|  | /* | 
|  | * kernel/power/main.c - PM subsystem core functionality. | 
|  | * | 
|  | * Copyright (c) 2003 Patrick Mochel | 
|  | * Copyright (c) 2003 Open Source Development Lab | 
|  | * | 
|  | * This file is released under the GPLv2 | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <linux/kobject.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/console.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/resume-trace.h> | 
|  | #include <linux/freezer.h> | 
|  | #include <linux/vmstat.h> | 
|  | #include <linux/syscalls.h> | 
|  |  | 
|  | #include "power.h" | 
|  |  | 
|  | DEFINE_MUTEX(pm_mutex); | 
|  |  | 
|  | unsigned int pm_flags; | 
|  | EXPORT_SYMBOL(pm_flags); | 
|  |  | 
|  | #ifdef CONFIG_PM_SLEEP | 
|  |  | 
|  | /* Routines for PM-transition notifications */ | 
|  |  | 
|  | static BLOCKING_NOTIFIER_HEAD(pm_chain_head); | 
|  |  | 
|  | int register_pm_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_register(&pm_chain_head, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(register_pm_notifier); | 
|  |  | 
|  | int unregister_pm_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return blocking_notifier_chain_unregister(&pm_chain_head, nb); | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(unregister_pm_notifier); | 
|  |  | 
|  | int pm_notifier_call_chain(unsigned long val) | 
|  | { | 
|  | return (blocking_notifier_call_chain(&pm_chain_head, val, NULL) | 
|  | == NOTIFY_BAD) ? -EINVAL : 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_DEBUG | 
|  | int pm_test_level = TEST_NONE; | 
|  |  | 
|  | static const char * const pm_tests[__TEST_AFTER_LAST] = { | 
|  | [TEST_NONE] = "none", | 
|  | [TEST_CORE] = "core", | 
|  | [TEST_CPUS] = "processors", | 
|  | [TEST_PLATFORM] = "platform", | 
|  | [TEST_DEVICES] = "devices", | 
|  | [TEST_FREEZER] = "freezer", | 
|  | }; | 
|  |  | 
|  | static ssize_t pm_test_show(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | char *s = buf; | 
|  | int level; | 
|  |  | 
|  | for (level = TEST_FIRST; level <= TEST_MAX; level++) | 
|  | if (pm_tests[level]) { | 
|  | if (level == pm_test_level) | 
|  | s += sprintf(s, "[%s] ", pm_tests[level]); | 
|  | else | 
|  | s += sprintf(s, "%s ", pm_tests[level]); | 
|  | } | 
|  |  | 
|  | if (s != buf) | 
|  | /* convert the last space to a newline */ | 
|  | *(s-1) = '\n'; | 
|  |  | 
|  | return (s - buf); | 
|  | } | 
|  |  | 
|  | static ssize_t pm_test_store(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | const char *buf, size_t n) | 
|  | { | 
|  | const char * const *s; | 
|  | int level; | 
|  | char *p; | 
|  | int len; | 
|  | int error = -EINVAL; | 
|  |  | 
|  | p = memchr(buf, '\n', n); | 
|  | len = p ? p - buf : n; | 
|  |  | 
|  | mutex_lock(&pm_mutex); | 
|  |  | 
|  | level = TEST_FIRST; | 
|  | for (s = &pm_tests[level]; level <= TEST_MAX; s++, level++) | 
|  | if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) { | 
|  | pm_test_level = level; | 
|  | error = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | mutex_unlock(&pm_mutex); | 
|  |  | 
|  | return error ? error : n; | 
|  | } | 
|  |  | 
|  | power_attr(pm_test); | 
|  | #endif /* CONFIG_PM_DEBUG */ | 
|  |  | 
|  | #endif /* CONFIG_PM_SLEEP */ | 
|  |  | 
|  | #ifdef CONFIG_SUSPEND | 
|  |  | 
|  | static int suspend_test(int level) | 
|  | { | 
|  | #ifdef CONFIG_PM_DEBUG | 
|  | if (pm_test_level == level) { | 
|  | printk(KERN_INFO "suspend debug: Waiting for 5 seconds.\n"); | 
|  | mdelay(5000); | 
|  | return 1; | 
|  | } | 
|  | #endif /* !CONFIG_PM_DEBUG */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_PM_TEST_SUSPEND | 
|  |  | 
|  | /* | 
|  | * We test the system suspend code by setting an RTC wakealarm a short | 
|  | * time in the future, then suspending.  Suspending the devices won't | 
|  | * normally take long ... some systems only need a few milliseconds. | 
|  | * | 
|  | * The time it takes is system-specific though, so when we test this | 
|  | * during system bootup we allow a LOT of time. | 
|  | */ | 
|  | #define TEST_SUSPEND_SECONDS	5 | 
|  |  | 
|  | static unsigned long suspend_test_start_time; | 
|  |  | 
|  | static void suspend_test_start(void) | 
|  | { | 
|  | /* FIXME Use better timebase than "jiffies", ideally a clocksource. | 
|  | * What we want is a hardware counter that will work correctly even | 
|  | * during the irqs-are-off stages of the suspend/resume cycle... | 
|  | */ | 
|  | suspend_test_start_time = jiffies; | 
|  | } | 
|  |  | 
|  | static void suspend_test_finish(const char *label) | 
|  | { | 
|  | long nj = jiffies - suspend_test_start_time; | 
|  | unsigned msec; | 
|  |  | 
|  | msec = jiffies_to_msecs(abs(nj)); | 
|  | pr_info("PM: %s took %d.%03d seconds\n", label, | 
|  | msec / 1000, msec % 1000); | 
|  |  | 
|  | /* Warning on suspend means the RTC alarm period needs to be | 
|  | * larger -- the system was sooo slooowwww to suspend that the | 
|  | * alarm (should have) fired before the system went to sleep! | 
|  | * | 
|  | * Warning on either suspend or resume also means the system | 
|  | * has some performance issues.  The stack dump of a WARN_ON | 
|  | * is more likely to get the right attention than a printk... | 
|  | */ | 
|  | WARN(msec > (TEST_SUSPEND_SECONDS * 1000), "Component: %s\n", label); | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static void suspend_test_start(void) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void suspend_test_finish(const char *label) | 
|  | { | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* This is just an arbitrary number */ | 
|  | #define FREE_PAGE_NUMBER (100) | 
|  |  | 
|  | static struct platform_suspend_ops *suspend_ops; | 
|  |  | 
|  | /** | 
|  | *	suspend_set_ops - Set the global suspend method table. | 
|  | *	@ops:	Pointer to ops structure. | 
|  | */ | 
|  |  | 
|  | void suspend_set_ops(struct platform_suspend_ops *ops) | 
|  | { | 
|  | mutex_lock(&pm_mutex); | 
|  | suspend_ops = ops; | 
|  | mutex_unlock(&pm_mutex); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * suspend_valid_only_mem - generic memory-only valid callback | 
|  | * | 
|  | * Platform drivers that implement mem suspend only and only need | 
|  | * to check for that in their .valid callback can use this instead | 
|  | * of rolling their own .valid callback. | 
|  | */ | 
|  | int suspend_valid_only_mem(suspend_state_t state) | 
|  | { | 
|  | return state == PM_SUSPEND_MEM; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	suspend_prepare - Do prep work before entering low-power state. | 
|  | * | 
|  | *	This is common code that is called for each state that we're entering. | 
|  | *	Run suspend notifiers, allocate a console and stop all processes. | 
|  | */ | 
|  | static int suspend_prepare(void) | 
|  | { | 
|  | int error; | 
|  | unsigned int free_pages; | 
|  |  | 
|  | if (!suspend_ops || !suspend_ops->enter) | 
|  | return -EPERM; | 
|  |  | 
|  | pm_prepare_console(); | 
|  |  | 
|  | error = pm_notifier_call_chain(PM_SUSPEND_PREPARE); | 
|  | if (error) | 
|  | goto Finish; | 
|  |  | 
|  | error = usermodehelper_disable(); | 
|  | if (error) | 
|  | goto Finish; | 
|  |  | 
|  | if (suspend_freeze_processes()) { | 
|  | error = -EAGAIN; | 
|  | goto Thaw; | 
|  | } | 
|  |  | 
|  | free_pages = global_page_state(NR_FREE_PAGES); | 
|  | if (free_pages < FREE_PAGE_NUMBER) { | 
|  | pr_debug("PM: free some memory\n"); | 
|  | shrink_all_memory(FREE_PAGE_NUMBER - free_pages); | 
|  | if (nr_free_pages() < FREE_PAGE_NUMBER) { | 
|  | error = -ENOMEM; | 
|  | printk(KERN_ERR "PM: No enough memory\n"); | 
|  | } | 
|  | } | 
|  | if (!error) | 
|  | return 0; | 
|  |  | 
|  | Thaw: | 
|  | suspend_thaw_processes(); | 
|  | usermodehelper_enable(); | 
|  | Finish: | 
|  | pm_notifier_call_chain(PM_POST_SUSPEND); | 
|  | pm_restore_console(); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* default implementation */ | 
|  | void __attribute__ ((weak)) arch_suspend_disable_irqs(void) | 
|  | { | 
|  | local_irq_disable(); | 
|  | } | 
|  |  | 
|  | /* default implementation */ | 
|  | void __attribute__ ((weak)) arch_suspend_enable_irqs(void) | 
|  | { | 
|  | local_irq_enable(); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	suspend_enter - enter the desired system sleep state. | 
|  | *	@state:		state to enter | 
|  | * | 
|  | *	This function should be called after devices have been suspended. | 
|  | */ | 
|  | static int suspend_enter(suspend_state_t state) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | device_pm_lock(); | 
|  |  | 
|  | if (suspend_ops->prepare) { | 
|  | error = suspend_ops->prepare(); | 
|  | if (error) | 
|  | goto Done; | 
|  | } | 
|  |  | 
|  | error = device_power_down(PMSG_SUSPEND); | 
|  | if (error) { | 
|  | printk(KERN_ERR "PM: Some devices failed to power down\n"); | 
|  | goto Platfrom_finish; | 
|  | } | 
|  |  | 
|  | if (suspend_ops->prepare_late) { | 
|  | error = suspend_ops->prepare_late(); | 
|  | if (error) | 
|  | goto Power_up_devices; | 
|  | } | 
|  |  | 
|  | if (suspend_test(TEST_PLATFORM)) | 
|  | goto Platform_wake; | 
|  |  | 
|  | error = disable_nonboot_cpus(); | 
|  | if (error || suspend_test(TEST_CPUS)) | 
|  | goto Enable_cpus; | 
|  |  | 
|  | arch_suspend_disable_irqs(); | 
|  | BUG_ON(!irqs_disabled()); | 
|  |  | 
|  | error = sysdev_suspend(PMSG_SUSPEND); | 
|  | if (!error) { | 
|  | if (!suspend_test(TEST_CORE)) | 
|  | error = suspend_ops->enter(state); | 
|  | sysdev_resume(); | 
|  | } | 
|  |  | 
|  | arch_suspend_enable_irqs(); | 
|  | BUG_ON(irqs_disabled()); | 
|  |  | 
|  | Enable_cpus: | 
|  | enable_nonboot_cpus(); | 
|  |  | 
|  | Platform_wake: | 
|  | if (suspend_ops->wake) | 
|  | suspend_ops->wake(); | 
|  |  | 
|  | Power_up_devices: | 
|  | device_power_up(PMSG_RESUME); | 
|  |  | 
|  | Platfrom_finish: | 
|  | if (suspend_ops->finish) | 
|  | suspend_ops->finish(); | 
|  |  | 
|  | Done: | 
|  | device_pm_unlock(); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	suspend_devices_and_enter - suspend devices and enter the desired system | 
|  | *				    sleep state. | 
|  | *	@state:		  state to enter | 
|  | */ | 
|  | int suspend_devices_and_enter(suspend_state_t state) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if (!suspend_ops) | 
|  | return -ENOSYS; | 
|  |  | 
|  | if (suspend_ops->begin) { | 
|  | error = suspend_ops->begin(state); | 
|  | if (error) | 
|  | goto Close; | 
|  | } | 
|  | suspend_console(); | 
|  | suspend_test_start(); | 
|  | error = device_suspend(PMSG_SUSPEND); | 
|  | if (error) { | 
|  | printk(KERN_ERR "PM: Some devices failed to suspend\n"); | 
|  | goto Recover_platform; | 
|  | } | 
|  | suspend_test_finish("suspend devices"); | 
|  | if (suspend_test(TEST_DEVICES)) | 
|  | goto Recover_platform; | 
|  |  | 
|  | suspend_enter(state); | 
|  |  | 
|  | Resume_devices: | 
|  | suspend_test_start(); | 
|  | device_resume(PMSG_RESUME); | 
|  | suspend_test_finish("resume devices"); | 
|  | resume_console(); | 
|  | Close: | 
|  | if (suspend_ops->end) | 
|  | suspend_ops->end(); | 
|  | return error; | 
|  |  | 
|  | Recover_platform: | 
|  | if (suspend_ops->recover) | 
|  | suspend_ops->recover(); | 
|  | goto Resume_devices; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *	suspend_finish - Do final work before exiting suspend sequence. | 
|  | * | 
|  | *	Call platform code to clean up, restart processes, and free the | 
|  | *	console that we've allocated. This is not called for suspend-to-disk. | 
|  | */ | 
|  | static void suspend_finish(void) | 
|  | { | 
|  | suspend_thaw_processes(); | 
|  | usermodehelper_enable(); | 
|  | pm_notifier_call_chain(PM_POST_SUSPEND); | 
|  | pm_restore_console(); | 
|  | } | 
|  |  | 
|  |  | 
|  |  | 
|  |  | 
|  | static const char * const pm_states[PM_SUSPEND_MAX] = { | 
|  | [PM_SUSPEND_STANDBY]	= "standby", | 
|  | [PM_SUSPEND_MEM]	= "mem", | 
|  | }; | 
|  |  | 
|  | static inline int valid_state(suspend_state_t state) | 
|  | { | 
|  | /* All states need lowlevel support and need to be valid | 
|  | * to the lowlevel implementation, no valid callback | 
|  | * implies that none are valid. */ | 
|  | if (!suspend_ops || !suspend_ops->valid || !suspend_ops->valid(state)) | 
|  | return 0; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	enter_state - Do common work of entering low-power state. | 
|  | *	@state:		pm_state structure for state we're entering. | 
|  | * | 
|  | *	Make sure we're the only ones trying to enter a sleep state. Fail | 
|  | *	if someone has beat us to it, since we don't want anything weird to | 
|  | *	happen when we wake up. | 
|  | *	Then, do the setup for suspend, enter the state, and cleaup (after | 
|  | *	we've woken up). | 
|  | */ | 
|  | static int enter_state(suspend_state_t state) | 
|  | { | 
|  | int error; | 
|  |  | 
|  | if (!valid_state(state)) | 
|  | return -ENODEV; | 
|  |  | 
|  | if (!mutex_trylock(&pm_mutex)) | 
|  | return -EBUSY; | 
|  |  | 
|  | printk(KERN_INFO "PM: Syncing filesystems ... "); | 
|  | sys_sync(); | 
|  | printk("done.\n"); | 
|  |  | 
|  | pr_debug("PM: Preparing system for %s sleep\n", pm_states[state]); | 
|  | error = suspend_prepare(); | 
|  | if (error) | 
|  | goto Unlock; | 
|  |  | 
|  | if (suspend_test(TEST_FREEZER)) | 
|  | goto Finish; | 
|  |  | 
|  | pr_debug("PM: Entering %s sleep\n", pm_states[state]); | 
|  | error = suspend_devices_and_enter(state); | 
|  |  | 
|  | Finish: | 
|  | pr_debug("PM: Finishing wakeup.\n"); | 
|  | suspend_finish(); | 
|  | Unlock: | 
|  | mutex_unlock(&pm_mutex); | 
|  | return error; | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | *	pm_suspend - Externally visible function for suspending system. | 
|  | *	@state:		Enumerated value of state to enter. | 
|  | * | 
|  | *	Determine whether or not value is within range, get state | 
|  | *	structure, and enter (above). | 
|  | */ | 
|  |  | 
|  | int pm_suspend(suspend_state_t state) | 
|  | { | 
|  | if (state > PM_SUSPEND_ON && state <= PM_SUSPEND_MAX) | 
|  | return enter_state(state); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(pm_suspend); | 
|  |  | 
|  | #endif /* CONFIG_SUSPEND */ | 
|  |  | 
|  | struct kobject *power_kobj; | 
|  |  | 
|  | /** | 
|  | *	state - control system power state. | 
|  | * | 
|  | *	show() returns what states are supported, which is hard-coded to | 
|  | *	'standby' (Power-On Suspend), 'mem' (Suspend-to-RAM), and | 
|  | *	'disk' (Suspend-to-Disk). | 
|  | * | 
|  | *	store() accepts one of those strings, translates it into the | 
|  | *	proper enumerated value, and initiates a suspend transition. | 
|  | */ | 
|  |  | 
|  | static ssize_t state_show(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | char *s = buf; | 
|  | #ifdef CONFIG_SUSPEND | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < PM_SUSPEND_MAX; i++) { | 
|  | if (pm_states[i] && valid_state(i)) | 
|  | s += sprintf(s,"%s ", pm_states[i]); | 
|  | } | 
|  | #endif | 
|  | #ifdef CONFIG_HIBERNATION | 
|  | s += sprintf(s, "%s\n", "disk"); | 
|  | #else | 
|  | if (s != buf) | 
|  | /* convert the last space to a newline */ | 
|  | *(s-1) = '\n'; | 
|  | #endif | 
|  | return (s - buf); | 
|  | } | 
|  |  | 
|  | static ssize_t state_store(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | const char *buf, size_t n) | 
|  | { | 
|  | #ifdef CONFIG_SUSPEND | 
|  | suspend_state_t state = PM_SUSPEND_STANDBY; | 
|  | const char * const *s; | 
|  | #endif | 
|  | char *p; | 
|  | int len; | 
|  | int error = -EINVAL; | 
|  |  | 
|  | p = memchr(buf, '\n', n); | 
|  | len = p ? p - buf : n; | 
|  |  | 
|  | /* First, check if we are requested to hibernate */ | 
|  | if (len == 4 && !strncmp(buf, "disk", len)) { | 
|  | error = hibernate(); | 
|  | goto Exit; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SUSPEND | 
|  | for (s = &pm_states[state]; state < PM_SUSPEND_MAX; s++, state++) { | 
|  | if (*s && len == strlen(*s) && !strncmp(buf, *s, len)) | 
|  | break; | 
|  | } | 
|  | if (state < PM_SUSPEND_MAX && *s) | 
|  | error = enter_state(state); | 
|  | #endif | 
|  |  | 
|  | Exit: | 
|  | return error ? error : n; | 
|  | } | 
|  |  | 
|  | power_attr(state); | 
|  |  | 
|  | #ifdef CONFIG_PM_TRACE | 
|  | int pm_trace_enabled; | 
|  |  | 
|  | static ssize_t pm_trace_show(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | char *buf) | 
|  | { | 
|  | return sprintf(buf, "%d\n", pm_trace_enabled); | 
|  | } | 
|  |  | 
|  | static ssize_t | 
|  | pm_trace_store(struct kobject *kobj, struct kobj_attribute *attr, | 
|  | const char *buf, size_t n) | 
|  | { | 
|  | int val; | 
|  |  | 
|  | if (sscanf(buf, "%d", &val) == 1) { | 
|  | pm_trace_enabled = !!val; | 
|  | return n; | 
|  | } | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | power_attr(pm_trace); | 
|  | #endif /* CONFIG_PM_TRACE */ | 
|  |  | 
|  | static struct attribute * g[] = { | 
|  | &state_attr.attr, | 
|  | #ifdef CONFIG_PM_TRACE | 
|  | &pm_trace_attr.attr, | 
|  | #endif | 
|  | #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_PM_DEBUG) | 
|  | &pm_test_attr.attr, | 
|  | #endif | 
|  | NULL, | 
|  | }; | 
|  |  | 
|  | static struct attribute_group attr_group = { | 
|  | .attrs = g, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int __init pm_init(void) | 
|  | { | 
|  | power_kobj = kobject_create_and_add("power", NULL); | 
|  | if (!power_kobj) | 
|  | return -ENOMEM; | 
|  | return sysfs_create_group(power_kobj, &attr_group); | 
|  | } | 
|  |  | 
|  | core_initcall(pm_init); | 
|  |  | 
|  |  | 
|  | #ifdef CONFIG_PM_TEST_SUSPEND | 
|  |  | 
|  | #include <linux/rtc.h> | 
|  |  | 
|  | /* | 
|  | * To test system suspend, we need a hands-off mechanism to resume the | 
|  | * system.  RTCs wake alarms are a common self-contained mechanism. | 
|  | */ | 
|  |  | 
|  | static void __init test_wakealarm(struct rtc_device *rtc, suspend_state_t state) | 
|  | { | 
|  | static char err_readtime[] __initdata = | 
|  | KERN_ERR "PM: can't read %s time, err %d\n"; | 
|  | static char err_wakealarm [] __initdata = | 
|  | KERN_ERR "PM: can't set %s wakealarm, err %d\n"; | 
|  | static char err_suspend[] __initdata = | 
|  | KERN_ERR "PM: suspend test failed, error %d\n"; | 
|  | static char info_test[] __initdata = | 
|  | KERN_INFO "PM: test RTC wakeup from '%s' suspend\n"; | 
|  |  | 
|  | unsigned long		now; | 
|  | struct rtc_wkalrm	alm; | 
|  | int			status; | 
|  |  | 
|  | /* this may fail if the RTC hasn't been initialized */ | 
|  | status = rtc_read_time(rtc, &alm.time); | 
|  | if (status < 0) { | 
|  | printk(err_readtime, dev_name(&rtc->dev), status); | 
|  | return; | 
|  | } | 
|  | rtc_tm_to_time(&alm.time, &now); | 
|  |  | 
|  | memset(&alm, 0, sizeof alm); | 
|  | rtc_time_to_tm(now + TEST_SUSPEND_SECONDS, &alm.time); | 
|  | alm.enabled = true; | 
|  |  | 
|  | status = rtc_set_alarm(rtc, &alm); | 
|  | if (status < 0) { | 
|  | printk(err_wakealarm, dev_name(&rtc->dev), status); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (state == PM_SUSPEND_MEM) { | 
|  | printk(info_test, pm_states[state]); | 
|  | status = pm_suspend(state); | 
|  | if (status == -ENODEV) | 
|  | state = PM_SUSPEND_STANDBY; | 
|  | } | 
|  | if (state == PM_SUSPEND_STANDBY) { | 
|  | printk(info_test, pm_states[state]); | 
|  | status = pm_suspend(state); | 
|  | } | 
|  | if (status < 0) | 
|  | printk(err_suspend, status); | 
|  |  | 
|  | /* Some platforms can't detect that the alarm triggered the | 
|  | * wakeup, or (accordingly) disable it after it afterwards. | 
|  | * It's supposed to give oneshot behavior; cope. | 
|  | */ | 
|  | alm.enabled = false; | 
|  | rtc_set_alarm(rtc, &alm); | 
|  | } | 
|  |  | 
|  | static int __init has_wakealarm(struct device *dev, void *name_ptr) | 
|  | { | 
|  | struct rtc_device *candidate = to_rtc_device(dev); | 
|  |  | 
|  | if (!candidate->ops->set_alarm) | 
|  | return 0; | 
|  | if (!device_may_wakeup(candidate->dev.parent)) | 
|  | return 0; | 
|  |  | 
|  | *(const char **)name_ptr = dev_name(dev); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Kernel options like "test_suspend=mem" force suspend/resume sanity tests | 
|  | * at startup time.  They're normally disabled, for faster boot and because | 
|  | * we can't know which states really work on this particular system. | 
|  | */ | 
|  | static suspend_state_t test_state __initdata = PM_SUSPEND_ON; | 
|  |  | 
|  | static char warn_bad_state[] __initdata = | 
|  | KERN_WARNING "PM: can't test '%s' suspend state\n"; | 
|  |  | 
|  | static int __init setup_test_suspend(char *value) | 
|  | { | 
|  | unsigned i; | 
|  |  | 
|  | /* "=mem" ==> "mem" */ | 
|  | value++; | 
|  | for (i = 0; i < PM_SUSPEND_MAX; i++) { | 
|  | if (!pm_states[i]) | 
|  | continue; | 
|  | if (strcmp(pm_states[i], value) != 0) | 
|  | continue; | 
|  | test_state = (__force suspend_state_t) i; | 
|  | return 0; | 
|  | } | 
|  | printk(warn_bad_state, value); | 
|  | return 0; | 
|  | } | 
|  | __setup("test_suspend", setup_test_suspend); | 
|  |  | 
|  | static int __init test_suspend(void) | 
|  | { | 
|  | static char		warn_no_rtc[] __initdata = | 
|  | KERN_WARNING "PM: no wakealarm-capable RTC driver is ready\n"; | 
|  |  | 
|  | char			*pony = NULL; | 
|  | struct rtc_device	*rtc = NULL; | 
|  |  | 
|  | /* PM is initialized by now; is that state testable? */ | 
|  | if (test_state == PM_SUSPEND_ON) | 
|  | goto done; | 
|  | if (!valid_state(test_state)) { | 
|  | printk(warn_bad_state, pm_states[test_state]); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* RTCs have initialized by now too ... can we use one? */ | 
|  | class_find_device(rtc_class, NULL, &pony, has_wakealarm); | 
|  | if (pony) | 
|  | rtc = rtc_class_open(pony); | 
|  | if (!rtc) { | 
|  | printk(warn_no_rtc); | 
|  | goto done; | 
|  | } | 
|  |  | 
|  | /* go for it */ | 
|  | test_wakealarm(rtc, test_state); | 
|  | rtc_class_close(rtc); | 
|  | done: | 
|  | return 0; | 
|  | } | 
|  | late_initcall(test_suspend); | 
|  |  | 
|  | #endif /* CONFIG_PM_TEST_SUSPEND */ |