powerpc: Merge in the ppc64 version of the prom code.

This brings in the ppc64 version of prom_init.c, prom.c and btext.c
and makes them work for ppc32.  This also brings in the new calling
convention, where the first entry to the kernel (with r5 != 0) goes
to the prom_init code, which then restarts from the beginning (with
r5 == 0) after it has done its stuff.

For now this also brings in the ppc32 version of setup.c.  It also
merges lmb.h.

Signed-off-by: Paul Mackerras <paulus@samba.org>
diff --git a/arch/powerpc/kernel/prom.c b/arch/powerpc/kernel/prom.c
new file mode 100644
index 0000000..dc3d24e
--- /dev/null
+++ b/arch/powerpc/kernel/prom.c
@@ -0,0 +1,2141 @@
+/*
+ * Procedures for creating, accessing and interpreting the device tree.
+ *
+ * Paul Mackerras	August 1996.
+ * Copyright (C) 1996-2005 Paul Mackerras.
+ * 
+ *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
+ *    {engebret|bergner}@us.ibm.com 
+ *
+ *      This program is free software; you can redistribute it and/or
+ *      modify it under the terms of the GNU General Public License
+ *      as published by the Free Software Foundation; either version
+ *      2 of the License, or (at your option) any later version.
+ */
+
+#undef DEBUG
+
+#include <stdarg.h>
+#include <linux/config.h>
+#include <linux/kernel.h>
+#include <linux/string.h>
+#include <linux/init.h>
+#include <linux/threads.h>
+#include <linux/spinlock.h>
+#include <linux/types.h>
+#include <linux/pci.h>
+#include <linux/stringify.h>
+#include <linux/delay.h>
+#include <linux/initrd.h>
+#include <linux/bitops.h>
+#include <linux/module.h>
+
+#include <asm/prom.h>
+#include <asm/rtas.h>
+#include <asm/lmb.h>
+#include <asm/page.h>
+#include <asm/processor.h>
+#include <asm/irq.h>
+#include <asm/io.h>
+#include <asm/smp.h>
+#include <asm/system.h>
+#include <asm/mmu.h>
+#include <asm/pgtable.h>
+#include <asm/pci.h>
+#include <asm/iommu.h>
+#include <asm/btext.h>
+#include <asm/sections.h>
+#include <asm/machdep.h>
+#include <asm/pSeries_reconfig.h>
+
+#ifdef DEBUG
+#define DBG(fmt...) printk(KERN_ERR fmt)
+#else
+#define DBG(fmt...)
+#endif
+
+struct pci_reg_property {
+	struct pci_address addr;
+	u32 size_hi;
+	u32 size_lo;
+};
+
+struct isa_reg_property {
+	u32 space;
+	u32 address;
+	u32 size;
+};
+
+
+typedef int interpret_func(struct device_node *, unsigned long *,
+			   int, int, int);
+
+extern struct rtas_t rtas;
+extern struct lmb lmb;
+extern unsigned long klimit;
+
+static unsigned long memory_limit;
+
+static int __initdata dt_root_addr_cells;
+static int __initdata dt_root_size_cells;
+
+#ifdef CONFIG_PPC64
+static int __initdata iommu_is_off;
+int __initdata iommu_force_on;
+extern unsigned long tce_alloc_start, tce_alloc_end;
+#endif
+
+typedef u32 cell_t;
+
+#if 0
+static struct boot_param_header *initial_boot_params __initdata;
+#else
+struct boot_param_header *initial_boot_params;
+#endif
+
+static struct device_node *allnodes = NULL;
+
+/* use when traversing tree through the allnext, child, sibling,
+ * or parent members of struct device_node.
+ */
+static DEFINE_RWLOCK(devtree_lock);
+
+/* export that to outside world */
+struct device_node *of_chosen;
+
+struct device_node *dflt_interrupt_controller;
+int num_interrupt_controllers;
+
+u32 rtas_data;
+u32 rtas_entry;
+
+/*
+ * Wrapper for allocating memory for various data that needs to be
+ * attached to device nodes as they are processed at boot or when
+ * added to the device tree later (e.g. DLPAR).  At boot there is
+ * already a region reserved so we just increment *mem_start by size;
+ * otherwise we call kmalloc.
+ */
+static void * prom_alloc(unsigned long size, unsigned long *mem_start)
+{
+	unsigned long tmp;
+
+	if (!mem_start)
+		return kmalloc(size, GFP_KERNEL);
+
+	tmp = *mem_start;
+	*mem_start += size;
+	return (void *)tmp;
+}
+
+/*
+ * Find the device_node with a given phandle.
+ */
+static struct device_node * find_phandle(phandle ph)
+{
+	struct device_node *np;
+
+	for (np = allnodes; np != 0; np = np->allnext)
+		if (np->linux_phandle == ph)
+			return np;
+	return NULL;
+}
+
+/*
+ * Find the interrupt parent of a node.
+ */
+static struct device_node * __devinit intr_parent(struct device_node *p)
+{
+	phandle *parp;
+
+	parp = (phandle *) get_property(p, "interrupt-parent", NULL);
+	if (parp == NULL)
+		return p->parent;
+	p = find_phandle(*parp);
+	if (p != NULL)
+		return p;
+	/*
+	 * On a powermac booted with BootX, we don't get to know the
+	 * phandles for any nodes, so find_phandle will return NULL.
+	 * Fortunately these machines only have one interrupt controller
+	 * so there isn't in fact any ambiguity.  -- paulus
+	 */
+	if (num_interrupt_controllers == 1)
+		p = dflt_interrupt_controller;
+	return p;
+}
+
+/*
+ * Find out the size of each entry of the interrupts property
+ * for a node.
+ */
+int __devinit prom_n_intr_cells(struct device_node *np)
+{
+	struct device_node *p;
+	unsigned int *icp;
+
+	for (p = np; (p = intr_parent(p)) != NULL; ) {
+		icp = (unsigned int *)
+			get_property(p, "#interrupt-cells", NULL);
+		if (icp != NULL)
+			return *icp;
+		if (get_property(p, "interrupt-controller", NULL) != NULL
+		    || get_property(p, "interrupt-map", NULL) != NULL) {
+			printk("oops, node %s doesn't have #interrupt-cells\n",
+			       p->full_name);
+			return 1;
+		}
+	}
+#ifdef DEBUG_IRQ
+	printk("prom_n_intr_cells failed for %s\n", np->full_name);
+#endif
+	return 1;
+}
+
+/*
+ * Map an interrupt from a device up to the platform interrupt
+ * descriptor.
+ */
+static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
+				   struct device_node *np, unsigned int *ints,
+				   int nintrc)
+{
+	struct device_node *p, *ipar;
+	unsigned int *imap, *imask, *ip;
+	int i, imaplen, match;
+	int newintrc = 0, newaddrc = 0;
+	unsigned int *reg;
+	int naddrc;
+
+	reg = (unsigned int *) get_property(np, "reg", NULL);
+	naddrc = prom_n_addr_cells(np);
+	p = intr_parent(np);
+	while (p != NULL) {
+		if (get_property(p, "interrupt-controller", NULL) != NULL)
+			/* this node is an interrupt controller, stop here */
+			break;
+		imap = (unsigned int *)
+			get_property(p, "interrupt-map", &imaplen);
+		if (imap == NULL) {
+			p = intr_parent(p);
+			continue;
+		}
+		imask = (unsigned int *)
+			get_property(p, "interrupt-map-mask", NULL);
+		if (imask == NULL) {
+			printk("oops, %s has interrupt-map but no mask\n",
+			       p->full_name);
+			return 0;
+		}
+		imaplen /= sizeof(unsigned int);
+		match = 0;
+		ipar = NULL;
+		while (imaplen > 0 && !match) {
+			/* check the child-interrupt field */
+			match = 1;
+			for (i = 0; i < naddrc && match; ++i)
+				match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
+			for (; i < naddrc + nintrc && match; ++i)
+				match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
+			imap += naddrc + nintrc;
+			imaplen -= naddrc + nintrc;
+			/* grab the interrupt parent */
+			ipar = find_phandle((phandle) *imap++);
+			--imaplen;
+			if (ipar == NULL && num_interrupt_controllers == 1)
+				/* cope with BootX not giving us phandles */
+				ipar = dflt_interrupt_controller;
+			if (ipar == NULL) {
+				printk("oops, no int parent %x in map of %s\n",
+				       imap[-1], p->full_name);
+				return 0;
+			}
+			/* find the parent's # addr and intr cells */
+			ip = (unsigned int *)
+				get_property(ipar, "#interrupt-cells", NULL);
+			if (ip == NULL) {
+				printk("oops, no #interrupt-cells on %s\n",
+				       ipar->full_name);
+				return 0;
+			}
+			newintrc = *ip;
+			ip = (unsigned int *)
+				get_property(ipar, "#address-cells", NULL);
+			newaddrc = (ip == NULL)? 0: *ip;
+			imap += newaddrc + newintrc;
+			imaplen -= newaddrc + newintrc;
+		}
+		if (imaplen < 0) {
+			printk("oops, error decoding int-map on %s, len=%d\n",
+			       p->full_name, imaplen);
+			return 0;
+		}
+		if (!match) {
+#ifdef DEBUG_IRQ
+			printk("oops, no match in %s int-map for %s\n",
+			       p->full_name, np->full_name);
+#endif
+			return 0;
+		}
+		p = ipar;
+		naddrc = newaddrc;
+		nintrc = newintrc;
+		ints = imap - nintrc;
+		reg = ints - naddrc;
+	}
+	if (p == NULL) {
+#ifdef DEBUG_IRQ
+		printk("hmmm, int tree for %s doesn't have ctrler\n",
+		       np->full_name);
+#endif
+		return 0;
+	}
+	*irq = ints;
+	*ictrler = p;
+	return nintrc;
+}
+
+static int __devinit finish_node_interrupts(struct device_node *np,
+					    unsigned long *mem_start,
+					    int measure_only)
+{
+	unsigned int *ints;
+	int intlen, intrcells, intrcount;
+	int i, j, n;
+	unsigned int *irq, virq;
+	struct device_node *ic;
+
+	ints = (unsigned int *) get_property(np, "interrupts", &intlen);
+	if (ints == NULL)
+		return 0;
+	intrcells = prom_n_intr_cells(np);
+	intlen /= intrcells * sizeof(unsigned int);
+
+	np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
+	if (!np->intrs)
+		return -ENOMEM;
+
+	if (measure_only)
+		return 0;
+
+	intrcount = 0;
+	for (i = 0; i < intlen; ++i, ints += intrcells) {
+		n = map_interrupt(&irq, &ic, np, ints, intrcells);
+		if (n <= 0)
+			continue;
+
+		/* don't map IRQ numbers under a cascaded 8259 controller */
+		if (ic && device_is_compatible(ic, "chrp,iic")) {
+			np->intrs[intrcount].line = irq[0];
+		} else {
+#ifdef CONFIG_PPC64
+			virq = virt_irq_create_mapping(irq[0]);
+			if (virq == NO_IRQ) {
+				printk(KERN_CRIT "Could not allocate interrupt"
+				       " number for %s\n", np->full_name);
+				continue;
+			}
+			virq = irq_offset_up(virq);
+#else
+			virq = irq[0];
+#endif
+			np->intrs[intrcount].line = virq;
+		}
+
+#ifdef CONFIG_PPC64
+		/* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
+		if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
+			char *name = get_property(ic->parent, "name", NULL);
+			if (name && !strcmp(name, "u3"))
+				np->intrs[intrcount].line += 128;
+			else if (!(name && !strcmp(name, "mac-io")))
+				/* ignore other cascaded controllers, such as
+				   the k2-sata-root */
+				break;
+		}
+#endif
+		np->intrs[intrcount].sense = 1;
+		if (n > 1)
+			np->intrs[intrcount].sense = irq[1];
+		if (n > 2) {
+			printk("hmmm, got %d intr cells for %s:", n,
+			       np->full_name);
+			for (j = 0; j < n; ++j)
+				printk(" %d", irq[j]);
+			printk("\n");
+		}
+		++intrcount;
+	}
+	np->n_intrs = intrcount;
+
+	return 0;
+}
+
+static int __devinit interpret_pci_props(struct device_node *np,
+					 unsigned long *mem_start,
+					 int naddrc, int nsizec,
+					 int measure_only)
+{
+	struct address_range *adr;
+	struct pci_reg_property *pci_addrs;
+	int i, l, n_addrs;
+
+	pci_addrs = (struct pci_reg_property *)
+		get_property(np, "assigned-addresses", &l);
+	if (!pci_addrs)
+		return 0;
+
+	n_addrs = l / sizeof(*pci_addrs);
+
+	adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
+	if (!adr)
+		return -ENOMEM;
+
+ 	if (measure_only)
+ 		return 0;
+
+ 	np->addrs = adr;
+ 	np->n_addrs = n_addrs;
+
+ 	for (i = 0; i < n_addrs; i++) {
+ 		adr[i].space = pci_addrs[i].addr.a_hi;
+ 		adr[i].address = pci_addrs[i].addr.a_lo |
+			((u64)pci_addrs[i].addr.a_mid << 32);
+ 		adr[i].size = pci_addrs[i].size_lo;
+	}
+
+	return 0;
+}
+
+static int __init interpret_dbdma_props(struct device_node *np,
+					unsigned long *mem_start,
+					int naddrc, int nsizec,
+					int measure_only)
+{
+	struct reg_property32 *rp;
+	struct address_range *adr;
+	unsigned long base_address;
+	int i, l;
+	struct device_node *db;
+
+	base_address = 0;
+	if (!measure_only) {
+		for (db = np->parent; db != NULL; db = db->parent) {
+			if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
+				base_address = db->addrs[0].address;
+				break;
+			}
+		}
+	}
+
+	rp = (struct reg_property32 *) get_property(np, "reg", &l);
+	if (rp != 0 && l >= sizeof(struct reg_property32)) {
+		i = 0;
+		adr = (struct address_range *) (*mem_start);
+		while ((l -= sizeof(struct reg_property32)) >= 0) {
+			if (!measure_only) {
+				adr[i].space = 2;
+				adr[i].address = rp[i].address + base_address;
+				adr[i].size = rp[i].size;
+			}
+			++i;
+		}
+		np->addrs = adr;
+		np->n_addrs = i;
+		(*mem_start) += i * sizeof(struct address_range);
+	}
+
+	return 0;
+}
+
+static int __init interpret_macio_props(struct device_node *np,
+					unsigned long *mem_start,
+					int naddrc, int nsizec,
+					int measure_only)
+{
+	struct reg_property32 *rp;
+	struct address_range *adr;
+	unsigned long base_address;
+	int i, l;
+	struct device_node *db;
+
+	base_address = 0;
+	if (!measure_only) {
+		for (db = np->parent; db != NULL; db = db->parent) {
+			if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
+				base_address = db->addrs[0].address;
+				break;
+			}
+		}
+	}
+
+	rp = (struct reg_property32 *) get_property(np, "reg", &l);
+	if (rp != 0 && l >= sizeof(struct reg_property32)) {
+		i = 0;
+		adr = (struct address_range *) (*mem_start);
+		while ((l -= sizeof(struct reg_property32)) >= 0) {
+			if (!measure_only) {
+				adr[i].space = 2;
+				adr[i].address = rp[i].address + base_address;
+				adr[i].size = rp[i].size;
+			}
+			++i;
+		}
+		np->addrs = adr;
+		np->n_addrs = i;
+		(*mem_start) += i * sizeof(struct address_range);
+	}
+
+	return 0;
+}
+
+static int __init interpret_isa_props(struct device_node *np,
+				      unsigned long *mem_start,
+				      int naddrc, int nsizec,
+				      int measure_only)
+{
+	struct isa_reg_property *rp;
+	struct address_range *adr;
+	int i, l;
+
+	rp = (struct isa_reg_property *) get_property(np, "reg", &l);
+	if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
+		i = 0;
+		adr = (struct address_range *) (*mem_start);
+		while ((l -= sizeof(struct isa_reg_property)) >= 0) {
+			if (!measure_only) {
+				adr[i].space = rp[i].space;
+				adr[i].address = rp[i].address;
+				adr[i].size = rp[i].size;
+			}
+			++i;
+		}
+		np->addrs = adr;
+		np->n_addrs = i;
+		(*mem_start) += i * sizeof(struct address_range);
+	}
+
+	return 0;
+}
+
+static int __init interpret_root_props(struct device_node *np,
+				       unsigned long *mem_start,
+				       int naddrc, int nsizec,
+				       int measure_only)
+{
+	struct address_range *adr;
+	int i, l;
+	unsigned int *rp;
+	int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
+
+	rp = (unsigned int *) get_property(np, "reg", &l);
+	if (rp != 0 && l >= rpsize) {
+		i = 0;
+		adr = (struct address_range *) (*mem_start);
+		while ((l -= rpsize) >= 0) {
+			if (!measure_only) {
+				adr[i].space = 0;
+				adr[i].address = rp[naddrc - 1];
+				adr[i].size = rp[naddrc + nsizec - 1];
+			}
+			++i;
+			rp += naddrc + nsizec;
+		}
+		np->addrs = adr;
+		np->n_addrs = i;
+		(*mem_start) += i * sizeof(struct address_range);
+	}
+
+	return 0;
+}
+
+static int __devinit finish_node(struct device_node *np,
+				 unsigned long *mem_start,
+				 interpret_func *ifunc,
+				 int naddrc, int nsizec,
+				 int measure_only)
+{
+	struct device_node *child;
+	int *ip, rc = 0;
+
+	/* get the device addresses and interrupts */
+	if (ifunc != NULL)
+		rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
+	if (rc)
+		goto out;
+
+	rc = finish_node_interrupts(np, mem_start, measure_only);
+	if (rc)
+		goto out;
+
+	/* Look for #address-cells and #size-cells properties. */
+	ip = (int *) get_property(np, "#address-cells", NULL);
+	if (ip != NULL)
+		naddrc = *ip;
+	ip = (int *) get_property(np, "#size-cells", NULL);
+	if (ip != NULL)
+		nsizec = *ip;
+
+	if (!strcmp(np->name, "device-tree") || np->parent == NULL)
+		ifunc = interpret_root_props;
+	else if (np->type == 0)
+		ifunc = NULL;
+	else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
+		ifunc = interpret_pci_props;
+	else if (!strcmp(np->type, "dbdma"))
+		ifunc = interpret_dbdma_props;
+	else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
+		ifunc = interpret_macio_props;
+	else if (!strcmp(np->type, "isa"))
+		ifunc = interpret_isa_props;
+	else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
+		ifunc = interpret_root_props;
+	else if (!((ifunc == interpret_dbdma_props
+		    || ifunc == interpret_macio_props)
+		   && (!strcmp(np->type, "escc")
+		       || !strcmp(np->type, "media-bay"))))
+		ifunc = NULL;
+
+	for (child = np->child; child != NULL; child = child->sibling) {
+		rc = finish_node(child, mem_start, ifunc,
+				 naddrc, nsizec, measure_only);
+		if (rc)
+			goto out;
+	}
+out:
+	return rc;
+}
+
+static void __init scan_interrupt_controllers(void)
+{
+	struct device_node *np;
+	int n = 0;
+	char *name, *ic;
+	int iclen;
+
+	for (np = allnodes; np != NULL; np = np->allnext) {
+		ic = get_property(np, "interrupt-controller", &iclen);
+		name = get_property(np, "name", NULL);
+		/* checking iclen makes sure we don't get a false
+		   match on /chosen.interrupt_controller */
+		if ((name != NULL
+		     && strcmp(name, "interrupt-controller") == 0)
+		    || (ic != NULL && iclen == 0
+			&& strcmp(name, "AppleKiwi"))) {
+			if (n == 0)
+				dflt_interrupt_controller = np;
+			++n;
+		}
+	}
+	num_interrupt_controllers = n;
+}
+
+/**
+ * finish_device_tree is called once things are running normally
+ * (i.e. with text and data mapped to the address they were linked at).
+ * It traverses the device tree and fills in some of the additional,
+ * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
+ * mapping is also initialized at this point.
+ */
+void __init finish_device_tree(void)
+{
+	unsigned long start, end, size = 0;
+
+	DBG(" -> finish_device_tree\n");
+
+#ifdef CONFIG_PPC64
+	/* Initialize virtual IRQ map */
+	virt_irq_init();
+#endif
+	scan_interrupt_controllers();
+
+	/*
+	 * Finish device-tree (pre-parsing some properties etc...)
+	 * We do this in 2 passes. One with "measure_only" set, which
+	 * will only measure the amount of memory needed, then we can
+	 * allocate that memory, and call finish_node again. However,
+	 * we must be careful as most routines will fail nowadays when
+	 * prom_alloc() returns 0, so we must make sure our first pass
+	 * doesn't start at 0. We pre-initialize size to 16 for that
+	 * reason and then remove those additional 16 bytes
+	 */
+	size = 16;
+	finish_node(allnodes, &size, NULL, 0, 0, 1);
+	size -= 16;
+	end = start = (unsigned long) __va(lmb_alloc(size, 128));
+	finish_node(allnodes, &end, NULL, 0, 0, 0);
+	BUG_ON(end != start + size);
+
+	DBG(" <- finish_device_tree\n");
+}
+
+static inline char *find_flat_dt_string(u32 offset)
+{
+	return ((char *)initial_boot_params) +
+		initial_boot_params->off_dt_strings + offset;
+}
+
+/**
+ * This function is used to scan the flattened device-tree, it is
+ * used to extract the memory informations at boot before we can
+ * unflatten the tree
+ */
+static int __init scan_flat_dt(int (*it)(unsigned long node,
+					 const char *uname, int depth,
+					 void *data),
+			       void *data)
+{
+	unsigned long p = ((unsigned long)initial_boot_params) +
+		initial_boot_params->off_dt_struct;
+	int rc = 0;
+	int depth = -1;
+
+	do {
+		u32 tag = *((u32 *)p);
+		char *pathp;
+		
+		p += 4;
+		if (tag == OF_DT_END_NODE) {
+			depth --;
+			continue;
+		}
+		if (tag == OF_DT_NOP)
+			continue;
+		if (tag == OF_DT_END)
+			break;
+		if (tag == OF_DT_PROP) {
+			u32 sz = *((u32 *)p);
+			p += 8;
+			if (initial_boot_params->version < 0x10)
+				p = _ALIGN(p, sz >= 8 ? 8 : 4);
+			p += sz;
+			p = _ALIGN(p, 4);
+			continue;
+		}
+		if (tag != OF_DT_BEGIN_NODE) {
+			printk(KERN_WARNING "Invalid tag %x scanning flattened"
+			       " device tree !\n", tag);
+			return -EINVAL;
+		}
+		depth++;
+		pathp = (char *)p;
+		p = _ALIGN(p + strlen(pathp) + 1, 4);
+		if ((*pathp) == '/') {
+			char *lp, *np;
+			for (lp = NULL, np = pathp; *np; np++)
+				if ((*np) == '/')
+					lp = np+1;
+			if (lp != NULL)
+				pathp = lp;
+		}
+		rc = it(p, pathp, depth, data);
+		if (rc != 0)
+			break;		
+	} while(1);
+
+	return rc;
+}
+
+/**
+ * This  function can be used within scan_flattened_dt callback to get
+ * access to properties
+ */
+static void* __init get_flat_dt_prop(unsigned long node, const char *name,
+				     unsigned long *size)
+{
+	unsigned long p = node;
+
+	do {
+		u32 tag = *((u32 *)p);
+		u32 sz, noff;
+		const char *nstr;
+
+		p += 4;
+		if (tag == OF_DT_NOP)
+			continue;
+		if (tag != OF_DT_PROP)
+			return NULL;
+
+		sz = *((u32 *)p);
+		noff = *((u32 *)(p + 4));
+		p += 8;
+		if (initial_boot_params->version < 0x10)
+			p = _ALIGN(p, sz >= 8 ? 8 : 4);
+
+		nstr = find_flat_dt_string(noff);
+		if (nstr == NULL) {
+			printk(KERN_WARNING "Can't find property index"
+			       " name !\n");
+			return NULL;
+		}
+		if (strcmp(name, nstr) == 0) {
+			if (size)
+				*size = sz;
+			return (void *)p;
+		}
+		p += sz;
+		p = _ALIGN(p, 4);
+	} while(1);
+}
+
+static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
+				       unsigned long align)
+{
+	void *res;
+
+	*mem = _ALIGN(*mem, align);
+	res = (void *)*mem;
+	*mem += size;
+
+	return res;
+}
+
+static unsigned long __init unflatten_dt_node(unsigned long mem,
+					      unsigned long *p,
+					      struct device_node *dad,
+					      struct device_node ***allnextpp,
+					      unsigned long fpsize)
+{
+	struct device_node *np;
+	struct property *pp, **prev_pp = NULL;
+	char *pathp;
+	u32 tag;
+	unsigned int l, allocl;
+	int has_name = 0;
+	int new_format = 0;
+
+	tag = *((u32 *)(*p));
+	if (tag != OF_DT_BEGIN_NODE) {
+		printk("Weird tag at start of node: %x\n", tag);
+		return mem;
+	}
+	*p += 4;
+	pathp = (char *)*p;
+	l = allocl = strlen(pathp) + 1;
+	*p = _ALIGN(*p + l, 4);
+
+	/* version 0x10 has a more compact unit name here instead of the full
+	 * path. we accumulate the full path size using "fpsize", we'll rebuild
+	 * it later. We detect this because the first character of the name is
+	 * not '/'.
+	 */
+	if ((*pathp) != '/') {
+		new_format = 1;
+		if (fpsize == 0) {
+			/* root node: special case. fpsize accounts for path
+			 * plus terminating zero. root node only has '/', so
+			 * fpsize should be 2, but we want to avoid the first
+			 * level nodes to have two '/' so we use fpsize 1 here
+			 */
+			fpsize = 1;
+			allocl = 2;
+		} else {
+			/* account for '/' and path size minus terminal 0
+			 * already in 'l'
+			 */
+			fpsize += l;
+			allocl = fpsize;
+		}
+	}
+
+
+	np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
+				__alignof__(struct device_node));
+	if (allnextpp) {
+		memset(np, 0, sizeof(*np));
+		np->full_name = ((char*)np) + sizeof(struct device_node);
+		if (new_format) {
+			char *p = np->full_name;
+			/* rebuild full path for new format */
+			if (dad && dad->parent) {
+				strcpy(p, dad->full_name);
+#ifdef DEBUG
+				if ((strlen(p) + l + 1) != allocl) {
+					DBG("%s: p: %d, l: %d, a: %d\n",
+					    pathp, strlen(p), l, allocl);
+				}
+#endif
+				p += strlen(p);
+			}
+			*(p++) = '/';
+			memcpy(p, pathp, l);
+		} else
+			memcpy(np->full_name, pathp, l);
+		prev_pp = &np->properties;
+		**allnextpp = np;
+		*allnextpp = &np->allnext;
+		if (dad != NULL) {
+			np->parent = dad;
+			/* we temporarily use the next field as `last_child'*/
+			if (dad->next == 0)
+				dad->child = np;
+			else
+				dad->next->sibling = np;
+			dad->next = np;
+		}
+		kref_init(&np->kref);
+	}
+	while(1) {
+		u32 sz, noff;
+		char *pname;
+
+		tag = *((u32 *)(*p));
+		if (tag == OF_DT_NOP) {
+			*p += 4;
+			continue;
+		}
+		if (tag != OF_DT_PROP)
+			break;
+		*p += 4;
+		sz = *((u32 *)(*p));
+		noff = *((u32 *)((*p) + 4));
+		*p += 8;
+		if (initial_boot_params->version < 0x10)
+			*p = _ALIGN(*p, sz >= 8 ? 8 : 4);
+
+		pname = find_flat_dt_string(noff);
+		if (pname == NULL) {
+			printk("Can't find property name in list !\n");
+			break;
+		}
+		if (strcmp(pname, "name") == 0)
+			has_name = 1;
+		l = strlen(pname) + 1;
+		pp = unflatten_dt_alloc(&mem, sizeof(struct property),
+					__alignof__(struct property));
+		if (allnextpp) {
+			if (strcmp(pname, "linux,phandle") == 0) {
+				np->node = *((u32 *)*p);
+				if (np->linux_phandle == 0)
+					np->linux_phandle = np->node;
+			}
+			if (strcmp(pname, "ibm,phandle") == 0)
+				np->linux_phandle = *((u32 *)*p);
+			pp->name = pname;
+			pp->length = sz;
+			pp->value = (void *)*p;
+			*prev_pp = pp;
+			prev_pp = &pp->next;
+		}
+		*p = _ALIGN((*p) + sz, 4);
+	}
+	/* with version 0x10 we may not have the name property, recreate
+	 * it here from the unit name if absent
+	 */
+	if (!has_name) {
+		char *p = pathp, *ps = pathp, *pa = NULL;
+		int sz;
+
+		while (*p) {
+			if ((*p) == '@')
+				pa = p;
+			if ((*p) == '/')
+				ps = p + 1;
+			p++;
+		}
+		if (pa < ps)
+			pa = p;
+		sz = (pa - ps) + 1;
+		pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
+					__alignof__(struct property));
+		if (allnextpp) {
+			pp->name = "name";
+			pp->length = sz;
+			pp->value = (unsigned char *)(pp + 1);
+			*prev_pp = pp;
+			prev_pp = &pp->next;
+			memcpy(pp->value, ps, sz - 1);
+			((char *)pp->value)[sz - 1] = 0;
+			DBG("fixed up name for %s -> %s\n", pathp, pp->value);
+		}
+	}
+	if (allnextpp) {
+		*prev_pp = NULL;
+		np->name = get_property(np, "name", NULL);
+		np->type = get_property(np, "device_type", NULL);
+
+		if (!np->name)
+			np->name = "<NULL>";
+		if (!np->type)
+			np->type = "<NULL>";
+	}
+	while (tag == OF_DT_BEGIN_NODE) {
+		mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
+		tag = *((u32 *)(*p));
+	}
+	if (tag != OF_DT_END_NODE) {
+		printk("Weird tag at end of node: %x\n", tag);
+		return mem;
+	}
+	*p += 4;
+	return mem;
+}
+
+
+/**
+ * unflattens the device-tree passed by the firmware, creating the
+ * tree of struct device_node. It also fills the "name" and "type"
+ * pointers of the nodes so the normal device-tree walking functions
+ * can be used (this used to be done by finish_device_tree)
+ */
+void __init unflatten_device_tree(void)
+{
+	unsigned long start, mem, size;
+	struct device_node **allnextp = &allnodes;
+	char *p = NULL;
+	int l = 0;
+
+	DBG(" -> unflatten_device_tree()\n");
+
+	/* First pass, scan for size */
+	start = ((unsigned long)initial_boot_params) +
+		initial_boot_params->off_dt_struct;
+	size = unflatten_dt_node(0, &start, NULL, NULL, 0);
+	size = (size | 3) + 1;
+
+	DBG("  size is %lx, allocating...\n", size);
+
+	/* Allocate memory for the expanded device tree */
+	mem = lmb_alloc(size + 4, __alignof__(struct device_node));
+	if (!mem) {
+		DBG("Couldn't allocate memory with lmb_alloc()!\n");
+		panic("Couldn't allocate memory with lmb_alloc()!\n");
+	}
+	mem = (unsigned long) __va(mem);
+
+	((u32 *)mem)[size / 4] = 0xdeadbeef;
+
+	DBG("  unflattening %lx...\n", mem);
+
+	/* Second pass, do actual unflattening */
+	start = ((unsigned long)initial_boot_params) +
+		initial_boot_params->off_dt_struct;
+	unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
+	if (*((u32 *)start) != OF_DT_END)
+		printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
+	if (((u32 *)mem)[size / 4] != 0xdeadbeef)
+		printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
+		       ((u32 *)mem)[size / 4] );
+	*allnextp = NULL;
+
+	/* Get pointer to OF "/chosen" node for use everywhere */
+	of_chosen = of_find_node_by_path("/chosen");
+
+	/* Retreive command line */
+	if (of_chosen != NULL) {
+		p = (char *)get_property(of_chosen, "bootargs", &l);
+		if (p != NULL && l > 0)
+			strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
+	}
+#ifdef CONFIG_CMDLINE
+	if (l == 0 || (l == 1 && (*p) == 0))
+		strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
+#endif /* CONFIG_CMDLINE */
+
+	DBG("Command line is: %s\n", cmd_line);
+
+	DBG(" <- unflatten_device_tree()\n");
+}
+
+
+static int __init early_init_dt_scan_cpus(unsigned long node,
+					  const char *uname, int depth, void *data)
+{
+	char *type = get_flat_dt_prop(node, "device_type", NULL);
+	u32 *prop;
+	unsigned long size = 0;
+
+	/* We are scanning "cpu" nodes only */
+	if (type == NULL || strcmp(type, "cpu") != 0)
+		return 0;
+
+#ifdef CONFIG_PPC_PSERIES
+	/* On LPAR, look for the first ibm,pft-size property for the  hash table size
+	 */
+	if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
+		u32 *pft_size;
+		pft_size = get_flat_dt_prop(node, "ibm,pft-size", NULL);
+		if (pft_size != NULL) {
+			/* pft_size[0] is the NUMA CEC cookie */
+			ppc64_pft_size = pft_size[1];
+		}
+	}
+#endif
+
+#ifdef CONFIG_PPC64
+	if (initial_boot_params && initial_boot_params->version >= 2) {
+		/* version 2 of the kexec param format adds the phys cpuid
+		 * of booted proc.
+		 */
+		boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
+		boot_cpuid = 0;
+	} else {
+		/* Check if it's the boot-cpu, set it's hw index in paca now */
+		if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
+			u32 *prop = get_flat_dt_prop(node, "reg", NULL);
+			set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
+			boot_cpuid_phys = get_hard_smp_processor_id(0);
+		}
+	}
+#endif
+
+#ifdef CONFIG_ALTIVEC
+	/* Check if we have a VMX and eventually update CPU features */
+	prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", &size);
+	if (prop && (*prop) > 0) {
+		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
+		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
+	}
+
+	/* Same goes for Apple's "altivec" property */
+	prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
+	if (prop) {
+		cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
+		cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
+	}
+#endif /* CONFIG_ALTIVEC */
+
+#ifdef CONFIG_PPC_PSERIES
+	/*
+	 * Check for an SMT capable CPU and set the CPU feature. We do
+	 * this by looking at the size of the ibm,ppc-interrupt-server#s
+	 * property
+	 */
+	prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
+				       &size);
+	cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
+	if (prop && ((size / sizeof(u32)) > 1))
+		cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
+#endif
+
+	return 0;
+}
+
+static int __init early_init_dt_scan_chosen(unsigned long node,
+					    const char *uname, int depth, void *data)
+{
+	u32 *prop;
+	unsigned long *lprop;
+
+	DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
+
+	if (depth != 1 || strcmp(uname, "chosen") != 0)
+		return 0;
+
+	/* get platform type */
+	prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
+	if (prop == NULL)
+		return 0;
+#ifdef CONFIG_PPC64
+	systemcfg->platform = *prop;
+#else
+	_machine = *prop;
+#endif
+
+#ifdef CONFIG_PPC64
+	/* check if iommu is forced on or off */
+	if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
+		iommu_is_off = 1;
+	if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
+		iommu_force_on = 1;
+#endif
+
+ 	lprop = get_flat_dt_prop(node, "linux,memory-limit", NULL);
+ 	if (lprop)
+ 		memory_limit = *lprop;
+
+#ifdef CONFIG_PPC64
+ 	lprop = get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
+ 	if (lprop)
+ 		tce_alloc_start = *lprop;
+ 	lprop = get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
+ 	if (lprop)
+ 		tce_alloc_end = *lprop;
+#endif
+
+#ifdef CONFIG_PPC_RTAS
+	/* To help early debugging via the front panel, we retreive a minimal
+	 * set of RTAS infos now if available
+	 */
+	{
+		u64 *basep, *entryp;
+
+		basep = get_flat_dt_prop(node, "linux,rtas-base", NULL);
+		entryp = get_flat_dt_prop(node, "linux,rtas-entry", NULL);
+		prop = get_flat_dt_prop(node, "linux,rtas-size", NULL);
+		if (basep && entryp && prop) {
+			rtas.base = *basep;
+			rtas.entry = *entryp;
+			rtas.size = *prop;
+		}
+	}
+#endif /* CONFIG_PPC_RTAS */
+
+	/* break now */
+	return 1;
+}
+
+static int __init early_init_dt_scan_root(unsigned long node,
+					  const char *uname, int depth, void *data)
+{
+	u32 *prop;
+
+	if (depth != 0)
+		return 0;
+
+	prop = get_flat_dt_prop(node, "#size-cells", NULL);
+	dt_root_size_cells = (prop == NULL) ? 1 : *prop;
+	DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
+
+	prop = get_flat_dt_prop(node, "#address-cells", NULL);
+	dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
+	DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
+	
+	/* break now */
+	return 1;
+}
+
+static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
+{
+	cell_t *p = *cellp;
+	unsigned long r;
+
+	/* Ignore more than 2 cells */
+	while (s > sizeof(unsigned long) / 4) {
+		p++;
+		s--;
+	}
+	r = *p++;
+#ifdef CONFIG_PPC64
+	if (s > 1) {
+		r <<= 32;
+		r |= *(p++);
+		s--;
+	}
+#endif
+
+	*cellp = p;
+	return r;
+}
+
+
+static int __init early_init_dt_scan_memory(unsigned long node,
+					    const char *uname, int depth, void *data)
+{
+	char *type = get_flat_dt_prop(node, "device_type", NULL);
+	cell_t *reg, *endp;
+	unsigned long l;
+
+	/* We are scanning "memory" nodes only */
+	if (type == NULL || strcmp(type, "memory") != 0)
+		return 0;
+
+	reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
+	if (reg == NULL)
+		return 0;
+
+	endp = reg + (l / sizeof(cell_t));
+
+	DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
+	    uname, l, reg[0], reg[1], reg[2], reg[3]);
+
+	while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
+		unsigned long base, size;
+
+		base = dt_mem_next_cell(dt_root_addr_cells, &reg);
+		size = dt_mem_next_cell(dt_root_size_cells, &reg);
+
+		if (size == 0)
+			continue;
+		DBG(" - %lx ,  %lx\n", base, size);
+#ifdef CONFIG_PPC64
+		if (iommu_is_off) {
+			if (base >= 0x80000000ul)
+				continue;
+			if ((base + size) > 0x80000000ul)
+				size = 0x80000000ul - base;
+		}
+#endif
+		lmb_add(base, size);
+	}
+	return 0;
+}
+
+static void __init early_reserve_mem(void)
+{
+	unsigned long base, size;
+	unsigned long *reserve_map;
+
+	reserve_map = (unsigned long *)(((unsigned long)initial_boot_params) +
+					initial_boot_params->off_mem_rsvmap);
+	while (1) {
+		base = *(reserve_map++);
+		size = *(reserve_map++);
+		if (size == 0)
+			break;
+		DBG("reserving: %lx -> %lx\n", base, size);
+		lmb_reserve(base, size);
+	}
+
+#if 0
+	DBG("memory reserved, lmbs :\n");
+      	lmb_dump_all();
+#endif
+}
+
+void __init early_init_devtree(void *params)
+{
+	DBG(" -> early_init_devtree()\n");
+
+	/* Setup flat device-tree pointer */
+	initial_boot_params = params;
+
+	/* Retrieve various informations from the /chosen node of the
+	 * device-tree, including the platform type, initrd location and
+	 * size, TCE reserve, and more ...
+	 */
+	scan_flat_dt(early_init_dt_scan_chosen, NULL);
+
+	/* Scan memory nodes and rebuild LMBs */
+	lmb_init();
+	scan_flat_dt(early_init_dt_scan_root, NULL);
+	scan_flat_dt(early_init_dt_scan_memory, NULL);
+	lmb_enforce_memory_limit(memory_limit);
+	lmb_analyze();
+#ifdef CONFIG_PPC64
+	systemcfg->physicalMemorySize = lmb_phys_mem_size();
+#endif
+	lmb_reserve(0, __pa(klimit));
+
+	DBG("Phys. mem: %lx\n", lmb_phys_mem_size());
+
+	/* Reserve LMB regions used by kernel, initrd, dt, etc... */
+	early_reserve_mem();
+
+	DBG("Scanning CPUs ...\n");
+
+	/* Retreive hash table size from flattened tree plus other
+	 * CPU related informations (altivec support, boot CPU ID, ...)
+	 */
+	scan_flat_dt(early_init_dt_scan_cpus, NULL);
+
+#ifdef CONFIG_PPC_PSERIES
+	/* If hash size wasn't obtained above, we calculate it now based on
+	 * the total RAM size
+	 */
+	if (ppc64_pft_size == 0) {
+		unsigned long rnd_mem_size, pteg_count;
+
+		/* round mem_size up to next power of 2 */
+		rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
+		if (rnd_mem_size < systemcfg->physicalMemorySize)
+			rnd_mem_size <<= 1;
+
+		/* # pages / 2 */
+		pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
+
+		ppc64_pft_size = __ilog2(pteg_count << 7);
+	}
+
+	DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
+#endif
+	DBG(" <- early_init_devtree()\n");
+}
+
+#undef printk
+
+int
+prom_n_addr_cells(struct device_node* np)
+{
+	int* ip;
+	do {
+		if (np->parent)
+			np = np->parent;
+		ip = (int *) get_property(np, "#address-cells", NULL);
+		if (ip != NULL)
+			return *ip;
+	} while (np->parent);
+	/* No #address-cells property for the root node, default to 1 */
+	return 1;
+}
+
+int
+prom_n_size_cells(struct device_node* np)
+{
+	int* ip;
+	do {
+		if (np->parent)
+			np = np->parent;
+		ip = (int *) get_property(np, "#size-cells", NULL);
+		if (ip != NULL)
+			return *ip;
+	} while (np->parent);
+	/* No #size-cells property for the root node, default to 1 */
+	return 1;
+}
+
+/**
+ * Work out the sense (active-low level / active-high edge)
+ * of each interrupt from the device tree.
+ */
+void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
+{
+	struct device_node *np;
+	int i, j;
+
+	/* default to level-triggered */
+	memset(senses, 1, max - off);
+
+	for (np = allnodes; np != 0; np = np->allnext) {
+		for (j = 0; j < np->n_intrs; j++) {
+			i = np->intrs[j].line;
+			if (i >= off && i < max)
+				senses[i-off] = np->intrs[j].sense ?
+					IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
+					IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
+		}
+	}
+}
+
+/**
+ * Construct and return a list of the device_nodes with a given name.
+ */
+struct device_node *find_devices(const char *name)
+{
+	struct device_node *head, **prevp, *np;
+
+	prevp = &head;
+	for (np = allnodes; np != 0; np = np->allnext) {
+		if (np->name != 0 && strcasecmp(np->name, name) == 0) {
+			*prevp = np;
+			prevp = &np->next;
+		}
+	}
+	*prevp = NULL;
+	return head;
+}
+EXPORT_SYMBOL(find_devices);
+
+/**
+ * Construct and return a list of the device_nodes with a given type.
+ */
+struct device_node *find_type_devices(const char *type)
+{
+	struct device_node *head, **prevp, *np;
+
+	prevp = &head;
+	for (np = allnodes; np != 0; np = np->allnext) {
+		if (np->type != 0 && strcasecmp(np->type, type) == 0) {
+			*prevp = np;
+			prevp = &np->next;
+		}
+	}
+	*prevp = NULL;
+	return head;
+}
+EXPORT_SYMBOL(find_type_devices);
+
+/**
+ * Returns all nodes linked together
+ */
+struct device_node *find_all_nodes(void)
+{
+	struct device_node *head, **prevp, *np;
+
+	prevp = &head;
+	for (np = allnodes; np != 0; np = np->allnext) {
+		*prevp = np;
+		prevp = &np->next;
+	}
+	*prevp = NULL;
+	return head;
+}
+EXPORT_SYMBOL(find_all_nodes);
+
+/** Checks if the given "compat" string matches one of the strings in
+ * the device's "compatible" property
+ */
+int device_is_compatible(struct device_node *device, const char *compat)
+{
+	const char* cp;
+	int cplen, l;
+
+	cp = (char *) get_property(device, "compatible", &cplen);
+	if (cp == NULL)
+		return 0;
+	while (cplen > 0) {
+		if (strncasecmp(cp, compat, strlen(compat)) == 0)
+			return 1;
+		l = strlen(cp) + 1;
+		cp += l;
+		cplen -= l;
+	}
+
+	return 0;
+}
+EXPORT_SYMBOL(device_is_compatible);
+
+
+/**
+ * Indicates whether the root node has a given value in its
+ * compatible property.
+ */
+int machine_is_compatible(const char *compat)
+{
+	struct device_node *root;
+	int rc = 0;
+
+	root = of_find_node_by_path("/");
+	if (root) {
+		rc = device_is_compatible(root, compat);
+		of_node_put(root);
+	}
+	return rc;
+}
+EXPORT_SYMBOL(machine_is_compatible);
+
+/**
+ * Construct and return a list of the device_nodes with a given type
+ * and compatible property.
+ */
+struct device_node *find_compatible_devices(const char *type,
+					    const char *compat)
+{
+	struct device_node *head, **prevp, *np;
+
+	prevp = &head;
+	for (np = allnodes; np != 0; np = np->allnext) {
+		if (type != NULL
+		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
+			continue;
+		if (device_is_compatible(np, compat)) {
+			*prevp = np;
+			prevp = &np->next;
+		}
+	}
+	*prevp = NULL;
+	return head;
+}
+EXPORT_SYMBOL(find_compatible_devices);
+
+/**
+ * Find the device_node with a given full_name.
+ */
+struct device_node *find_path_device(const char *path)
+{
+	struct device_node *np;
+
+	for (np = allnodes; np != 0; np = np->allnext)
+		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
+			return np;
+	return NULL;
+}
+EXPORT_SYMBOL(find_path_device);
+
+/*******
+ *
+ * New implementation of the OF "find" APIs, return a refcounted
+ * object, call of_node_put() when done.  The device tree and list
+ * are protected by a rw_lock.
+ *
+ * Note that property management will need some locking as well,
+ * this isn't dealt with yet.
+ *
+ *******/
+
+/**
+ *	of_find_node_by_name - Find a node by its "name" property
+ *	@from:	The node to start searching from or NULL, the node
+ *		you pass will not be searched, only the next one
+ *		will; typically, you pass what the previous call
+ *		returned. of_node_put() will be called on it
+ *	@name:	The name string to match against
+ *
+ *	Returns a node pointer with refcount incremented, use
+ *	of_node_put() on it when done.
+ */
+struct device_node *of_find_node_by_name(struct device_node *from,
+	const char *name)
+{
+	struct device_node *np;
+
+	read_lock(&devtree_lock);
+	np = from ? from->allnext : allnodes;
+	for (; np != 0; np = np->allnext)
+		if (np->name != 0 && strcasecmp(np->name, name) == 0
+		    && of_node_get(np))
+			break;
+	if (from)
+		of_node_put(from);
+	read_unlock(&devtree_lock);
+	return np;
+}
+EXPORT_SYMBOL(of_find_node_by_name);
+
+/**
+ *	of_find_node_by_type - Find a node by its "device_type" property
+ *	@from:	The node to start searching from or NULL, the node
+ *		you pass will not be searched, only the next one
+ *		will; typically, you pass what the previous call
+ *		returned. of_node_put() will be called on it
+ *	@name:	The type string to match against
+ *
+ *	Returns a node pointer with refcount incremented, use
+ *	of_node_put() on it when done.
+ */
+struct device_node *of_find_node_by_type(struct device_node *from,
+	const char *type)
+{
+	struct device_node *np;
+
+	read_lock(&devtree_lock);
+	np = from ? from->allnext : allnodes;
+	for (; np != 0; np = np->allnext)
+		if (np->type != 0 && strcasecmp(np->type, type) == 0
+		    && of_node_get(np))
+			break;
+	if (from)
+		of_node_put(from);
+	read_unlock(&devtree_lock);
+	return np;
+}
+EXPORT_SYMBOL(of_find_node_by_type);
+
+/**
+ *	of_find_compatible_node - Find a node based on type and one of the
+ *                                tokens in its "compatible" property
+ *	@from:		The node to start searching from or NULL, the node
+ *			you pass will not be searched, only the next one
+ *			will; typically, you pass what the previous call
+ *			returned. of_node_put() will be called on it
+ *	@type:		The type string to match "device_type" or NULL to ignore
+ *	@compatible:	The string to match to one of the tokens in the device
+ *			"compatible" list.
+ *
+ *	Returns a node pointer with refcount incremented, use
+ *	of_node_put() on it when done.
+ */
+struct device_node *of_find_compatible_node(struct device_node *from,
+	const char *type, const char *compatible)
+{
+	struct device_node *np;
+
+	read_lock(&devtree_lock);
+	np = from ? from->allnext : allnodes;
+	for (; np != 0; np = np->allnext) {
+		if (type != NULL
+		    && !(np->type != 0 && strcasecmp(np->type, type) == 0))
+			continue;
+		if (device_is_compatible(np, compatible) && of_node_get(np))
+			break;
+	}
+	if (from)
+		of_node_put(from);
+	read_unlock(&devtree_lock);
+	return np;
+}
+EXPORT_SYMBOL(of_find_compatible_node);
+
+/**
+ *	of_find_node_by_path - Find a node matching a full OF path
+ *	@path:	The full path to match
+ *
+ *	Returns a node pointer with refcount incremented, use
+ *	of_node_put() on it when done.
+ */
+struct device_node *of_find_node_by_path(const char *path)
+{
+	struct device_node *np = allnodes;
+
+	read_lock(&devtree_lock);
+	for (; np != 0; np = np->allnext) {
+		if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
+		    && of_node_get(np))
+			break;
+	}
+	read_unlock(&devtree_lock);
+	return np;
+}
+EXPORT_SYMBOL(of_find_node_by_path);
+
+/**
+ *	of_find_node_by_phandle - Find a node given a phandle
+ *	@handle:	phandle of the node to find
+ *
+ *	Returns a node pointer with refcount incremented, use
+ *	of_node_put() on it when done.
+ */
+struct device_node *of_find_node_by_phandle(phandle handle)
+{
+	struct device_node *np;
+
+	read_lock(&devtree_lock);
+	for (np = allnodes; np != 0; np = np->allnext)
+		if (np->linux_phandle == handle)
+			break;
+	if (np)
+		of_node_get(np);
+	read_unlock(&devtree_lock);
+	return np;
+}
+EXPORT_SYMBOL(of_find_node_by_phandle);
+
+/**
+ *	of_find_all_nodes - Get next node in global list
+ *	@prev:	Previous node or NULL to start iteration
+ *		of_node_put() will be called on it
+ *
+ *	Returns a node pointer with refcount incremented, use
+ *	of_node_put() on it when done.
+ */
+struct device_node *of_find_all_nodes(struct device_node *prev)
+{
+	struct device_node *np;
+
+	read_lock(&devtree_lock);
+	np = prev ? prev->allnext : allnodes;
+	for (; np != 0; np = np->allnext)
+		if (of_node_get(np))
+			break;
+	if (prev)
+		of_node_put(prev);
+	read_unlock(&devtree_lock);
+	return np;
+}
+EXPORT_SYMBOL(of_find_all_nodes);
+
+/**
+ *	of_get_parent - Get a node's parent if any
+ *	@node:	Node to get parent
+ *
+ *	Returns a node pointer with refcount incremented, use
+ *	of_node_put() on it when done.
+ */
+struct device_node *of_get_parent(const struct device_node *node)
+{
+	struct device_node *np;
+
+	if (!node)
+		return NULL;
+
+	read_lock(&devtree_lock);
+	np = of_node_get(node->parent);
+	read_unlock(&devtree_lock);
+	return np;
+}
+EXPORT_SYMBOL(of_get_parent);
+
+/**
+ *	of_get_next_child - Iterate a node childs
+ *	@node:	parent node
+ *	@prev:	previous child of the parent node, or NULL to get first
+ *
+ *	Returns a node pointer with refcount incremented, use
+ *	of_node_put() on it when done.
+ */
+struct device_node *of_get_next_child(const struct device_node *node,
+	struct device_node *prev)
+{
+	struct device_node *next;
+
+	read_lock(&devtree_lock);
+	next = prev ? prev->sibling : node->child;
+	for (; next != 0; next = next->sibling)
+		if (of_node_get(next))
+			break;
+	if (prev)
+		of_node_put(prev);
+	read_unlock(&devtree_lock);
+	return next;
+}
+EXPORT_SYMBOL(of_get_next_child);
+
+/**
+ *	of_node_get - Increment refcount of a node
+ *	@node:	Node to inc refcount, NULL is supported to
+ *		simplify writing of callers
+ *
+ *	Returns node.
+ */
+struct device_node *of_node_get(struct device_node *node)
+{
+	if (node)
+		kref_get(&node->kref);
+	return node;
+}
+EXPORT_SYMBOL(of_node_get);
+
+static inline struct device_node * kref_to_device_node(struct kref *kref)
+{
+	return container_of(kref, struct device_node, kref);
+}
+
+/**
+ *	of_node_release - release a dynamically allocated node
+ *	@kref:  kref element of the node to be released
+ *
+ *	In of_node_put() this function is passed to kref_put()
+ *	as the destructor.
+ */
+static void of_node_release(struct kref *kref)
+{
+	struct device_node *node = kref_to_device_node(kref);
+	struct property *prop = node->properties;
+
+	if (!OF_IS_DYNAMIC(node))
+		return;
+	while (prop) {
+		struct property *next = prop->next;
+		kfree(prop->name);
+		kfree(prop->value);
+		kfree(prop);
+		prop = next;
+	}
+	kfree(node->intrs);
+	kfree(node->addrs);
+	kfree(node->full_name);
+	kfree(node->data);
+	kfree(node);
+}
+
+/**
+ *	of_node_put - Decrement refcount of a node
+ *	@node:	Node to dec refcount, NULL is supported to
+ *		simplify writing of callers
+ *
+ */
+void of_node_put(struct device_node *node)
+{
+	if (node)
+		kref_put(&node->kref, of_node_release);
+}
+EXPORT_SYMBOL(of_node_put);
+
+/*
+ * Plug a device node into the tree and global list.
+ */
+void of_attach_node(struct device_node *np)
+{
+	write_lock(&devtree_lock);
+	np->sibling = np->parent->child;
+	np->allnext = allnodes;
+	np->parent->child = np;
+	allnodes = np;
+	write_unlock(&devtree_lock);
+}
+
+/*
+ * "Unplug" a node from the device tree.  The caller must hold
+ * a reference to the node.  The memory associated with the node
+ * is not freed until its refcount goes to zero.
+ */
+void of_detach_node(const struct device_node *np)
+{
+	struct device_node *parent;
+
+	write_lock(&devtree_lock);
+
+	parent = np->parent;
+
+	if (allnodes == np)
+		allnodes = np->allnext;
+	else {
+		struct device_node *prev;
+		for (prev = allnodes;
+		     prev->allnext != np;
+		     prev = prev->allnext)
+			;
+		prev->allnext = np->allnext;
+	}
+
+	if (parent->child == np)
+		parent->child = np->sibling;
+	else {
+		struct device_node *prevsib;
+		for (prevsib = np->parent->child;
+		     prevsib->sibling != np;
+		     prevsib = prevsib->sibling)
+			;
+		prevsib->sibling = np->sibling;
+	}
+
+	write_unlock(&devtree_lock);
+}
+
+#ifdef CONFIG_PPC_PSERIES
+/*
+ * Fix up the uninitialized fields in a new device node:
+ * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
+ *
+ * A lot of boot-time code is duplicated here, because functions such
+ * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
+ * slab allocator.
+ *
+ * This should probably be split up into smaller chunks.
+ */
+
+static int of_finish_dynamic_node(struct device_node *node,
+				  unsigned long *unused1, int unused2,
+				  int unused3, int unused4)
+{
+	struct device_node *parent = of_get_parent(node);
+	int err = 0;
+	phandle *ibm_phandle;
+
+	node->name = get_property(node, "name", NULL);
+	node->type = get_property(node, "device_type", NULL);
+
+	if (!parent) {
+		err = -ENODEV;
+		goto out;
+	}
+
+	/* We don't support that function on PowerMac, at least
+	 * not yet
+	 */
+	if (systemcfg->platform == PLATFORM_POWERMAC)
+		return -ENODEV;
+
+	/* fix up new node's linux_phandle field */
+	if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
+		node->linux_phandle = *ibm_phandle;
+
+out:
+	of_node_put(parent);
+	return err;
+}
+
+static int prom_reconfig_notifier(struct notifier_block *nb,
+				  unsigned long action, void *node)
+{
+	int err;
+
+	switch (action) {
+	case PSERIES_RECONFIG_ADD:
+		err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
+		if (err < 0) {
+			printk(KERN_ERR "finish_node returned %d\n", err);
+			err = NOTIFY_BAD;
+		}
+		break;
+	default:
+		err = NOTIFY_DONE;
+		break;
+	}
+	return err;
+}
+
+static struct notifier_block prom_reconfig_nb = {
+	.notifier_call = prom_reconfig_notifier,
+	.priority = 10, /* This one needs to run first */
+};
+
+static int __init prom_reconfig_setup(void)
+{
+	return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
+}
+__initcall(prom_reconfig_setup);
+#endif
+
+/*
+ * Find a property with a given name for a given node
+ * and return the value.
+ */
+unsigned char *get_property(struct device_node *np, const char *name,
+			    int *lenp)
+{
+	struct property *pp;
+
+	for (pp = np->properties; pp != 0; pp = pp->next)
+		if (strcmp(pp->name, name) == 0) {
+			if (lenp != 0)
+				*lenp = pp->length;
+			return pp->value;
+		}
+	return NULL;
+}
+EXPORT_SYMBOL(get_property);
+
+/*
+ * Add a property to a node
+ */
+void prom_add_property(struct device_node* np, struct property* prop)
+{
+	struct property **next = &np->properties;
+
+	prop->next = NULL;	
+	while (*next)
+		next = &(*next)->next;
+	*next = prop;
+}
+
+/* I quickly hacked that one, check against spec ! */
+static inline unsigned long
+bus_space_to_resource_flags(unsigned int bus_space)
+{
+	u8 space = (bus_space >> 24) & 0xf;
+	if (space == 0)
+		space = 0x02;
+	if (space == 0x02)
+		return IORESOURCE_MEM;
+	else if (space == 0x01)
+		return IORESOURCE_IO;
+	else {
+		printk(KERN_WARNING "prom.c: bus_space_to_resource_flags(), space: %x\n",
+		    	bus_space);
+		return 0;
+	}
+}
+
+static struct resource *find_parent_pci_resource(struct pci_dev* pdev,
+						 struct address_range *range)
+{
+	unsigned long mask;
+	int i;
+
+	/* Check this one */
+	mask = bus_space_to_resource_flags(range->space);
+	for (i=0; i<DEVICE_COUNT_RESOURCE; i++) {
+		if ((pdev->resource[i].flags & mask) == mask &&
+			pdev->resource[i].start <= range->address &&
+			pdev->resource[i].end > range->address) {
+				if ((range->address + range->size - 1) > pdev->resource[i].end) {
+					/* Add better message */
+					printk(KERN_WARNING "PCI/OF resource overlap !\n");
+					return NULL;
+				}
+				break;
+			}
+	}
+	if (i == DEVICE_COUNT_RESOURCE)
+		return NULL;
+	return &pdev->resource[i];
+}
+
+/*
+ * Request an OF device resource. Currently handles child of PCI devices,
+ * or other nodes attached to the root node. Ultimately, put some
+ * link to resources in the OF node.
+ */
+struct resource *request_OF_resource(struct device_node* node, int index,
+				     const char* name_postfix)
+{
+	struct pci_dev* pcidev;
+	u8 pci_bus, pci_devfn;
+	unsigned long iomask;
+	struct device_node* nd;
+	struct resource* parent;
+	struct resource *res = NULL;
+	int nlen, plen;
+
+	if (index >= node->n_addrs)
+		goto fail;
+
+	/* Sanity check on bus space */
+	iomask = bus_space_to_resource_flags(node->addrs[index].space);
+	if (iomask & IORESOURCE_MEM)
+		parent = &iomem_resource;
+	else if (iomask & IORESOURCE_IO)
+		parent = &ioport_resource;
+	else
+		goto fail;
+
+	/* Find a PCI parent if any */
+	nd = node;
+	pcidev = NULL;
+	while (nd) {
+		if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
+			pcidev = pci_find_slot(pci_bus, pci_devfn);
+		if (pcidev) break;
+		nd = nd->parent;
+	}
+	if (pcidev)
+		parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
+	if (!parent) {
+		printk(KERN_WARNING "request_OF_resource(%s), parent not found\n",
+			node->name);
+		goto fail;
+	}
+
+	res = __request_region(parent, node->addrs[index].address,
+			       node->addrs[index].size, NULL);
+	if (!res)
+		goto fail;
+	nlen = strlen(node->name);
+	plen = name_postfix ? strlen(name_postfix) : 0;
+	res->name = (const char *)kmalloc(nlen+plen+1, GFP_KERNEL);
+	if (res->name) {
+		strcpy((char *)res->name, node->name);
+		if (plen)
+			strcpy((char *)res->name+nlen, name_postfix);
+	}
+	return res;
+fail:
+	return NULL;
+}
+EXPORT_SYMBOL(request_OF_resource);
+
+int release_OF_resource(struct device_node *node, int index)
+{
+	struct pci_dev* pcidev;
+	u8 pci_bus, pci_devfn;
+	unsigned long iomask, start, end;
+	struct device_node* nd;
+	struct resource* parent;
+	struct resource *res = NULL;
+
+	if (index >= node->n_addrs)
+		return -EINVAL;
+
+	/* Sanity check on bus space */
+	iomask = bus_space_to_resource_flags(node->addrs[index].space);
+	if (iomask & IORESOURCE_MEM)
+		parent = &iomem_resource;
+	else if (iomask & IORESOURCE_IO)
+		parent = &ioport_resource;
+	else
+		return -EINVAL;
+
+	/* Find a PCI parent if any */
+	nd = node;
+	pcidev = NULL;
+	while(nd) {
+		if (!pci_device_from_OF_node(nd, &pci_bus, &pci_devfn))
+			pcidev = pci_find_slot(pci_bus, pci_devfn);
+		if (pcidev) break;
+		nd = nd->parent;
+	}
+	if (pcidev)
+		parent = find_parent_pci_resource(pcidev, &node->addrs[index]);
+	if (!parent) {
+		printk(KERN_WARNING "release_OF_resource(%s), parent not found\n",
+			node->name);
+		return -ENODEV;
+	}
+
+	/* Find us in the parent and its childs */
+	res = parent->child;
+	start = node->addrs[index].address;
+	end = start + node->addrs[index].size - 1;
+	while (res) {
+		if (res->start == start && res->end == end &&
+		    (res->flags & IORESOURCE_BUSY))
+		    	break;
+		if (res->start <= start && res->end >= end)
+			res = res->child;
+		else
+			res = res->sibling;
+	}
+	if (!res)
+		return -ENODEV;
+
+	if (res->name) {
+		kfree(res->name);
+		res->name = NULL;
+	}
+	release_resource(res);
+	kfree(res);
+
+	return 0;
+}
+EXPORT_SYMBOL(release_OF_resource);