|  | /* | 
|  | * Generic library functions for the microengines found on the Intel | 
|  | * IXP2000 series of network processors. | 
|  | * | 
|  | * Copyright (C) 2004, 2005 Lennert Buytenhek <buytenh@wantstofly.org> | 
|  | * Dedicated to Marija Kulikova. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU Lesser General Public License as | 
|  | * published by the Free Software Foundation; either version 2.1 of the | 
|  | * License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/io.h> | 
|  | #include <mach/hardware.h> | 
|  | #include <asm/hardware/uengine.h> | 
|  |  | 
|  | #if defined(CONFIG_ARCH_IXP2000) | 
|  | #define IXP_UENGINE_CSR_VIRT_BASE	IXP2000_UENGINE_CSR_VIRT_BASE | 
|  | #define IXP_PRODUCT_ID			IXP2000_PRODUCT_ID | 
|  | #define IXP_MISC_CONTROL		IXP2000_MISC_CONTROL | 
|  | #define IXP_RESET1			IXP2000_RESET1 | 
|  | #else | 
|  | #if defined(CONFIG_ARCH_IXP23XX) | 
|  | #define IXP_UENGINE_CSR_VIRT_BASE	IXP23XX_UENGINE_CSR_VIRT_BASE | 
|  | #define IXP_PRODUCT_ID			IXP23XX_PRODUCT_ID | 
|  | #define IXP_MISC_CONTROL		IXP23XX_MISC_CONTROL | 
|  | #define IXP_RESET1			IXP23XX_RESET1 | 
|  | #else | 
|  | #error unknown platform | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | #define USTORE_ADDRESS			0x000 | 
|  | #define USTORE_DATA_LOWER		0x004 | 
|  | #define USTORE_DATA_UPPER		0x008 | 
|  | #define CTX_ENABLES			0x018 | 
|  | #define CC_ENABLE			0x01c | 
|  | #define CSR_CTX_POINTER			0x020 | 
|  | #define INDIRECT_CTX_STS		0x040 | 
|  | #define ACTIVE_CTX_STS			0x044 | 
|  | #define INDIRECT_CTX_SIG_EVENTS		0x048 | 
|  | #define INDIRECT_CTX_WAKEUP_EVENTS	0x050 | 
|  | #define NN_PUT				0x080 | 
|  | #define NN_GET				0x084 | 
|  | #define TIMESTAMP_LOW			0x0c0 | 
|  | #define TIMESTAMP_HIGH			0x0c4 | 
|  | #define T_INDEX_BYTE_INDEX		0x0f4 | 
|  | #define LOCAL_CSR_STATUS		0x180 | 
|  |  | 
|  | u32 ixp2000_uengine_mask; | 
|  |  | 
|  | static void *ixp2000_uengine_csr_area(int uengine) | 
|  | { | 
|  | return ((void *)IXP_UENGINE_CSR_VIRT_BASE) + (uengine << 10); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * LOCAL_CSR_STATUS=1 after a read or write to a microengine's CSR | 
|  | * space means that the microengine we tried to access was also trying | 
|  | * to access its own CSR space on the same clock cycle as we did.  When | 
|  | * this happens, we lose the arbitration process by default, and the | 
|  | * read or write we tried to do was not actually performed, so we try | 
|  | * again until it succeeds. | 
|  | */ | 
|  | u32 ixp2000_uengine_csr_read(int uengine, int offset) | 
|  | { | 
|  | void *uebase; | 
|  | u32 *local_csr_status; | 
|  | u32 *reg; | 
|  | u32 value; | 
|  |  | 
|  | uebase = ixp2000_uengine_csr_area(uengine); | 
|  |  | 
|  | local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS); | 
|  | reg = (u32 *)(uebase + offset); | 
|  | do { | 
|  | value = ixp2000_reg_read(reg); | 
|  | } while (ixp2000_reg_read(local_csr_status) & 1); | 
|  |  | 
|  | return value; | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_csr_read); | 
|  |  | 
|  | void ixp2000_uengine_csr_write(int uengine, int offset, u32 value) | 
|  | { | 
|  | void *uebase; | 
|  | u32 *local_csr_status; | 
|  | u32 *reg; | 
|  |  | 
|  | uebase = ixp2000_uengine_csr_area(uengine); | 
|  |  | 
|  | local_csr_status = (u32 *)(uebase + LOCAL_CSR_STATUS); | 
|  | reg = (u32 *)(uebase + offset); | 
|  | do { | 
|  | ixp2000_reg_write(reg, value); | 
|  | } while (ixp2000_reg_read(local_csr_status) & 1); | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_csr_write); | 
|  |  | 
|  | void ixp2000_uengine_reset(u32 uengine_mask) | 
|  | { | 
|  | u32 value; | 
|  |  | 
|  | value = ixp2000_reg_read(IXP_RESET1) & ~ixp2000_uengine_mask; | 
|  |  | 
|  | uengine_mask &= ixp2000_uengine_mask; | 
|  | ixp2000_reg_wrb(IXP_RESET1, value | uengine_mask); | 
|  | ixp2000_reg_wrb(IXP_RESET1, value); | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_reset); | 
|  |  | 
|  | void ixp2000_uengine_set_mode(int uengine, u32 mode) | 
|  | { | 
|  | /* | 
|  | * CTL_STR_PAR_EN: unconditionally enable parity checking on | 
|  | * control store. | 
|  | */ | 
|  | mode |= 0x10000000; | 
|  | ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mode); | 
|  |  | 
|  | /* | 
|  | * Enable updating of condition codes. | 
|  | */ | 
|  | ixp2000_uengine_csr_write(uengine, CC_ENABLE, 0x00002000); | 
|  |  | 
|  | /* | 
|  | * Initialise other per-microengine registers. | 
|  | */ | 
|  | ixp2000_uengine_csr_write(uengine, NN_PUT, 0x00); | 
|  | ixp2000_uengine_csr_write(uengine, NN_GET, 0x00); | 
|  | ixp2000_uengine_csr_write(uengine, T_INDEX_BYTE_INDEX, 0); | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_set_mode); | 
|  |  | 
|  | static int make_even_parity(u32 x) | 
|  | { | 
|  | return hweight32(x) & 1; | 
|  | } | 
|  |  | 
|  | static void ustore_write(int uengine, u64 insn) | 
|  | { | 
|  | /* | 
|  | * Generate even parity for top and bottom 20 bits. | 
|  | */ | 
|  | insn |= (u64)make_even_parity((insn >> 20) & 0x000fffff) << 41; | 
|  | insn |= (u64)make_even_parity(insn & 0x000fffff) << 40; | 
|  |  | 
|  | /* | 
|  | * Write to microstore.  The second write auto-increments | 
|  | * the USTORE_ADDRESS index register. | 
|  | */ | 
|  | ixp2000_uengine_csr_write(uengine, USTORE_DATA_LOWER, (u32)insn); | 
|  | ixp2000_uengine_csr_write(uengine, USTORE_DATA_UPPER, (u32)(insn >> 32)); | 
|  | } | 
|  |  | 
|  | void ixp2000_uengine_load_microcode(int uengine, u8 *ucode, int insns) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Start writing to microstore at address 0. | 
|  | */ | 
|  | ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x80000000); | 
|  | for (i = 0; i < insns; i++) { | 
|  | u64 insn; | 
|  |  | 
|  | insn = (((u64)ucode[0]) << 32) | | 
|  | (((u64)ucode[1]) << 24) | | 
|  | (((u64)ucode[2]) << 16) | | 
|  | (((u64)ucode[3]) << 8) | | 
|  | ((u64)ucode[4]); | 
|  | ucode += 5; | 
|  |  | 
|  | ustore_write(uengine, insn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pad with a few NOPs at the end (to avoid the microengine | 
|  | * aborting as it prefetches beyond the last instruction), unless | 
|  | * we run off the end of the instruction store first, at which | 
|  | * point the address register will wrap back to zero. | 
|  | */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | u32 addr; | 
|  |  | 
|  | addr = ixp2000_uengine_csr_read(uengine, USTORE_ADDRESS); | 
|  | if (addr == 0x80000000) | 
|  | break; | 
|  | ustore_write(uengine, 0xf0000c0300ULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * End programming. | 
|  | */ | 
|  | ixp2000_uengine_csr_write(uengine, USTORE_ADDRESS, 0x00000000); | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_load_microcode); | 
|  |  | 
|  | void ixp2000_uengine_init_context(int uengine, int context, int pc) | 
|  | { | 
|  | /* | 
|  | * Select the right context for indirect access. | 
|  | */ | 
|  | ixp2000_uengine_csr_write(uengine, CSR_CTX_POINTER, context); | 
|  |  | 
|  | /* | 
|  | * Initialise signal masks to immediately go to Ready state. | 
|  | */ | 
|  | ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_SIG_EVENTS, 1); | 
|  | ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_WAKEUP_EVENTS, 1); | 
|  |  | 
|  | /* | 
|  | * Set program counter. | 
|  | */ | 
|  | ixp2000_uengine_csr_write(uengine, INDIRECT_CTX_STS, pc); | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_init_context); | 
|  |  | 
|  | void ixp2000_uengine_start_contexts(int uengine, u8 ctx_mask) | 
|  | { | 
|  | u32 mask; | 
|  |  | 
|  | /* | 
|  | * Enable the specified context to go to Executing state. | 
|  | */ | 
|  | mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES); | 
|  | mask |= ctx_mask << 8; | 
|  | ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask); | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_start_contexts); | 
|  |  | 
|  | void ixp2000_uengine_stop_contexts(int uengine, u8 ctx_mask) | 
|  | { | 
|  | u32 mask; | 
|  |  | 
|  | /* | 
|  | * Disable the Ready->Executing transition.  Note that this | 
|  | * does not stop the context until it voluntarily yields. | 
|  | */ | 
|  | mask = ixp2000_uengine_csr_read(uengine, CTX_ENABLES); | 
|  | mask &= ~(ctx_mask << 8); | 
|  | ixp2000_uengine_csr_write(uengine, CTX_ENABLES, mask); | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_stop_contexts); | 
|  |  | 
|  | static int check_ixp_type(struct ixp2000_uengine_code *c) | 
|  | { | 
|  | u32 product_id; | 
|  | u32 rev; | 
|  |  | 
|  | product_id = ixp2000_reg_read(IXP_PRODUCT_ID); | 
|  | if (((product_id >> 16) & 0x1f) != 0) | 
|  | return 0; | 
|  |  | 
|  | switch ((product_id >> 8) & 0xff) { | 
|  | #ifdef CONFIG_ARCH_IXP2000 | 
|  | case 0:		/* IXP2800 */ | 
|  | if (!(c->cpu_model_bitmask & 4)) | 
|  | return 0; | 
|  | break; | 
|  |  | 
|  | case 1:		/* IXP2850 */ | 
|  | if (!(c->cpu_model_bitmask & 8)) | 
|  | return 0; | 
|  | break; | 
|  |  | 
|  | case 2:		/* IXP2400 */ | 
|  | if (!(c->cpu_model_bitmask & 2)) | 
|  | return 0; | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARCH_IXP23XX | 
|  | case 4:		/* IXP23xx */ | 
|  | if (!(c->cpu_model_bitmask & 0x3f0)) | 
|  | return 0; | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | rev = product_id & 0xff; | 
|  | if (rev < c->cpu_min_revision || rev > c->cpu_max_revision) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | static void generate_ucode(u8 *ucode, u32 *gpr_a, u32 *gpr_b) | 
|  | { | 
|  | int offset; | 
|  | int i; | 
|  |  | 
|  | offset = 0; | 
|  |  | 
|  | for (i = 0; i < 128; i++) { | 
|  | u8 b3; | 
|  | u8 b2; | 
|  | u8 b1; | 
|  | u8 b0; | 
|  |  | 
|  | b3 = (gpr_a[i] >> 24) & 0xff; | 
|  | b2 = (gpr_a[i] >> 16) & 0xff; | 
|  | b1 = (gpr_a[i] >> 8) & 0xff; | 
|  | b0 = gpr_a[i] & 0xff; | 
|  |  | 
|  | // immed[@ai, (b1 << 8) | b0] | 
|  | // 11110000 0000VVVV VVVV11VV VVVVVV00 1IIIIIII | 
|  | ucode[offset++] = 0xf0; | 
|  | ucode[offset++] = (b1 >> 4); | 
|  | ucode[offset++] = (b1 << 4) | 0x0c | (b0 >> 6); | 
|  | ucode[offset++] = (b0 << 2); | 
|  | ucode[offset++] = 0x80 | i; | 
|  |  | 
|  | // immed_w1[@ai, (b3 << 8) | b2] | 
|  | // 11110100 0100VVVV VVVV11VV VVVVVV00 1IIIIIII | 
|  | ucode[offset++] = 0xf4; | 
|  | ucode[offset++] = 0x40 | (b3 >> 4); | 
|  | ucode[offset++] = (b3 << 4) | 0x0c | (b2 >> 6); | 
|  | ucode[offset++] = (b2 << 2); | 
|  | ucode[offset++] = 0x80 | i; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 128; i++) { | 
|  | u8 b3; | 
|  | u8 b2; | 
|  | u8 b1; | 
|  | u8 b0; | 
|  |  | 
|  | b3 = (gpr_b[i] >> 24) & 0xff; | 
|  | b2 = (gpr_b[i] >> 16) & 0xff; | 
|  | b1 = (gpr_b[i] >> 8) & 0xff; | 
|  | b0 = gpr_b[i] & 0xff; | 
|  |  | 
|  | // immed[@bi, (b1 << 8) | b0] | 
|  | // 11110000 0000VVVV VVVV001I IIIIII11 VVVVVVVV | 
|  | ucode[offset++] = 0xf0; | 
|  | ucode[offset++] = (b1 >> 4); | 
|  | ucode[offset++] = (b1 << 4) | 0x02 | (i >> 6); | 
|  | ucode[offset++] = (i << 2) | 0x03; | 
|  | ucode[offset++] = b0; | 
|  |  | 
|  | // immed_w1[@bi, (b3 << 8) | b2] | 
|  | // 11110100 0100VVVV VVVV001I IIIIII11 VVVVVVVV | 
|  | ucode[offset++] = 0xf4; | 
|  | ucode[offset++] = 0x40 | (b3 >> 4); | 
|  | ucode[offset++] = (b3 << 4) | 0x02 | (i >> 6); | 
|  | ucode[offset++] = (i << 2) | 0x03; | 
|  | ucode[offset++] = b2; | 
|  | } | 
|  |  | 
|  | // ctx_arb[kill] | 
|  | ucode[offset++] = 0xe0; | 
|  | ucode[offset++] = 0x00; | 
|  | ucode[offset++] = 0x01; | 
|  | ucode[offset++] = 0x00; | 
|  | ucode[offset++] = 0x00; | 
|  | } | 
|  |  | 
|  | static int set_initial_registers(int uengine, struct ixp2000_uengine_code *c) | 
|  | { | 
|  | int per_ctx_regs; | 
|  | u32 *gpr_a; | 
|  | u32 *gpr_b; | 
|  | u8 *ucode; | 
|  | int i; | 
|  |  | 
|  | gpr_a = kzalloc(128 * sizeof(u32), GFP_KERNEL); | 
|  | gpr_b = kzalloc(128 * sizeof(u32), GFP_KERNEL); | 
|  | ucode = kmalloc(513 * 5, GFP_KERNEL); | 
|  | if (gpr_a == NULL || gpr_b == NULL || ucode == NULL) { | 
|  | kfree(ucode); | 
|  | kfree(gpr_b); | 
|  | kfree(gpr_a); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | per_ctx_regs = 16; | 
|  | if (c->uengine_parameters & IXP2000_UENGINE_4_CONTEXTS) | 
|  | per_ctx_regs = 32; | 
|  |  | 
|  | for (i = 0; i < 256; i++) { | 
|  | struct ixp2000_reg_value *r = c->initial_reg_values + i; | 
|  | u32 *bank; | 
|  | int inc; | 
|  | int j; | 
|  |  | 
|  | if (r->reg == -1) | 
|  | break; | 
|  |  | 
|  | bank = (r->reg & 0x400) ? gpr_b : gpr_a; | 
|  | inc = (r->reg & 0x80) ? 128 : per_ctx_regs; | 
|  |  | 
|  | j = r->reg & 0x7f; | 
|  | while (j < 128) { | 
|  | bank[j] = r->value; | 
|  | j += inc; | 
|  | } | 
|  | } | 
|  |  | 
|  | generate_ucode(ucode, gpr_a, gpr_b); | 
|  | ixp2000_uengine_load_microcode(uengine, ucode, 513); | 
|  | ixp2000_uengine_init_context(uengine, 0, 0); | 
|  | ixp2000_uengine_start_contexts(uengine, 0x01); | 
|  | for (i = 0; i < 100; i++) { | 
|  | u32 status; | 
|  |  | 
|  | status = ixp2000_uengine_csr_read(uengine, ACTIVE_CTX_STS); | 
|  | if (!(status & 0x80000000)) | 
|  | break; | 
|  | } | 
|  | ixp2000_uengine_stop_contexts(uengine, 0x01); | 
|  |  | 
|  | kfree(ucode); | 
|  | kfree(gpr_b); | 
|  | kfree(gpr_a); | 
|  |  | 
|  | return !!(i == 100); | 
|  | } | 
|  |  | 
|  | int ixp2000_uengine_load(int uengine, struct ixp2000_uengine_code *c) | 
|  | { | 
|  | int ctx; | 
|  |  | 
|  | if (!check_ixp_type(c)) | 
|  | return 1; | 
|  |  | 
|  | if (!(ixp2000_uengine_mask & (1 << uengine))) | 
|  | return 1; | 
|  |  | 
|  | ixp2000_uengine_reset(1 << uengine); | 
|  | ixp2000_uengine_set_mode(uengine, c->uengine_parameters); | 
|  | if (set_initial_registers(uengine, c)) | 
|  | return 1; | 
|  | ixp2000_uengine_load_microcode(uengine, c->insns, c->num_insns); | 
|  |  | 
|  | for (ctx = 0; ctx < 8; ctx++) | 
|  | ixp2000_uengine_init_context(uengine, ctx, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(ixp2000_uengine_load); | 
|  |  | 
|  |  | 
|  | static int __init ixp2000_uengine_init(void) | 
|  | { | 
|  | int uengine; | 
|  | u32 value; | 
|  |  | 
|  | /* | 
|  | * Determine number of microengines present. | 
|  | */ | 
|  | switch ((ixp2000_reg_read(IXP_PRODUCT_ID) >> 8) & 0x1fff) { | 
|  | #ifdef CONFIG_ARCH_IXP2000 | 
|  | case 0:		/* IXP2800 */ | 
|  | case 1:		/* IXP2850 */ | 
|  | ixp2000_uengine_mask = 0x00ff00ff; | 
|  | break; | 
|  |  | 
|  | case 2:		/* IXP2400 */ | 
|  | ixp2000_uengine_mask = 0x000f000f; | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_ARCH_IXP23XX | 
|  | case 4:		/* IXP23xx */ | 
|  | ixp2000_uengine_mask = (*IXP23XX_EXP_CFG_FUSE >> 8) & 0xf; | 
|  | break; | 
|  | #endif | 
|  |  | 
|  | default: | 
|  | printk(KERN_INFO "Detected unknown IXP2000 model (%.8x)\n", | 
|  | (unsigned int)ixp2000_reg_read(IXP_PRODUCT_ID)); | 
|  | ixp2000_uengine_mask = 0x00000000; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reset microengines. | 
|  | */ | 
|  | ixp2000_uengine_reset(ixp2000_uengine_mask); | 
|  |  | 
|  | /* | 
|  | * Synchronise timestamp counters across all microengines. | 
|  | */ | 
|  | value = ixp2000_reg_read(IXP_MISC_CONTROL); | 
|  | ixp2000_reg_wrb(IXP_MISC_CONTROL, value & ~0x80); | 
|  | for (uengine = 0; uengine < 32; uengine++) { | 
|  | if (ixp2000_uengine_mask & (1 << uengine)) { | 
|  | ixp2000_uengine_csr_write(uengine, TIMESTAMP_LOW, 0); | 
|  | ixp2000_uengine_csr_write(uengine, TIMESTAMP_HIGH, 0); | 
|  | } | 
|  | } | 
|  | ixp2000_reg_wrb(IXP_MISC_CONTROL, value | 0x80); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | subsys_initcall(ixp2000_uengine_init); |