16)crypt_stat->num_header_extents_at_front; | 
 | 	header_extent_size = cpu_to_be32(header_extent_size); | 
 | 	memcpy(virt, &header_extent_size, 4); | 
 | 	virt += 4; | 
 | 	num_header_extents_at_front = cpu_to_be16(num_header_extents_at_front); | 
 | 	memcpy(virt, &num_header_extents_at_front, 2); | 
 | 	(*written) = 6; | 
 | } | 
 |  | 
 | struct kmem_cache *ecryptfs_header_cache_0; | 
 | struct kmem_cache *ecryptfs_header_cache_1; | 
 | struct kmem_cache *ecryptfs_header_cache_2; | 
 |  | 
 | /** | 
 |  * ecryptfs_write_headers_virt | 
 |  * @page_virt | 
 |  * @crypt_stat | 
 |  * @ecryptfs_dentry | 
 |  * | 
 |  * Format version: 1 | 
 |  * | 
 |  *   Header Extent: | 
 |  *     Octets 0-7:        Unencrypted file size (big-endian) | 
 |  *     Octets 8-15:       eCryptfs special marker | 
 |  *     Octets 16-19:      Flags | 
 |  *      Octet 16:         File format version number (between 0 and 255) | 
 |  *      Octets 17-18:     Reserved | 
 |  *      Octet 19:         Bit 1 (lsb): Reserved | 
 |  *                        Bit 2: Encrypted? | 
 |  *                        Bits 3-8: Reserved | 
 |  *     Octets 20-23:      Header extent size (big-endian) | 
 |  *     Octets 24-25:      Number of header extents at front of file | 
 |  *                        (big-endian) | 
 |  *     Octet  26:         Begin RFC 2440 authentication token packet set | 
 |  *   Data Extent 0: | 
 |  *     Lower data (CBC encrypted) | 
 |  *   Data Extent 1: | 
 |  *     Lower data (CBC encrypted) | 
 |  *   ... | 
 |  * | 
 |  * Returns zero on success | 
 |  */ | 
 | static int ecryptfs_write_headers_virt(char *page_virt, size_t *size, | 
 | 				       struct ecryptfs_crypt_stat *crypt_stat, | 
 | 				       struct dentry *ecryptfs_dentry) | 
 | { | 
 | 	int rc; | 
 | 	size_t written; | 
 | 	size_t offset; | 
 |  | 
 | 	offset = ECRYPTFS_FILE_SIZE_BYTES; | 
 | 	write_ecryptfs_marker((page_virt + offset), &written); | 
 | 	offset += written; | 
 | 	write_ecryptfs_flags((page_virt + offset), crypt_stat, &written); | 
 | 	offset += written; | 
 | 	ecryptfs_write_header_metadata((page_virt + offset), crypt_stat, | 
 | 				       &written); | 
 | 	offset += written; | 
 | 	rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat, | 
 | 					      ecryptfs_dentry, &written, | 
 | 					      PAGE_CACHE_SIZE - offset); | 
 | 	if (rc) | 
 | 		ecryptfs_printk(KERN_WARNING, "Error generating key packet " | 
 | 				"set; rc = [%d]\n", rc); | 
 | 	if (size) { | 
 | 		offset += written; | 
 | 		*size = offset; | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int ecryptfs_write_metadata_to_contents(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 					       struct file *lower_file, | 
 | 					       char *page_virt) | 
 | { | 
 | 	mm_segment_t oldfs; | 
 | 	int current_header_page; | 
 | 	int header_pages; | 
 | 	ssize_t size; | 
 | 	int rc = 0; | 
 |  | 
 | 	lower_file->f_pos = 0; | 
 | 	oldfs = get_fs(); | 
 | 	set_fs(get_ds()); | 
 | 	size = vfs_write(lower_file, (char __user *)page_virt, PAGE_CACHE_SIZE, | 
 | 			 &lower_file->f_pos); | 
 | 	if (size < 0) { | 
 | 		rc = (int)size; | 
 | 		printk(KERN_ERR "Error attempting to write lower page; " | 
 | 		       "rc = [%d]\n", rc); | 
 | 		set_fs(oldfs); | 
 | 		goto out; | 
 | 	} | 
 | 	header_pages = ((crypt_stat->header_extent_size | 
 | 			 * crypt_stat->num_header_extents_at_front) | 
 | 			/ PAGE_CACHE_SIZE); | 
 | 	memset(page_virt, 0, PAGE_CACHE_SIZE); | 
 | 	current_header_page = 1; | 
 | 	while (current_header_page < header_pages) { | 
 | 		size = vfs_write(lower_file, (char __user *)page_virt, | 
 | 				 PAGE_CACHE_SIZE, &lower_file->f_pos); | 
 | 		if (size < 0) { | 
 | 			rc = (int)size; | 
 | 			printk(KERN_ERR "Error attempting to write lower page; " | 
 | 			       "rc = [%d]\n", rc); | 
 | 			set_fs(oldfs); | 
 | 			goto out; | 
 | 		} | 
 | 		current_header_page++; | 
 | 	} | 
 | 	set_fs(oldfs); | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | static int ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry, | 
 | 					    struct ecryptfs_crypt_stat *crypt_stat, | 
 | 					    char *page_virt, size_t size) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt, | 
 | 			       size, 0); | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_write_metadata | 
 |  * @lower_file: The lower file struct, which was returned from dentry_open | 
 |  * | 
 |  * Write the file headers out.  This will likely involve a userspace | 
 |  * callout, in which the session key is encrypted with one or more | 
 |  * public keys and/or the passphrase necessary to do the encryption is | 
 |  * retrieved via a prompt.  Exactly what happens at this point should | 
 |  * be policy-dependent. | 
 |  * | 
 |  * Returns zero on success; non-zero on error | 
 |  */ | 
 | int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry, | 
 | 			    struct file *lower_file) | 
 | { | 
 | 	struct ecryptfs_crypt_stat *crypt_stat; | 
 | 	char *page_virt; | 
 | 	size_t size; | 
 | 	int rc = 0; | 
 |  | 
 | 	crypt_stat = &ecryptfs_inode_to_private( | 
 | 		ecryptfs_dentry->d_inode)->crypt_stat; | 
 | 	if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) { | 
 | 		if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) { | 
 | 			ecryptfs_printk(KERN_DEBUG, "Key is " | 
 | 					"invalid; bailing out\n"); | 
 | 			rc = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 	} else { | 
 | 		rc = -EINVAL; | 
 | 		ecryptfs_printk(KERN_WARNING, | 
 | 				"Called with crypt_stat->encrypted == 0\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	/* Released in this function */ | 
 | 	page_virt = kmem_cache_zalloc(ecryptfs_header_cache_0, GFP_USER); | 
 | 	if (!page_virt) { | 
 | 		ecryptfs_printk(KERN_ERR, "Out of memory\n"); | 
 | 		rc = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	rc = ecryptfs_write_headers_virt(page_virt, &size, crypt_stat, | 
 |   					 ecryptfs_dentry); | 
 | 	if (unlikely(rc)) { | 
 | 		ecryptfs_printk(KERN_ERR, "Error whilst writing headers\n"); | 
 | 		memset(page_virt, 0, PAGE_CACHE_SIZE); | 
 | 		goto out_free; | 
 | 	} | 
 | 	if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR) | 
 | 		rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, | 
 | 						      crypt_stat, page_virt, | 
 | 						      size); | 
 | 	else | 
 | 		rc = ecryptfs_write_metadata_to_contents(crypt_stat, lower_file, | 
 | 							 page_virt); | 
 | 	if (rc) { | 
 | 		printk(KERN_ERR "Error writing metadata out to lower file; " | 
 | 		       "rc = [%d]\n", rc); | 
 | 		goto out_free; | 
 | 	} | 
 | out_free: | 
 | 	kmem_cache_free(ecryptfs_header_cache_0, page_virt); | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0 | 
 | #define ECRYPTFS_VALIDATE_HEADER_SIZE 1 | 
 | static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 				 char *virt, int *bytes_read, | 
 | 				 int validate_header_size) | 
 | { | 
 | 	int rc = 0; | 
 | 	u32 header_extent_size; | 
 | 	u16 num_header_extents_at_front; | 
 |  | 
 | 	memcpy(&header_extent_size, virt, 4); | 
 | 	header_extent_size = be32_to_cpu(header_extent_size); | 
 | 	virt += 4; | 
 | 	memcpy(&num_header_extents_at_front, virt, 2); | 
 | 	num_header_extents_at_front = be16_to_cpu(num_header_extents_at_front); | 
 | 	crypt_stat->header_extent_size = (int)header_extent_size; | 
 | 	crypt_stat->num_header_extents_at_front = | 
 | 		(int)num_header_extents_at_front; | 
 | 	(*bytes_read) = 6; | 
 | 	if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE) | 
 | 	    && ((crypt_stat->header_extent_size | 
 | 		 * crypt_stat->num_header_extents_at_front) | 
 | 		< ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) { | 
 | 		rc = -EINVAL; | 
 | 		ecryptfs_printk(KERN_WARNING, "Invalid header extent size: " | 
 | 				"[%d]\n", crypt_stat->header_extent_size); | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * set_default_header_data | 
 |  * | 
 |  * For version 0 file format; this function is only for backwards | 
 |  * compatibility for files created with the prior versions of | 
 |  * eCryptfs. | 
 |  */ | 
 | static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat) | 
 | { | 
 | 	crypt_stat->header_extent_size = 4096; | 
 | 	crypt_stat->num_header_extents_at_front = 1; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_read_headers_virt | 
 |  * | 
 |  * Read/parse the header data. The header format is detailed in the | 
 |  * comment block for the ecryptfs_write_headers_virt() function. | 
 |  * | 
 |  * Returns zero on success | 
 |  */ | 
 | static int ecryptfs_read_headers_virt(char *page_virt, | 
 | 				      struct ecryptfs_crypt_stat *crypt_stat, | 
 | 				      struct dentry *ecryptfs_dentry, | 
 | 				      int validate_header_size) | 
 | { | 
 | 	int rc = 0; | 
 | 	int offset; | 
 | 	int bytes_read; | 
 |  | 
 | 	ecryptfs_set_default_sizes(crypt_stat); | 
 | 	crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private( | 
 | 		ecryptfs_dentry->d_sb)->mount_crypt_stat; | 
 | 	offset = ECRYPTFS_FILE_SIZE_BYTES; | 
 | 	rc = contains_ecryptfs_marker(page_virt + offset); | 
 | 	if (rc == 0) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES; | 
 | 	rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset), | 
 | 				    &bytes_read); | 
 | 	if (rc) { | 
 | 		ecryptfs_printk(KERN_WARNING, "Error processing flags\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) { | 
 | 		ecryptfs_printk(KERN_WARNING, "File version is [%d]; only " | 
 | 				"file version [%d] is supported by this " | 
 | 				"version of eCryptfs\n", | 
 | 				crypt_stat->file_version, | 
 | 				ECRYPTFS_SUPPORTED_FILE_VERSION); | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	offset += bytes_read; | 
 | 	if (crypt_stat->file_version >= 1) { | 
 | 		rc = parse_header_metadata(crypt_stat, (page_virt + offset), | 
 | 					   &bytes_read, validate_header_size); | 
 | 		if (rc) { | 
 | 			ecryptfs_printk(KERN_WARNING, "Error reading header " | 
 | 					"metadata; rc = [%d]\n", rc); | 
 | 		} | 
 | 		offset += bytes_read; | 
 | 	} else | 
 | 		set_default_header_data(crypt_stat); | 
 | 	rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset), | 
 | 				       ecryptfs_dentry); | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_read_xattr_region | 
 |  * | 
 |  * Attempts to read the crypto metadata from the extended attribute | 
 |  * region of the lower file. | 
 |  */ | 
 | int ecryptfs_read_xattr_region(char *page_virt, struct dentry *ecryptfs_dentry) | 
 | { | 
 | 	ssize_t size; | 
 | 	int rc = 0; | 
 |  | 
 | 	size = ecryptfs_getxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, | 
 | 				 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE); | 
 | 	if (size < 0) { | 
 | 		printk(KERN_DEBUG "Error attempting to read the [%s] " | 
 | 		       "xattr from the lower file; return value = [%zd]\n", | 
 | 		       ECRYPTFS_XATTR_NAME, size); | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | int ecryptfs_read_and_validate_xattr_region(char *page_virt, | 
 | 					    struct dentry *ecryptfs_dentry) | 
 | { | 
 | 	int rc; | 
 |  | 
 | 	rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry); | 
 | 	if (rc) | 
 | 		goto out; | 
 | 	if (!contains_ecryptfs_marker(page_virt	+ ECRYPTFS_FILE_SIZE_BYTES)) { | 
 | 		printk(KERN_WARNING "Valid data found in [%s] xattr, but " | 
 | 			"the marker is invalid\n", ECRYPTFS_XATTR_NAME); | 
 | 		rc = -EINVAL; | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_read_metadata | 
 |  * | 
 |  * Common entry point for reading file metadata. From here, we could | 
 |  * retrieve the header information from the header region of the file, | 
 |  * the xattr region of the file, or some other repostory that is | 
 |  * stored separately from the file itself. The current implementation | 
 |  * supports retrieving the metadata information from the file contents | 
 |  * and from the xattr region. | 
 |  * | 
 |  * Returns zero if valid headers found and parsed; non-zero otherwise | 
 |  */ | 
 | int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry, | 
 | 			   struct file *lower_file) | 
 | { | 
 | 	int rc = 0; | 
 | 	char *page_virt = NULL; | 
 | 	mm_segment_t oldfs; | 
 | 	ssize_t bytes_read; | 
 | 	struct ecryptfs_crypt_stat *crypt_stat = | 
 | 	    &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat; | 
 | 	struct ecryptfs_mount_crypt_stat *mount_crypt_stat = | 
 | 		&ecryptfs_superblock_to_private( | 
 | 			ecryptfs_dentry->d_sb)->mount_crypt_stat; | 
 |  | 
 | 	ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat, | 
 | 						      mount_crypt_stat); | 
 | 	/* Read the first page from the underlying file */ | 
 | 	page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER); | 
 | 	if (!page_virt) { | 
 | 		rc = -ENOMEM; | 
 | 		ecryptfs_printk(KERN_ERR, "Unable to allocate page_virt\n"); | 
 | 		goto out; | 
 | 	} | 
 | 	lower_file->f_pos = 0; | 
 | 	oldfs = get_fs(); | 
 | 	set_fs(get_ds()); | 
 | 	bytes_read = lower_file->f_op->read(lower_file, | 
 | 					    (char __user *)page_virt, | 
 | 					    ECRYPTFS_DEFAULT_EXTENT_SIZE, | 
 | 					    &lower_file->f_pos); | 
 | 	set_fs(oldfs); | 
 | 	if (bytes_read != ECRYPTFS_DEFAULT_EXTENT_SIZE) { | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | 	rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, | 
 | 					ecryptfs_dentry, | 
 | 					ECRYPTFS_VALIDATE_HEADER_SIZE); | 
 | 	if (rc) { | 
 | 		rc = ecryptfs_read_xattr_region(page_virt, | 
 | 						ecryptfs_dentry); | 
 | 		if (rc) { | 
 | 			printk(KERN_DEBUG "Valid eCryptfs headers not found in " | 
 | 			       "file header region or xattr region\n"); | 
 | 			rc = -EINVAL; | 
 | 			goto out; | 
 | 		} | 
 | 		rc = ecryptfs_read_headers_virt(page_virt, crypt_stat, | 
 | 						ecryptfs_dentry, | 
 | 						ECRYPTFS_DONT_VALIDATE_HEADER_SIZE); | 
 | 		if (rc) { | 
 | 			printk(KERN_DEBUG "Valid eCryptfs headers not found in " | 
 | 			       "file xattr region either\n"); | 
 | 			rc = -EINVAL; | 
 | 		} | 
 | 		if (crypt_stat->mount_crypt_stat->flags | 
 | 		    & ECRYPTFS_XATTR_METADATA_ENABLED) { | 
 | 			crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR; | 
 | 		} else { | 
 | 			printk(KERN_WARNING "Attempt to access file with " | 
 | 			       "crypto metadata only in the extended attribute " | 
 | 			       "region, but eCryptfs was mounted without " | 
 | 			       "xattr support enabled. eCryptfs will not treat " | 
 | 			       "this like an encrypted file.\n"); | 
 | 			rc = -EINVAL; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	if (page_virt) { | 
 | 		memset(page_virt, 0, PAGE_CACHE_SIZE); | 
 | 		kmem_cache_free(ecryptfs_header_cache_1, page_virt); | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_encode_filename - converts a plaintext file name to cipher text | 
 |  * @crypt_stat: The crypt_stat struct associated with the file anem to encode | 
 |  * @name: The plaintext name | 
 |  * @length: The length of the plaintext | 
 |  * @encoded_name: The encypted name | 
 |  * | 
 |  * Encrypts and encodes a filename into something that constitutes a | 
 |  * valid filename for a filesystem, with printable characters. | 
 |  * | 
 |  * We assume that we have a properly initialized crypto context, | 
 |  * pointed to by crypt_stat->tfm. | 
 |  * | 
 |  * TODO: Implement filename decoding and decryption here, in place of | 
 |  * memcpy. We are keeping the framework around for now to (1) | 
 |  * facilitate testing of the components needed to implement filename | 
 |  * encryption and (2) to provide a code base from which other | 
 |  * developers in the community can easily implement this feature. | 
 |  * | 
 |  * Returns the length of encoded filename; negative if error | 
 |  */ | 
 | int | 
 | ecryptfs_encode_filename(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			 const char *name, int length, char **encoded_name) | 
 | { | 
 | 	int error = 0; | 
 |  | 
 | 	(*encoded_name) = kmalloc(length + 2, GFP_KERNEL); | 
 | 	if (!(*encoded_name)) { | 
 | 		error = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	/* TODO: Filename encryption is a scheduled feature for a | 
 | 	 * future version of eCryptfs. This function is here only for | 
 | 	 * the purpose of providing a framework for other developers | 
 | 	 * to easily implement filename encryption. Hint: Replace this | 
 | 	 * memcpy() with a call to encrypt and encode the | 
 | 	 * filename, the set the length accordingly. */ | 
 | 	memcpy((void *)(*encoded_name), (void *)name, length); | 
 | 	(*encoded_name)[length] = '\0'; | 
 | 	error = length + 1; | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_decode_filename - converts the cipher text name to plaintext | 
 |  * @crypt_stat: The crypt_stat struct associated with the file | 
 |  * @name: The filename in cipher text | 
 |  * @length: The length of the cipher text name | 
 |  * @decrypted_name: The plaintext name | 
 |  * | 
 |  * Decodes and decrypts the filename. | 
 |  * | 
 |  * We assume that we have a properly initialized crypto context, | 
 |  * pointed to by crypt_stat->tfm. | 
 |  * | 
 |  * TODO: Implement filename decoding and decryption here, in place of | 
 |  * memcpy. We are keeping the framework around for now to (1) | 
 |  * facilitate testing of the components needed to implement filename | 
 |  * encryption and (2) to provide a code base from which other | 
 |  * developers in the community can easily implement this feature. | 
 |  * | 
 |  * Returns the length of decoded filename; negative if error | 
 |  */ | 
 | int | 
 | ecryptfs_decode_filename(struct ecryptfs_crypt_stat *crypt_stat, | 
 | 			 const char *name, int length, char **decrypted_name) | 
 | { | 
 | 	int error = 0; | 
 |  | 
 | 	(*decrypted_name) = kmalloc(length + 2, GFP_KERNEL); | 
 | 	if (!(*decrypted_name)) { | 
 | 		error = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 | 	/* TODO: Filename encryption is a scheduled feature for a | 
 | 	 * future version of eCryptfs. This function is here only for | 
 | 	 * the purpose of providing a framework for other developers | 
 | 	 * to easily implement filename encryption. Hint: Replace this | 
 | 	 * memcpy() with a call to decode and decrypt the | 
 | 	 * filename, the set the length accordingly. */ | 
 | 	memcpy((void *)(*decrypted_name), (void *)name, length); | 
 | 	(*decrypted_name)[length + 1] = '\0';	/* Only for convenience | 
 | 						 * in printing out the | 
 | 						 * string in debug | 
 | 						 * messages */ | 
 | 	error = length; | 
 | out: | 
 | 	return error; | 
 | } | 
 |  | 
 | /** | 
 |  * ecryptfs_process_cipher - Perform cipher initialization. | 
 |  * @key_tfm: Crypto context for key material, set by this function | 
 |  * @cipher_name: Name of the cipher | 
 |  * @key_size: Size of the key in bytes | 
 |  * | 
 |  * Returns zero on success. Any crypto_tfm structs allocated here | 
 |  * should be released by other functions, such as on a superblock put | 
 |  * event, regardless of whether this function succeeds for fails. | 
 |  */ | 
 | int | 
 | ecryptfs_process_cipher(struct crypto_blkcipher **key_tfm, char *cipher_name, | 
 | 			size_t *key_size) | 
 | { | 
 | 	char dummy_key[ECRYPTFS_MAX_KEY_BYTES]; | 
 | 	char *full_alg_name; | 
 | 	int rc; | 
 |  | 
 | 	*key_tfm = NULL; | 
 | 	if (*key_size > ECRYPTFS_MAX_KEY_BYTES) { | 
 | 		rc = -EINVAL; | 
 | 		printk(KERN_ERR "Requested key size is [%Zd] bytes; maximum " | 
 | 		      "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES); | 
 | 		goto out; | 
 | 	} | 
 | 	rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name, | 
 | 						    "ecb"); | 
 | 	if (rc) | 
 | 		goto out; | 
 | 	*key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC); | 
 | 	kfree(full_alg_name); | 
 | 	if (IS_ERR(*key_tfm)) { | 
 | 		rc = PTR_ERR(*key_tfm); | 
 | 		printk(KERN_ERR "Unable to allocate crypto cipher with name " | 
 | 		       "[%s]; rc = [%d]\n", cipher_name, rc); | 
 | 		goto out; | 
 | 	} | 
 | 	crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY); | 
 | 	if (*key_size == 0) { | 
 | 		struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm); | 
 |  | 
 | 		*key_size = alg->max_keysize; | 
 | 	} | 
 | 	get_random_bytes(dummy_key, *key_size); | 
 | 	rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size); | 
 | 	if (rc) { | 
 | 		printk(KERN_ERR "Error attempting to set key of size [%Zd] for " | 
 | 		       "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc); | 
 | 		rc = -EINVAL; | 
 | 		goto out; | 
 | 	} | 
 | out: | 
 | 	return rc; | 
 | } |