|  | /* | 
|  | * EDMA3 support for DaVinci | 
|  | * | 
|  | * Copyright (C) 2006-2009 Texas Instruments. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | */ | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/io.h> | 
|  |  | 
|  | #include <mach/cputype.h> | 
|  | #include <mach/memory.h> | 
|  | #include <mach/hardware.h> | 
|  | #include <mach/irqs.h> | 
|  | #include <mach/edma.h> | 
|  | #include <mach/mux.h> | 
|  |  | 
|  |  | 
|  | /* Offsets matching "struct edmacc_param" */ | 
|  | #define PARM_OPT		0x00 | 
|  | #define PARM_SRC		0x04 | 
|  | #define PARM_A_B_CNT		0x08 | 
|  | #define PARM_DST		0x0c | 
|  | #define PARM_SRC_DST_BIDX	0x10 | 
|  | #define PARM_LINK_BCNTRLD	0x14 | 
|  | #define PARM_SRC_DST_CIDX	0x18 | 
|  | #define PARM_CCNT		0x1c | 
|  |  | 
|  | #define PARM_SIZE		0x20 | 
|  |  | 
|  | /* Offsets for EDMA CC global channel registers and their shadows */ | 
|  | #define SH_ER		0x00	/* 64 bits */ | 
|  | #define SH_ECR		0x08	/* 64 bits */ | 
|  | #define SH_ESR		0x10	/* 64 bits */ | 
|  | #define SH_CER		0x18	/* 64 bits */ | 
|  | #define SH_EER		0x20	/* 64 bits */ | 
|  | #define SH_EECR		0x28	/* 64 bits */ | 
|  | #define SH_EESR		0x30	/* 64 bits */ | 
|  | #define SH_SER		0x38	/* 64 bits */ | 
|  | #define SH_SECR		0x40	/* 64 bits */ | 
|  | #define SH_IER		0x50	/* 64 bits */ | 
|  | #define SH_IECR		0x58	/* 64 bits */ | 
|  | #define SH_IESR		0x60	/* 64 bits */ | 
|  | #define SH_IPR		0x68	/* 64 bits */ | 
|  | #define SH_ICR		0x70	/* 64 bits */ | 
|  | #define SH_IEVAL	0x78 | 
|  | #define SH_QER		0x80 | 
|  | #define SH_QEER		0x84 | 
|  | #define SH_QEECR	0x88 | 
|  | #define SH_QEESR	0x8c | 
|  | #define SH_QSER		0x90 | 
|  | #define SH_QSECR	0x94 | 
|  | #define SH_SIZE		0x200 | 
|  |  | 
|  | /* Offsets for EDMA CC global registers */ | 
|  | #define EDMA_REV	0x0000 | 
|  | #define EDMA_CCCFG	0x0004 | 
|  | #define EDMA_QCHMAP	0x0200	/* 8 registers */ | 
|  | #define EDMA_DMAQNUM	0x0240	/* 8 registers (4 on OMAP-L1xx) */ | 
|  | #define EDMA_QDMAQNUM	0x0260 | 
|  | #define EDMA_QUETCMAP	0x0280 | 
|  | #define EDMA_QUEPRI	0x0284 | 
|  | #define EDMA_EMR	0x0300	/* 64 bits */ | 
|  | #define EDMA_EMCR	0x0308	/* 64 bits */ | 
|  | #define EDMA_QEMR	0x0310 | 
|  | #define EDMA_QEMCR	0x0314 | 
|  | #define EDMA_CCERR	0x0318 | 
|  | #define EDMA_CCERRCLR	0x031c | 
|  | #define EDMA_EEVAL	0x0320 | 
|  | #define EDMA_DRAE	0x0340	/* 4 x 64 bits*/ | 
|  | #define EDMA_QRAE	0x0380	/* 4 registers */ | 
|  | #define EDMA_QUEEVTENTRY	0x0400	/* 2 x 16 registers */ | 
|  | #define EDMA_QSTAT	0x0600	/* 2 registers */ | 
|  | #define EDMA_QWMTHRA	0x0620 | 
|  | #define EDMA_QWMTHRB	0x0624 | 
|  | #define EDMA_CCSTAT	0x0640 | 
|  |  | 
|  | #define EDMA_M		0x1000	/* global channel registers */ | 
|  | #define EDMA_ECR	0x1008 | 
|  | #define EDMA_ECRH	0x100C | 
|  | #define EDMA_SHADOW0	0x2000	/* 4 regions shadowing global channels */ | 
|  | #define EDMA_PARM	0x4000	/* 128 param entries */ | 
|  |  | 
|  | #define DAVINCI_DMA_3PCC_BASE	0x01C00000 | 
|  |  | 
|  | #define PARM_OFFSET(param_no)	(EDMA_PARM + ((param_no) << 5)) | 
|  |  | 
|  | #define EDMA_MAX_DMACH           64 | 
|  | #define EDMA_MAX_PARAMENTRY     512 | 
|  | #define EDMA_MAX_EVQUE            2	/* FIXME too small */ | 
|  |  | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  | static void __iomem *edmacc_regs_base; | 
|  |  | 
|  | static inline unsigned int edma_read(int offset) | 
|  | { | 
|  | return (unsigned int)__raw_readl(edmacc_regs_base + offset); | 
|  | } | 
|  |  | 
|  | static inline void edma_write(int offset, int val) | 
|  | { | 
|  | __raw_writel(val, edmacc_regs_base + offset); | 
|  | } | 
|  | static inline void edma_modify(int offset, unsigned and, unsigned or) | 
|  | { | 
|  | unsigned val = edma_read(offset); | 
|  | val &= and; | 
|  | val |= or; | 
|  | edma_write(offset, val); | 
|  | } | 
|  | static inline void edma_and(int offset, unsigned and) | 
|  | { | 
|  | unsigned val = edma_read(offset); | 
|  | val &= and; | 
|  | edma_write(offset, val); | 
|  | } | 
|  | static inline void edma_or(int offset, unsigned or) | 
|  | { | 
|  | unsigned val = edma_read(offset); | 
|  | val |= or; | 
|  | edma_write(offset, val); | 
|  | } | 
|  | static inline unsigned int edma_read_array(int offset, int i) | 
|  | { | 
|  | return edma_read(offset + (i << 2)); | 
|  | } | 
|  | static inline void edma_write_array(int offset, int i, unsigned val) | 
|  | { | 
|  | edma_write(offset + (i << 2), val); | 
|  | } | 
|  | static inline void edma_modify_array(int offset, int i, | 
|  | unsigned and, unsigned or) | 
|  | { | 
|  | edma_modify(offset + (i << 2), and, or); | 
|  | } | 
|  | static inline void edma_or_array(int offset, int i, unsigned or) | 
|  | { | 
|  | edma_or(offset + (i << 2), or); | 
|  | } | 
|  | static inline void edma_or_array2(int offset, int i, int j, unsigned or) | 
|  | { | 
|  | edma_or(offset + ((i*2 + j) << 2), or); | 
|  | } | 
|  | static inline void edma_write_array2(int offset, int i, int j, unsigned val) | 
|  | { | 
|  | edma_write(offset + ((i*2 + j) << 2), val); | 
|  | } | 
|  | static inline unsigned int edma_shadow0_read(int offset) | 
|  | { | 
|  | return edma_read(EDMA_SHADOW0 + offset); | 
|  | } | 
|  | static inline unsigned int edma_shadow0_read_array(int offset, int i) | 
|  | { | 
|  | return edma_read(EDMA_SHADOW0 + offset + (i << 2)); | 
|  | } | 
|  | static inline void edma_shadow0_write(int offset, unsigned val) | 
|  | { | 
|  | edma_write(EDMA_SHADOW0 + offset, val); | 
|  | } | 
|  | static inline void edma_shadow0_write_array(int offset, int i, unsigned val) | 
|  | { | 
|  | edma_write(EDMA_SHADOW0 + offset + (i << 2), val); | 
|  | } | 
|  | static inline unsigned int edma_parm_read(int offset, int param_no) | 
|  | { | 
|  | return edma_read(EDMA_PARM + offset + (param_no << 5)); | 
|  | } | 
|  | static inline void edma_parm_write(int offset, int param_no, unsigned val) | 
|  | { | 
|  | edma_write(EDMA_PARM + offset + (param_no << 5), val); | 
|  | } | 
|  | static inline void edma_parm_modify(int offset, int param_no, | 
|  | unsigned and, unsigned or) | 
|  | { | 
|  | edma_modify(EDMA_PARM + offset + (param_no << 5), and, or); | 
|  | } | 
|  | static inline void edma_parm_and(int offset, int param_no, unsigned and) | 
|  | { | 
|  | edma_and(EDMA_PARM + offset + (param_no << 5), and); | 
|  | } | 
|  | static inline void edma_parm_or(int offset, int param_no, unsigned or) | 
|  | { | 
|  | edma_or(EDMA_PARM + offset + (param_no << 5), or); | 
|  | } | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  | /* actual number of DMA channels and slots on this silicon */ | 
|  | static unsigned num_channels; | 
|  | static unsigned num_slots; | 
|  |  | 
|  | static struct dma_interrupt_data { | 
|  | void (*callback)(unsigned channel, unsigned short ch_status, | 
|  | void *data); | 
|  | void *data; | 
|  | } intr_data[EDMA_MAX_DMACH]; | 
|  |  | 
|  | /* The edma_inuse bit for each PaRAM slot is clear unless the | 
|  | * channel is in use ... by ARM or DSP, for QDMA, or whatever. | 
|  | */ | 
|  | static DECLARE_BITMAP(edma_inuse, EDMA_MAX_PARAMENTRY); | 
|  |  | 
|  | /* The edma_noevent bit for each channel is clear unless | 
|  | * it doesn't trigger DMA events on this platform.  It uses a | 
|  | * bit of SOC-specific initialization code. | 
|  | */ | 
|  | static DECLARE_BITMAP(edma_noevent, EDMA_MAX_DMACH); | 
|  |  | 
|  | /* dummy param set used to (re)initialize parameter RAM slots */ | 
|  | static const struct edmacc_param dummy_paramset = { | 
|  | .link_bcntrld = 0xffff, | 
|  | .ccnt = 1, | 
|  | }; | 
|  |  | 
|  | static const int __initconst | 
|  | queue_tc_mapping[EDMA_MAX_EVQUE + 1][2] = { | 
|  | /* {event queue no, TC no} */ | 
|  | {0, 0}, | 
|  | {1, 1}, | 
|  | {-1, -1} | 
|  | }; | 
|  |  | 
|  | static const int __initconst | 
|  | queue_priority_mapping[EDMA_MAX_EVQUE + 1][2] = { | 
|  | /* {event queue no, Priority} */ | 
|  | {0, 3}, | 
|  | {1, 7}, | 
|  | {-1, -1} | 
|  | }; | 
|  |  | 
|  | /*****************************************************************************/ | 
|  |  | 
|  | static void map_dmach_queue(unsigned ch_no, enum dma_event_q queue_no) | 
|  | { | 
|  | int bit = (ch_no & 0x7) * 4; | 
|  |  | 
|  | /* default to low priority queue */ | 
|  | if (queue_no == EVENTQ_DEFAULT) | 
|  | queue_no = EVENTQ_1; | 
|  |  | 
|  | queue_no &= 7; | 
|  | edma_modify_array(EDMA_DMAQNUM, (ch_no >> 3), | 
|  | ~(0x7 << bit), queue_no << bit); | 
|  | } | 
|  |  | 
|  | static void __init map_queue_tc(int queue_no, int tc_no) | 
|  | { | 
|  | int bit = queue_no * 4; | 
|  | edma_modify(EDMA_QUETCMAP, ~(0x7 << bit), ((tc_no & 0x7) << bit)); | 
|  | } | 
|  |  | 
|  | static void __init assign_priority_to_queue(int queue_no, int priority) | 
|  | { | 
|  | int bit = queue_no * 4; | 
|  | edma_modify(EDMA_QUEPRI, ~(0x7 << bit), ((priority & 0x7) << bit)); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | setup_dma_interrupt(unsigned lch, | 
|  | void (*callback)(unsigned channel, u16 ch_status, void *data), | 
|  | void *data) | 
|  | { | 
|  | if (!callback) { | 
|  | edma_shadow0_write_array(SH_IECR, lch >> 5, | 
|  | (1 << (lch & 0x1f))); | 
|  | } | 
|  |  | 
|  | intr_data[lch].callback = callback; | 
|  | intr_data[lch].data = data; | 
|  |  | 
|  | if (callback) { | 
|  | edma_shadow0_write_array(SH_ICR, lch >> 5, | 
|  | (1 << (lch & 0x1f))); | 
|  | edma_shadow0_write_array(SH_IESR, lch >> 5, | 
|  | (1 << (lch & 0x1f))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * DMA interrupt handler | 
|  | * | 
|  | *****************************************************************************/ | 
|  | static irqreturn_t dma_irq_handler(int irq, void *data) | 
|  | { | 
|  | int i; | 
|  | unsigned int cnt = 0; | 
|  |  | 
|  | dev_dbg(data, "dma_irq_handler\n"); | 
|  |  | 
|  | if ((edma_shadow0_read_array(SH_IPR, 0) == 0) | 
|  | && (edma_shadow0_read_array(SH_IPR, 1) == 0)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | while (1) { | 
|  | int j; | 
|  | if (edma_shadow0_read_array(SH_IPR, 0)) | 
|  | j = 0; | 
|  | else if (edma_shadow0_read_array(SH_IPR, 1)) | 
|  | j = 1; | 
|  | else | 
|  | break; | 
|  | dev_dbg(data, "IPR%d %08x\n", j, | 
|  | edma_shadow0_read_array(SH_IPR, j)); | 
|  | for (i = 0; i < 32; i++) { | 
|  | int k = (j << 5) + i; | 
|  | if (edma_shadow0_read_array(SH_IPR, j) & (1 << i)) { | 
|  | /* Clear the corresponding IPR bits */ | 
|  | edma_shadow0_write_array(SH_ICR, j, (1 << i)); | 
|  | if (intr_data[k].callback) { | 
|  | intr_data[k].callback(k, DMA_COMPLETE, | 
|  | intr_data[k].data); | 
|  | } | 
|  | } | 
|  | } | 
|  | cnt++; | 
|  | if (cnt > 10) | 
|  | break; | 
|  | } | 
|  | edma_shadow0_write(SH_IEVAL, 1); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * DMA error interrupt handler | 
|  | * | 
|  | *****************************************************************************/ | 
|  | static irqreturn_t dma_ccerr_handler(int irq, void *data) | 
|  | { | 
|  | int i; | 
|  | unsigned int cnt = 0; | 
|  |  | 
|  | dev_dbg(data, "dma_ccerr_handler\n"); | 
|  |  | 
|  | if ((edma_read_array(EDMA_EMR, 0) == 0) && | 
|  | (edma_read_array(EDMA_EMR, 1) == 0) && | 
|  | (edma_read(EDMA_QEMR) == 0) && (edma_read(EDMA_CCERR) == 0)) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | while (1) { | 
|  | int j = -1; | 
|  | if (edma_read_array(EDMA_EMR, 0)) | 
|  | j = 0; | 
|  | else if (edma_read_array(EDMA_EMR, 1)) | 
|  | j = 1; | 
|  | if (j >= 0) { | 
|  | dev_dbg(data, "EMR%d %08x\n", j, | 
|  | edma_read_array(EDMA_EMR, j)); | 
|  | for (i = 0; i < 32; i++) { | 
|  | int k = (j << 5) + i; | 
|  | if (edma_read_array(EDMA_EMR, j) & (1 << i)) { | 
|  | /* Clear the corresponding EMR bits */ | 
|  | edma_write_array(EDMA_EMCR, j, 1 << i); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(SH_SECR, j, | 
|  | (1 << i)); | 
|  | if (intr_data[k].callback) { | 
|  | intr_data[k].callback(k, | 
|  | DMA_CC_ERROR, | 
|  | intr_data | 
|  | [k].data); | 
|  | } | 
|  | } | 
|  | } | 
|  | } else if (edma_read(EDMA_QEMR)) { | 
|  | dev_dbg(data, "QEMR %02x\n", | 
|  | edma_read(EDMA_QEMR)); | 
|  | for (i = 0; i < 8; i++) { | 
|  | if (edma_read(EDMA_QEMR) & (1 << i)) { | 
|  | /* Clear the corresponding IPR bits */ | 
|  | edma_write(EDMA_QEMCR, 1 << i); | 
|  | edma_shadow0_write(SH_QSECR, (1 << i)); | 
|  |  | 
|  | /* NOTE:  not reported!! */ | 
|  | } | 
|  | } | 
|  | } else if (edma_read(EDMA_CCERR)) { | 
|  | dev_dbg(data, "CCERR %08x\n", | 
|  | edma_read(EDMA_CCERR)); | 
|  | /* FIXME:  CCERR.BIT(16) ignored!  much better | 
|  | * to just write CCERRCLR with CCERR value... | 
|  | */ | 
|  | for (i = 0; i < 8; i++) { | 
|  | if (edma_read(EDMA_CCERR) & (1 << i)) { | 
|  | /* Clear the corresponding IPR bits */ | 
|  | edma_write(EDMA_CCERRCLR, 1 << i); | 
|  |  | 
|  | /* NOTE:  not reported!! */ | 
|  | } | 
|  | } | 
|  | } | 
|  | if ((edma_read_array(EDMA_EMR, 0) == 0) | 
|  | && (edma_read_array(EDMA_EMR, 1) == 0) | 
|  | && (edma_read(EDMA_QEMR) == 0) | 
|  | && (edma_read(EDMA_CCERR) == 0)) { | 
|  | break; | 
|  | } | 
|  | cnt++; | 
|  | if (cnt > 10) | 
|  | break; | 
|  | } | 
|  | edma_write(EDMA_EEVAL, 1); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * Transfer controller error interrupt handlers | 
|  | * | 
|  | *****************************************************************************/ | 
|  |  | 
|  | #define tc_errs_handled	false	/* disabled as long as they're NOPs */ | 
|  |  | 
|  | static irqreturn_t dma_tc0err_handler(int irq, void *data) | 
|  | { | 
|  | dev_dbg(data, "dma_tc0err_handler\n"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t dma_tc1err_handler(int irq, void *data) | 
|  | { | 
|  | dev_dbg(data, "dma_tc1err_handler\n"); | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Resource alloc/free:  dma channels, parameter RAM slots */ | 
|  |  | 
|  | /** | 
|  | * edma_alloc_channel - allocate DMA channel and paired parameter RAM | 
|  | * @channel: specific channel to allocate; negative for "any unmapped channel" | 
|  | * @callback: optional; to be issued on DMA completion or errors | 
|  | * @data: passed to callback | 
|  | * @eventq_no: an EVENTQ_* constant, used to choose which Transfer | 
|  | *	Controller (TC) executes requests using this channel.  Use | 
|  | *	EVENTQ_DEFAULT unless you really need a high priority queue. | 
|  | * | 
|  | * This allocates a DMA channel and its associated parameter RAM slot. | 
|  | * The parameter RAM is initialized to hold a dummy transfer. | 
|  | * | 
|  | * Normal use is to pass a specific channel number as @channel, to make | 
|  | * use of hardware events mapped to that channel.  When the channel will | 
|  | * be used only for software triggering or event chaining, channels not | 
|  | * mapped to hardware events (or mapped to unused events) are preferable. | 
|  | * | 
|  | * DMA transfers start from a channel using edma_start(), or by | 
|  | * chaining.  When the transfer described in that channel's parameter RAM | 
|  | * slot completes, that slot's data may be reloaded through a link. | 
|  | * | 
|  | * DMA errors are only reported to the @callback associated with the | 
|  | * channel driving that transfer, but transfer completion callbacks can | 
|  | * be sent to another channel under control of the TCC field in | 
|  | * the option word of the transfer's parameter RAM set.  Drivers must not | 
|  | * use DMA transfer completion callbacks for channels they did not allocate. | 
|  | * (The same applies to TCC codes used in transfer chaining.) | 
|  | * | 
|  | * Returns the number of the channel, else negative errno. | 
|  | */ | 
|  | int edma_alloc_channel(int channel, | 
|  | void (*callback)(unsigned channel, u16 ch_status, void *data), | 
|  | void *data, | 
|  | enum dma_event_q eventq_no) | 
|  | { | 
|  | if (channel < 0) { | 
|  | channel = 0; | 
|  | for (;;) { | 
|  | channel = find_next_bit(edma_noevent, | 
|  | num_channels, channel); | 
|  | if (channel == num_channels) | 
|  | return -ENOMEM; | 
|  | if (!test_and_set_bit(channel, edma_inuse)) | 
|  | break; | 
|  | channel++; | 
|  | } | 
|  | } else if (channel >= num_channels) { | 
|  | return -EINVAL; | 
|  | } else if (test_and_set_bit(channel, edma_inuse)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* ensure access through shadow region 0 */ | 
|  | edma_or_array2(EDMA_DRAE, 0, channel >> 5, 1 << (channel & 0x1f)); | 
|  |  | 
|  | /* ensure no events are pending */ | 
|  | edma_stop(channel); | 
|  | memcpy_toio(edmacc_regs_base + PARM_OFFSET(channel), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  |  | 
|  | if (callback) | 
|  | setup_dma_interrupt(channel, callback, data); | 
|  |  | 
|  | map_dmach_queue(channel, eventq_no); | 
|  |  | 
|  | return channel; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_alloc_channel); | 
|  |  | 
|  |  | 
|  | /** | 
|  | * edma_free_channel - deallocate DMA channel | 
|  | * @channel: dma channel returned from edma_alloc_channel() | 
|  | * | 
|  | * This deallocates the DMA channel and associated parameter RAM slot | 
|  | * allocated by edma_alloc_channel(). | 
|  | * | 
|  | * Callers are responsible for ensuring the channel is inactive, and | 
|  | * will not be reactivated by linking, chaining, or software calls to | 
|  | * edma_start(). | 
|  | */ | 
|  | void edma_free_channel(unsigned channel) | 
|  | { | 
|  | if (channel >= num_channels) | 
|  | return; | 
|  |  | 
|  | setup_dma_interrupt(channel, NULL, NULL); | 
|  | /* REVISIT should probably take out of shadow region 0 */ | 
|  |  | 
|  | memcpy_toio(edmacc_regs_base + PARM_OFFSET(channel), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  | clear_bit(channel, edma_inuse); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_free_channel); | 
|  |  | 
|  | /** | 
|  | * edma_alloc_slot - allocate DMA parameter RAM | 
|  | * @slot: specific slot to allocate; negative for "any unused slot" | 
|  | * | 
|  | * This allocates a parameter RAM slot, initializing it to hold a | 
|  | * dummy transfer.  Slots allocated using this routine have not been | 
|  | * mapped to a hardware DMA channel, and will normally be used by | 
|  | * linking to them from a slot associated with a DMA channel. | 
|  | * | 
|  | * Normal use is to pass EDMA_SLOT_ANY as the @slot, but specific | 
|  | * slots may be allocated on behalf of DSP firmware. | 
|  | * | 
|  | * Returns the number of the slot, else negative errno. | 
|  | */ | 
|  | int edma_alloc_slot(int slot) | 
|  | { | 
|  | if (slot < 0) { | 
|  | slot = num_channels; | 
|  | for (;;) { | 
|  | slot = find_next_zero_bit(edma_inuse, | 
|  | num_slots, slot); | 
|  | if (slot == num_slots) | 
|  | return -ENOMEM; | 
|  | if (!test_and_set_bit(slot, edma_inuse)) | 
|  | break; | 
|  | } | 
|  | } else if (slot < num_channels || slot >= num_slots) { | 
|  | return -EINVAL; | 
|  | } else if (test_and_set_bit(slot, edma_inuse)) { | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  |  | 
|  | return slot; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_alloc_slot); | 
|  |  | 
|  | /** | 
|  | * edma_free_slot - deallocate DMA parameter RAM | 
|  | * @slot: parameter RAM slot returned from edma_alloc_slot() | 
|  | * | 
|  | * This deallocates the parameter RAM slot allocated by edma_alloc_slot(). | 
|  | * Callers are responsible for ensuring the slot is inactive, and will | 
|  | * not be activated. | 
|  | */ | 
|  | void edma_free_slot(unsigned slot) | 
|  | { | 
|  | if (slot < num_channels || slot >= num_slots) | 
|  | return; | 
|  |  | 
|  | memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  | clear_bit(slot, edma_inuse); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_free_slot); | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Parameter RAM operations (i) -- read/write partial slots */ | 
|  |  | 
|  | /** | 
|  | * edma_set_src - set initial DMA source address in parameter RAM slot | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @src_port: physical address of source (memory, controller FIFO, etc) | 
|  | * @addressMode: INCR, except in very rare cases | 
|  | * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the | 
|  | *	width to use when addressing the fifo (e.g. W8BIT, W32BIT) | 
|  | * | 
|  | * Note that the source address is modified during the DMA transfer | 
|  | * according to edma_set_src_index(). | 
|  | */ | 
|  | void edma_set_src(unsigned slot, dma_addr_t src_port, | 
|  | enum address_mode mode, enum fifo_width width) | 
|  | { | 
|  | if (slot < num_slots) { | 
|  | unsigned int i = edma_parm_read(PARM_OPT, slot); | 
|  |  | 
|  | if (mode) { | 
|  | /* set SAM and program FWID */ | 
|  | i = (i & ~(EDMA_FWID)) | (SAM | ((width & 0x7) << 8)); | 
|  | } else { | 
|  | /* clear SAM */ | 
|  | i &= ~SAM; | 
|  | } | 
|  | edma_parm_write(PARM_OPT, slot, i); | 
|  |  | 
|  | /* set the source port address | 
|  | in source register of param structure */ | 
|  | edma_parm_write(PARM_SRC, slot, src_port); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_src); | 
|  |  | 
|  | /** | 
|  | * edma_set_dest - set initial DMA destination address in parameter RAM slot | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @dest_port: physical address of destination (memory, controller FIFO, etc) | 
|  | * @addressMode: INCR, except in very rare cases | 
|  | * @fifoWidth: ignored unless @addressMode is FIFO, else specifies the | 
|  | *	width to use when addressing the fifo (e.g. W8BIT, W32BIT) | 
|  | * | 
|  | * Note that the destination address is modified during the DMA transfer | 
|  | * according to edma_set_dest_index(). | 
|  | */ | 
|  | void edma_set_dest(unsigned slot, dma_addr_t dest_port, | 
|  | enum address_mode mode, enum fifo_width width) | 
|  | { | 
|  | if (slot < num_slots) { | 
|  | unsigned int i = edma_parm_read(PARM_OPT, slot); | 
|  |  | 
|  | if (mode) { | 
|  | /* set DAM and program FWID */ | 
|  | i = (i & ~(EDMA_FWID)) | (DAM | ((width & 0x7) << 8)); | 
|  | } else { | 
|  | /* clear DAM */ | 
|  | i &= ~DAM; | 
|  | } | 
|  | edma_parm_write(PARM_OPT, slot, i); | 
|  | /* set the destination port address | 
|  | in dest register of param structure */ | 
|  | edma_parm_write(PARM_DST, slot, dest_port); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_dest); | 
|  |  | 
|  | /** | 
|  | * edma_get_position - returns the current transfer points | 
|  | * @slot: parameter RAM slot being examined | 
|  | * @src: pointer to source port position | 
|  | * @dst: pointer to destination port position | 
|  | * | 
|  | * Returns current source and destination addresses for a particular | 
|  | * parameter RAM slot.  Its channel should not be active when this is called. | 
|  | */ | 
|  | void edma_get_position(unsigned slot, dma_addr_t *src, dma_addr_t *dst) | 
|  | { | 
|  | struct edmacc_param temp; | 
|  |  | 
|  | edma_read_slot(slot, &temp); | 
|  | if (src != NULL) | 
|  | *src = temp.src; | 
|  | if (dst != NULL) | 
|  | *dst = temp.dst; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_get_position); | 
|  |  | 
|  | /** | 
|  | * edma_set_src_index - configure DMA source address indexing | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @src_bidx: byte offset between source arrays in a frame | 
|  | * @src_cidx: byte offset between source frames in a block | 
|  | * | 
|  | * Offsets are specified to support either contiguous or discontiguous | 
|  | * memory transfers, or repeated access to a hardware register, as needed. | 
|  | * When accessing hardware registers, both offsets are normally zero. | 
|  | */ | 
|  | void edma_set_src_index(unsigned slot, s16 src_bidx, s16 src_cidx) | 
|  | { | 
|  | if (slot < num_slots) { | 
|  | edma_parm_modify(PARM_SRC_DST_BIDX, slot, | 
|  | 0xffff0000, src_bidx); | 
|  | edma_parm_modify(PARM_SRC_DST_CIDX, slot, | 
|  | 0xffff0000, src_cidx); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_src_index); | 
|  |  | 
|  | /** | 
|  | * edma_set_dest_index - configure DMA destination address indexing | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @dest_bidx: byte offset between destination arrays in a frame | 
|  | * @dest_cidx: byte offset between destination frames in a block | 
|  | * | 
|  | * Offsets are specified to support either contiguous or discontiguous | 
|  | * memory transfers, or repeated access to a hardware register, as needed. | 
|  | * When accessing hardware registers, both offsets are normally zero. | 
|  | */ | 
|  | void edma_set_dest_index(unsigned slot, s16 dest_bidx, s16 dest_cidx) | 
|  | { | 
|  | if (slot < num_slots) { | 
|  | edma_parm_modify(PARM_SRC_DST_BIDX, slot, | 
|  | 0x0000ffff, dest_bidx << 16); | 
|  | edma_parm_modify(PARM_SRC_DST_CIDX, slot, | 
|  | 0x0000ffff, dest_cidx << 16); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_dest_index); | 
|  |  | 
|  | /** | 
|  | * edma_set_transfer_params - configure DMA transfer parameters | 
|  | * @slot: parameter RAM slot being configured | 
|  | * @acnt: how many bytes per array (at least one) | 
|  | * @bcnt: how many arrays per frame (at least one) | 
|  | * @ccnt: how many frames per block (at least one) | 
|  | * @bcnt_rld: used only for A-Synchronized transfers; this specifies | 
|  | *	the value to reload into bcnt when it decrements to zero | 
|  | * @sync_mode: ASYNC or ABSYNC | 
|  | * | 
|  | * See the EDMA3 documentation to understand how to configure and link | 
|  | * transfers using the fields in PaRAM slots.  If you are not doing it | 
|  | * all at once with edma_write_slot(), you will use this routine | 
|  | * plus two calls each for source and destination, setting the initial | 
|  | * address and saying how to index that address. | 
|  | * | 
|  | * An example of an A-Synchronized transfer is a serial link using a | 
|  | * single word shift register.  In that case, @acnt would be equal to | 
|  | * that word size; the serial controller issues a DMA synchronization | 
|  | * event to transfer each word, and memory access by the DMA transfer | 
|  | * controller will be word-at-a-time. | 
|  | * | 
|  | * An example of an AB-Synchronized transfer is a device using a FIFO. | 
|  | * In that case, @acnt equals the FIFO width and @bcnt equals its depth. | 
|  | * The controller with the FIFO issues DMA synchronization events when | 
|  | * the FIFO threshold is reached, and the DMA transfer controller will | 
|  | * transfer one frame to (or from) the FIFO.  It will probably use | 
|  | * efficient burst modes to access memory. | 
|  | */ | 
|  | void edma_set_transfer_params(unsigned slot, | 
|  | u16 acnt, u16 bcnt, u16 ccnt, | 
|  | u16 bcnt_rld, enum sync_dimension sync_mode) | 
|  | { | 
|  | if (slot < num_slots) { | 
|  | edma_parm_modify(PARM_LINK_BCNTRLD, slot, | 
|  | 0x0000ffff, bcnt_rld << 16); | 
|  | if (sync_mode == ASYNC) | 
|  | edma_parm_and(PARM_OPT, slot, ~SYNCDIM); | 
|  | else | 
|  | edma_parm_or(PARM_OPT, slot, SYNCDIM); | 
|  | /* Set the acount, bcount, ccount registers */ | 
|  | edma_parm_write(PARM_A_B_CNT, slot, (bcnt << 16) | acnt); | 
|  | edma_parm_write(PARM_CCNT, slot, ccnt); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_set_transfer_params); | 
|  |  | 
|  | /** | 
|  | * edma_link - link one parameter RAM slot to another | 
|  | * @from: parameter RAM slot originating the link | 
|  | * @to: parameter RAM slot which is the link target | 
|  | * | 
|  | * The originating slot should not be part of any active DMA transfer. | 
|  | */ | 
|  | void edma_link(unsigned from, unsigned to) | 
|  | { | 
|  | if (from >= num_slots) | 
|  | return; | 
|  | if (to >= num_slots) | 
|  | return; | 
|  | edma_parm_modify(PARM_LINK_BCNTRLD, from, 0xffff0000, PARM_OFFSET(to)); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_link); | 
|  |  | 
|  | /** | 
|  | * edma_unlink - cut link from one parameter RAM slot | 
|  | * @from: parameter RAM slot originating the link | 
|  | * | 
|  | * The originating slot should not be part of any active DMA transfer. | 
|  | * Its link is set to 0xffff. | 
|  | */ | 
|  | void edma_unlink(unsigned from) | 
|  | { | 
|  | if (from >= num_slots) | 
|  | return; | 
|  | edma_parm_or(PARM_LINK_BCNTRLD, from, 0xffff); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_unlink); | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Parameter RAM operations (ii) -- read/write whole parameter sets */ | 
|  |  | 
|  | /** | 
|  | * edma_write_slot - write parameter RAM data for slot | 
|  | * @slot: number of parameter RAM slot being modified | 
|  | * @param: data to be written into parameter RAM slot | 
|  | * | 
|  | * Use this to assign all parameters of a transfer at once.  This | 
|  | * allows more efficient setup of transfers than issuing multiple | 
|  | * calls to set up those parameters in small pieces, and provides | 
|  | * complete control over all transfer options. | 
|  | */ | 
|  | void edma_write_slot(unsigned slot, const struct edmacc_param *param) | 
|  | { | 
|  | if (slot >= num_slots) | 
|  | return; | 
|  | memcpy_toio(edmacc_regs_base + PARM_OFFSET(slot), param, PARM_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_write_slot); | 
|  |  | 
|  | /** | 
|  | * edma_read_slot - read parameter RAM data from slot | 
|  | * @slot: number of parameter RAM slot being copied | 
|  | * @param: where to store copy of parameter RAM data | 
|  | * | 
|  | * Use this to read data from a parameter RAM slot, perhaps to | 
|  | * save them as a template for later reuse. | 
|  | */ | 
|  | void edma_read_slot(unsigned slot, struct edmacc_param *param) | 
|  | { | 
|  | if (slot >= num_slots) | 
|  | return; | 
|  | memcpy_fromio(param, edmacc_regs_base + PARM_OFFSET(slot), PARM_SIZE); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_read_slot); | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | /* Various EDMA channel control operations */ | 
|  |  | 
|  | /** | 
|  | * edma_pause - pause dma on a channel | 
|  | * @channel: on which edma_start() has been called | 
|  | * | 
|  | * This temporarily disables EDMA hardware events on the specified channel, | 
|  | * preventing them from triggering new transfers on its behalf | 
|  | */ | 
|  | void edma_pause(unsigned channel) | 
|  | { | 
|  | if (channel < num_channels) { | 
|  | unsigned int mask = (1 << (channel & 0x1f)); | 
|  |  | 
|  | edma_shadow0_write_array(SH_EECR, channel >> 5, mask); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_pause); | 
|  |  | 
|  | /** | 
|  | * edma_resume - resumes dma on a paused channel | 
|  | * @channel: on which edma_pause() has been called | 
|  | * | 
|  | * This re-enables EDMA hardware events on the specified channel. | 
|  | */ | 
|  | void edma_resume(unsigned channel) | 
|  | { | 
|  | if (channel < num_channels) { | 
|  | unsigned int mask = (1 << (channel & 0x1f)); | 
|  |  | 
|  | edma_shadow0_write_array(SH_EESR, channel >> 5, mask); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_resume); | 
|  |  | 
|  | /** | 
|  | * edma_start - start dma on a channel | 
|  | * @channel: channel being activated | 
|  | * | 
|  | * Channels with event associations will be triggered by their hardware | 
|  | * events, and channels without such associations will be triggered by | 
|  | * software.  (At this writing there is no interface for using software | 
|  | * triggers except with channels that don't support hardware triggers.) | 
|  | * | 
|  | * Returns zero on success, else negative errno. | 
|  | */ | 
|  | int edma_start(unsigned channel) | 
|  | { | 
|  | if (channel < num_channels) { | 
|  | int j = channel >> 5; | 
|  | unsigned int mask = (1 << (channel & 0x1f)); | 
|  |  | 
|  | /* EDMA channels without event association */ | 
|  | if (test_bit(channel, edma_noevent)) { | 
|  | pr_debug("EDMA: ESR%d %08x\n", j, | 
|  | edma_shadow0_read_array(SH_ESR, j)); | 
|  | edma_shadow0_write_array(SH_ESR, j, mask); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* EDMA channel with event association */ | 
|  | pr_debug("EDMA: ER%d %08x\n", j, | 
|  | edma_shadow0_read_array(SH_ER, j)); | 
|  | /* Clear any pending error */ | 
|  | edma_write_array(EDMA_EMCR, j, mask); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(SH_SECR, j, mask); | 
|  | edma_shadow0_write_array(SH_EESR, j, mask); | 
|  | pr_debug("EDMA: EER%d %08x\n", j, | 
|  | edma_shadow0_read_array(SH_EER, j)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -EINVAL; | 
|  | } | 
|  | EXPORT_SYMBOL(edma_start); | 
|  |  | 
|  | /** | 
|  | * edma_stop - stops dma on the channel passed | 
|  | * @channel: channel being deactivated | 
|  | * | 
|  | * When @lch is a channel, any active transfer is paused and | 
|  | * all pending hardware events are cleared.  The current transfer | 
|  | * may not be resumed, and the channel's Parameter RAM should be | 
|  | * reinitialized before being reused. | 
|  | */ | 
|  | void edma_stop(unsigned channel) | 
|  | { | 
|  | if (channel < num_channels) { | 
|  | int j = channel >> 5; | 
|  | unsigned int mask = (1 << (channel & 0x1f)); | 
|  |  | 
|  | edma_shadow0_write_array(SH_EECR, j, mask); | 
|  | edma_shadow0_write_array(SH_ECR, j, mask); | 
|  | edma_shadow0_write_array(SH_SECR, j, mask); | 
|  | edma_write_array(EDMA_EMCR, j, mask); | 
|  |  | 
|  | pr_debug("EDMA: EER%d %08x\n", j, | 
|  | edma_shadow0_read_array(SH_EER, j)); | 
|  |  | 
|  | /* REVISIT:  consider guarding against inappropriate event | 
|  | * chaining by overwriting with dummy_paramset. | 
|  | */ | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_stop); | 
|  |  | 
|  | /****************************************************************************** | 
|  | * | 
|  | * It cleans ParamEntry qand bring back EDMA to initial state if media has | 
|  | * been removed before EDMA has finished.It is usedful for removable media. | 
|  | * Arguments: | 
|  | *      ch_no     - channel no | 
|  | * | 
|  | * Return: zero on success, or corresponding error no on failure | 
|  | * | 
|  | * FIXME this should not be needed ... edma_stop() should suffice. | 
|  | * | 
|  | *****************************************************************************/ | 
|  |  | 
|  | void edma_clean_channel(unsigned channel) | 
|  | { | 
|  | if (channel < num_channels) { | 
|  | int j = (channel >> 5); | 
|  | unsigned int mask = 1 << (channel & 0x1f); | 
|  |  | 
|  | pr_debug("EDMA: EMR%d %08x\n", j, | 
|  | edma_read_array(EDMA_EMR, j)); | 
|  | edma_shadow0_write_array(SH_ECR, j, mask); | 
|  | /* Clear the corresponding EMR bits */ | 
|  | edma_write_array(EDMA_EMCR, j, mask); | 
|  | /* Clear any SER */ | 
|  | edma_shadow0_write_array(SH_SECR, j, mask); | 
|  | edma_write(EDMA_CCERRCLR, (1 << 16) | 0x3); | 
|  | } | 
|  | } | 
|  | EXPORT_SYMBOL(edma_clean_channel); | 
|  |  | 
|  | /* | 
|  | * edma_clear_event - clear an outstanding event on the DMA channel | 
|  | * Arguments: | 
|  | *	channel - channel number | 
|  | */ | 
|  | void edma_clear_event(unsigned channel) | 
|  | { | 
|  | if (channel >= num_channels) | 
|  | return; | 
|  | if (channel < 32) | 
|  | edma_write(EDMA_ECR, 1 << channel); | 
|  | else | 
|  | edma_write(EDMA_ECRH, 1 << (channel - 32)); | 
|  | } | 
|  | EXPORT_SYMBOL(edma_clear_event); | 
|  |  | 
|  | /*-----------------------------------------------------------------------*/ | 
|  |  | 
|  | static int __init edma_probe(struct platform_device *pdev) | 
|  | { | 
|  | struct edma_soc_info	*info = pdev->dev.platform_data; | 
|  | int			i; | 
|  | int			status; | 
|  | const s8		*noevent; | 
|  | int			irq = 0, err_irq = 0; | 
|  | struct resource		*r; | 
|  | resource_size_t		len; | 
|  |  | 
|  | if (!info) | 
|  | return -ENODEV; | 
|  |  | 
|  | r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "edma_cc"); | 
|  | if (!r) | 
|  | return -ENODEV; | 
|  |  | 
|  | len = r->end - r->start + 1; | 
|  |  | 
|  | r = request_mem_region(r->start, len, r->name); | 
|  | if (!r) | 
|  | return -EBUSY; | 
|  |  | 
|  | edmacc_regs_base = ioremap(r->start, len); | 
|  | if (!edmacc_regs_base) { | 
|  | status = -EBUSY; | 
|  | goto fail1; | 
|  | } | 
|  |  | 
|  | num_channels = min_t(unsigned, info->n_channel, EDMA_MAX_DMACH); | 
|  | num_slots = min_t(unsigned, info->n_slot, EDMA_MAX_PARAMENTRY); | 
|  |  | 
|  | dev_dbg(&pdev->dev, "DMA REG BASE ADDR=%p\n", edmacc_regs_base); | 
|  |  | 
|  | for (i = 0; i < num_slots; i++) | 
|  | memcpy_toio(edmacc_regs_base + PARM_OFFSET(i), | 
|  | &dummy_paramset, PARM_SIZE); | 
|  |  | 
|  | noevent = info->noevent; | 
|  | if (noevent) { | 
|  | while (*noevent != -1) | 
|  | set_bit(*noevent++, edma_noevent); | 
|  | } | 
|  |  | 
|  | irq = platform_get_irq(pdev, 0); | 
|  | status = request_irq(irq, dma_irq_handler, 0, "edma", &pdev->dev); | 
|  | if (status < 0) { | 
|  | dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n", | 
|  | irq, status); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | err_irq = platform_get_irq(pdev, 1); | 
|  | status = request_irq(err_irq, dma_ccerr_handler, 0, | 
|  | "edma_error", &pdev->dev); | 
|  | if (status < 0) { | 
|  | dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n", | 
|  | err_irq, status); | 
|  | goto fail; | 
|  | } | 
|  |  | 
|  | if (tc_errs_handled) { | 
|  | status = request_irq(IRQ_TCERRINT0, dma_tc0err_handler, 0, | 
|  | "edma_tc0", &pdev->dev); | 
|  | if (status < 0) { | 
|  | dev_dbg(&pdev->dev, "request_irq %d failed --> %d\n", | 
|  | IRQ_TCERRINT0, status); | 
|  | return status; | 
|  | } | 
|  | status = request_irq(IRQ_TCERRINT, dma_tc1err_handler, 0, | 
|  | "edma_tc1", &pdev->dev); | 
|  | if (status < 0) { | 
|  | dev_dbg(&pdev->dev, "request_irq %d --> %d\n", | 
|  | IRQ_TCERRINT, status); | 
|  | return status; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Everything lives on transfer controller 1 until otherwise specified. | 
|  | * This way, long transfers on the low priority queue | 
|  | * started by the codec engine will not cause audio defects. | 
|  | */ | 
|  | for (i = 0; i < num_channels; i++) | 
|  | map_dmach_queue(i, EVENTQ_1); | 
|  |  | 
|  | /* Event queue to TC mapping */ | 
|  | for (i = 0; queue_tc_mapping[i][0] != -1; i++) | 
|  | map_queue_tc(queue_tc_mapping[i][0], queue_tc_mapping[i][1]); | 
|  |  | 
|  | /* Event queue priority mapping */ | 
|  | for (i = 0; queue_priority_mapping[i][0] != -1; i++) | 
|  | assign_priority_to_queue(queue_priority_mapping[i][0], | 
|  | queue_priority_mapping[i][1]); | 
|  |  | 
|  | for (i = 0; i < info->n_region; i++) { | 
|  | edma_write_array2(EDMA_DRAE, i, 0, 0x0); | 
|  | edma_write_array2(EDMA_DRAE, i, 1, 0x0); | 
|  | edma_write_array(EDMA_QRAE, i, 0x0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | fail: | 
|  | if (err_irq) | 
|  | free_irq(err_irq, NULL); | 
|  | if (irq) | 
|  | free_irq(irq, NULL); | 
|  | iounmap(edmacc_regs_base); | 
|  | fail1: | 
|  | release_mem_region(r->start, len); | 
|  | return status; | 
|  | } | 
|  |  | 
|  |  | 
|  | static struct platform_driver edma_driver = { | 
|  | .driver.name	= "edma", | 
|  | }; | 
|  |  | 
|  | static int __init edma_init(void) | 
|  | { | 
|  | return platform_driver_probe(&edma_driver, edma_probe); | 
|  | } | 
|  | arch_initcall(edma_init); | 
|  |  |