|  | /** | 
|  | * AES XCBC routines supporting the Power 7+ Nest Accelerators driver | 
|  | * | 
|  | * Copyright (C) 2011-2012 International Business Machines Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; version 2 only. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * Author: Kent Yoder <yoder1@us.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <crypto/internal/hash.h> | 
|  | #include <crypto/aes.h> | 
|  | #include <crypto/algapi.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/crypto.h> | 
|  | #include <asm/vio.h> | 
|  |  | 
|  | #include "nx_csbcpb.h" | 
|  | #include "nx.h" | 
|  |  | 
|  |  | 
|  | struct xcbc_state { | 
|  | u8 state[AES_BLOCK_SIZE]; | 
|  | unsigned int count; | 
|  | u8 buffer[AES_BLOCK_SIZE]; | 
|  | }; | 
|  |  | 
|  | static int nx_xcbc_set_key(struct crypto_shash *desc, | 
|  | const u8            *in_key, | 
|  | unsigned int         key_len) | 
|  | { | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_shash_ctx(desc); | 
|  |  | 
|  | switch (key_len) { | 
|  | case AES_KEYSIZE_128: | 
|  | nx_ctx->ap = &nx_ctx->props[NX_PROPS_AES_128]; | 
|  | break; | 
|  | default: | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | memcpy(nx_ctx->priv.xcbc.key, in_key, key_len); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nx_xcbc_init(struct shash_desc *desc) | 
|  | { | 
|  | struct xcbc_state *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; | 
|  | struct nx_sg *out_sg; | 
|  |  | 
|  | nx_ctx_init(nx_ctx, HCOP_FC_AES); | 
|  |  | 
|  | memset(sctx, 0, sizeof *sctx); | 
|  |  | 
|  | NX_CPB_SET_KEY_SIZE(csbcpb, NX_KS_AES_128); | 
|  | csbcpb->cpb.hdr.mode = NX_MODE_AES_XCBC_MAC; | 
|  |  | 
|  | memcpy(csbcpb->cpb.aes_xcbc.key, nx_ctx->priv.xcbc.key, AES_BLOCK_SIZE); | 
|  | memset(nx_ctx->priv.xcbc.key, 0, sizeof *nx_ctx->priv.xcbc.key); | 
|  |  | 
|  | out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, | 
|  | AES_BLOCK_SIZE, nx_ctx->ap->sglen); | 
|  | nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nx_xcbc_update(struct shash_desc *desc, | 
|  | const u8          *data, | 
|  | unsigned int       len) | 
|  | { | 
|  | struct xcbc_state *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; | 
|  | struct nx_sg *in_sg; | 
|  | u32 to_process, leftover; | 
|  | int rc = 0; | 
|  |  | 
|  | if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | 
|  | /* we've hit the nx chip previously and we're updating again, | 
|  | * so copy over the partial digest */ | 
|  | memcpy(csbcpb->cpb.aes_xcbc.cv, | 
|  | csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | /* 2 cases for total data len: | 
|  | *  1: <= AES_BLOCK_SIZE: copy into state, return 0 | 
|  | *  2: > AES_BLOCK_SIZE: process X blocks, copy in leftover | 
|  | */ | 
|  | if (len + sctx->count <= AES_BLOCK_SIZE) { | 
|  | memcpy(sctx->buffer + sctx->count, data, len); | 
|  | sctx->count += len; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* to_process: the AES_BLOCK_SIZE data chunk to process in this | 
|  | * update */ | 
|  | to_process = (sctx->count + len) & ~(AES_BLOCK_SIZE - 1); | 
|  | leftover = (sctx->count + len) & (AES_BLOCK_SIZE - 1); | 
|  |  | 
|  | /* the hardware will not accept a 0 byte operation for this algorithm | 
|  | * and the operation MUST be finalized to be correct. So if we happen | 
|  | * to get an update that falls on a block sized boundary, we must | 
|  | * save off the last block to finalize with later. */ | 
|  | if (!leftover) { | 
|  | to_process -= AES_BLOCK_SIZE; | 
|  | leftover = AES_BLOCK_SIZE; | 
|  | } | 
|  |  | 
|  | if (sctx->count) { | 
|  | in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buffer, | 
|  | sctx->count, nx_ctx->ap->sglen); | 
|  | in_sg = nx_build_sg_list(in_sg, (u8 *)data, | 
|  | to_process - sctx->count, | 
|  | nx_ctx->ap->sglen); | 
|  | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * | 
|  | sizeof(struct nx_sg); | 
|  | } else { | 
|  | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, to_process, | 
|  | nx_ctx->ap->sglen); | 
|  | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * | 
|  | sizeof(struct nx_sg); | 
|  | } | 
|  |  | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | 
|  |  | 
|  | if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
|  | desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | atomic_inc(&(nx_ctx->stats->aes_ops)); | 
|  |  | 
|  | /* copy the leftover back into the state struct */ | 
|  | memcpy(sctx->buffer, data + len - leftover, leftover); | 
|  | sctx->count = leftover; | 
|  |  | 
|  | /* everything after the first update is continuation */ | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int nx_xcbc_final(struct shash_desc *desc, u8 *out) | 
|  | { | 
|  | struct xcbc_state *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = nx_ctx->csbcpb; | 
|  | struct nx_sg *in_sg, *out_sg; | 
|  | int rc = 0; | 
|  |  | 
|  | if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | 
|  | /* we've hit the nx chip previously, now we're finalizing, | 
|  | * so copy over the partial digest */ | 
|  | memcpy(csbcpb->cpb.aes_xcbc.cv, | 
|  | csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); | 
|  | } else if (sctx->count == 0) { | 
|  | /* we've never seen an update, so this is a 0 byte op. The | 
|  | * hardware cannot handle a 0 byte op, so just copy out the | 
|  | * known 0 byte result. This is cheaper than allocating a | 
|  | * software context to do a 0 byte op */ | 
|  | u8 data[] = { 0x75, 0xf0, 0x25, 0x1d, 0x52, 0x8a, 0xc0, 0x1c, | 
|  | 0x45, 0x73, 0xdf, 0xd5, 0x84, 0xd7, 0x9f, 0x29 }; | 
|  | memcpy(out, data, sizeof(data)); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* final is represented by continuing the operation and indicating that | 
|  | * this is not an intermediate operation */ | 
|  | NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; | 
|  |  | 
|  | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buffer, | 
|  | sctx->count, nx_ctx->ap->sglen); | 
|  | out_sg = nx_build_sg_list(nx_ctx->out_sg, out, AES_BLOCK_SIZE, | 
|  | nx_ctx->ap->sglen); | 
|  |  | 
|  | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | 
|  | nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
|  |  | 
|  | if (!nx_ctx->op.outlen) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
|  | desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | atomic_inc(&(nx_ctx->stats->aes_ops)); | 
|  |  | 
|  | memcpy(out, csbcpb->cpb.aes_xcbc.out_cv_mac, AES_BLOCK_SIZE); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | struct shash_alg nx_shash_aes_xcbc_alg = { | 
|  | .digestsize = AES_BLOCK_SIZE, | 
|  | .init       = nx_xcbc_init, | 
|  | .update     = nx_xcbc_update, | 
|  | .final      = nx_xcbc_final, | 
|  | .setkey     = nx_xcbc_set_key, | 
|  | .descsize   = sizeof(struct xcbc_state), | 
|  | .statesize  = sizeof(struct xcbc_state), | 
|  | .base       = { | 
|  | .cra_name        = "xcbc(aes)", | 
|  | .cra_driver_name = "xcbc-aes-nx", | 
|  | .cra_priority    = 300, | 
|  | .cra_flags       = CRYPTO_ALG_TYPE_SHASH, | 
|  | .cra_blocksize   = AES_BLOCK_SIZE, | 
|  | .cra_module      = THIS_MODULE, | 
|  | .cra_ctxsize     = sizeof(struct nx_crypto_ctx), | 
|  | .cra_init        = nx_crypto_ctx_aes_xcbc_init, | 
|  | .cra_exit        = nx_crypto_ctx_exit, | 
|  | } | 
|  | }; |