|  | /** | 
|  | * SHA-256 routines supporting the Power 7+ Nest Accelerators driver | 
|  | * | 
|  | * Copyright (C) 2011-2012 International Business Machines Inc. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; version 2 only. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. | 
|  | * | 
|  | * Author: Kent Yoder <yoder1@us.ibm.com> | 
|  | */ | 
|  |  | 
|  | #include <crypto/internal/hash.h> | 
|  | #include <crypto/sha.h> | 
|  | #include <linux/module.h> | 
|  | #include <asm/vio.h> | 
|  |  | 
|  | #include "nx_csbcpb.h" | 
|  | #include "nx.h" | 
|  |  | 
|  |  | 
|  | static int nx_sha256_init(struct shash_desc *desc) | 
|  | { | 
|  | struct sha256_state *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_sg *out_sg; | 
|  |  | 
|  | nx_ctx_init(nx_ctx, HCOP_FC_SHA); | 
|  |  | 
|  | memset(sctx, 0, sizeof *sctx); | 
|  |  | 
|  | nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA256]; | 
|  |  | 
|  | NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA256); | 
|  | out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state, | 
|  | SHA256_DIGEST_SIZE, nx_ctx->ap->sglen); | 
|  | nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_update(struct shash_desc *desc, const u8 *data, | 
|  | unsigned int len) | 
|  | { | 
|  | struct sha256_state *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
|  | struct nx_sg *in_sg; | 
|  | u64 to_process, leftover; | 
|  | int rc = 0; | 
|  |  | 
|  | if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | 
|  | /* we've hit the nx chip previously and we're updating again, | 
|  | * so copy over the partial digest */ | 
|  | memcpy(csbcpb->cpb.sha256.input_partial_digest, | 
|  | csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | 
|  | } | 
|  |  | 
|  | /* 2 cases for total data len: | 
|  | *  1: <= SHA256_BLOCK_SIZE: copy into state, return 0 | 
|  | *  2: > SHA256_BLOCK_SIZE: process X blocks, copy in leftover | 
|  | */ | 
|  | if (len + sctx->count <= SHA256_BLOCK_SIZE) { | 
|  | memcpy(sctx->buf + sctx->count, data, len); | 
|  | sctx->count += len; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* to_process: the SHA256_BLOCK_SIZE data chunk to process in this | 
|  | * update */ | 
|  | to_process = (sctx->count + len) & ~(SHA256_BLOCK_SIZE - 1); | 
|  | leftover = (sctx->count + len) & (SHA256_BLOCK_SIZE - 1); | 
|  |  | 
|  | if (sctx->count) { | 
|  | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, | 
|  | sctx->count, nx_ctx->ap->sglen); | 
|  | in_sg = nx_build_sg_list(in_sg, (u8 *)data, | 
|  | to_process - sctx->count, | 
|  | nx_ctx->ap->sglen); | 
|  | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * | 
|  | sizeof(struct nx_sg); | 
|  | } else { | 
|  | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)data, | 
|  | to_process, nx_ctx->ap->sglen); | 
|  | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * | 
|  | sizeof(struct nx_sg); | 
|  | } | 
|  |  | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | 
|  |  | 
|  | if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
|  | desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | atomic_inc(&(nx_ctx->stats->sha256_ops)); | 
|  |  | 
|  | /* copy the leftover back into the state struct */ | 
|  | memcpy(sctx->buf, data + len - leftover, leftover); | 
|  | sctx->count = leftover; | 
|  |  | 
|  | csbcpb->cpb.sha256.message_bit_length += (u64) | 
|  | (csbcpb->cpb.sha256.spbc * 8); | 
|  |  | 
|  | /* everything after the first update is continuation */ | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_final(struct shash_desc *desc, u8 *out) | 
|  | { | 
|  | struct sha256_state *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
|  | struct nx_sg *in_sg, *out_sg; | 
|  | int rc; | 
|  |  | 
|  | if (NX_CPB_FDM(csbcpb) & NX_FDM_CONTINUATION) { | 
|  | /* we've hit the nx chip previously, now we're finalizing, | 
|  | * so copy over the partial digest */ | 
|  | memcpy(csbcpb->cpb.sha256.input_partial_digest, | 
|  | csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | 
|  | } | 
|  |  | 
|  | /* final is represented by continuing the operation and indicating that | 
|  | * this is not an intermediate operation */ | 
|  | NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE; | 
|  |  | 
|  | csbcpb->cpb.sha256.message_bit_length += (u64)(sctx->count * 8); | 
|  |  | 
|  | in_sg = nx_build_sg_list(nx_ctx->in_sg, (u8 *)sctx->buf, | 
|  | sctx->count, nx_ctx->ap->sglen); | 
|  | out_sg = nx_build_sg_list(nx_ctx->out_sg, out, SHA256_DIGEST_SIZE, | 
|  | nx_ctx->ap->sglen); | 
|  | nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg); | 
|  | nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg); | 
|  |  | 
|  | if (!nx_ctx->op.outlen) { | 
|  | rc = -EINVAL; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, | 
|  | desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP); | 
|  | if (rc) | 
|  | goto out; | 
|  |  | 
|  | atomic_inc(&(nx_ctx->stats->sha256_ops)); | 
|  |  | 
|  | atomic64_add(csbcpb->cpb.sha256.message_bit_length, | 
|  | &(nx_ctx->stats->sha256_bytes)); | 
|  | memcpy(out, csbcpb->cpb.sha256.message_digest, SHA256_DIGEST_SIZE); | 
|  | out: | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_export(struct shash_desc *desc, void *out) | 
|  | { | 
|  | struct sha256_state *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
|  | struct sha256_state *octx = out; | 
|  |  | 
|  | octx->count = sctx->count + | 
|  | (csbcpb->cpb.sha256.message_bit_length / 8); | 
|  | memcpy(octx->buf, sctx->buf, sizeof(octx->buf)); | 
|  |  | 
|  | /* if no data has been processed yet, we need to export SHA256's | 
|  | * initial data, in case this context gets imported into a software | 
|  | * context */ | 
|  | if (csbcpb->cpb.sha256.message_bit_length) | 
|  | memcpy(octx->state, csbcpb->cpb.sha256.message_digest, | 
|  | SHA256_DIGEST_SIZE); | 
|  | else { | 
|  | octx->state[0] = SHA256_H0; | 
|  | octx->state[1] = SHA256_H1; | 
|  | octx->state[2] = SHA256_H2; | 
|  | octx->state[3] = SHA256_H3; | 
|  | octx->state[4] = SHA256_H4; | 
|  | octx->state[5] = SHA256_H5; | 
|  | octx->state[6] = SHA256_H6; | 
|  | octx->state[7] = SHA256_H7; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nx_sha256_import(struct shash_desc *desc, const void *in) | 
|  | { | 
|  | struct sha256_state *sctx = shash_desc_ctx(desc); | 
|  | struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base); | 
|  | struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb; | 
|  | const struct sha256_state *ictx = in; | 
|  |  | 
|  | memcpy(sctx->buf, ictx->buf, sizeof(ictx->buf)); | 
|  |  | 
|  | sctx->count = ictx->count & 0x3f; | 
|  | csbcpb->cpb.sha256.message_bit_length = (ictx->count & ~0x3f) * 8; | 
|  |  | 
|  | if (csbcpb->cpb.sha256.message_bit_length) { | 
|  | memcpy(csbcpb->cpb.sha256.message_digest, ictx->state, | 
|  | SHA256_DIGEST_SIZE); | 
|  |  | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION; | 
|  | NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct shash_alg nx_shash_sha256_alg = { | 
|  | .digestsize = SHA256_DIGEST_SIZE, | 
|  | .init       = nx_sha256_init, | 
|  | .update     = nx_sha256_update, | 
|  | .final      = nx_sha256_final, | 
|  | .export     = nx_sha256_export, | 
|  | .import     = nx_sha256_import, | 
|  | .descsize   = sizeof(struct sha256_state), | 
|  | .statesize  = sizeof(struct sha256_state), | 
|  | .base       = { | 
|  | .cra_name        = "sha256", | 
|  | .cra_driver_name = "sha256-nx", | 
|  | .cra_priority    = 300, | 
|  | .cra_flags       = CRYPTO_ALG_TYPE_SHASH, | 
|  | .cra_blocksize   = SHA256_BLOCK_SIZE, | 
|  | .cra_module      = THIS_MODULE, | 
|  | .cra_ctxsize     = sizeof(struct nx_crypto_ctx), | 
|  | .cra_init        = nx_crypto_ctx_sha_init, | 
|  | .cra_exit        = nx_crypto_ctx_exit, | 
|  | } | 
|  | }; |