|  | /* Stand alone funtions for QSpan Tundra support. | 
|  | */ | 
|  | #include <linux/types.h> | 
|  | #include <linux/pci.h> | 
|  | #include <asm/mpc8xx.h> | 
|  |  | 
|  | extern void puthex(unsigned long val); | 
|  | extern void puts(const char *); | 
|  |  | 
|  | /* To map PCI devices, you first write 0xffffffff into the device | 
|  | * base address registers.  When the register is read back, the | 
|  | * number of most significant '1' bits describes the amount of address | 
|  | * space needed for mapping.  If the most significant bit is not set, | 
|  | * either the device does not use that address register, or it has | 
|  | * a fixed address that we can't change.  After the address is assigned, | 
|  | * the command register has to be written to enable the card. | 
|  | */ | 
|  | typedef struct { | 
|  | u_char	pci_bus; | 
|  | u_char	pci_devfn; | 
|  | ushort	pci_command; | 
|  | uint	pci_addrs[6]; | 
|  | } pci_map_t; | 
|  |  | 
|  | /* We should probably dynamically allocate these structures. | 
|  | */ | 
|  | #define MAX_PCI_DEVS	32 | 
|  | int	pci_dev_cnt; | 
|  | pci_map_t	pci_map[MAX_PCI_DEVS]; | 
|  |  | 
|  | void pci_conf_write(int bus, int device, int func, int reg, uint writeval); | 
|  | void pci_conf_read(int bus, int device, int func, int reg, void *readval); | 
|  | void probe_addresses(int bus, int devfn); | 
|  | void map_pci_addrs(void); | 
|  |  | 
|  | extern int | 
|  | qs_pci_read_config_byte(unsigned char bus, unsigned char dev_fn, | 
|  | unsigned char offset, unsigned char *val); | 
|  | extern int | 
|  | qs_pci_read_config_word(unsigned char bus, unsigned char dev_fn, | 
|  | unsigned char offset, unsigned short *val); | 
|  | extern int | 
|  | qs_pci_read_config_dword(unsigned char bus, unsigned char dev_fn, | 
|  | unsigned char offset, unsigned int *val); | 
|  | extern int | 
|  | qs_pci_write_config_byte(unsigned char bus, unsigned char dev_fn, | 
|  | unsigned char offset, unsigned char val); | 
|  | extern int | 
|  | qs_pci_write_config_word(unsigned char bus, unsigned char dev_fn, | 
|  | unsigned char offset, unsigned short val); | 
|  | extern int | 
|  | qs_pci_write_config_dword(unsigned char bus, unsigned char dev_fn, | 
|  | unsigned char offset, unsigned int val); | 
|  |  | 
|  |  | 
|  | /* This is a really stripped version of PCI bus scan.  All we are | 
|  | * looking for are devices that exist. | 
|  | */ | 
|  | void | 
|  | pci_scanner(int addr_probe) | 
|  | { | 
|  | unsigned int devfn, l, class, bus_number; | 
|  | unsigned char hdr_type, is_multi; | 
|  |  | 
|  | is_multi = 0; | 
|  | bus_number = 0; | 
|  | for (devfn = 0; devfn < 0xff; ++devfn) { | 
|  | /* The device numbers are comprised of upper 5 bits of | 
|  | * device number and lower 3 bits of multi-function number. | 
|  | */ | 
|  | if ((devfn & 7) && !is_multi) { | 
|  | /* Don't scan multifunction addresses if this is | 
|  | * not a multifunction device. | 
|  | */ | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Read the header to determine card type. | 
|  | */ | 
|  | qs_pci_read_config_byte(bus_number, devfn, PCI_HEADER_TYPE, | 
|  | &hdr_type); | 
|  |  | 
|  | /* If this is a base device number, check the header to | 
|  | * determine if it is mulifunction. | 
|  | */ | 
|  | if ((devfn & 7) == 0) | 
|  | is_multi = hdr_type & 0x80; | 
|  |  | 
|  | /* Check to see if the board is really in the slot. | 
|  | */ | 
|  | qs_pci_read_config_dword(bus_number, devfn, PCI_VENDOR_ID, &l); | 
|  | /* some broken boards return 0 if a slot is empty: */ | 
|  | if (l == 0xffffffff || l == 0x00000000 || l == 0x0000ffff || | 
|  | l == 0xffff0000) { | 
|  | /* Nothing there. | 
|  | */ | 
|  | is_multi = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* If we are not performing an address probe, | 
|  | * just simply print out some information. | 
|  | */ | 
|  | if (!addr_probe) { | 
|  | qs_pci_read_config_dword(bus_number, devfn, | 
|  | PCI_CLASS_REVISION, &class); | 
|  |  | 
|  | class >>= 8;	    /* upper 3 bytes */ | 
|  |  | 
|  | #if 0 | 
|  | printf("Found (%3d:%d): vendor 0x%04x, device 0x%04x, class 0x%06x\n", | 
|  | (devfn >> 3), (devfn & 7), | 
|  | (l & 0xffff),  (l >> 16) & 0xffff, class); | 
|  | #else | 
|  | puts("Found ("); puthex(devfn >> 3); | 
|  | puts(":"); puthex(devfn & 7); | 
|  | puts("): vendor "); puthex(l & 0xffff); | 
|  | puts(", device "); puthex((l >> 16) & 0xffff); | 
|  | puts(", class "); puthex(class); puts("\n"); | 
|  | #endif | 
|  | } | 
|  | else { | 
|  | /* If this is a "normal" device, build address list. | 
|  | */ | 
|  | if ((hdr_type & 0x7f) == PCI_HEADER_TYPE_NORMAL) | 
|  | probe_addresses(bus_number, devfn); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Now map the boards. | 
|  | */ | 
|  | if (addr_probe) | 
|  | map_pci_addrs(); | 
|  | } | 
|  |  | 
|  | /* Probe addresses for the specified device.  This is a destructive | 
|  | * operation because it writes the registers. | 
|  | */ | 
|  | void | 
|  | probe_addresses(bus, devfn) | 
|  | { | 
|  | int	i; | 
|  | uint	pciaddr; | 
|  | ushort	pcicmd; | 
|  | pci_map_t	*pm; | 
|  |  | 
|  | if (pci_dev_cnt >= MAX_PCI_DEVS) { | 
|  | puts("Too many PCI devices\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | pm = &pci_map[pci_dev_cnt++]; | 
|  |  | 
|  | pm->pci_bus = bus; | 
|  | pm->pci_devfn = devfn; | 
|  |  | 
|  | for (i=0; i<6; i++) { | 
|  | qs_pci_write_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4), -1); | 
|  | qs_pci_read_config_dword(bus, devfn, PCI_BASE_ADDRESS_0 + (i * 4), | 
|  | &pciaddr); | 
|  | pm->pci_addrs[i] = pciaddr; | 
|  | qs_pci_read_config_word(bus, devfn, PCI_COMMAND, &pcicmd); | 
|  | pm->pci_command = pcicmd; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Map the cards into the PCI space.  The PCI has separate memory | 
|  | * and I/O spaces.  In addition, some memory devices require mapping | 
|  | * below 1M.  The least significant 4 bits of the address register | 
|  | * provide information.  If this is an I/O device, only the LS bit | 
|  | * is used to indicate that, so I/O devices can be mapped to a two byte | 
|  | * boundard.  Memory addresses can be mapped to a 32 byte boundary. | 
|  | * The QSpan implementations usually have a 1Gbyte space for each | 
|  | * memory and I/O spaces. | 
|  | * | 
|  | * This isn't a terribly fancy algorithm.  I just map the spaces from | 
|  | * the top starting with the largest address space.  When finished, | 
|  | * the registers are written and the card enabled. | 
|  | * | 
|  | * While the Tundra can map a large address space on most boards, we | 
|  | * need to be careful because it may overlap other devices (like IMMR). | 
|  | */ | 
|  | #define MEMORY_SPACE_SIZE	0x20000000 | 
|  | #define IO_SPACE_SIZE		0x20000000 | 
|  |  | 
|  | void | 
|  | map_pci_addrs() | 
|  | { | 
|  | uint	pci_mem_top, pci_mem_low; | 
|  | uint	pci_io_top; | 
|  | uint	addr_mask, reg_addr, space; | 
|  | int	i, j; | 
|  | pci_map_t *pm; | 
|  |  | 
|  | pci_mem_top = MEMORY_SPACE_SIZE; | 
|  | pci_io_top = IO_SPACE_SIZE; | 
|  | pci_mem_low = (1 * 1024 * 1024);	/* Below one meg addresses */ | 
|  |  | 
|  | /* We can't map anything more than the maximum space, but test | 
|  | * for it anyway to catch devices out of range. | 
|  | */ | 
|  | addr_mask = 0x80000000; | 
|  |  | 
|  | do { | 
|  | space = (~addr_mask) + 1;	/* Size of the space */ | 
|  | for (i=0; i<pci_dev_cnt; i++) { | 
|  | pm = &pci_map[i]; | 
|  | for (j=0; j<6; j++) { | 
|  | /* If the MS bit is not set, this has either | 
|  | * already been mapped, or is not used. | 
|  | */ | 
|  | reg_addr = pm->pci_addrs[j]; | 
|  | if ((reg_addr & 0x80000000) == 0) | 
|  | continue; | 
|  | if (reg_addr & PCI_BASE_ADDRESS_SPACE_IO) { | 
|  | if ((reg_addr & PCI_BASE_ADDRESS_IO_MASK) != addr_mask) | 
|  | continue; | 
|  | if (pci_io_top < space) { | 
|  | puts("Out of PCI I/O space\n"); | 
|  | } | 
|  | else { | 
|  | pci_io_top -= space; | 
|  | pm->pci_addrs[j] = pci_io_top; | 
|  | pm->pci_command |= PCI_COMMAND_IO; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if ((reg_addr & PCI_BASE_ADDRESS_MEM_MASK) != addr_mask) | 
|  | continue; | 
|  |  | 
|  | /* Memory space.  Test if below 1M. | 
|  | */ | 
|  | if (reg_addr & PCI_BASE_ADDRESS_MEM_TYPE_1M) { | 
|  | if (pci_mem_low < space) { | 
|  | puts("Out of PCI 1M space\n"); | 
|  | } | 
|  | else { | 
|  | pci_mem_low -= space; | 
|  | pm->pci_addrs[j] = pci_mem_low; | 
|  | } | 
|  | } | 
|  | else { | 
|  | if (pci_mem_top < space) { | 
|  | puts("Out of PCI Mem space\n"); | 
|  | } | 
|  | else { | 
|  | pci_mem_top -= space; | 
|  | pm->pci_addrs[j] = pci_mem_top; | 
|  | } | 
|  | } | 
|  | pm->pci_command |= PCI_COMMAND_MEMORY; | 
|  | } | 
|  | } | 
|  | } | 
|  | addr_mask >>= 1; | 
|  | addr_mask |= 0x80000000; | 
|  | } while (addr_mask != 0xfffffffe); | 
|  |  | 
|  | /* Now, run the list one more time and map everything. | 
|  | */ | 
|  | for (i=0; i<pci_dev_cnt; i++) { | 
|  | pm = &pci_map[i]; | 
|  | for (j=0; j<6; j++) { | 
|  | qs_pci_write_config_dword(pm->pci_bus, pm->pci_devfn, | 
|  | PCI_BASE_ADDRESS_0 + (j * 4), pm->pci_addrs[j]); | 
|  | } | 
|  |  | 
|  | /* Enable memory or address mapping. | 
|  | */ | 
|  | qs_pci_write_config_word(pm->pci_bus, pm->pci_devfn, PCI_COMMAND, | 
|  | pm->pci_command); | 
|  | } | 
|  | } | 
|  |  |